
The Annals of Probability
2015, Vol. 43, No. 3, 1202–1273
DOI: 10.1214/13-AOP887
© Institute of Mathematical Statistics, 2015
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In this paper, we study the 2D stochastic quasi-geostrophic equation on
T

2 for general parameter α ∈ (0,1) and multiplicative noise. We prove the ex-
istence of weak solutions and Markov selections for multiplicative noise for
all α ∈ (0,1). In the subcritical case α > 1/2, we prove existence and unique-
ness of (probabilistically) strong solutions. Moreover, we prove ergodicity
for the solution of the stochastic quasi-geostrophic equations in the subcrit-
ical case driven by possibly degenerate noise. The law of large numbers for
the solution of the stochastic quasi-geostrophic equations in the subcritical
case is also established. In the case of nondegenerate noise and α > 2/3 in
addition exponential ergodicity is proved.

1. Introduction. Consider the following two-dimensional (2D) stochastic
quasi-geostrophic equation in the periodic domain T

2 = R
2/(2πZ)2:

∂θ(t, ξ)

∂t
= −u(t, ξ) · ∇θ(t, ξ)− κ(−�)αθ(t, ξ)+ (

G(θ)η
)
(t, ξ),(1.1)

with initial condition

θ(0, ξ)= θ0(ξ),(1.2)

where θ(t, ξ) is a real-valued function of ξ ∈ T
2 and t ≥ 0, 0< α < 1, κ > 0 are

real numbers. u is determined by θ via the following relation:

u= (u1, u2)= (−R2θ,R1θ)=R⊥θ.(1.3)

Here, Rj is the j th periodic Riesz transform and η(t, ξ) is a Gaussian random
field, white noise in time, subject to the restrictions imposed below. The case α = 1

2
is called the critical case, the case α > 1

2 subcritical and the case α < 1
2 supercriti-

cal.
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In the deterministic case (G ≡ 0), such equations are important models in
geophysical fluid dynamics. Indeed, they are special cases of general quasi-
geostrophic approximations for atmospheric and oceanic fluid flows with small
Rossby and Ekman numbers. These models arise under the assumptions of fast
rotation, uniform stratification and uniform potential vorticity. The case α = 1/2
exhibits similar features (singularities) as the 3D Navier–Stokes equations and can
therefore serve as a model case for the latter. For more details about the geophys-
ical background, see, for instance, [6, 42]. In the deterministic case, this equation
has been intensively investigated because of both its mathematical importance and
its background in geophysical fluid dynamics (see, e.g., [5, 7, 8, 23–26, 44] and
the references therein). In the deterministic case, the global existence of weak so-
lutions has been obtained in [44] and one most remarkable result in [5] gives the
existence of a classical solution for α = 1/2. In [26], another very important result
is proved, namely that solutions for α = 1/2 with periodic C∞ data remain C∞
for all times.

There is another model considering a simplified geophysical fluid model at
asymptotically high rotation rate or with small Rossby number. This geophysi-
cal model with random perturbation has been studied in [2, 22] and the references
therein. The equation is of a different type compared with our equation.

In this paper, we study the 2D stochastic quasi-geostrophic equation on the torus
T

2 for general parameter α ∈ (0,1) and for both additive as well as multiplicative
noise. Here, since the dissipation term is not strong enough to control the non-
linear term, we have to work in Lp and to prove appropriate Lp-norm estimates.
This leads to considerable complications in comparison to the stochastic Navier–
Stokes equation, for example, when one wants to prove Lp-norm estimates for the
weak solutions (see Theorem 3.3), which are essential to obtain pathwise unique-
ness, and the improved positivity lemma to obtain uniform Lp-norm estimates (see
Lemma 5.5 and Proposition 5.6) which will be used to prove ergodicity.

Main results for general α ∈ (0,1): We prove the existence of weak solutions for
multiplicative noise (Theorem 3.3). In order to prove the existence of (probabilis-
tically strong) solutions and ergodicity in subsequent sections, we need Lp norm
estimates for the solutions, which are obtained using the Lp-Itô formula proved in
[29]. But these Lp-norm estimates we cannot prove by Galerkin approximation;
instead, we use another approximation which can be seen as a piecewise linear
equation on small subintervals [see (3.4)]. To piece together martingale solutions
on each subinterval and to get the existence of a martingale solution for the approx-
imation, we first use the measurable selection theorem to find a martingale solution
measurable with respect to the initial condition and apply a classical theorem from
[48] (see Theorem 3.2). Using an abstract result for obtaining Markov selections
from [20], we prove the existence of an a.s. Markov family in Appendix C (Theo-
rem C.5).

