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THE SUBSET ARGUMENT AND CONSISTENCY OF MLE IN
GLMM: ANSWER TO AN OPEN PROBLEM AND BEYOND

BY JIMING JIANG1

University of California, Davis

We give answer to an open problem regarding consistency of the max-
imum likelihood estimators (MLEs) in generalized linear mixed models
(GLMMs) involving crossed random effects. The solution to the open prob-
lem introduces an interesting, nonstandard approach to proving consistency
of the MLEs in cases of dependent observations. Using the new technique,
we extend the results to MLEs under a general GLMM. An example is used
to further illustrate the technique.

1. Introduction. Generalized linear mixed models (GLMMs) have become
a popular and very useful class of statistical models. See, for example, Jiang
(2007), McCulloch, Searle and Neuhaus (2008) for some wide-ranging accounts
of GLMMs with theory and applications. In the earlier years after GLMM was
introduced, one of the biggest challenges in inference about these models was
computation of the maximum likelihood estimators (MLEs). As is well known,
the likelihood function under a GLMM typically involves integrals that cannot be
computed analytically. The computational difficulty was highlighted by the infa-
mous salamander mating data, first introduced by McCullagh and Nelder [(1989),
Section 14.5]. A mixed logistic model, which is a special case of GLMM, was pro-
posed for the salamander data that involved crossed random effects for the female
and male animals. However, due to the fact that the random effects are crossed,
the likelihood function involves a high-dimensional integral that not only does not
have an analytic expression, but is also difficult to evaluate numerically [e.g., Jiang
(2007), Section 4.4.3]. For years, the salamander data has been a driving force for
the computational developments in GLMM. Virtually every numerical procedure
that was proposed used this data as a “gold standard” to evaluate, or demonstrate,
the procedure. See, for example, Karim and Zeger (1992), Breslow and Clayton
(1993), Drum and McCullagh (1993), McCulloch (1994), Breslow and Lin (1995),
Lin and Breslow (1996), Jiang (1998), Booth and Hobert (1999), Jiang and Zhang
(2001), Sutradhar and Rao (2003), and Torabi (2012).
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1.1. A theoretical challenge and an open problem. To illustrate the numerical
difficulty as well as a theoretical challenge, which is the main objective of the
current paper, let us begin with an example.

EXAMPLE 1. A mixed logistic model was proposed by Breslow and Clay-
ton (1993) for the salamander data, and has since been used [e.g., Breslow and
Lin (1995), Jiang (1998), Lin and Breslow (1996)]. Some alternative models, but
only in terms of reparametrizations, have been considered [e.g., Booth and Hobert
(1999)]. Jiang and Zhang (2001) noted that some of these models have ignored the
fact that a group of salamanders were used in both the summer experiment and
one of the fall experiments; in other words, there were replicates for some of the
pairs of female and male animals. Nevertheless, all of these models are special
cases of the following, more general setting. Suppose that, given the random ef-
fects ui, vj , (i, j) ∈ S, where S is a subset of I = {(i, j) : 1 ≤ i ≤ m,1 ≤ j ≤ n},
binary responses yijk , (i, j) ∈ S, k = 1, . . . , cij are conditionally independent such
that, with pijk = P(yijk = 1|u, v), we have logit(pijk) = x′

ijkβ + ui + vj , where
logit(p) = log{p/(1 − p)},p ∈ (0,1), xijk is an known vector of covariates, β is
a unknown vector of parameters, and u, v denote all the random effects ui and vj

that are involved. Here cij is the number of replicates for the (i, j) cell. Without
loss of generality, assume that S is a irreducible subset of I in that m,n are the
smallest positive integers such that S ⊂ I . Furthermore, suppose that the random
effects ui’s and vj ’s are independent with ui ∼ N(0, σ 2) and vj ∼ N(0, τ 2), where
σ 2, τ 2 are unknown variances. One may think of the random effects ui and vj as
corresponding to the female and male animals, as in the salamander problem. In
fact, for the salamander data, cij = 2 for half of the pairs (i, j), and cij = 1 for the
rest of the pairs. It can be shown [e.g., Jiang (2007), page 126; also see Section 4
in the sequel] that the log-likelihood function for estimating β,σ 2, τ 2 involves an
integral of dimension m + n, which, in particular, increases with the sample size,
and the integral cannot be further simplified.

The fact that the random effects are crossed, as in Example 1, presents not only a
computational challenge but also a theoretical one, that is, to prove that the MLE is
consistent in such a model. In contrast, the situation is very different if the GLMM
has clustered, rather than crossed, random effects. For example, consider the fol-
lowing.

EXAMPLE 2. Suppose that, given the random effects u1, . . . , um, binary re-
sponses yij , i = 1, . . . ,m, j = 1, . . . , ni are conditionally independent such that,
with pij = P(yij = 1|u), we have logit(pij ) = x′

ij β + ui , where xij is a vector of
known covariates, β a vector of unknown coefficients, and u = (ui)1≤i≤m. Fur-
thermore, suppose that the ui’s are independent with ui ∼ N(0, σ 2), where σ 2 is
unknown. It is easy to show that the log-likelihood function for estimating β,σ 2
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only involves one-dimensional integrals. Not only that, a major theoretical advan-
tage of this case is that the log-likelihood can be expressed as a sum of independent
random variables. In fact, this is a main characteristic of GLMMs with clustered
random effects. Therefore, limit theorems for sums of independent random vari-
ables [e.g., Jiang (2010), Chapter 6] can be utilized to obtain asymptotic properties
of the MLE.

Generally speaking, the classical approach to proving consistency of the MLE
[e.g., Lehmann and Casella (1998), Chapter 6; Jiang (2010)] relies on asymptotic
theory for sum of random variables, independent or not. However, one cannot ex-
press the log-likelihood in Example 1 as a sum of random variables with manage-
able properties. For this reason, it is very difficult to tackle asymptotic behavior of
the MLE in the salamander problem, or any GLMM with crossed random effects,
assuming that the numbers of random effects in all of the crossed factors increase.
In fact, the problem is difficult to solve even for the simplest case, as stated in the
open problem below.

