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This paper studies the asymptotic power of tests of sphericity against
perturbations in a single unknown direction as both the dimensionality of the
data and the number of observations go to infinity. We establish the conver-
gence, under the null hypothesis and contiguous alternatives, of the log ratio
of the joint densities of the sample covariance eigenvalues to a Gaussian pro-
cess indexed by the norm of the perturbation. When the perturbation norm
is larger than the phase transition threshold studied in Baik, Ben Arous and
Péché [Ann. Probab. 33 (2005) 1643–1697] the limiting process is degener-
ate, and discrimination between the null and the alternative is asymptotically
certain. When the norm is below the threshold, the limiting process is nonde-
generate, and the joint eigenvalue densities under the null and alternative hy-
potheses are mutually contiguous. Using the asymptotic theory of statistical
experiments, we obtain asymptotic power envelopes and derive the asymp-
totic power for various sphericity tests in the contiguity region. In particular,
we show that the asymptotic power of the Tracy–Widom-type tests is trivial
(i.e., equals the asymptotic size), whereas that of the eigenvalue-based likeli-
hood ratio test is strictly larger than the size, and close to the power envelope.

1. Introduction. Recently, there has been much interest in testing sphericity
in a high-dimensional setting. Various tests have been proposed and analyzed in
Ledoit and Wolf (2002), Srivastava (2005), Birke and Dette (2005), Schott (2006),
Bai et al. (2009), Fisher, Sun and Gallagher (2010), Chen, Zhang and Zhong (2010)
and Berthet and Rigollet (2012). In many studies, a distinct interesting alternative
to the null of sphericity is the existence of a low-dimensional structure or sig-
nal in the data. Detecting such a structure has been the focus of recent studies in
various applied fields including population and medical genetics [Patterson, Price
and Reich (2006)], econometrics [Onatski (2009, 2010)], wireless communication
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[Bianchi et al. (2011)], chemometrics [Kritchman and Nadler (2008)] and signal
processing [Perry and Wolfe (2010)].

Most of the existing sphericity tests are based on the eigenvalues of the sample
covariance matrix, which constitute the maximal invariant statistic with respect to
orthogonal transformations of the data. The asymptotic power of such tests de-
pends on the asymptotic behavior of the sample covariance eigenvalues under the
alternative hypothesis. When the alternative is a rank-k perturbation of the null, the
corresponding population covariance matrix is proportional to a sum of the iden-
tity matrix and a matrix of rank k. Johnstone (2001) calls such a situation “spiked
covariance.”

The asymptotic behavior of the sample covariance eigenvalues in “spiked co-
variance” models of increasing dimension is well studied. Consider the simplest
case, when k = 1. If the largest population covariance eigenvalue is above the
“phase transition” threshold studied in Baik, Ben Arous and Péché (2005), then
the largest sample covariance eigenvalue remains separated from the rest of the
eigenvalues, which are asymptotically “packed together as in the support of the
Marchenko–Pastur density” [Baik and Silverstein (2006)]. Since the largest eigen-
value separates from the “bulk,” it is easy to detect a signal.

If the largest population covariance eigenvalue is at or below the threshold, the
empirical distribution of the sample covariance eigenvalues still converges to the
Marchenko–Pastur distribution, but the largest sample covariance eigenvalue now
converges to the upper boundary of its support, both under the null of sphericity
and the “spiked” alternative [Silverstein and Bai (1995) and Baik and Silverstein
(2006)]. Hence, the signal detection becomes problematic. At the threshold, the
null and the alternative hypotheses lead to different asymptotic distributions for the
centered and normalized largest sample covariance eigenvalue [Bloemendal and
Virág (2012) and Mo (2012)], which implies some asymptotic detection power.
However, below the threshold, the difference disappears with the joint distribu-
tion of any finite number of the centered and normalized largest sample covari-
ance eigenvalues converging to the multivariate Tracy–Widom law under both the
null and the alternative [Johnstone (2001), Baik, Ben Arous and Péché (2005),
El Karoui (2007) and Féral and Péché (2009)].

This similarity in the asymptotic behavior of covariance eigenvalues under the
null and the alternative prompts Nadakuditi and Edelman (2008) and Nadakuditi
and Silverstein (2010) to call the transition threshold “the fundamental asymptotic
limit of sample-eigenvalue-based detection.” They claim that no reliable signal de-
tection is possible below that limit in the asymptotic sense. This asymptotic impos-
sibility is also pointed out and discussed in several other recent studies, including
Patterson, Price and Reich (2006), Hoyle (2008), Nadler (2008), Kritchman and
Nadler (2009) and Perry and Wolfe (2010).

In this paper, we analyze the capacity of statistical tests to detect a one-
dimensional signal with the corresponding population covariance eigenvalue be-
low the “impossibility threshold,” showing that the terminology “impossibility
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threshold” is overly pessimistic. We establish that the eigenvalue region below
the threshold actually is the region of mutual contiguity [in the sense of Le Cam
(1960)] of the joint distributions of the sample covariance eigenvalues under the
null and under the alternative. We obtain the limit in distribution of the log like-
lihood ratio process inside this contiguity region and derive the asymptotic power
envelope for sample-eigenvalue-based detection tests.

The power envelope is larger than size for local alternatives and monotoni-
cally tends to one as the signal’s population eigenvalue approaches the threshold
from below. Hence, the detection of a signal with high asymptotic probability is
quite possible even in cases where the largest population covariance eigenvalue is
smaller than the threshold, especially when the distance from the threshold remains
small.

In the contiguity region, the log likelihood ratio is asymptotically equivalent to a
simple statistic related to the Stieltjes transform of the empirical distribution of the
sample covariance eigenvalues. The reason the asymptotic behavior of this statistic
differs under the null and under the alternative despite the apparent similarity of
eigenvalue behaviors just mentioned is that it is not based merely on a contrast
between the largest and the rest of the eigenvalues. The information about the
presence of the signal exploited by this statistic is hidden in the small deviations
of the empirical distribution of the eigenvalues from its Marchenko–Pastur limit.

Let us examine our setting and our results in more detail. Suppose that data
consist of n independent observations of p-dimensional real-valued vectors Xt

distributed according to the Gaussian law with mean zero and covariance matrix
σ 2(Ip + hvv′), where Ip is the p-dimensional identity matrix, σ and h are scalars
and v is a p-dimensional vector with Euclidean norm one. We are interested in
the asymptotic power of the tests of the null hypothesis H0 :h = 0 against the
alternative H1 :h > 0 based on the eigenvalues of the sample covariance matrix of
the data when both n and p go to infinity. The vector v is an unspecified nuisance
parameter indicating the direction of the perturbation of sphericity. In contrast to
Berthet and Rigollet (2012), who study signal detection in a similar setting where
the vector v is sparse, we do not constrain v in any way except normalizing its
Euclidean norm to one.

We consider the cases of known and unknown σ 2. For the sake of brevity, in the
rest of this Introduction, we discuss only the case of unknown σ 2, which, in prac-
tice, is also more relevant. Let λj be the j th largest sample covariance eigenvalue,
let μj = λj/(λ1 +· · ·+λp) be its normalized version and let μ = (μ1, . . . ,μm−1),
where m = min(n,p). We begin our analysis with a study of the asymptotic prop-
erties of the likelihood ratio process L(h;μ) defined as the ratio of the density of
μ when h �= 0 to that when h = 0. We represent L(h;μ) in the form of an integral
over a contour in the complex plane and use the Laplace approximation method
and recent results from the large random matrix theory to derive an asymptotic ex-
pansion of L(h;μ) as p,n → ∞ so that p/n → c ∈ (0,∞), which we throughout
abbreviate into p,n →c ∞.
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We show that, for any h̄ such that 0 < h̄ <
√

c, lnL(h;μ) converges in distri-
bution under the null to a Gaussian process L(h;μ) on h ∈ [0, h̄] with

E
[

L(h;μ)
] = 1

4

[
ln

(
1 − c−1h2) + c−1h2]

and

Cov
(

L(h1;μ), L(h2;μ)
) = −1

2

[
ln

(
1 − c−1h1h2

) + c−1h1h2
]
.

By Le Cam’s first lemma [see van der Vaart (1998), page 88], this implies that the
joint distributions of the normalized sample covariance eigenvalues under the null
and under the alternative are mutually contiguous for any h ∈ [0, h̄]. We also show
that these joint distributions are not mutually contiguous for any h >

√
c.

Since L(h;μ), as a likelihood ratio process, is not of the LAN Gaussian
shift type, local asymptotic normality does not hold, and the asymptotic opti-
mality analysis of tests of H0 :h = 0 against H1 :h > 0 is difficult. However,
an asymptotic power envelope is easy to construct using the Neyman–Pearson
lemma along with Le Cam’s third lemma. We show that, for tests of asymptotic
size α, the maximum achievable power against a specific alternative h = h1 is

1 − �[�−1(1 − α) −
√

−1
2(ln(1 − c−1h2

1) + c−1h2
1)], where �, as usual, denotes

the standard normal distribution function.
Using our result on the limiting distribution of lnL(h;μ) and Le Cam’s third

lemma, we compute the asymptotic powers of several previously proposed tests of
sphericity and of the likelihood ratio (LR) test based on μ. We find that the power
of the LR test comes close to the asymptotic power envelope. The LR test outper-
forms the test proposed by John (1971) and studied in Ledoit and Wolf (2002), as
well as Srivastava (2005) and the test proposed by Bai et al. (2009). The asymp-
totic powers of the tests based on the largest sample covariance eigenvalue, such as
the tests proposed by Bejan (2005), Patterson, Price and Reich (2006), Kritchman
and Nadler (2009), Onatski (2009), Bianchi et al. (2011) and Nadakuditi and Sil-
verstein (2010), equals the tests’ asymptotic size for alternatives in the contiguity
region.