Main results for the subcritical case α > 1/2: We obtain pathwise uniqueness
in a larger space by using Lp-norm estimates (Theorem 4.2) and, therefore, get a
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(probabilistically strong) solution (Theorem 4.3) by the Yamada–Watanabe theo-
rem. In particular, it follows that the laws of the solutions form a Markov process.
Subsequently, in Section 5 we use a coupling method to study the long time behav-
ior of the solution for the 2D stochastic quasi-geostrophic equation and we obtain
ergodicity, that is, the existence (Theorem 5.12) and uniqueness (Theorem 5.9)
of an invariant measure, for the solution to the 2D stochastic quasi-geostrophic
equation (in case α > 1/2) driven by possibly degenerate noise. Furthermore, the
Markov semigroup Pt converges to the unique invariant measure polynomially fast
(Theorem 5.13). Finally, we prove that a law of large numbers holds in our case,
that is, the times averages 1

T

∫ T
0 ψ(θt ) dt converge to a constant in probability if

ψ :H 1 	→R is smooth (Theorem 5.14).
We add a detailed discussion on our approach to ergodicity via coupling, in par-

ticular, on its justification and on its relation to other approaches in Remark 5.10
below. In this paper, we are inspired by [40] to construct an intermediate pro-
cess θ̃ such that θ − θ̃ has a strong dissipation term and ‖θ(t)− θ̃ (t)‖H−1/2 → 0
as t → ∞. Using this intermediate process, we can prove E‖θ1(t, θ

1
0 , θ

2
0 ) −

θ2(t, θ
1
0 , θ

2
0 )‖H−1/2 converges to zero polynomially fast when time goes to infin-

ity, where (θ1(t, θ
1
0 , θ

2
0 ), θ2(t, θ

1
0 , θ

2
0 )) denotes a coupling of two solutions to (3.1)

starting from two different initial values θ i0 ∈H 1, i = 1,2. Then we can deduce the
uniqueness of invariant measures (Theorem 5.9). Also by a suitable choice of the
metrics the asymptotically strong Feller property of the semigroup associated with
the solution to the 2D stochastic quasi-geostrophic equation is also established
(Remark 5.10). Here, we want to emphasize that although we consider the semi-
group inH 1, the convergence is inH−1/2 norm. Moreover, we obtain the existence
of the invariant measure, which lives on H 1, by using the uniform Lp-estimates
(Theorem 5.12), which require the improved positivity lemma (Lemma 5.5). Thus,
we obtain ergodicity for the solution of the quasi-geostrophic equation in the sub-
critical case (Theorem 5.13).

Additional results in the subcritical case α > 2/3: In Section 6, we prove the ex-
ponential convergence of the solution under a stronger condition on the noise and
on α. In order to prove the exponential convergence (Theorem 6.13), we first show
the strong Feller property of the associated semigroup (Theorem 6.3), which fol-
lows from employing the weak-strong uniqueness principle in [18] (Theorem 6.4)
and the Bismut–Elworthy–Li formula. As the dynamics only exist in the (analyt-
ically) weak sense and standard tools of stochastic analysis are not available, the
computations are made for an approximating cutoff dynamics, which are equal to
the original dynamics on a small random time interval. Since in our case α < 1, it
is more difficult to use the Hα-norm to control the nonlinear term even though the
equation is on T

2. To prove the weak-strong uniqueness principle, we need some
regularity for the trajectories of the noise. Therefore, we need conditions on G so
that it is enough regularizing. However, in order to apply the Bismut–Elworthy–Li
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formula, we also need G−1 to be regularizing enough. As a result, α > 2/3 is re-
quired (see Remark 6.2 below for details). It seems difficult to use the Kolmogorov
equation method as in [10, 14] (see Remark 6.2 below).