Open problem [e.g., Jiang (2010), page 541]: Suppose that x′
ijkβ = μ, an unknown

parameter, cij = 1 for all i, j , S = I , and σ 2, τ2 are known, say, σ 2 = τ2 = 1 in
Example 1. Thus, μ is the only unknown parameter. Suppose that m,n → ∞. Is the
MLE of μ consistent?

It was claimed [Jiang (2010), pages 541, 550] that even for this seemingly trivial
case, the answer was not known but expected to be anything but trivial.

1.2. Origination of the open problem. The problem regarding consistency of
the MLE in GLMMs with crossed random effects began to draw attention in
early 1997. It remained unsolved over the past 15 years, and was twice cited as an
open problem in the literature, first in Jiang [(2007), page 173] and later in Jiang
[(2010), page 541]. The latter also provided the following supporting evidence for
a positive answer [Jiang (2010), page 550].

Let k = m ∧ n. Consider a subset of the data, yii, i = 1, . . . , k. Note that the
subset is a sequence of i.i.d. random variables. It follows, by the standard argu-
ments, that the MLE of μ based on the subset, denoted by μ̃, is consistent. Let μ̂

denote the MLE of μ based on the full data, yij , i = 1, . . . ,m, j = 1, . . . , n. The
point is that even the MLE based on a subset of the data, μ̃, is consistent; and if
one has more data (information), one is expected to do better. Therefore, μ̂ has to
be consistent as well.

1.3. The rest of the paper. In Section 2, we give a positive answer to the open
problem as well as the proof. Surprisingly, the proof is fairly short, thanks to a
new, nonstandard technique that we introduce, known as the subset argument. Us-
ing this argument, we are able to establish both Cramér (1946) and Wald (1949)
types of consistency results for the MLE. It is fascinating that a 15-year-old prob-
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lem can be solved in such a simple way. The new technique may be useful well
beyond solving the open problem—for proving consistency of the MLE in cases
of dependent observations. We consider some applications of the subset argument
in Section 3 regarding consistency of the MLE in a general GLMM. An example
is used in Section 4 to further illustrate the new technique. Remark and discussion
on a number of theoretical and practical issues are offered in Section 5.

2. Answer to open problem. Throughout this section, we focus on the open
problem stated in Section 1. Let μ denote the true parameter.

THEOREM 1 (Cramér consistency). There is, with probability tending to one,

a root to the likelihood equation, μ̂, such that μ̂
P−→ μ.

PROOF. The idea was actually hinted in Jiang [(2010), page 550] as “evi-
dence” that supports a positive answer (see the last paragraph of Section 1.2 of
the current paper). Basically, the idea suggests that, perhaps, one could use the fact
that the MLE based on the subset data is consistent to argue that the MLE based
on the full data is also consistent. The question is how to execute the idea. Recall
that, in the original proof of Wald [(1949); also see Wolfowitz (1949)], the focus
was on the likelihood ratio pθ(y)/pθ0(y), and showing that the ratio converges to
zero outside any (small) neighborhood of θ0, the true parameter vector. Can we ex-
ecute the subset idea in terms of the likelihood ratio? This leads to consideration of
the relationship between the likelihood ratio under the full data and that under the
subset data. It is in this context that the following subset inequality (2) is derived
(see Section 5.1 for further discussion), which is the key to the proof.

Let y[1] denote the (row) vector of yii, i = 1, . . . ,m ∧ n, and y[2] the (row)
vector of the rest of the yij , i = 1, . . . ,m, j = 1, . . . , n. Let pμ(y[1], y[2]) denote
the probability mass function (p.m.f.) of (y[1], y[2]), pμ(y[1]) the p.m.f. of y[1],

pμ(y[2]|y[1]) = pμ(y[1], y[2])
pμ(y[1])

(1)

the conditional p.m.f. of y[2] given y[1], and Pμ the probability distribution, respec-
tively, when μ is the true parameter. For any ε > 0, we have

Pμ

{
pμ(y[1], y[2]) ≤ pμ+ε(y[1], y[2])|y[1]

} = Pμ

{
pμ+ε(y[1], y[2])
pμ(y[1], y[2])

≥ 1
∣∣∣y[1]

}

≤ E
{
pμ+ε(y[1], y[2])
pμ(y[1], y[2])

∣∣∣y[1]
}

= ∑
y[2]

pμ+ε(y[1], y[2])
pμ(y[1], y[2])

pμ(y[2]|y[1])(2)
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= ∑
y[2]

pμ+ε(y[1], y[2])
pμ(y[1])

= pμ+ε(y[1])
pμ(y[1])

,

using (1). A more general form of (2) is given in Section 5.1.
On the other hand, by the standard asymptotic arguments [e.g., Jiang (2010),

page 9], it can be shown that the likelihood ratio pμ+ε(y[1])/pμ(y[1]) converges
to zero in probability, as m ∧ n → ∞. Here we use the fact that the compo-
nents of y[1], yii,1 ≤ i ≤ m ∧ n are independent Bernoulli random variables.
It follows that, for any η > 0, there is Nη ≥ 1 such that, with probability ≥
1 − η, we have ζN = Pμ{pμ(y[1], y[2]) ≤ pμ+ε(y[1], y[2])|y[1]} ≤ γ m∧n for some
0 < γ < 1, if m ∧ n ≥ Nη. The argument shows that ζN = OP(γ m∧n), hence
converges to 0 in probability. It follows, by the dominated convergence theo-
rem, that Eμ(ζN) = Pμ{pμ(y[1], y[2]) ≤ pμ+ε(y[1], y[2])} → 0. Similarly, we have
Pμ{pμ(y[1], y[2]) ≤ pμ−ε(y[1], y[2])} → 0. The rest of the proof follows by the
standard arguments [e.g., Jiang (2010), pages 9–10]. �

The result of Theorem 1 is usually referred to as Cramér-type consistency
[Cramér (1946)], which states that a root to the likelihood equation is consis-
tent. However, it does not always imply that the MLE, which by definition is the
(global) maximizer of the likelihood function, is consistent. A stronger result is
called Wald-type consistency [Wald (1949); also see Wolfowitz (1949)], which
states that the MLE is consistent. Note that the limiting process in Theorem 1 is
m,n → ∞, or, equivalently, m ∧ n → ∞ (see Section 5.4 for discussion). With
a slightly more restrictive limiting process, the Wald-consistency can actually be
established, as follows.