The rest of the paper is organized as follows. Section 2 provides a representation
of the likelihood ratio in terms of a contour integral. Section 3 applies Laplace’s
method to obtain an asymptotic approximation to the contour integral. Section 4
uses that approximation to establish the convergence of the log likelihood ratio
process to a Gaussian process. Section 5 provides an analysis of the asymptotic
power of various sphericity tests and derives the asymptotic power envelope. Sec-
tion 6 concludes. Proofs are given in the Appendix; the more technical ones are
relegated to the Supplementary Appendix [Onatski, Moreira and Hallin (2013)].

2. Likelihood ratios as contour integrals. Let X be a p × n matrix with
i.i.d. real Gaussian N(0, σ 2(Ip + hvv′)) columns. Let λ1 ≥ λ2 ≥ · · · ≥ λp be the
ordered eigenvalues of 1

n
XX′ and let λ = (λ1, . . . , λm), where m = min{n,p}.

Finally, let μ = (μ1, . . . ,μm−1), where μj = λj/(λ1 + · · · + λp).
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As explained in the Introduction, our goal is to study the asymptotic power of
the eigenvalue-based tests of H0 :h = 0 against H1 :h > 0. If σ 2 is known, the
model is invariant with respect to orthogonal transformations, and the maximal
invariant statistic is λ. Therefore, we consider tests based on λ. If σ 2 is unknown
(which, strictly speaking, is what is meant by “sphericity”), the model is invariant
with respect to orthogonal transformations and multiplications by nonzero scalars,
and the maximal invariant is μ. Hence, we consider tests based on μ. Note that the
distribution of μ does not depend on σ 2, whereas if σ 2 is known, we can always
normalize λ dividing it by σ 2. Therefore, in what follows, we will assume that
σ 2 = 1 without loss of generality.

Let us denote the joint density of λ1, . . . , λm as p(λ;h) and that of μ1, . . . ,μm−1
as p(μ;h). The following proposition gives explicit formulas for p(λ;h) and
p(μ;h).

PROPOSITION 1. Let S(r) be the (r − 1)-dimensional unit sphere, and let
(dxr) be the invariant measure on S(r) normalized so that the total measure is
one. Further, let � = diag(λ1, . . . , λp) and M = diag(μ1, . . . ,μp). Then

p(λ;h) = γ (n,p,λ)

(1 + h)n/2

∫
S(p)

e(n/2)(h/(1+h))x′
p�xp(dxp)(2.1)

and

p(μ;h) = δ(n,p,μ)

(1 + h)n/2
(2.2)

×
∫ ∞

0
y(np−2)/2e−ny/2

∫
S(p)

e(n/2)(yh/(1+h))x′
pMxp(dxp)dy,

where γ (n,p,λ) and δ(n,p,μ) depend only on n and p, and on λ and μ, respec-
tively.

The spherical integrals in (2.1) and (2.2) can be represented in the form of a con-
fluent hypergeometric function 1F1 of matrix argument [Hillier (2001), page 4].
For example, for the integral in (2.1),∫

S(p)
e(n/2)(h/(1+h))x′

p�xp(dxp) = 1F1

(
1

2
,
p

2
; n

2

h

1 + h
�

)
.

Butler and Wood (2002) develop Laplace approximations to functions 1F1 but do
not analyze the asymptotic behavior of the approximation errors. The next lemma
derives an alternative representation of the spherical integrals in Proposition 1.
This representation has the form of a contour integral of a single complex variable,
and our asymptotic analysis will be based on the Laplace approximation to such
an integral.
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FIG. 1. Contour of integration K in (2.3).

LEMMA 2. Let D = diag(d1, . . . , dr), where dj are arbitrary complex num-
bers. Further, let K be a contour in the complex plane starting at −∞, encircling
counter-clockwise the points 0, d1, . . . , dr , and going back to −∞. Such a contour
is shown in Figure 1. We have

∫
S(r)

ex′
rDxr (dxr) = 	(r/2)

2πi

∮
K

es
r∏

j=1

(s − dj )
−1/2 ds.(2.3)

PROOF. The integral on the left-hand side of (2.3) is the expected value

of exp(
y2

1d1+···+y2
r dr

y2
1+···+y2

r

), where y1, . . . , yr are independent standard normal random

variables. The variables uj = y2
j

y2
1+···+y2

r

, j = 1, . . . , r , have Dirichlet distribution

D(k1, . . . , kr) with parameters k1 = · · · = kr = 1
2 . Denoting the expectation opera-

tor with respect to such a distribution as ED , we have∫
S(r)

ex′
rDxr (dxr) = ED exp(u1d1 + · · · + urdr).(2.4)

Now, expanding the exponent in the latter expression into power series and taking
expectations term by term yields

ED exp(u1d1 + · · · + urdr) =
∞∑

k=0

ED(u1d1 + · · · + urdr)
k

k! .(2.5)
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The Dirichlet average of (u1d1 + · · · + urdr)
k is well studied. By Theorem 3.1 of

Dickey (1983),

ED
[
(u1d1 + · · · + urdr)

k]
(2.6)

= ∑
m1,...,mr≥0

m1+···+mr=k

k!
m1! · · ·mr !

(1/2)m1 · · · (1/2)mr

(r/2)k
d

m1
1 · · ·dmr

r ,

where (k)s = k(k + 1) · · · (k + s − 1) is Pochhammer’s notation for the shifted
factorial.

Combining (2.6) with (2.5) and (2.4), we get∫
S(r)

ex′
rDxr (dxr) = ∑

m1,...,mr≥0

(1/2)m1 · · · (1/2)mr

(r/2)m1+···+mr

d
m1
1 · · ·dmr

r

m1! · · ·mr !
(2.7)

= r�(1/2, . . . ,1/2; r/2;d1, . . . , dr),

where the last equality is the definition of the confluent form of the Lauricella FD

function, denoted as r�(·). The functions r�(·) were introduced by Erdelyi (1937)
and are discussed by Srivastava and Karlsson (1985). In probability and statistics,
they were recently used to study the mean of a Dirichlet process [see Lijoi and
Regazzini (2004) and references therein].

Erdelyi (1937), formula (8,6), establishes the following contour integral repre-
sentation of r�(·):

r�(k1, . . . , kr; t;d1, . . . , dr)
(2.8)

= 	(t)

2πi

∮
K

ess−t+k1+···+kr

r∏
j=1

(s − dj )
−kj ds.

Lemma 2 follows from equalities (2.7) and (2.8). �

The contour integral representation given in Lemma 2 has been derived inde-
pendently by Mo (2012) and Wang (2012), who use it to study the largest sample
covariance eigenvalue when the corresponding population eigenvalue equals the
critical threshold or lies above it. Our proof effectively takes advantage of old re-
sults of Dickey (1983) and Erdelyi (1937), and thus is different from the proofs in
the above mentioned papers.

Using Lemma 2 and Proposition 1, we derive contour integral representa-
tions for the likelihood ratios L(h;λ) = p(λ;h)/p(λ;0) and L(h;μ) = p(μ;h)/

p(μ;0). The quantity L(h;λ) is the likelihood ratio based on λ as opposed to the
entire data X. Similarly, L(h;μ) is the likelihood ratio based on μ.

LEMMA 3. Let K be a contour in the complex plane that starts at −∞, then
encircles counter-clockwise the sample covariance eigenvalues λ1, . . . , λp , and
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goes back to −∞. In addition, we require that for any z ∈ K, Re z < 1+h
h

S, where
Re z denotes the real part of z ∈ C and S = λ1 + · · · + λp . Then,

L(h;λ) = k1

(
2

n

)(p−2)/2 1

2πi

∮
K

e(n/2)(h/(1+h))z
p∏

j=1

(z − λj )
−1/2 dz(2.9)

and

L(h;μ) = k2
S(p−2)/2

2πi
(2.10)

×
∮

K
e−((np−p+2)/2) ln(1−(h/(1+h))(z/S))

p∏
j=1

(z − λj )
−1/2 dz,

where k1 = h−(p−2)/2(1 + h)(p−n−2)/2	(p/2) and k2 = k1
	((np−p+2)/2)

	(np/2)
.

Close inspection of the proof of Lemma 3 reveals that the right-hand side of
(2.10) depends on λ only through μ. Although it is possible to express L(h;μ) as
an explicit function of μ, the implicit form given in (2.10) is convenient because it
allows us to use similar methods for the asymptotic analysis of the two likelihood
ratios.

In the next two sections, we perform an asymptotic analysis of L(h;λ) and
L(h;μ) that relies on the Laplace approximation of the contour integrals in Lem-
ma 3 after those contours have been suitably deformed without changing the value
of the integrals.

3. Laplace approximation. In this section, we derive the Laplace approxima-
tions to the contour integrals in Lemma 3. Laplace’s method for contour integrals
is discussed, for example, in Chapter 4 of Olver (1997). The method describes
an asymptotic approximation to a contour integral

∮
K e−nf (z)g(z)dz as n → ∞,

where f (z) and g(z) are analytic functions of z. The approximation is usually
based on the part of the contour integral coming from a neighborhood of some
point z0 ∈ K, where z0 is such that d

dz
f (z0) = 0 and Ref (z0) = minz∈K Ref (z).