This paper is organized as follows. In Section 2, we introduce some notation
as preparation. In Section 3, we prove the existence of weak solutions for general
parameter α ∈ (0,1) and multiplicative noise. In Section 4, we prove pathwise
uniqueness for all α ∈ (1

2 ,1). Furthermore, we get the existence and uniqueness of
(probabilistically strong) solutions for multiplicative noise in the subcritical case.
Moreover, we prove the Markov property for this unique solution. In Section 5,
we use the coupling method to prove the uniqueness of an invariant measure in
the subcritical case. Moreover, we obtain that the semigroup Pt converges to the
invariant measure polynomially fast. The law of large numbers for the solution
to the 2D stochastic quasi-geostrophic equation is also established in this section.
In Section 6, for α > 2/3, and provided the noise is nondegenerate, we prove the
exponential convergence to the (unique) invariant measure. Appendix A is devoted
to a measurability problem (see Theorem A.4) which arises in implementing the
coupling method in Section 5. In Appendix B, we prove existence of measurable
selections for the solutions to the martingale problem in Section 3, and finally
Appendix C is devoted to the existence of the corresponding Markov selection.

2. Notations and preliminaries. In the following, we will restrict ourselves
to flows which have zero average on the torus T2, that is,∫

T2
θ dξ = 0,

where dξ denotes the volume measure on T
2. Thus, (1.3) can be restated as

u=
(
− ∂ψ
∂ξ2
,
∂ψ

∂ξ1

)
and (−
)1/2ψ = −θ.

Set H = {f ∈ L2(T2) :
∫
T2 f dξ = 0} and let | · | and 〈·, ·〉 denote the norm and

inner product in H , respectively. Lp(T2),p ∈ (0,∞] denote the standard Lp

spaces on T
2 with norm ‖ · ‖Lp . On the periodic domain T

2, {sin〈k, ·〉R2 |k ∈
Z

2+}∪{cos〈k, ·〉R2 |k ∈ Z
2−} form an eigenbasis of −
 (we denote it by {ek}). Here,

Z
2+ = {(k1, k2) ∈ Z

2|k2 > 0} ∪ {(k1,0) ∈ Z
2|k1 > 0}, Z2− = {(k1, k2) ∈ Z

2|−k ∈
Z

2+}, ξ ∈ T
2, and the corresponding eigenvalues are |k|2. For s > 0, define

‖f ‖2
Hs =∑

k

|k|2s〈f, ek〉2

and let Hs denote the Sobolev space of all f ∈H for which ‖f ‖Hs is finite. For
s < 0, define Hs to be the dual of H−s . Set �= (−
)1/2. Then

‖f ‖Hs = ∣∣�sf ∣∣.
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For s ≥ 0,p ∈ [1,+∞] we use Hs,p to denote a subspace of Lp(T2), consisting
of all f which can be written in the form f = �−sg, g ∈ Lp(T2) and the Hs,p

norm of f is defined to be the Lp norm of g, that is, ‖f ‖Hs,p := ‖�sf ‖Lp .
By the singular integral theory of Calderón and Zygmund (cf. [47], Chapter 3),

for any s ≥ 0,p ∈ (1,∞), there is a constant CR =CR(s,p), such that∥∥�su∥∥Lp ≤ CR(s,p)
∥∥�sθ∥∥Lp .(2.1)

Fix α ∈ (0,1) and define the linear operator Aα :D(Aα)=H 2α(T2)⊂H →H

as Aαu := κ(−
)αu. The operator Aα is positive definite and self-adjoint with
the same eigenbasis as that of −
 mentioned above. Denote the eigenvalues of
Aα by 0< λ1 ≤ λ2 ≤ · · · , and renumber the above eigenbasis correspondingly as
e1, e2, . . . .

First, we recall the following important product estimates (cf. [44], Lemma A.4):

LEMMA 2.1. Suppose that s > 0 and p ∈ (1,∞). If f,g ∈ C∞(T2) then∥∥�s(fg)∥∥Lp ≤ C(‖f ‖Lp1

∥∥�sg∥∥Lp2 + ‖g‖Lp3

∥∥�sf ∥∥Lp4

)
,(2.2)

with pi ∈ (1,∞], i = 1, . . . ,4 such that

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

We shall use as well the following standard Sobolev inequality (cf. [47], Chap-
ter V):

LEMMA 2.2. Suppose that q > 1, p ∈ [q,∞) and

1

p
+ σ

2
= 1

q
.