THEOREM 2 (Wald consistency). If (m∧n)−1 log(m∨n) → 0 as m,n → ∞,
then the MLE of μ is consistent.

PROOF. Define p0(λ) = E{h(λ + ξ)}, where h(x) = ex/(1 + ex) and ξ ∼
N(0,2). Write p0 = p0(μ). For any integer k, divide the interval [k, k + 1) by
λk,j = k + δ(mn)−1(m ∧ n)j , j = 1, . . . , J , where J = [mn/δ(m ∧ n)] and 0 <

δ < 1 − p0. It is easy to show that |(∂/∂μ) logpμ(y[1], y[2])| ≤ mn uniformly for
all μ. Thus, for any λ ∈ [k, k + 1), there is 1 ≤ j ≤ J , such that logpλ(y[1], y[2])−
logpλk,j

(y[1], y[2]) = {(∂/∂μ) logpμ(y[1], y[2])|μ=λ̃}(λ−λk,j ) ≤ δ(m∧n), where

λ̃ lies between λ and λk,j . It follows that

sup
λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

≤ eδ(m∧n) max
1≤j≤J

pλk,j
(y[1], y[2])

pμ(y[1], y[2])
.
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Therefore, by the subset argument [see (2)], we have

Pμ

{
sup

λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1
∣∣∣y[1]

}

≤
J∑

j=1

Pμ

{
pλk,j

(y[1], y[2])
pμ(y[1], y[2])

> e−δ(m∧n)
∣∣∣y[1]

}
(3)

≤ eδ(m∧n)
J∑

j=1

pλk,j
(y[1])

pμ(y[1])
.

On the other hand, we have 0 ≤ 1 − p0(λ) = E{1 + exp(λ + ξ)}−1 ≤
e−λE(e−ξ ) = e1−λ; and, similarly, 0 ≤ p0(λ) ≤ e1+λ. Let Aδ = {|�| ≤ δ} with
� = (m ∧ n)−1 ∑m∧n

i=1 yii − p0. If k ≥ 1, then, for any 1 ≤ j ≤ J , write p1 =
p0(λk,j ). We have, on Aδ ,

pλk,j
(y[1])

pμ(y[1])
=

{(
p1

p0

)p0+�(
1 − p1

1 − p0

)1−p0−�}m∧n

≤ {
a−1
δ (1 − p1)

1−p0−δ}m∧n

≤ [
a−1
δ exp

{
(1 − λk,j )(1 − p0 − δ)

}]m∧n

≤ exp
[{

1 − p0 − δ − logaδ − (1 − p0 − δ)k
}
(m ∧ n)

]
,

where aδ = inf|x|≤δ p
p0+x
0 (1 − p0)

1−p0−x > 0. It follows, by (3), that

Pμ

{
sup

λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1
∣∣∣y[1]

}

≤ mn

δ(m ∧ n)
exp

[{
1 − p0 − logaδ − (1 − p0 − δ)k

}
(m ∧ n)

]

on Aδ , or, equivalently, that

Pμ

{
sup

λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1, |�| ≤ δ
∣∣∣y[1]

}

(4)
≤ mn

δ(m ∧ n)
exp

[{
1 − p0 − logaδ − (1 − p0 − δ)k

}
(m ∧ n)

]
1Aδ .

Note that Aδ ∈ F (y[1]). By taking expectations on both sides of (4), it follows that
the unconditional probability corresponding to the left side is bounded by the right
side without 1Aδ , for k = 1,2, . . . . Therefore, we have

Pμ

{
sup

λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1 for some k ≥ K, |�| ≤ δ

}
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≤
∞∑

k=K

Pμ

{
sup

λ∈[k,k+1)

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1, |�| ≤ δ

}

≤ mn

δ(m ∧ n)
exp

{
(1 − p0 − logaδ)(m ∧ n)

} ∞∑
k=K

e−(1−p0−δ)(m∧n)k

= mn

δ(m ∧ n)
exp

{
(1 − p0 − logaδ)(m ∧ n)

} e−(1−p0−δ)(m∧n)K

1 − e−(1−p0−δ)(m∧n)
(5)

= {
1 − e−(1−p0−δ)(m∧n)}−1

× exp
[−(m ∧ n)

{
(1 − p0 − δ)K − 1 + p0 + logaδ

− (m ∧ n)−1 log(m ∨ n) + (m ∧ n)−1 log δ
}]

.

Thus, if we choose K such that (1 − p0 − δ)K − 1 + p0 + logaδ ≥ 1, then, for
large m ∧ n, the probability on the left side of (5) is bounded by 2e−(m∧n)/2. On
the other hand, we have Pμ(Ac

δ) → 0, as m ∧ n → ∞. Thus, we have

P
{

pλ(y[1], y[2])
pμ(y[1], y[2])

> 1 for some λ ≥ K

}

(6)
≤ 2e−(m∧n)/2 + P

(
Ac

δ

) −→ 0

as m ∧ n → ∞. Similarly, the left side of (6), with the words “λ ≥ K” replaced by
“λ ≤ −K ,” goes to zero, as m ∧ n → ∞, if K is chosen sufficiently large.

On the other hand, again by the subset argument, it can be shown (see the sup-
plementary material [Jiang (2013)]) that for any ε > 0 and K > |μ| + ε, we have

Pμ

{
sup

λ∈[−K,μ−ε)∪(μ+ε,K]
pλ(y[1], y[2])
pμ(y[1], y[2])

> 1
}

−→ 0(7)

as m,n → ∞. The consistency of the MLE then follows by combining (7) with
the previously proved results. �

3. Beyond. We consider a few more applications of the subset argument, in-
troduced in the previous section. All applications are regarding a general GLMM,
whose definition is given below for the sake of completeness [see, e.g., Jiang
(2007) for further details].