For such a point to exist, one might need to deform the contour so that, by Cauchy’s
theorem, the value of the integral does not change. Typically, the deformation is
chosen so that Re(−f (z)) declines in the fastest way possible as z goes away from
z0 along the contour. For this reason, the method is called the method of steepest
descent.

The contour integrals in (2.9) and (2.10) can be represented in the Laplace form
with a deterministic function f (z) and a random function g(z) that converges to
a log-normal random process on the contour as p,n →c ∞. To see this, note that
the logarithm of the multiple product in (2.9) and (2.10) equals −1

2
∑p

j=1 ln(z −
λj ). For each z, this expression is a special form of the linear spectral statistic
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∑p
j=1 ϕ(λj ) studied by Bai and Silverstein (2004). According to the central limit

theorem (Theorem 1.1) established in that paper, the random variable

�p(z) =
p∑

j=1

ln(z − λj ) − p

∫
ln(z − λ)dFp(λ)(3.1)

converges in distribution to a normal random variable when p,n →c ∞. Here
Fp(λ) is the cumulative distribution function of the Marchenko–Pastur distribution
with a mass of max(0,1 − c−1

p ) at zero and density

ψp(x) = 1

2πcpx

√
(bp − x)(x − ap),(3.2)

where cp = p/n, ap = (1 − √
cp)2 and bp = (1 + √

cp)2.
Such a convergence suggests the following choices of f (z) and g(z) in the

Laplace forms of the integrals in (2.9) and (2.10):

f (z) = −1

2

(
h

1 + h
z − cp

∫
ln(z − λ)dFp(λ)

)
(3.3)

and

g(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
{
−1

2
�p(z)

}
, for (2.9),

exp
{
−np − p + 2

2
ln

(
1 − h

1 + h

z

S

)
− n

2

h

1 + h
z − 1

2
�p(z)

}
,

for (2.10).

(3.4)

As mentioned above, a particularly useful deformation of K passes through the
point z = z0(h) where d

dz
f (z) = 0. Taking the derivative of the right-hand side of

(3.3), we see that z0(h) must satisfy

h

1 + h
+ cpmp

(
z0(h)

) = 0,(3.5)

where mp(z) = ∫ 1
λ−z

dFp(λ) is the Stieltjes transform of the Marchenko–Pastur
distribution with parameter cp . The properties of mp(z) are well studied. In partic-
ular, the analytic expression for mp(z) is known; see, for example, equation (2.3)
in Bai (1993). For z �= 0, which lies outside the support of Fp(λ), we have

mp(z) = −z − cp + 1 +
√

(z − cp − 1)2 − 4cp

2cpz
,(3.6)

where the branch of the square root is chosen so that the real and the imaginary

parts of
√

(z − cp − 1)2 − 4cp have the same signs as the real and the imaginary
parts of z − cp − 1, respectively.
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Substituting (3.6) into (3.5) and solving for z0(h) when h ∈ (0,
√

cp), we get

z0(h) = (1 + h)(cp + h)

h
.(3.7)

When h ≥ √
cp , there are no solutions to (3.5) that lie outside the support of Fp(λ).

When h = √
cp , the right-hand side of (3.7) equals (1 + √

cp)2, which lies exactly
on the boundary of the support of Fp(λ). When h >

√
cp , (3.7) provides a solution

to (3.5) only when the branch of the square root in (3.6) is chosen differently. As
can be verified using (3.3) and (3.6), in such a case, d

dz
f (z) is strictly negative at

z = z0(h) given by (3.7).
As cp → c, any fixed h that is smaller than

√
c eventually satisfies the inequality

h <
√

cp , so that d
dz

f (z) = 0 at z = z0(h). Therefore, for h <
√

c, we will deform
the contour K into a contour K that passes through z0(h). We define K as K =
K+ ∪ K−, where K− is the complex conjugate of K+ and K+ = K1 ∪ K2 with

K1 = {
z0(h) + it : 0 ≤ t ≤ 3z0(h)

}
(3.8)

and

K2 = {
x + 3iz0(h) :−∞ < x ≤ z0(h)

}
.(3.9)

Figure 2 illustrates the choice of K .
A proof of the following technical lemma is relegated to the Supplementary

Appendix [Onatski, Moreira and Hallin (2013)].

LEMMA 4. Suppose that our null hypothesis is true, and let h̄ be any fixed
number such that 0 < h̄ <

√
c. Deforming contour K into K leaves the value of the

integrals (2.9) and (2.10) in Lemma 3 unchanged for all h ∈ (0, h̄] with probability
approaching one as p,n →c ∞.

FIG. 2. Deformation K of contour K.
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We now derive, uniform (over h ∈ (0, h̄]), Laplace approximations to the inte-
grals (2.9) and (2.10) in Lemma 3. First, we introduce additional notation. When
f (z) and g(z) are analytic at z0 = z0(h), let fs and gs with s = 0,1, . . . be the
coefficients in the power series representations

f (z) =
∞∑

s=0

fs(z − z0)
s, g(z) =

∞∑
s=0

gs(z − z0)
s .(3.10)

When f (z) and g(z) are not analytic at z0, let the coefficients fs and gs be arbitrary
numbers for all s.

The following lemma is a generalization of the well-known Watson lemma
for contour integrals; see Olver (1997), page 118. Theorem 7.1 in Olver (1997),
page 127, derives a similar generalization for the case when f (z) and g(z) are fixed
deterministic analytic functions. In contrast to Olver’s theorem, our lemma allows
g(z) to be a random function, and f (z) to depend on parameter h, and obtains a
uniform approximation over h ∈ (0, h̄]. The proof is relegated to the Supplemen-
tary Appendix [Onatski, Moreira and Hallin (2013)].

LEMMA 5. Under the conditions of Lemma 4, for any h ∈ (0, h̄] and any pos-
itive integer m, as p,n →c ∞, we have∮

K
e−nf (z)g(z)dz = 2e−nf0

[
m−1∑
s=0

	

(
s + 1

2

)
a2s

ns+1/2 + Op(1)

hnm+1/2

]
,(3.11)

where Op(1) is uniform in h ∈ (0, h̄]. The coefficients as in (3.11) can be expressed
through fs and gs defined above. In particular, we have

a0 = g0

2f
1/2
2

and a2 =
{

4g2 − 6f3g1

f2
+

(
15f 2

3

2f 2
2

− 6f4

f2

)
g0

}
1

8f
3/2
2

.(3.12)

As we explained above, z0(h) is not a critical point of f (z) when h >
√

cp . This
leads to a situation where the Laplace method for the integral

∮
K e−nf (z)g(z)dz de-

livers a rather crude approximation. Fortunately, our asymptotic analysis tolerates
crude approximations when h >

√
cp . The following lemma, which is proven in

the Supplementary Appendix [Onatski, Moreira and Hallin (2013)], is sufficient
for our purposes.

LEMMA 6. Let h̃ >
√

c, and denote by K(h̃) the corresponding contour, as
defined in (3.8) and (3.9). Under the null hypothesis, deforming the contour K into
K(h̃) leaves the value of the integrals in Lemma 3 unchanged for all h ∈ [h̃,∞)

with probability approaching one as p,n →c ∞. Further, for any h ∈ [h̃,∞),∮
K(h̃)

e−nf (z)g(z)dz = e−nf (z0(h̃))Op(1),(3.13)

where Op(1) is uniform over h ∈ [h̃,∞).
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Neither Lemma 5 nor Lemma 6 addresses interesting cases with h in a neigh-
borhood of

√
c. In such cases, z0(h) would be close to the upper boundary of the

support of the Marchenko–Pastur distribution. This may lead to the nonanalyticity
of f (z) and g(z) on K and a more complicated asymptotic behavior of g(z). We
leave the analysis of cases where h may approach

√
c for future research.

Guionnet and Maïda (2005) study the asymptotic behavior of spherical integrals
using large deviation techniques. Their Theorems 3 and 6 imply Lemma 6 and can
be used to obtain the first term in the asymptotic expansion of Lemma 5.

4. Asymptotic behavior of the likelihood ratios. In this section, we discuss
the asymptotic behavior of the likelihood ratios L(h;λ) and L(h;μ). First, let us
focus on the case where h ≤ h̄. In the Appendix, we use Lemmas 4 and 5 to derive
the following theorem.