Suppose that �σf ∈ Lq , then f ∈Lp and there is a constant CS ≥ 0 independent
of f such that

‖f ‖Lp ≤CS
∥∥�σf ∥∥Lq .

The following commutator estimate from [23], Lemma 3.1, is very important
for later use.

LEMMA 2.3 (Commutator estimates). Suppose that s > 0 and p ∈ (1,∞). If
f,g ∈ C∞(T2), then∥∥�s(fg)− f�sg∥∥Lp ≤ C(‖∇f ‖Lp1

∥∥�s−1g
∥∥
Lp2 + ‖g‖Lp3

∥∥�sf ∥∥Lp4

)
,

with pi ∈ (1,∞), i = 1, . . . ,4 such that

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.
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We will also use the following classical interpolation inequality (see, e.g., [9],
(5.5)).

LEMMA 2.4. For f ∈ C∞(T2), we have

‖f ‖Hs ≤C‖f ‖(s2−s)/(s2−s1)
Hs1

‖f ‖(s−s1)/(s2−s1)
Hs2

, s1 < s < s2.(2.3)

3. Weak solutions in the general case. In this section, we consider the fol-
lowing abstract stochastic evolution equation in place of equations (1.1)–(1.3):{

dθ(t)+Aαθ(t) dt + u(t) · ∇θ(t) dt =G(θ(t))dW(t),
θ(0)= θ0 ∈H,(3.1)

where u satisfies (1.3) and W(t), t ∈ [0, T ], is a cylindrical Wiener pro-
cess in a separable Hilbert space U defined on a filtered probability space
(�,F, {Ft}t∈[0,T ],P ). Here, G is a measurable mapping from Hα to L2(U,H)

(= all Hilbert–Schimit operators from U to H ). Let fn, n ∈ N, be an ONB of U .
In the following, we assume the following conditions on G:

HYPOTHESIS G.1. (i) ‖G(θ)‖2
L2(U,H)

≤ λ0|θ |2 + ρ1|�αθ |2 + ρ2, θ ∈ Hα ,
for some positive real numbers λ0, ρ2 and ρ1 < 2κ . Moreover, for some β > 3,
‖G(θ)‖2

L2(U,H
−β) ≤ ρ3(|θ |2 + 1), θ ∈Hα , for some positive real numbers ρ3.

(ii) If θ, θn ∈ Hα such that θn → θ in H , then limn→∞ ‖G(θn)∗(v) −
G(θ)∗(v)‖U = 0 for all v ∈ C∞(T2), where the asterisk denotes the adjoint oper-
ator of G(θ).

First, we introduce the following definition of a weak solution.

DEFINITION 3.1. We say that there exists a weak solution of equation (3.1) if
there exists a stochastic basis (�,F, {Ft}t∈[0,T ],P ), a cylindrical Wiener process
W on the space U and a progressively measurable process θ : [0, T ] × �→ H ,
such that for P -a.e. ω ∈�,

θ(·,ω) ∈ L∞([0, T ];H )∩L2([0, T ];Hα)∩C([0, T ];H−β),
where β in Hypothesis G.1, and such that P -a.s.

〈
θ(t), φ

〉+ ∫ t

0

〈
A1/2
α θ(s),A1/2

α φ
〉
ds −

∫ t

0

〈
u(s) · ∇φ, θ(s)〉ds

= 〈θ0, φ〉 +
〈∫ t

0
G
(
θ(s)

)
dW(s),φ

〉
for t ∈ [0, T ] and all φ ∈ C1(T2).
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REMARK. (i) Note that, because divu= 0 for smooth functions θ and ψ , we
have 〈

u(s) · ∇θ(s),ψ 〉= −〈u(s) · ∇ψ,θ(s)〉.
Thus, the integral equation in Definition 3.1 corresponds to equation (3.1).

(ii) Note that since the solution θ ∈ L2(0, T ;Hα) we only need θ, θn ∈ Hα
instead of θ, θn ∈H in Hypothesis G.1(ii).

(iii) A typical example satisfying Hypothesis G.1 is the following: For y ∈U ,

G(θ)y =
∞∑
k=1

(
ck�

αθ + bkg(θ))〈y,fk〉U, θ ∈Hα,

where g is continuous function on R of at most linear growth and bk, ck ∈ C∞(T2)

satisfy
∑
k c

2
k(ξ) < 2κ,

∑
k b

2
k(ξ)≤M,ξ ∈ T

2, and
∑
k |�αck|2 ≤M .