(i) Suppose that, given a vector u of random effects, responses y1, . . . , yN are
conditionally independent with conditional density function, with respect to a σ -
finite measure ν, given by the exponential family fi(yi |u) = exp[a−1

i (φ){yiξi −
b(ξi)} + ci(yi, φ)], where φ is a dispersion parameter (which in some cases is
known), and b(·), ai(·), ci(·, ·) are known, continuously differentiable functions
with respect to ξi and φ. The natural parameter of the conditional exponential
family, ξi , is therefore associated with the conditional mean, μi = E(yi |u), accord-
ing to the properties of the exponential family [e.g., McCullagh and Nelder (1989),
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Section 2.2.2]. (ii) Furthermore, suppose that μi satisfies g(μi) = x′
iβ+z′

iu, where
xi, zi are known vectors, β is a vector of unknown parameters, and g(·) is a link
function. (iii) Finally, assume that u ∼ N(0,G), where the covariance matrix G

may depend on a vector ϕ of dispersion parameters.
It is typically possible to find a subset of the data that are independent, in some

way, under a general GLMM. For example, under the so-called ANOVA GLMM
[e.g., Lin (1997)], a subset of independent data can always be found. Here an
ANOVA GLMM satisfies g(μ) = Xβ +Z1u1 +· · ·+Zsus , where μ = (μi)1≤i≤N ,
g(μ) = [g(μi)]1≤i≤N , X = (x′

i )1≤i≤N , Zr = (z′
ir )1≤i≤N,1 ≤ r ≤ s, are known

matrices, ur,1 ≤ r ≤ s are vectors of independent random effects, and u1, . . . , us

are independent. Examples 1 and 2 are special cases of the ANOVA GLMM. Note
that in both examples the responses are indexed by (i, j), instead of i, but this
difference is trivial. Nevertheless, the “trick” is to select a subset, or more than one
subsets if necessary, with the following desirable properties: (I) the subset(s) can
be divided into independent clusters with the number(s) of clusters increasing with
the sample size; and (II) the combination of the subset(s) jointly identify all the
unknown parameters. More specifically, let y

(a)
i , i = 1, . . . ,Na be the ath subset

of the data, 1 ≤ a ≤ b, where b is a fixed positive integer. Suppose that, for each a,
there is a partition, {1, . . . ,Na} = ⋃ma

j=1 Sa,j . Let ya,j = [y(a)
i ]i∈Sa,j

, and pθ(ya,j )

be the probability density function (p.d.f.) of ya,j , with respect to the measure ν

(or the product measure induced by ν if ya,j is multivariate), when θ is the true
parameter vector. Let � denote the parameter space, and θ0 the true parameter
vector. Then, (I) and (II) can be formally stated as follows:

(A1) ya,j ,1 ≤ j ≤ ma are independent with ma → ∞ as N → ∞,1 ≤ a ≤ b;
(A2) for every θ ∈ � \ {θ0}, we have

min
1≤a≤b

lim sup
N→∞

1

ma

ma∑
j=1

Eθ0

[
log

{
pθ(ya,j )

pθ0(ya,j )

}]
< 0.

Note that (A2) controls the average Kullback–Leibler information [Kullback
and Leibler (1951)]; thus, the inequality always holds if < is replaced by ≤.

3.1. Finite parameter space. Let us first consider a simpler case by assuming
that � is finite. Although the assumption may seem restrictive, it is not totally un-
realistic. For example, any computer system only allows a finite number of digits.
This means that the parameter space that is practically stored in a computer sys-
tem is finite. Using the subset argument, it is fairly straightforward to prove the
following (see the supplementary material [Jiang (2013)]).

THEOREM 3. Under assumptions (A1) and (A2), if, in addition,
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(A3) for every θ ∈ � \ {θ0}, we have

1

m2
a

ma∑
j=1

varθ0

[
log

{
pθ(ya,j )

pθ0(ya,j )

}]
−→ 0, 1 ≤ a ≤ b,

then Pθ0(θ̂ = θ0) → 1, as N → ∞, where θ̂ is the MLE of θ .

3.2. Euclidean parameter space. We now consider the case that � is a convex
subspace of Rd , the d-dimensional Euclidean space, in the sense that θ1, θ2 ∈ �

implies (1 − t)θ1 + tθ2 ∈ � for every t ∈ (0,1). In this case, we need to strengthen
assumptions (A2), (A3) to the following:

(B2) θ0 ∈ �o, the interior of �, and there is 0 < M < ∞ [same as in (B3)
below] such that, for every ε > 0, we have

lim sup
N→∞

sup
θ∈�,ε≤|θ−θ0|≤M

min
1≤a≤b

1

ma

ma∑
j=1

Eθ0

[
log

{
pθ(ya,j )

pθ0(ya,j )

}]
< 0.(8)

(B3) There are positive constant sequences sN , sa,N ,1 ≤ a ≤ b such that

sup
θ∈�,|θ−θ0|≤M

max
1≤c≤d

∣∣∣∣ ∂

∂θc

log
{
pθ(y)

}∣∣∣∣ = OP(sN)(9)

with log(sN)/min1≤a≤b ma → 0, where pθ(y) is the p.d.f. of y = (yi)1≤i≤N given
that θ = (θc)1≤c≤d is the true parameter vector,

sup
θ∈�,|θ−θ0|≤M

1

ma

ma∑
j=1

max
1≤c≤d

∣∣∣∣ ∂

∂θc

log
{
pθ(ya,j )

}∣∣∣∣ = oP(sa,N)(10)

with log(sa,N)/ma → 0; and (for the same sa,N )

sup
θ∈�,|θ−θ0|≤M

sd−1
a,N

m2
a

ma∑
j=1

varθ0

[
log

{
pθ(ya,j )

pθ0(ya,j )

}]
−→ 0, 1 ≤ a ≤ b.(11)

THEOREM 4. Under assumptions (A1), (B2) and (B3), there is, with proba-

bility → 1, a root to the likelihood equation, θ̂ , such that θ̂
P−→ θ0, as N → ∞.