THEOREM 7. Suppose that the null hypothesis is true (h = 0). Let h̄ be any
fixed number such that 0 < h̄ <

√
c and let C[0, h̄] be the space of real-valued

continuous functions on [0, h̄] equipped with the supremum norm. Then as p,
n →c ∞, we have, uniformly in h ∈ (0, h̄]

L(h;λ) = e−[�p(z0(h))−ln(1−h2/cp)]/2 + Op

(
n−1)

(4.1)

and

L(h;μ) = e−[�p(z0(h))−ln(1−h2/cp)−h2/(2cp)+(h/cp)(S−p)]/2 + Op

(
n−1)

.(4.2)

Furthermore, lnL(h;λ) and lnL(h;μ), viewed as random elements of C[0, h̄],
converge weakly to L(h;λ) and L(h;μ) with Gaussian finite-dimensional distri-
butions such that, for any h1, . . . , hr ∈ [0, h̄],

E
(

L(hj ;λ)
) = 1

4 ln
(
1 − c−1h2

j

)
,(4.3)

Cov
(

L(hj ;λ), L(hk;λ)
) = −1

2 ln
(
1 − c−1hjhk

)
,(4.4)

E
(

L(hj ;μ)
) = 1

4

[
ln

(
1 − c−1h2

j

) + c−1h2
j

]
(4.5)

and

Cov
(

L(hj ;μ), L(hk;μ)
) = −1

2

[
ln

(
1 − c−1hjhk

) + c−1hjhk

]
.(4.6)

The log likelihood ratio processes studied in Theorem 7 are not of the standard
locally asymptotically normal form. This is because they cannot be represented
as ϕ1(h)W + ϕ2(h), where ϕ1(h) and ϕ2(h) are some deterministic functions
of h, and W is a standard normal random variable. Indeed, had the represen-
tation ϕ1(h)W + ϕ2(h) been possible, the covariance of the limiting log likeli-
hood process at h1 and h2 would have been ϕ1(h1)ϕ1(h2). Hence, for L(h;λ),

for instance, we would have had ϕ1(h) =
√

−1
2 ln(1 − c−1h2) and ϕ1(h1)ϕ1(h2) =

−1
2 ln(1 − c−1h1h2), which cannot be true for all 0 < h1 <

√
c and 0 < h2 <

√
c.
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The quantity �p(z0(h)) plays an important role in the limits of experiments.
The likelihood ratio processes are well approximated by simple functions of
�p(z0(h)) and S, which are easy to compute from the data and are asymptotically
Gaussian by the central limit theorem of Bai and Silverstein (2004). Recalling the
definition (3.1) of �p(z0(h)), we see that asymptotically, all statistical information
about parameter h is contained in the deviations of the sample covariance eigenval-
ues λ1, . . . , λp from limn,p→∞ z0(h) = (1+h)(h+c)

h
. Although the latter limit does

not have an obvious interpretation when h <
√

c, it is the probability limit of λ1
under alternatives with h >

√
c; see, for example, Baik and Silverstein (2006).

Let us now consider cases where h > .
√

c. We prove the following theorem in
the Appendix.

THEOREM 8. Suppose that the null hypothesis is true (h = 0), and let H be
any fixed number such that

√
c < H < ∞. Then as p,n →c ∞, the following

holds. For any h ∈ [H,∞), the likelihood ratios L(h;λ) and L(h;μ) converge to
zero; more precisely, there exists δ > 0 that depends only on H such that

L(h;λ) = Op

(
e−nδ) and L(h;μ) = Op

(
e−nδ).(4.7)

Note that Theorem 7 and Le Cam’s first lemma [see van der Vaart (1998),
page 88] imply that the joint distributions of λ1, . . . , λm (as well as those of
μ1, . . . ,μm−1) under the null and under the alternative are mutually contiguous
for any h ∈ [0,

√
c). In contrast, Theorem 8 shows that mutual contiguity is lost

for h >
√

c. For such h, consistent tests (as p,n →c ∞) exist at any probability
level α > 0.

In a similar setting, Nadakuditi and Edelman (2008) call the number of “signal
eigenvalues” of the population covariance matrix that exceed 1 + √

c the “effec-
tive number of identifiable signals” [see also Nadakuditi and Silverstein (2010)].
Theorems 7 and 8 shed light on the formal statistical content of this concept. The
“identifiable signals” are detected with probability approaching one in large sam-
ples (irrespective of the probability level α > 0 at which identification tests are
performed). Other signals still can be detected, but the probability of detecting
them will never approach one (whatever the probability level α < 1).

5. Asymptotic power analysis. Theorem 7 can be used to study “local” pow-
ers of the tests for detecting signals in noise. The nonstandard form of the limit
of log likelihood ratio processes in our setting makes it hard to develop tests with
optimal local power properties. However, using the Neyman–Pearson lemma and
Le Cam’s third lemma, we can analytically derive the local asymptotic power en-
velope and compare local asymptotic powers of specific tests to this envelope.

It is convenient to reparametrize our problem to θ =
√

− ln(1 − h2/c). As h

varies in the region of contiguity [0,
√

c), θ spans the entire half-line [0,∞). Note
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that the asymptotic mean and autocovariance functions of the log likelihood ra-

tios derived in the previous section depend on h only through h/
√

c =
√

1 − e−θ2 .
Therefore, under the new parametrization, they depend only on θ . Loosely speak-
ing, θ and

√
p/n ∼ √

c play the classical roles of a “local parameter” and a conti-
guity rate, respectively.

Let β(θ1;λ) and β(θ1;μ) be the asymptotic powers of the asymptotically most
powerful λ- and μ-based tests of size α of the null θ = 0 against the alternative
θ = θ1. The following proposition is proven in the Appendix.

PROPOSITION 9. Let � denote the standard normal distribution function.
Then

β(θ1;λ) = 1 − �

[
�−1(1 − α) − θ1√

2

]
(5.1)

and

β(θ1;μ) = 1 − �
[
�−1(1 − α) −

√
1
2

(
θ2

1 − 1 + e−θ2
1
)]

.(5.2)

Plots of the asymptotic power envelopes β(θ1;λ) and β(θ1;μ) against θ1 for
asymptotic size α = 0.05 are shown in the left panel of Figure 3. The power loss
of the μ-based tests relative to the λ-based tests is due to the nonspecification
of σ 2. In contrast to λ-based tests, μ-based tests may achieve the corresponding
power envelope even when σ 2 is unknown.

The right panel of Figure 3 shows the envelopes as functions of the original
parameter h normalized by

√
c. We see that the alternatives that can theoretically

FIG. 3. The maximal asymptotic power of the λ-based tests (dashed lines) and μ-based tests (solid
lines) of θ = 0 against θ = θ1. Left panel: θ -parametrization. Right panel: h-parametrization.
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be detected with high probability are concentrated near the threshold h = √
c. The

strong nonlinearity of the θ -parametrization should be kept in mind while inter-
preting the figures that follow.

It is interesting to compare the power envelopes to the asymptotic powers
of the likelihood ratio (LR) and weighted average power (WAP) tests. The λ-
based LR and WAP tests of θ = 0 against the alternative θ ∈ (0,M], where
M < ∞, would reject the null if and only if, respectively, 2 supθ∈(0,M] lnL(θ;λ)

and ln
∫ M

0 L(θ;λ)W(dθ) are sufficiently large. The power of a WAP test would, of
course, depend on the choice of the weighting measure W(dθ). The μ-based LR
and WAP tests are defined similarly. Theorem 7 and Le Cam’s third lemma sug-
gest a straightforward procedure for the numerical evaluation of the corresponding
asymptotic power functions.

Consider, for example, the λ-based LR test statistic. According to Theorem 7,
its asymptotic distribution under the null equals the distribution of 2 supθ∈(0,M] Xθ ,
where Xθ is a Gaussian process with E(Xθ) = −θ2/4 and Cov(Xθ1,Xθ2) =
−1

2 ln(1 −
√

(1 − e−θ2
1 )(1 − e−θ2

2 )). According to Le Cam’s third lemma, under
a specific alternative θ = θ1 ≤ M , the asymptotic distribution of the LR statis-
tic equals the distribution of 2 supθ∈(0,M] X̃θ , where X̃θ is a Gaussian process
with the same covariance function as that of Xθ , but with a different mean:
E(X̃θ ) = E(Xθ) + Cov(Xθ ,Xθ1).

Therefore, to numerically evaluate the asymptotic power function of the λ-based
LR test, we simulate 500,000 observations of Xθ on a grid of 1000 equally spaced
points in θ ∈ [0,M = 6], where M = 6 is chosen as the upper limit of the grid
because it is large enough for the power envelopes to rich the value of 99%. For
each observation, we save its supremum on the grid, and use the empirical distri-
bution of two times the suprema as the approximate asymptotic distribution of the
likelihood ratio statistic under the null. We denote this distribution as F̂0. Its 95%
quantile equals 4.3982.

For each θ1 on the grid, we repeat the simulation for process X̃θ to obtain the
approximate asymptotic distribution of the likelihood ratio statistic under the alter-
native θ = θ1, which we denote as F̂1. We use the value of F̂1 at the 95% quantile
of F̂0 as a numerical approximation to the asymptotic power at θ1 of the λ-based
LR test with asymptotic size 0.05.

Figure 4 shows the resulting asymptotic power curve of the LR test (solid line)
along with the asymptotic power envelope (dotted line). It also shows the asymp-
totic power of the WAP test with W(dθ) equal to the uniform measure on [0,6]
(dashed line). The left and right panels correspond to λ- and μ-based tests, respec-
tively.

The asymptotic powers of the LR and WAP tests both come close to the power
envelope. The LR and WAP power functions are so close that they are difficult
to distinguish clearly. The asymptotic power of the WAP test appears to be larger
than that of the LR test for all θ1 in the [0,6] range, except for relatively large θ1.
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FIG. 4. The asymptotic power envelope (dotted line), the asymptotic power of the LR test (solid
line), and the asymptotic power of the WAP test with uniform weighting measure on θ ∈ [0,6] (dashed
line). Left panel: λ-based tests and envelope. Right panel: μ-based tests and envelope.

Hence, the LR test still may be admissible. More accurate numerical analysis is
needed to shed further light on this issue.

In the remaining part of this section, we consider some of the tests that have been
proposed previously in the literature, and, in Proposition 10, derive their asymp-
totic power functions. We focus on four examples. Three of them are inspired by
the “classical” fixed-p theory, while the fourth is more directly based on results
from the large random matrix theory.