It is standard to show that under Hypothesis G.1 there exists a weak solution
to (3.1) by using the Galerkin approximation. However, as mentioned in the In-
troduction, we also need Lp norm estimates for the solutions, more precise that
they belong to Lp(�;L∞([0, T ]);Lp(T2)), provided so do their initial values.
This will be essential to the proof of pathwise uniqueness. For this, we have to use
another approximation instead of the Galerkin approximation and the following
theorem from [48], Theorem 6.1.2.

Let �0 := C([0,∞),H 1),�t0 := C([t,∞),H 1) for t > 0 and P(�0) denote
the set of all probability measures on (�0,B) with B being the Borel σ -algebra
coming from the topology of locally uniform convergence on �0. Define the
canonical process x :�0 →H 1 as

xt (ω)= ω(t).
Also define the σ -algebra Bt := σ {x(s), s ≤ t} and Bt := σ {x(s), s ≥ t}.

THEOREM 3.2. Fix t > 0. Let x 	→Qx be a mapping from �0 to P(�t0) such
that for any A ∈ Bt , x 	→Qx(A) is Bt -measurable, and for any x ∈�0

Qx
(
y ∈�t0 :y(t)= x(t))= 1.

Then for any P ∈ P(�0), there exists a unique P ⊗t Q ∈ P(�0) such that

(P ⊗t Q)(A)= P(A), ∀A ∈ Bt ,

and for P ⊗t Q-almost all x ∈�0

Qx = (P ⊗t Q)(·|Bt )(x).

Now we will prove the existence of a martingale solution under Hypothesis G.1.
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THEOREM 3.3. Let α ∈ (0,1). If G satisfies Hypothesis G.1, then there exists
a weak solution (�,F, {Ft},P ,W, θ) to (3.1). Moreover, assume that G satisfies
the following condition:

(Gp.1) There exists some p ∈ (2,∞) such that for all θ ∈Hα ∩Lp(T2),∫ (∑
j

∣∣G(θ)(fj )∣∣2)p/2 dξ ≤ C
(∫

|θ |p dξ + 1
)
, ∀t > 0(3.2)

for some constant C := C(p) > 0 and θ0 ∈ Lp(T2). Then

E sup
t∈[0,T ]

∥∥θ(t)∥∥pLp <∞.

REMARK 3.4. Typical examples for G satisfying (Gp.1) have the following
form: for θ ∈Hα

G(θ)y =
∞∑
k=1

bk〈y,fk〉Ug(θ), y ∈U,

where g is a continuous function on R of at most linear growth and bk are C∞
functions on T

2 satisfying
∑∞
k=1 b

2
k(ξ)≤M .

PROOF OF THEOREM 3.3. Step 1: We first establish the existence of martin-
gale solutions of the following equation:

dθ(t)+Aαθ(t) dt +w(t) · ∇θ(t) dt = kδ ∗G(θ)dW(t),
(3.3)

θ(0)= θ0 ∈H 3,

with a given smooth function w(t) which satisfies divw(t) = 0 for all t ∈ [0, T ]
and

sup
t∈[0,T ]

∥∥w(t)∥∥C3(T2) ≤ C.

Here, kδ ∗ G(θ) means for y ∈ U , kδ ∗ G(θ)(y) := kδ ∗ (G(θ)(y)), where kδ is
the periodic Poisson kernel in T

2 given by k̂δ(ζ )= e−δ|ζ |, ζ ∈ Z
2. By [20], Theo-

rem 4.7, this equation has a martingale solution P ∈ P(C([0,∞);H 1))with initial
value θ0 in the following sense:

(M1) P(x(0)= θ0)= 1 and for any n ∈ N

P

{
x ∈ C([0,∞);H 1) :

∫ n

0

∥∥�2αx(s)+w(s) · ∇x(s)∥∥H 1 ds

+
∫ n

0

∥∥kδ ∗G(x(s))∥∥2
L2(U ;H 3) ds <+∞

}
= 1.
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(M2) For every ei , the process〈
x(t), ei

〉− ∫ t

0

〈−w(s) · ∇x(s)−Aαx(s), ei 〉ds
is a continuous square-integrable Bt -martingale under P , whose quadratic
variation process is given by∫ t