PROOF. Aside from the use of the subset argument, the lines of the proof are
similar to, for example, the standard arguments of Lehmann and Casella [(1998),
the beginning part of the proof of Theorem 5.1], although some details are more
similar to Wolfowitz (1949). We outline the key steps below and refer the details
to the supplementary material [Jiang (2013)]. Once again, the innovative part is
the consideration of the conditional probability given the subset data and, most
importantly, the subset inequality (15) in the sequel.
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For any ε > 0, assume, without loss of generality, that {θ : |θ −θ0| ≤ ε} ⊂ � and
Cε = {θ ∈ Rd : |θc − θ0c| ≤ ε,1 ≤ c ≤ d} ⊂ {θ ∈ � : |θ − θ0| ≤ M}. Essentially, all
we need to show is that, as N → ∞,

P(ε) ≡ Pθ0

{
pθ0(y) ≤ sup

θ∈∂Cε

pθ (y)
}

−→ 0,(12)

where ∂Cε is the boundary of Cε , which consists of θ ∈ Cε such that |θc − θ0c| = ε

for some 1 ≤ c ≤ d . Define

SN,a(θ) = 1

ma

ma∑
j=1

Eθ0

[
log

{
pθ(ya,j )

pθ0(ya,j )

}]
, 1 ≤ a ≤ b,

and IN(θ) = min{1 ≤ a ≤ b :SN,a(θ) = min1≤a′≤b SN,a′(θ)}. Then, ∂Cε =⋃b
a=1 ∂Cε ∩ �N,a , where �N,a = {θ ∈ � : IN(θ) = a}. Then, we have

P(ε) ≤
b∑

a=1

Pθ0

{
pθ0(y) ≤ sup

θ∈∂Cε∩�N,a

pθ (y)
}
.(13)

For a fixed 1 ≤ a ≤ b, let δ be a small, positive number to be determined latter,
and K = [eδma ] + 1. For any l = (l1, . . . , ld), where 0 ≤ lc ≤ K − 1,1 ≤ c ≤ d ,
select a point θl from the subset {θ : θ0c − ε + 2εlc/K ≤ θc ≤ θ0c − ε + 2ε(lc +
1)/K,1 ≤ c ≤ d}∩ ∂Cε ∩�N,a , if the latter is not empty; otherwise, do not select.
Let D denote the collection of all such points. Also let B denote the left side of (9).
It can be shown that

Pθ0

{
pθ0(y) ≤ sup

θ∈∂Cε∩�N,a

pθ (y)
}

(14)

≤ Pθ0

{
exp

(
2dεB

K

)
> 2

}
+ Pθ0

{
pθ0(y) ≤ 2 max

θ∈D
pθ(y)

}
.

We now apply the subset argument. Let y[1] denote the combined vector of
ya,j ,1 ≤ j ≤ ma , and y[2] the vector of the rest of y1, . . . , yN . Then, similar to the
argument of (2), we have, for any θ ∈ D,

Pθ0

{
pθ0(y) ≤ 2pθ(y)|y[1]

} ≤ 2
pθ(y[1])
pθ0(y[1])

.(15)

Using this result, it can be shown that Pθ0{pθ0(y) ≤ 2 maxθ∈D pθ(y)|y[1]} = oP(1).
From here, (12) can be established. �

Again, Theorem 4 is a Cramér-consistency result. On the other hand, Wald-
consistency can be established under additional assumptions that control the be-
havior of the likelihood function in a neighborhood of infinity. For example, the
following result may be viewed as an extension of Theorem 2. The proof is given
in the supplementary material [Jiang (2013)]. Once again, the subset argument
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plays a critical role in the proof. For simplicity, we focus on the case of discrete
responses, which is typical for GLMMs. In addition, we assume the following.
For any 0 ≤ v < w, define Sd [v,w) = {x ∈ Rd :v ≤ |x| < w} and write, in short,
Sd(k) = Sd [k, k + 1) for k = 1,2, . . . .

(C1) There are sequences of constants, bk, cN ≥ 1, and random variables, ζN ,
where cN, ζN do not depend on k, such that ζN = OP(1) and

sup
θ∈�∩Sd [k−1,k+2)

max
1≤c≤d

∣∣∣∣ ∂

∂θc

log
{
pθ(y)

}∣∣∣∣ ≤ bkcNζN, k = 1,2, . . .

(C2) There is a subset of independent data vectors, y(j),1 ≤ j ≤ mN [not
necessarily among those in (A1)] so that: (i) Eθ0 | log{pj,θ0(y(j))}| is bounded,
pj,θ (·) being the p.m.f. of y(j) under θ ; (ii) there is a sequence of positive
constants, γk , with limk→∞ γk = ∞, and a subset TN of possible values of
y(j), such that for every k ≥ 1 and θ ∈ � ∩ Sd(k), there is t ∈ TN satisfy-
ing max1≤j≤mN

log{pj,θ (t)} ≤ −γk ; (iii) inft∈TN
m−1

N

∑mN

j=1 pj,θ0(t) ≥ ρ for some

constant ρ > 0; and (iv) |TN |/mN = o(1), and cd
N

∑∞
k=K kd1bd

k e−δmNγk = o(1) for
some K ≥ 1 and δ < ρ, where d1 = d1(d>1).

It is easy to verify that the new assumptions (C1), (C2) are satisfied in the case of
Theorem 2 for the open problem (see the supplementary material [Jiang (2013)]).
Another example is considered in the next section.

THEOREM 5. Suppose that (A1) holds; (B2), (B3) hold for any fixed M > 0
(instead of some M > 0), and with the sd−1

a,N in (11) replaced by sd
a,N . In addition,

suppose that (C1), (C2) hold. Then, the MLE of θ0 is consistent.

4. Example. Let us consider a special case of Example 1 with x′
ijkβ = μ,

but σ 2 and τ 2 unknown. We change the notation slightly, namely, yi,j,k instead of
yijk . Suppose that S = S1 ∪S2 such that cij = r, (i, j) ∈ Sr , r = 1,2 (as in the case
of the salamander data). We use two subsets to jointly identify all the unknown
parameters. The first subset is similar to that used in the proofs of Theorems 1
and 2, namely, yi,i = (yi,i,k)k=1,2, (i, i) ∈ S2. Let m1 be the total number of such
(i, i)’s, and assume that m1 → ∞, as m,n → ∞. Then, the subset satisfies (A1).
Let θ = (μ,σ 2, τ 2)′. It can be shown that the sequence yi,i , (i, i) ∈ S2 is a sequence
of i.i.d. random vectors with the probability distribution, under θ , given by

pθ(yi,i) = E
[

exp{yi,i,·(μ + ξ)}
{1 + exp(μ + ξ)}2

]
,(16)

where ξ ∼ N(0,ψ2), with ψ2 = σ 2 + τ 2, and yi,i,· = yi,i,1 + yi,i,2. By the strict
concavity of the logarithm, we have