The problem of testing the hypothesis of sphericity has a long history, and has
generated a considerable body of literature, which we only very briefly summarize
here. The classical fixed-p Gaussian analysis of the various problems considered
here goes back to Mauchly (1940), who first derived the Gaussian likelihood ratio
test for sphericity. The (Gaussian) locally most powerful invariant (under shift,
scale and orthogonal transformations) test was obtained by John (1971, 1972)
and by Sugiura (1972), with adjusted versions resisting elliptical violations of the
Gaussian assumptions proposed in Hallin and Paindaveine (2006), where a Le Cam
approach is adopted under a general elliptical setting. Ledoit and Wolf (2002) pro-
pose two extensions (for the unknown and known scale problems, resp.) of John’s
test, while Bai et al. (2009) adapt Mauchly’s (1940) likelihood ratio test.

EXAMPLE 1 [John’s (1971) test of sphericity]. John (1971) proposes testing
the sphericity hypothesis θ = 0 against general alternatives using the test statistic

U = 1
p

tr[( �̂

(1/p) tr(�̂)
− Ip)2], where �̂ is the sample covariance matrix of the data.

He shows that, when n > p, such a test is locally most powerful invariant. Studying
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John’s test when p/n → c ∈ (0,∞), Ledoit and Wolf (2002) prove that, under the

null, nU − p
d→ N(1,4). Hence, the test with asymptotic size α rejects the null

hypothesis of sphericity if 1
2(nU − p − 1) > �−1(1 − α).

EXAMPLE 2 [The Ledoit and Wolf (2002) test of � = I ]. Ledoit and Wolf
(2002) propose using W = 1

p
tr[(�̂ − I )2] − p

n
[ 1
p

tr �̂]2 + p
n

as a test statistic for
testing the hypothesis that the population covariance matrix is a unit matrix. Under

the null, nW − p
d→ N(1,4). As in the previous example, the null hypothesis is

rejected at asymptotic size α if 1
2(nW − p − 1) > �−1(1 − α).

EXAMPLE 3 [The “corrected” LRT of Bai et al. (2009)]. When n > p,
Bai et al. (2009) propose a corrected version of the likelihood ratio statistic
CLR = tr �̂ − ln det �̂ − p − p(1 − (1 − n

p
) ln(1 − p

n
)) based on the entire

data, as opposed to λ or μ only, to test the equality of the population covari-
ance matrix to the identity matrix against general alternatives. Under the null,

CLR
d→ N(−1

2 ln(1−c),−2 ln(1−c)−2c). The null hypothesis is rejected when-
ever CLR + 1

2 ln(1 − c) >
√−2 ln(1 − c) − 2c�−1(1 − α).

More directly inspired by the asymptotic theory of random matrices, several
authors have recently proposed and studied various tests based on λ1 or μ1: see
Bejan (2005), Patterson, Price and Reich (2006), Kritchman and Nadler (2009),
Onatski (2009), Bianchi et al. (2011) and Nadakuditi and Silverstein (2010). We
refer to these tests, which reject H0 for large values of λ1 or μ1, as Tracy–Widom-
type tests.

EXAMPLE 4 (Tracy–Widom-type tests). Asymptotic critical values of such
tests are obtained using the fact, established by Johnstone (2001), that under the
null,

n2/3c1/6(1 + √
c)−4/3(

λ1 − (1 + √
c)2) d→ TW,(5.3)

where TW denotes the Tracy–Widom law of the first kind. The null hypothesis is
rejected when λ1 or μ1 exceeds the adequate Tracy–Widom quantile.

Consider the tests described in Examples 1, 2, 3 and 4, and denote by βJ(θ1),
βLW(θ1), βCLR(θ1), and βTW(θ1) their respective asymptotic powers at asymptotic
level α. The following proposition is established in the Appendix.

PROPOSITION 10. Denote 1−e−θ2
1 as ψ(θ1). The asymptotic power functions

of the tests described in Examples 1–4 satisfy, for any θ1 > 0,

βTW(θ1) = α,(5.4)

βJ(θ1) = βLW(θ1) = 1 − �
(
�−1(1 − α) − 1

2ψ(θ1)
)

(5.5)
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and

βCLR(θ1) = 1 − �

(
�−1(1 − α) −

√
cψ(θ1) − ln(1 + √

cψ(θ1))√−2 ln(1 − c) − 2c

)
.(5.6)

With the important exception of Srivastava (2005), (5.4)–(5.6) are the first
results on the asymptotic power of those tests against contiguous alternatives.
Srivastava (2005) analyzes the asymptotic power of tests similar to those in Ex-
amples 1 and 2. His Theorems 3.1 and 4.1 can be used to establish (5.5).

From Proposition 10, we see that the local asymptotic power of the Tracy–
Widom-type tests is trivial. As shown by Baik, Ben Arous and Péché (2005) in the
complex data case and by Féral and Péché (2009) in the real data case, the conver-
gence (5.3) holds not only under the null, but also under any alternative of the form
h = h0 <

√
c. Under the “local” parametrization adopted in this section, such alter-

natives have the form θ = θ1 > 0. It can be shown that the Tracy–Widom-type tests
are consistent against noncontiguous alternatives h = h1 >

√
c. However, such a

consistency is likely to be also a property of the LR tests based on μ or on λ. If
this holds true, the LR tests asymptotically dominate the Tracy–Widom-type tests.
A more detailed analysis of the optimality properties of LR tests is the subject of
ongoing research.

The asymptotic power functions of the tests from Examples 1, 2 and 3 are non-
trivial. Figure 5 compares these power functions to the corresponding power en-
velopes. Since John’s test is invariant with respect to orthogonal transformations
and scalings, βJ(θ1) is compared to the power envelope β(θ1;μ). The asymp-
totic power functions βLW(θ1) and βCLR(θ1) are compared to the power envelope

FIG. 5. Asymptotic powers (βJ, βLW, βCLR) of the tests described in Examples 1 (John), 2 (Ledoit
and Wolf) and 3 (Bai et al.).
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β(θ1;λ) because the Ledoit–Wolf test of � = I and the “corrected” likelihood
ratio test are invariant only with respect to orthogonal transformations.

Interestingly, whereas βJ(θ1) and βLW(θ1) depend only on α and θ1, βCLR(θ1)

depends also on c. As c converges to one, βCLR(θ1) converges to α, which corre-
sponds to the case of trivial power. As c converges to zero, βCLR(θ1) converges to
βJ(θ1). In Figure 5, we provide the plot of βCLR(θ1) that corresponds to c = 0.5.

The left panel of Figure 5 shows that the power function of John’s test is very
close to the power envelope β(θ1;μ) in the vicinity of θ1 = 0. Such behavior is
consistent with the fact that John’s test is locally most powerful invariant. However,
for large θ1, the asymptotic power functions of all the tests from Examples 1,
2 and 3 are lower than the corresponding asymptotic power envelopes. We should
stress here that these tests have power against general alternatives as opposed to the
“spiked” alternatives that maintain the assumption that the population covariance
matrix of data has the form σ 2(Ip + hvv′).

For the “spiked” alternatives, the λ- and μ-based LR tests may be more attrac-
tive. However, implementing these tests requires some care. A “quick-and-dirty”
approach would be to approximate lnL(θ;λ) and lnL(θ;μ) by the simple but
asymptotically equivalent expressions from (4.1) and (4.2), compute two times
their maxima on a grid over θ ∈ (0,M], and compare them with critical values
obtained by simulation as for the construction of Figure 4. Unfortunately, in fi-
nite samples, this simple approach will lead to a numerical breakdown whenever
z0(h(θ)) happens to be less than the largest sample covariance eigenvalue for some
θ ≤ M . In addition, since the asymptotic approximation derived in Theorem 7 is
not uniform over entire half-line θ ∈ [0,∞), its quality will depend on the choice
of M . For relatively large M , the asymptotic behavior of the LR test implemented
as above may poorly match its finite sample behavior.

Instead, we recommend implementing the LR tests without using the asymptotic
approximations. The finite sample log likelihood ratios lnL(θ;λ) and lnL(θ;μ)

can be computed using the contour integral representations (2.9) and (2.10).
Choosing the contour of integration so that the sample covariance eigenvalues re-
main to its left will eliminate the numerical breakdown problem associated with the
asymptotic tests. Furthermore, under the Gaussianity assumption, the finite sample
distributions of the log likelihood ratios are pivotal. Hence, the exact critical values
can be computed via Monte Carlo simulations as follows: simulate many replica-
tions of data under the null. For each replication, compute the log likelihood ratio
and store two times its maximum. Use the 95% quantile of the empirical distribu-
tion of the stored values as a numerical approximation for the exact critical value
of the test. The finite sample properties of such a test are left as an important topic
for future research.

6. Conclusion. In this paper, we study the asymptotic power of tests for the
existence of rank-one perturbations of sphericity as both the dimensionality of the
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data and the number of observations go to infinity. Focusing on tests that are in-
variant with respect to orthogonal transformations and rescaling, we establish the
convergence of the log ratio of the joint densities of the sample covariance eigen-
values under the alternative and null hypotheses to a Gaussian process indexed by
the norm of the perturbation.

When the perturbation norm is larger than the phase transition threshold stud-
ied in Baik, Ben Arous and Péché (2005), the limiting log-likelihood process is
degenerate and the joint eigenvalue distributions under the null and alternative hy-
potheses are asymptotically mutually singular, so that the discrimination between
the null and the alternative is asymptotically certain. When the norm is below the
threshold, the limiting log-likelihood process is nondegenerate and the joint eigen-
value distributions under the null and alternative hypotheses are mutually con-
tiguous. Using the asymptotic theory of statistical experiments, we obtain power
envelopes and derive the asymptotic size and power for various eigenvalue-based
tests in the region of contiguity.