Eθ0

[
log

{
pθ(yi,i)

pθ0(yi,i)

}]
< 0(17)
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unless pθ(yi,i)/pθ0(yi,i) is a.s. Pθ0 a constant, which must be one because both
pθ and pθ0 are probability distributions. It is easy to show that the probability dis-
tribution of (16) is completely determined by the function M(ϑ) = [Mr(ϑ)]r=1,2,
where Mr(ϑ) = E{hr

ϑ(ζ )} with ϑ = (μ,ψ)′, hϑ(ζ ) = exp(μ+ψζ)/{1 + exp(μ+
ψζ)}, and ζ ∼ N(0,1). In other words, pθ(yi,i) = pθ0(yi,i) for all values of yi,i if
and only if M(ϑ) = M(ϑ0). Jiang (1998) showed that the function M(·) is injective
[also see Jiang (2007), page 221]. Thus, (17) holds unless μ = μ0 and ψ2 = ψ2

0 .
It remains to deal with a θ that satisfies μ = μ0, ψ2 = ψ2

0 , but θ �= θ0. For such
a θ , we use the second subset, defined as yi = (yi,2i−1,1, yi,2i,1)

′ such that (i,2i −
1) ∈ S and (i,2i) ∈ S. Let m2 be the total number of all such i’s, and assume that
m2 → ∞ as m,n → ∞. It is easy to see that (A1) is, again, satisfied for the new
subset. Note that any θ satisfying μ = μ0 and ψ2 = ψ2

0 is completely determined
by the parameter γ = σ 2/ψ2. Furthermore, the new subset is a sequence of i.i.d.
random vectors with the probability distribution, under such a θ , given by

pγ (yi) = E
[

exp{yi,2i−1,1(μ0 + X)}
1 + exp(μ0 + X)

· exp{yi,2i,1(μ0 + Y)}
1 + exp(μ0 + Y)

]
,(18)

where (X,Y ) has the bivariate normal distribution with var(X) = var(Y ) = ψ2
0 and

cor(X,Y ) = γ . Similar to (17), we have

Eγ0

[
log

{
pγ (yi)

pγ0(yi)

}]
< 0(19)

unless pγ (yi) = pγ0(yi) for all values of yi . Consider (18) with yi = (1,1) and let
Pγ denote the probability distribution of (X,Y ) with the correlation coefficient γ .
By Fubini’s theorem, it can be shown that

pγ (1,1) =
∫ ∞

0

∫ ∞
0

Pγ

{
X ≥ logit(s) − μ0, Y ≥ logit(t) − μ0

}
ds dt.(20)

Hereafter, we refer the detailed derivations to the supplementary material [Jiang
(2013)]. By Slepian’s inequality [e.g., Jiang (2010), pages 157–158], the integrand
on the right side of (20) is strictly increasing with γ , hence so is the integral. Thus,
if γ �= γ0, at least we have pγ (1,1) �= pγ0(1,1), hence (19) holds.

In summary, for any θ ∈ �,θ �= θ0, we must have either (17) or (19) hold.
Therefore, by continuity, assumption (B2) holds, provided that true variances,
σ 2

0 , τ 2
0 are positive. Note that, in the current case, the expectations involved in

(B2) do not depend on either j or N , the total sample size.
To verify (B3), it can be shown that |(∂/∂μ) log{pθ(y)}| ≤ N . Furthermore, we

have |(∂/∂σ 2) log{pθ(y)}| ∨ |(∂/∂τ 2) log{pθ(y)}| ≤ (A + C + 1)N in a neighbor-
hood of θ0, N (θ0). Therefore, (9) holds with sN = N .

As for (10), it is easy to show that the partial derivatives involved are uniformly
bounded for θ ∈ N (θ0). Thus, (10) holds for any sa,N such that sa,N → ∞, a =
1,2. Furthermore, the left side of (11) is bounded by cas

2
a,N/ma for some constant

ca > 0, a = 1,2 (note that d = 3 in this case). Thus, for example, we may choose
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sa,N = √
ma/{1 + log(ma)}, a = 1,2, to ensure that log(sa,N)/ma → 0, a = 1,2,

and (11) holds.
In conclusion, all the assumptions of Theorem 4 hold provided that σ 2

0 > 0,
τ 2

0 > 0, and (m1 ∧ m2)
−1 log(N) → 0.

Similarly, the conditions of Theorem 5 can be verified. Essentially, what is new
is to check assumptions (C1) and (C2). See the supplementary material [Jiang
(2013)].

5. Discussion.

5.1. Remark on subset argument. In proving a number of results, we have
demonstrated the usefulness of the subset argument. In principle, the method al-
lows one to argue consistency of the MLE in any situation of dependent data, not
necessarily under a GLMM, provided that one can identify some suitable subset(s)
of the data whose asymptotic properties are easier to handle, such as collections of
independent random vectors. The connection between the full data and subset data
is made by the subset inequality, which, in a more general form, is a consequence
of the martingale property of the likelihood-ratio [e.g., Jiang (2010), pages 244–
246]: suppose that Y1 is a subvector of a random vector Y . Let pθ(·) and p1,θ (·)
denote the p.d.f.’s of Y and Y1, respectively, with respect to a σ -finite measure ν,
under the parameter vector θ . For simplicity, suppose that pθ0,p1,θ0 are positive
a.e. ν, and λ(·) is a positive, measurable function. Then, for any θ , we have

Pθ0

{
pθ0(Y ) ≤ λ(Y1)pθ (Y )|Y1

} ≤ λ(Y1)
p1,θ (Y1)

p1,θ0(Y1)
a.e. ν,

where Pθ0 denotes the probability distribution corresponding to pθ0 .

5.2. Quantifying the information loss. On the other hand, the subset argument
merely provides a method of proof for the consistency of the full-data MLE—it by
no means suggests the subset-data MLE as a replacement for the full-data MLE.
In fact, there is an information loss if such a replacement takes place. To quantify
the information loss, assume the regularity conditions for exchanging the order of
differentiation and integration. Then, the Fisher information matrix based on the
full data can be expressed as

If(θ) = −Eθ

{
∂2

∂θ ∂θ ′ logpθ(y)

}

= Eθ

[{
∂

∂θ
logpθ(y)

}{
∂

∂θ
logpθ(y)

}′]
− Eθ

{
1

pθ(y)

∂2

∂θ ∂θ ′ pθ(y)

}

= If,1(θ) − If,2(θ).

Similarly, the information matrix based on the subset data can be expressed as
Is(θ) = Is,1(θ) − Is,2(θ), where Is,j (θ) is If,j (θ) with y replaced by y[1], j = 1,2



190 J. JIANG

[pθ(y[1]) denotes the p.d.f. (or p.m.f.) of y[1]]. By conditioning on y[1], it can be
shown that If,2(θ) = Is,2(θ), while If,1(θ) ≥ Is,1(θ). It follows that

If(θ) ≥ Is(θ)(21)

for all θ . Here the inequality means that the difference between the left side and
right side is a nonnegative definite matrix. (21) suggests that the information con-
tained in the full data is no less than that contained in the subset data, which, of
course, is what one would expect. Furthermore, the information loss is given by

If(θ) − Is(θ) = Eθ

[
Varθ

{
∂

∂θ
logpθ(y)

∣∣∣y[1]
}]

,(22)

where Varθ (·|y[1]) denotes the conditional covariance matrix given y[1] under θ .
The derivations of (21) and (22) are deferred to the supplementary material [Jiang
(2013)]. It is seen from (22) that the information loss is determined by how much
(additional) variation there is in the score function, (∂/∂θ) logpθ(y), given the
subset data y[1]. In particular, if y[1] = y, then the score function is a constant
vector given y[1] (and θ ); hence Varθ {(∂/∂θ) logpθ(y)|y[1]} = 0, thus, there is no
information loss. In general, of course, the subset data y[1] is not chosen as y;
therefore, there will be some loss of information.

Nevertheless, the information contained in the subset data is usually sufficient
for identifying at least some of the parameters. Note that consistency is a rela-
tively weak asymptotic property in the sense that various estimators, including
those based on the subset data and, for example, the method of moments estima-
tor of Jiang (1998), are consistent, even though they may not be asymptotically
efficient. Essentially, for the consistency property to hold, one needs that, in spite
of the potential information loss, the remaining information that the estimator is
able to utilize grows with the sample size. For example, in the open problem (Sec-
tions 1 and 2), the information contained in yii grows at the rate of m ∧ n, which
is sufficient for identifying μ; in the example of Section 4, the information con-
tained in yi,i grows in the order of m1, which is sufficient for identifying μ and
ψ2 = σ 2 + τ 2, while the information contained in yi grows at the rate of m2,
which is sufficient for identifying γ = σ 2/ψ2. The identification of the “right”
subset in a given problem is usually suggested by the nature of the parametriza-
tion. As mentioned (see the third paragraph of Section 3), a subset y[1] of inde-
pendent data can always be found under the ANOVA GLMM (e.g., starting with
the first observation, y1, one finds the next observation such that it involves dif-
ferent random effects from those related to y1, and so on). If the y[1] is such that
lim infN→∞ λmin{Is(θ)} = ∞, where Is(θ) is as in (21) and λmin denotes the small-
est eigenvalue, the subset y[1] is sufficient for identifying all the components of θ ;
otherwise, more than one subsets are needed in order to identify all the parameters,
as is shown in Section 4.
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5.3. Note on computation of MLE. The subset argument offers a powerful tool
for establishing consistency of the MLE in GLMM with crossed random effects.
Note that the idea has not followed the traditional path of attempting to develop
a (computational) procedure to approximate the MLE. In fact, this might explain
why the computational advances over the past two decades [see, e.g., Jiang (2007),
Section 4.1 for an overview] had not led to a major theoretical breakthrough for
the MLE in GLMM in terms of asymptotic properties. Note that the MLE based
on the subset data is a consistent estimator of the true parameter, and in that sense
it is an approximation to the MLE based on the full data (two consistent estimators
of the same parameter approximate each other). However, there is an information
loss, as discussed in the previous subsection [see (22)], so one definitely wants to
do better computationally.

One computational method that has been developed for computing the MLE in
GLMMs, including those with crossed random effects, is Monte Carlo EM algo-
rithm [e.g., McCullogh (1994, 1997), Booth and Hobert (1999)]. Here, however,
we would like to discuss another, more recent, computational advance, known as
data cloning [DC; Lele, Dennis and Lutscher (2007), Lele, Nadeem and Schmu-
land (2010)]. The DC uses the Bayesian computational approach for frequentist
purposes. Let π denote the prior density function of θ . Then, one has the posterior,

π(θ |y) = pθ(y)π(θ)

p(y)
,(23)

where p(y) is the integral of the numerator with respect to θ , which does not de-
pend on θ . There are computational tools using the Markov chain Monte Carlo
for posterior simulation that generate random variables from the posterior without
having to compute the numerator or denominator of (23) [e.g., Gilks, Richardson
and Spiegelhalter (1996); Spiegelhalter et al. (2004)]. Thus, we can assume that
one can generate random variables from the posterior. If the observations y were
repeated independently from K different individuals such that all of these indi-
viduals result in exactly the same data, y, denoted by y(K) = (y, . . . , y), then the
posterior based on y(K) is given by

πK

{
θ |y(K)} = {pθ(y)}Kπ(θ)∫ {pθ(y)}Kπ(θ) dθ

.(24)