Several questions are left for future research. First, we only considered rank-
one perturbations of the spherical covariance matrices. It would be desirable to
extend the analysis to finite-rank perturbations. Such an extension will require a
more complicated technical analysis. Second, it would be interesting to extend our
analysis to the asymptotic regime p,n → ∞ with p/n → ∞ or p/n → 0. In the
context of sphericity tests, such asymptotic regimes have been recently studied in
Birke and Dette (2005). Third, a thorough analysis of the finite sample properties
of the proposed LR tests would clarify the related practical implementation issues.
Fourth, our Lemma 5 can be used to derive higher-order asymptotic approxima-
tions to the likelihood ratios, which may improve finite-sample performances of
asymptotic tests. Finally, it would be of considerable interest to relax the Gaussian
assumptions, for example, into elliptical ones, preferably with unspecified radial
densities, on the model (in a fixed-p context) of Hallin and Paindaveine (2006).

APPENDIX

A.1. Proof of Proposition 1. For the joint density p(λ;h) of λ1, . . . , λm, we
have

p(λ;h) = γ̃

∏m
i=1 λ

(|p−n|−1)/2
i

∏m
i<j (λi − λj )

(1 + h)n/2
(A.1)

×
∫

O(p)
e−(n/2) tr(�Q′�Q)(dQ),

where γ̃ depends only on n and p, � = diag((1 + h)−1,1, . . . ,1), O(p) is the
set of all p × p orthogonal matrices and (dQ) is the invariant measure on the
orthogonal group O(p) normalized to make the total measure unity. When n ≥ p,
(A.1) is a special case of the density given in James (1964), page 483. When n < p,
(A.1) follows from Theorems 2 and 6 in Uhlig (1994).
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Let � = diag( h
1+h

,0, . . . ,0) be a p × p matrix. Since � = Ip − � , we have
tr(�Q′�Q) = tr� − tr(�Q′�Q), and we can rewrite (A.1) as

p(λ;h) = γ̃

∏m
i=1 λ

(|p−n|−1)/2
i

∏m
i<j (λi − λj )e

−(n/2) tr�

(1 + h)n/2
(A.2)

×
∫

O(p)
e(n/2) tr(�Q′�Q)(dQ).

Note that tr(�Q′�Q) = tr(Q�Q′�) = h
1+h

x′
p�xp , where xp is the first column

of Q. When Q is uniformly distributed over O(p), its first column xp is uniformly
distributed over S(p). Therefore, we have

p(λ;h) = γ̃

∏m
i=1 λ

(|p−n|−1)/2
i

∏m
i<j (λi − λj )e

−(n/2) tr�

(1 + h)n/2
(A.3)

×
∫

S(p)
e(n/2)(h/(1+h))x′

p�xp(dxp),

which establishes (2.1). Now, let y = λ1 + · · · + λp so that μj = λj/y. Note that
tr� = y, trM = μ1 +· · ·+μp = 1, and that the Jacobian of the coordinate change
from λ1, . . . , λm to μ1, . . . ,μm−1, y equals ym−1. Changing variables in (A.3), and
integrating y out, we obtain (2.2).

A.2. Proof of Lemma 3. Using (2.3) in the ratio of the right-hand side of
(2.1) with h > 0 to that with h = 0, and changing the variable of integration from
s to z = 1+h

h
2
n
s, we get (2.9). Further, from (2.2), we have

p(μ;0) = δ(n,p,μ)

∫ ∞
0

ynp/2−1e−ny/2 dy

(A.4)

= δ(n,p,μ)

(
2

n

)np/2

	

(
np

2

)
.

For h > 0, using (2.3) in (2.2), we get

p(μ;h) = δ(n,p,μ)

(1 + h)n/2

	(p/2)

2πi

×
∫ ∞

0

∮
K̃

y(np−2)/2es−ny/2
p∏

j=1

(
s − n

2

yh

1 + h
μj

)−1/2

ds dy,

where K̃ is a contour starting at −∞, encircling counter-clockwise the points 0,
ny
2

h
1+h

μ1, . . . ,
ny
2

h
1+h

μm and going back to −∞. Since h
1+h

μj < 1 by construc-

tion, we may and will choose K̃ so that for any s ∈ K̃, Re s <
ny
2 . Changing vari-

ables of integration from y and s to w = ny
2 and z = s 1+h

hw
S, where S is any positive
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constant, and dividing by the right-hand side of (A.4), we obtain

L(h;μ) = S(p−2)/2(1 + h)(p−n−2)/2	(p/2)

h(p−2)/2	(np/2)2πi

×
∫ ∞

0

∮
K

wnp/2−p/2e(wh/(1+h))(z/S)−w
p∏

j=1

(z − Sμj )
−1/2 dz dw,

where K is a contour starting at −∞, encircling counter-clockwise the points 0,
Sμ1, . . . , Sμm, and going back to −∞. In addition, for any z ∈ K, Re z < 1+h

h
S.

Such a choice of K guarantees that the integrand in the above double integral is
absolutely integrable on [0,∞)× K, so that Fubini’s theorem can be used to justify
the interchange of the order of the integrals. Changing the order of the integrals and
setting S = λ1 + · · · + λp , we obtain (2.10).

A.3. Proof of Theorem 7. First, let us formulate the following technical
lemma. Its proof is in the Supplementary Appendix [Onatski, Moreira and Hallin
(2013)].

LEMMA 11. (i) If h <
√

cp , f0 = −1
2(cp + (1 − cp) ln(1 + h) − cp ln cp

h
).

(ii) If h >
√

cp , f0 = −1
2(h + cp + (1 − cp) ln(cp + h) − cp

h
− lnh).

Below, we prove Theorem 7 for L(h;μ). The proof for L(h;λ) is similar but
simpler, and we omit it to save space. As follows from Lemmas 4 and 5, the integral
in (2.10) can be represented as 2e−nf0[	(1

2)
a0

n1/2 + Op(1)

hn3/2 ] uniformly in h ∈ (0, h̄].
Therefore, and since 	(1

2) = √
π , we can write

L(h;μ) = k2S
(p−2)/2

√
nπi

e−nf0

[
a0 + h−1Op

(
1

n

)]
,(A.5)

where k2 = h−(p−2)/2(1 +h)(p−n−2)/2 (n−1)p
2 	(

(n−1)p
2 )	(

p
2 )	−1(

np
2 ). Using Stir-

ling’s approximation 	(r) = e−r rr (2π
r

)1/2(1 + O(r−1)) with r = p
2 , np

2 and
(n−1)p

2 , and the fact that ln(n − 1) = lnn − n−1 − 1
2n−2 + O(n−3), we find, after

algebraic simplifications, that

k2√
nπ

= h−(p−2)/2(1 + h)(p−n−2)/2

(A.6)
× e−((p−2)/2) lnn−p/2+cp/4+ln cp/2(

1 + O
(
n−1))

.

Using (A.6) and Lemma 11(i), we obtain

k2S
(p−2)/2

√
nπi

e−nf0h−1Op

(
1

n

)
= 1

1 + h

(
S

p

)(p−2)/2

ecp/4−ln cp/2Op

(
1

n

)
,
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which, together with the fact that S − p = Op(1), implies that

k2S
(p−2)/2

√
nπi

e−nf0h−1Op

(
1

n

)
= Op

(
1

n

)
(A.7)

uniformly over h ∈ (0, h̄].
Now, as can be verified using (3.3) and (3.6), if h <

√
cp , then

f2 = − h2

4(1 + h)2(cp − h2)
.(A.8)

Therefore, using (3.12), we obtain

a0 = i
(1 + h)(cp − h2)1/2

h
g0.(A.9)

Using (3.4), (A.6), (A.9) and Lemma 11(i) in (A.5), after algebraic simplifications
and rearrangements of terms, we get

ln
[
k2S

(p−2)/2e−nf0a0√
nπi

]

= 1

2
ln

(
1 − h2

cp

)
+ cp

4
+ p − 2

2
ln

(
S

p

)
(A.10)

− n

2

hz0(h)

1 + h
− np − p + 2

2
ln

(
1 − h

1 + h

z0(h)

S

)
− 1

2
�p

(
z0(h)

)
.

Finally, using the fact that S − p = Op(1), we obtain ln(S/p) = (S − p)/p +
Op(p−2) and

ln
(

1 − h

1 + h

z0(h)

S

)
= − h

1 + h

z0(h)

p
− 1

2

(
hz0(h)

(1 + h)p

)2

+ h

1 + h

z0(h)

p2 (S − p) + Op

(
p−3)

.

The latter two equalities, (A.10) and the fact that h
1+h

z0(h) = h + cp entail

k2S
(p−2)/2e−nf0a0√

nπi
(A.11)

= e−{�p(z0(h))−ln(1−h2/cp)+(h/cp)(S−p)−h2/(2cp)+Op(p−1)}/2,

which, together with (A.7), imply formula (4.2).
Now, let us prove the convergence of lnL(h;μ) to L(h;μ). By (4.2), the joint

convergence of lnL(hj ;μ) with j = 1, . . . , r to a Gaussian vector is equivalent
to the convergence of (S − p,�p(z0(h1)), . . . ,�p(z0(hr))) to a Gaussian vector.
A proof of the following technical lemma, based on Theorem 1.1 of Bai and Sil-
verstein (2004), is given in the Supplementary Appendix [Onatski, Moreira and
Hallin (2013)].
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LEMMA 12. Suppose that the null hypothesis holds. Then, as p,n →c ∞, the
vector (S − p,�p(z0(h1)), . . . ,�p(z0(hr))) converges in distribution to a Gaus-
sian vector (η, ξ1, . . . , ξr) with

Eη = 0, Var(η) = 2c, Cov(η, ξj ) = −2hj ,

Cov(ξj , ξk) = −2 ln
(
1 − c−1hjhk

)
and Eξj = 1

2 ln
(
1 − c−1h2

j

)
.