Lele, Dennis and Lutscher (2007), Lele, Nadeem and Schmuland (2010) showed
that, as K increases, the right side of (24) converges to a multivariate normal dis-
tribution whose mean vector is equal to the MLE, θ̂ , and whose covariance matrix
is approximately equal to K−1I−1

f (θ̂). Therefore, for large K , one can approxi-
mate the MLE by the sample mean vector of, say, θ(1), . . . , θ (B) generated from
the posterior distribution (24). Denoted the sample mean by θ̄ (·), and call it the DC
MLE. Furthermore, I−1

f (θ̂) [see (21), (22)] can be approximated by K times the
sample covariance matrix of θ(1), . . . , θ (B). Torabi (2012) successfully applied the
DC method to obtain the MLE for the salamander-mating data.
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Note that the DC MLE is an approximate, rather than exact, MLE, in the sense
that, as K → ∞, the difference between θ̄ (·) and the exact MLE vanishes. Because
we have established consistency of the exact MLE, it follows that the DC MLE is a
consistent estimator as long as the number K increase with the sample size. More
precisely, it is shown in the supplementary material [Jiang (2013)] that, for every
ε, δ > 0, there is Nε,δ such that for every n ≥ Nε,δ and B ≥ 1, there is K(n,B)

such that P{|θ̄ (·) − θ0| ≥ ε} < δ, if K ≥ K(n,B), where θ0 is the true parameter
vector. Note that, as far as consistency is concerned, one does not need that B goes
to infinity. This makes sense because, as K → ∞, the posterior (24) is becoming
degenerate [the asymptotic covariance matrix is K−1I−1

f (θ̂)]; thus, one does not
need a large B to “average out” the variation in θ̄ (·). Thus, from an asymptotic
point of view, the result of the current paper provides a justification for the DC
method.

More importantly, because B,K are up to one’s choice, one can make sure
that they are large enough so that there is virtually no information loss, as was
concerned earlier. In this regard, a reasonably large B would reduce the sampling
variation and therefore improve the DC approximation, and make the computation
more efficient. See Lele, Nadeem and Schmuland (2010) for discussion on how to
choose B and K from practical points of view.

As for the prior π , Lele, Nadeem and Schmuland (2010) only suggests that it be
chosen according to computational convenience and be proper (to avoid improper
posterior). Following the subset idea, an obvious choice for the prior would be the
multivariate normal distribution with mean vector θ̂s, the subset-data MLE, and
covariance matrix I−1

s (θ̂s) [defined above (21)]. Note that Is(θ) is much easier to
evaluate than If(θ). This would make the procedure more similar to the empiri-
cal Bayes than the hierarchical one. Nevertheless, the DC only uses the Bayesian
computational tool, as mentioned.

5.4. Regarding the limiting process. In some applications of GLMM, the es-
timation of the random effects are of interest. There have also been developments
in semiparametric GLM and nonparametric ANOVA. In those cases, the random
effects are treated the same way as the fixed effects. As a result, the proof of the
consistency results in those cases usually impose constraints on the ratio of the
number of effects and number of observations falling in each cluster [e.g., Chen
(1995), Jiang (1999), Wu and Liang (2004), and Wang, Tsai and Qu (2012)]. A ma-
jor difference exists, however, between the case of clustered data (e.g., Example 2)
and that with crossed random effects (e.g., Example 1) in that, in the latter case,
the data cannot be divided into independent groups (with the number of groups in-
creasing with the sample size). Furthermore, the necessary constraints are very dif-
ferent depending on the interest of estimation. Consider, for example, a very simple
case of linear mixed model, yij = μ + ui + vj + eij , i = 1, . . . ,m, j = 1, . . . , n,
where the ui’s and vj ’s are random effects, and eij ’s are errors. Assume, for sim-
plicity, that all the random effects and errors are i.i.d. N(0,1), so that μ is the
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only unknown parameter. Suppose that n → ∞, while m is fixed, say, m = 1. In
this case, ȳ1· = n−1 ∑n

j=1 y1j = μ + u1 + v̄· + ē1· is a consistent estimator of the
cluster mean, μ1 = μ + u1. On the other hand, the MLE of μ, which is also ȳ1·,
is inconsistent (because it converges in probability to μ + u1, which is not equal
to μ with probability one). Note that here the ratio of the number of effects and
number of observations in the cluster is 2/n. Apparently, this is sufficient for con-
sistently estimating the mixed effect μ + u1, but not the fixed effect μ. One might
suspect that the case m = 1 is somewhat extreme, as μ and u1 are “inseparable”;
but it does not matter. In fact, for any m ≥ 1, as long as it is fixed, the MLE of μ

is ȳ·· = (mn)−1 ∑m
i=1

∑n
j=1 yij = μ+ ū· + v̄· + ē··, which converges in probability

to μ+ ū· as n → ∞, and μ+ ū· �= μ with probability one. Thus, the only way that
the MLE of μ can be consistent is to have both m and n go to ∞.

The example also helps to explain why it is necessary to consider the limit-
ing process m ∧ n → ∞, instead of something else, in the open problem. The
result of Theorem 1 shows that m ∧ n → ∞ is also sufficient for the consis-
tency of the MLE. In fact, from the proof of Theorem 1 it follows that, for
large m,n, we have with probability tending to one that the conditional proba-
bility that pμ(y) ≤ pμ+ε(y) given y[1] is bounded by γ m∧n for some constant
0 < γ < 1. The corresponding upper bound under Theorem 3 is e−λma for some
constant λ > 0, where ma is the number of independent vectors in the subset
y[1], and a similar result holds under Theorem 4 with the upper bound being
exp[−λma{1 + o(1)}]. The assumption of Theorem 3, namely, (A1), makes sure
that m∗ = min1≤a≤b ma → ∞ as the sample size increases; the assumptions of
Theorem 4, namely, (A1) and (B3), make sure that, in addition, the o(1) in the
above vanishes as m∗ → ∞.

Although estimation of the random effects is not an objective of this paper,
in some cases this is of interest. For example, one may consider estimating the
conditional mean of yij given ui in the open problem (which may correspond to the
conditional probability of successful mating with the ith female in the salamander
problem). As mentioned, the data are not clustered in this case; in other words,
all the data are in the same cluster, so the ratio of the number of effects over the
number of observations is (1 + m + n)/mn = m−1 + n−1 + (mn)−1, which goes
to zero as m ∧ n → ∞. It is easy to show that ȳi· = n−1 ∑n

j=1 yij is a consistent
estimator of Eμ(yij |ui) = E{h(μ + ui + η)}, where h(x) = ex/(1 + ex) and the
(unconditional) expectation is with respect to η ∼ N(0,1), 1 ≤ i ≤ m. Similarly,
ȳ·j = m−1 ∑m

i=1 yij is a consistent estimator of Eμ(yij |vj ) = E{h(μ + ξ + vj )},
where the (unconditional) expectation is with respect to ξ ∼ N(0,1), 1 ≤ j ≤ n.
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