Lemma 12 and (4.2) imply that E[L(hj ;μ)] = −1
2Eξj + 1

2 ln(1 − c−1h2
j ) +

1
4c−1h2

j = 1
4 [ln(1 − c−1h2

j ) + c−1h2
j ] and

Cov
[

L(hj ;μ), L(hk;μ)
] = 1

4
Cov(ξj , ξk) + hk

4c
Cov(ξj , η)

+ hj

4c
Cov(ξk, η) + hjhk

4c2 Var(η)

= −1

2
ln

(
1 − c−1hjhk

) − hjhk

2c
,

which establishes (4.5) and (4.6).
To complete the proof of Theorem 7, we need to note that the tightness of

L(h;μ), viewed as a random element of the space C([0, h̄]), as p,n →c ∞, fol-
lows from formula (4.2) and the fact that S − p and �p(z0(h)), are Op(1), uni-
formly in h ∈ (0, h̄]. This uniformity is a consequence of Lemma A2 proven in the
Supplementary Appendix [Onatski, Moreira and Hallin (2013)].

A.4. Proof of Theorem 8. As in the proof of Theorem 7, we will focus on
the case of the likelihood ratio based on μ. The proof for L(h;λ) is similar. Ac-
cording to Lemma 6 and formula (2.10), for any h̃ >

√
c, we have L(h;μ) =

k2S
(p−2)/2e−nf (z0(h̃))Op(1). Using (A.6) and the fact that ( S

p
)p = (1 + S−p

p
)p =

(1 + Op(1)

p
)p = Op(1), we can write

L(h;μ) = e(n/2)(cp ln(cp(1+h)/h)−ln(1+h)−cp−2f (z0(h̃)))Op

(
n1/2)

.(A.12)

Noting that h̃ >
√

cp for sufficiently large n and p, and using Lemma 11(ii) and

the fact that h̃

1+h̃
z0(h̃) = h̃ + cp , we get −2f (z0(h̃)) = (1 − cp) ln(cp + h̃)− cp

h̃
−

ln h̃ + h
1+h

z0(h̃). Substituting the latter expression in (A.12) and simplifying, we
obtain

L(h;μ) = e(n/2)R(h,h̃,cp)Op

(
n1/2)

,(A.13)

where Op(·) is uniform in h ∈ [h̃,∞) and R(h, h̃, cp) = (1 − cp) ln(cp + h̃) −
cp

h̃
− ln h̃ + h

1+h
z0(h̃) − (1 − cp) ln(1 + h) − cp lnh + cp ln cp − cp .
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As n,p → ∞, R(h, h̃, cp) → R(h, h̃, c) uniformly over (h, h̃) ∈ [√c,H ]2. On
the other hand, R(h, h̃, c) is continuous on (h, h̃) ∈ [√c,H ]2, R(

√
c,

√
c, c) = 0,

and d
dh

R(h, h̃, c) = (1 + h)−2( (1+h̃)(c+h̃)

h̃
− (1+h)(c+h)

h
) < 0 for all h and h̃ such

that
√

c ≤ h̃ < h ≤ H . Therefore, for any H >
√

c, there exist h̃ and δ such that√
c < h̃ ≤ H , δ > 0 and R(H, h̃, c) < −3δ; and thus, for sufficiently large n and

p, R(H, h̃, cp) < −3δ. Now, d
dh

R(h, h̃, cp) = (1 + h)−2(z0(h̃) − z0(h)) < 0 for
all h > h̃, as long as h̃ ≥ √

cp . Hence, for sufficiently large n and p, R(h, h̃, cp) <

−3δ for all h > h̃. Using (A.13), we get |L(h;μ)| ≤ e−3nδ/2Op(n1/2) = Op(e−nδ)

uniformly over h ∈ [H,∞).

A.5. Proof of Proposition 9. For brevity, we derive only the asymptotic
power envelope for the case of μ-based tests. According to the Neyman–Pearson
lemma, the most powerful test of the null θ = 0 against a particular alternative
θ = θ1 is the test which rejects the null when lnL(θ1;μ) is larger than some critical
value C. It follows from Theorem 7 that, for such a test to have asymptotic size α,
C must be C = √

V (θ1)�
−1(1 − α) + m(θ1), where m(θ1) = (−θ2

1 + 1 − e−θ2
1 )/4

and V (θ1) = (θ2
1 − 1 + e−θ2

1 )/2 are obtained from (4.5) and (4.6) by the re-

parametrization θ =
√

− ln(1 − h2/c). Now, according to Le Cam’s third lemma

and Theorem 7, under θ = θ1, lnL(θ1;μ)
d→ N(m(θ1) + V (θ1),V (θ1)). There-

fore, the asymptotic power β(θ1;μ) of the asymptotically most powerful test of
θ = 0 against θ = θ1 is (5.2).

A.6. Proof of Proposition 10. As shown by Baik, Ben Arous and Péché
(2005) in the complex case and by Féral and Péché (2009) in the real case,
the convergence (5.3) takes place not only under the null, but also under alter-
natives h = h1 with h1 <

√
c, yielding θ = θ1 < ∞ under the parametrization

θ =
√

− ln(1 − h2/c). Hence, (5.4) follows.
Formulas (5.5) and (5.6) can be established using conceptually similar steps. To

save space, below we only establish formula (5.6). The following technical lemma
is proven in the Supplementary Appendix [Onatski, Moreira and Hallin (2013)].

LEMMA 13. Let CLR be the “corrected” likelihood ratio statistic as defined
in Example 3. Then, under the null, as p,n →c ∞, the vector (CLR,�p(z0(h)))

converges in distribution to a Gaussian vector (ζ1, ζ2) with Cov(ζ1, ζ2) = −2h +
2 ln(1 + h).

Lemma 13 and (4.2) imply the convergence in distribution of the vector
(CLR, lnL(h;λ)) to a Gaussian vector (ζ1,−1

2ζ2). From Bai et al. (2009), we

know that, under the null, CLR
d→ N(−1

2 ln(1 − c),−2 ln(1 − c) − 2c). By Le
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Cam’s third lemma, under the alternative h = h1, CLR converges to a Gaus-
sian random variable with the same variance but with mean equal to −1

2 ln(1 −
c) + Cov(ζ1,−1

2ζ2) = −1
2 ln(1 − c) + h − ln(1 + h) evaluated at h = h1. There-

fore, the power of the “corrected” likelihood ratio test of asymptotic size α

equals 1 − �(�−1(1 − α) − h1−ln(1+h1)√−2 ln(1−c)−2c
). Using the reparametrization θ1 =√

− ln(1 − h2
1/c), we get (5.6).
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SUPPLEMENTARY MATERIAL

Supplementary Appendix (DOI: 10.1214/13-AOS1100SUPP; .pdf). The Sup-
plementary Appendix contains proofs of Lemmas 4, 5, 6, 11, 12 and 13.

REFERENCES

BAI, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. II.
Sample covariance matrices. Ann. Probab. 21 649–672. MR1217560

BAI, Z. D. and SILVERSTEIN, J. W. (2004). CLT for linear spectral statistics of large-dimensional
sample covariance matrices. Ann. Probab. 32 553–605. MR2040792

BAI, Z., JIANG, D., YAO, J.-F. and ZHENG, S. (2009). Corrections to LRT on large-dimensional
covariance matrix by RMT. Ann. Statist. 37 3822–3840. MR2572444

BAIK, J., BEN AROUS, G. and PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for
nonnull complex sample covariance matrices. Ann. Probab. 33 1643–1697. MR2165575

BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked
population models. J. Multivariate Anal. 97 1382–1408. MR2279680

BEJAN, A. I. (2005). Largest eigenvalues and sample covariance matrices. Tracy–Widom and
Painleve II; computational aspects and realization in S-plus with applications. Unpublished
manuscript, Univ. Warwick.

BERTHET, Q. and RIGOLLET, P. (2012). Optimal detection of sparse principal components in high
dimension. Available at arXiv:1202.5070.

BIANCHI, P., DEBBAH, M., MAIDA, M. and NAJIM, J. (2011). Performance of statistical tests for
single source detection using random matrix theory. IEEE Trans. Inform. Theory 57 2400–2419.

BIRKE, M. and DETTE, H. (2005). A note on testing the covariance matrix for large dimension.
Statist. Probab. Lett. 74 281–289. MR2189467

BLOEMENDAL, A. and VIRÁG, B. (2012). Limits of spiked random matrices I. Probab. Theory
Related Fields. To appear. DOI:10.1007/s00440-012-0443-2. Available at arXiv:1011.1877v2.

BUTLER, R. W. and WOOD, A. T. A. (2002). Laplace approximations for hypergeometric functions
with matrix argument. Ann. Statist. 30 1155–1177. MR1926172

CHEN, S. X., ZHANG, L.-X. and ZHONG, P.-S. (2010). Tests for high-dimensional covariance
matrices. J. Amer. Statist. Assoc. 105 810–819. MR2724863

DICKEY, J. M. (1983). Multiple hypergeometric functions: Probabilistic interpretations and statisti-
cal uses. J. Amer. Statist. Assoc. 78 628–637. MR0721212

EL KAROUI, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex
sample covariance matrices. Ann. Probab. 35 663–714. MR2308592

http://dx.doi.org/10.1214/13-AOS1100SUPP
http://www.ams.org/mathscinet-getitem?mr=1217560
http://www.ams.org/mathscinet-getitem?mr=2040792
http://www.ams.org/mathscinet-getitem?mr=2572444
http://www.ams.org/mathscinet-getitem?mr=2165575
http://www.ams.org/mathscinet-getitem?mr=2279680
http://arxiv.org/abs/1202.5070
http://www.ams.org/mathscinet-getitem?mr=2189467
http://dx.doi.org/10.1007/s00440-012-0443-2
http://arxiv.org/abs/1011.1877v2
http://www.ams.org/mathscinet-getitem?mr=1926172
http://www.ams.org/mathscinet-getitem?mr=2724863
http://www.ams.org/mathscinet-getitem?mr=0721212
http://www.ams.org/mathscinet-getitem?mr=2308592


1230 A. ONATSKI, M. J. MOREIRA AND M. HALLIN

ERDELYI, A. (1937). Beitrag zur theorie der konfluenten hypergeometrischen funktionen von
mehreren veranderlichen. Sitzungsberichte, Akademie der Wissenschaften in Wien, Abteilung IIa,
Mathematisch-Naturwissenschaftliche Klasse 146 431–467.

FÉRAL, D. and PÉCHÉ, S. (2009). The largest eigenvalues of sample covariance matrices for a
spiked population: Diagonal case. J. Math. Phys. 50 073302, 33. MR2548630

FISHER, T. J., SUN, X. and GALLAGHER, C. M. (2010). A new test for sphericity of the covariance
matrix for high dimensional data. J. Multivariate Anal. 101 2554–2570. MR2719881

GUIONNET, A. and MAÏDA, M. (2005). A Fourier view on the R-transform and related asymptotics
of spherical integrals. J. Funct. Anal. 222 435–490. MR2132396

HALLIN, M. and PAINDAVEINE, D. (2006). Semiparametrically efficient rank-based inference for
shape. I. Optimal rank-based tests for sphericity. Ann. Statist. 34 2707–2756. MR2329465

HILLIER, G. (2001). The density of a quadratic form in a vector uniformly distributed on the n-
sphere. Econometric Theory 17 1–28. MR1863565

HOYLE, D. C. (2008). Automatic PCA dimension selection for high dimensional data and small
sample sizes. J. Mach. Learn. Res. 9 2733–2759.

JAMES, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples.
Ann. Math. Statist. 35 475–501. MR0181057

JOHN, S. (1971). Some optimal multivariate tests. Biometrika 58 123–127. MR0275568
JOHN, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions.

Biometrika 59 169–173. MR0312619
JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components

analysis. Ann. Statist. 29 295–327. MR1863961
KRITCHMAN, S. and NADLER, B. (2008). Determining the number of components in a factor model

from limited noisy data. Chemometrics and Intelligent Laboratory Systems 94 19–32.
KRITCHMAN, S. and NADLER, B. (2009). Non-parametric detection of the number of signals:

Hypothesis testing and random matrix theory. IEEE Trans. Signal Process. 57 3930–3941.
MR2683143

LE CAM, L. (1960). Locally asymptotically normal families of distributions. Certain approximations
to families of distributions and their use in the theory of estimation and testing hypotheses. Univ.
California Publ. Statist. 3 37–98. MR0126903

LEDOIT, O. and WOLF, M. (2002). Some hypothesis tests for the covariance matrix when the di-
mension is large compared to the sample size. Ann. Statist. 30 1081–1102. MR1926169

LIJOI, A. and REGAZZINI, E. (2004). Means of a Dirichlet process and multiple hypergeometric
functions. Ann. Probab. 32 1469–1495. MR2060305

MAUCHLY, J. W. (1940). Significance test for sphericity of a normal n-variate distribution. Ann.
Math. Statist. 11 204–209. MR0002084

MO, M. Y. (2012). Rank 1 real Wishart spiked model. Comm. Pure Appl. Math. 65 1528–1638.
MR2969495

NADAKUDITI, R. R. and EDELMAN, A. (2008). Sample eigenvalue based detection of high-
dimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process.
56 2625–2638. MR1500236

NADAKUDITI, R. R. and SILVERSTEIN, J. W. (2010). Fundamental limit of sample generalized
eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only
samples. IEEE Journal of Selected Topics in Signal Processing 4 468–480.

NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix
perturbation approach. Ann. Statist. 36 2791–2817. MR2485013

OLVER, F. W. J. (1997). Asymptotics and Special Functions. AK Peters, Wellesley, MA.
MR1429619

ONATSKI, A. (2009). Testing hypotheses about the numbers of factors in large factor models. Econo-
metrica 77 1447–1479. MR2561070

http://www.ams.org/mathscinet-getitem?mr=2548630
http://www.ams.org/mathscinet-getitem?mr=2719881
http://www.ams.org/mathscinet-getitem?mr=2132396
http://www.ams.org/mathscinet-getitem?mr=2329465
http://www.ams.org/mathscinet-getitem?mr=1863565
http://www.ams.org/mathscinet-getitem?mr=0181057
http://www.ams.org/mathscinet-getitem?mr=0275568
http://www.ams.org/mathscinet-getitem?mr=0312619
http://www.ams.org/mathscinet-getitem?mr=1863961
http://www.ams.org/mathscinet-getitem?mr=2683143
http://www.ams.org/mathscinet-getitem?mr=0126903
http://www.ams.org/mathscinet-getitem?mr=1926169
http://www.ams.org/mathscinet-getitem?mr=2060305
http://www.ams.org/mathscinet-getitem?mr=0002084
http://www.ams.org/mathscinet-getitem?mr=2969495
http://www.ams.org/mathscinet-getitem?mr=1500236
http://www.ams.org/mathscinet-getitem?mr=2485013
http://www.ams.org/mathscinet-getitem?mr=1429619
http://www.ams.org/mathscinet-getitem?mr=2561070


ASYMPTOTIC POWER OF SPHERICITY TESTS 1231

ONATSKI, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.
Rev. Econom. Statist. 92 1004–1016.

ONATSKI, A., MOREIRA, M. J. and HALLIN, M. (2013). Supplement to “Asymptotic power of
sphericity tests for high-dimensional data.” DOI:10.1214/13-AOS1100SUPP.

PATTERSON, N., PRICE, A. L. and REICH, D. (2006). Population structure and eigenanalysis. PLoS
Genetics 2 2074–2093.

PERRY, P. O. and WOLFE, P. J. (2010). Minimax rank estimation for subspace tracking. IEEE Jour-
nal of Selected Topics in Signal Processing 4 504–513.

SCHOTT, J. R. (2006). A high-dimensional test for the equality of the smallest eigenvalues of a
covariance matrix. J. Multivariate Anal. 97 827–843. MR2256563

SILVERSTEIN, J. W. and BAI, Z. D. (1995). On the empirical distribution of eigenvalues of a class
of large-dimensional random matrices. J. Multivariate Anal. 54 175–192. MR1345534

SRIVASTAVA, M. S. (2005). Some tests concerning the covariance matrix in high dimensional data.
J. Japan Statist. Soc. 35 251–272. MR2328427

SRIVASTAVA, H. M. and KARLSSON, P. W. (1985). Multiple Gaussian Hypergeometric Series. Ellis
Horwood, Chichester. MR0834385

SUGIURA, N. (1972). Locally best invariant test for sphericity and the limiting distributions. Ann.
Math. Statist. 43 1312–1316. MR0311032

UHLIG, H. (1994). On singular Wishart and singular multivariate beta distributions. Ann. Statist. 22
395–405. MR1272090

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Proba-
bilistic Mathematics 3. Cambridge Univ. Press, Cambridge. MR1652247

WANG, D. (2012). The largest eigenvalue of real symmetric, Hermitian and Hermitian self-dual ran-
dom matrix models with rank one external source, Part I. J. Stat. Phys. 146 719–761. MR2916094

A. ONATSKI

FACULTY OF ECONOMICS

UNIVERSITY OF CAMBRIDGE

SIDGWICK AVENUE

CAMBRIDGE, CB3 9DD
UNITED KINGDOM

E-MAIL: ao319@cam.ac.uk

M. J. MOREIRA

ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA

FUNAÇÃO GETULIO VARGAS (FGV/EPGE)
PRAIA DE BOTAFOGO, 190-SALA 1100
RIO DE JANEIRO-RJ 22250-900
BRAZIL

E-MAIL: mjmoreira@fgv.br

M. HALLIN

ECARES
UNIVERSITÉ LIBRE DE BRUXELLES CP 114/04
50, AVENUE F.D. ROOSEVELT

B-1050 BRUXELLES

BELGIUM

E-MAIL: mhallin@ulb.ac.be

http://dx.doi.org/10.1214/13-AOS1100SUPP
http://www.ams.org/mathscinet-getitem?mr=2256563
http://www.ams.org/mathscinet-getitem?mr=1345534
http://www.ams.org/mathscinet-getitem?mr=2328427
http://www.ams.org/mathscinet-getitem?mr=0834385
http://www.ams.org/mathscinet-getitem?mr=0311032
http://www.ams.org/mathscinet-getitem?mr=1272090
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=2916094
mailto:ao319@cam.ac.uk
mailto:mjmoreira@fgv.br
mailto:mhallin@ulb.ac.be

	Introduction
	Likelihood ratios as contour integrals
	Laplace approximation
	Asymptotic behavior of the likelihood ratios
	Asymptotic power analysis
	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Proposition 9
	Proof of Proposition 10

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