0

∥∥(kδ ∗G)∗(x(s))(ei)∥∥2
U ds,

where the asterisk denotes the adjoint operator of kδ ∗G(x(s)).
(M3) For any q ∈N there exists a continuous positive real function t → Ct,q such

that

EP
(

sup
r∈[0,t]

∣∣�3x(r)
∣∣2q +

∫ t

0

∣∣�3x(r)
∣∣2q−2∣∣�α+3x(r)

∣∣2 dr)
≤ Ct,q(∣∣�3θ0

∣∣2q + 1
)
,

where EP denotes the expectation under P .

Indeed, we only need to check conditions (C1)–(C3) in [20]. The demi-
continuity condition (C1) is obvious by Hypothesis G.1(ii) and the linearity of
the equation. For (C2), we have that for x ∈H 4

〈−w · ∇x −Aαx,x〉H 3 ≤ −κ∣∣�3+αx
∣∣2 + ∣∣〈�3(w · ∇x),�3x

〉∣∣.
By Lemma 2.3 and because 〈w · ∇�3x,�3x〉 = 0 for x ∈ H 4 we have that for
x ∈H 4 ∣∣〈�3(w · ∇x),�3x

〉∣∣= ∣∣〈�3(w · ∇x)−w · ∇�3x,�3x
〉∣∣

≤ ‖w‖C3(T2)

∣∣�3x
∣∣∣∣�3+αx

∣∣.
Thus, the coercivity condition (C2) follows from the above two inequalities and
Young’s inequality. Also by Hypothesis G.1, we have for x ∈H 4∥∥kδ ∗G(x)∥∥2

L2(U,H
3) ≤ C(δ)

∥∥G(x)∥∥2
L2(U,H)

≤ C(∣∣�αx∣∣2 + 1
)
,

and by Lemma 2.1

‖w · ∇x +Aαx‖2
H 1 ≤ 2‖Aαx‖2

H 1 +C‖w‖2
C3(T2)

∣∣�3x
∣∣2 ≤ C∣∣�3x

∣∣2,
which implies the growth condition (C3).

Step 2: Now we construct an approximation of (3.1).
We pick a smooth φ ≥ 0, with suppφ ⊂ [1,2], ∫∞

0 φ = 1, and for δ > 0 let

Uδ[θ ](t) :=
∫ ∞

0
φ(τ)

(
kδ ∗R⊥θ

)
(t − δτ ) dτ,
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where kδ is the periodic Poisson kernel in T
2 given by k̂δ(ζ )= e−δ|ζ |, ζ ∈ Z

2, and
we set θ(t)= 0, t < 0. We take a sequence δn → 0 and consider the equation

dθn(t)+Aαθn(t) dt + un(t) · ∇θn(t) dt = kδn ∗G(θn) dW(t),(3.4)

with initial data θn(0) = kδn ∗ θ0 and un = Uδn[θn]. For a fixed n, this is a lin-
ear equation in θn on each subinterval [tnk , tnk+1] with tnk = kδn, since un is deter-
mined by the values of θn on the two previous subintervals. By Step 1, we ob-
tain the existence of a martingale solution to (3.4) for fixed n. Indeed, we obtain
the martingale solution P 1

n ∈ P(C([0,∞),H 1)) with initial condition kδn ∗ θ0 on
the subinterval [0, tn1 ] by Step 1. Also, by Step 1, we get that for x0 ∈ B0 with
B0 := {x ∈�0 : sup0≤t≤tn1 ‖x(t)‖H 3 <∞}, there exists aQx0 ∈ P(C([tn1 , tn2 ],H 1))

satisfying the following:

(M1) Qx0(x(t
n
1 )= x0(t

n
1 ))= 1

Qx0

{
x ∈ C([tn1 , tn2 ];H 1) :

∫ tn2

tn1

∥∥�2αx(s)+Uδn[x0](s) · ∇x(s)
∥∥
H 1 ds

+
∫ tn2

tn1

∥∥kδ ∗G(x(s))∥∥2
L2(U ;H 3) ds <+∞

}
= 1.

(M2) For every ei , i ∈N, the process

Mi
(
t ∧ tn2 , x

) := 〈
x
(
t ∧ tn2

)
, ei
〉− 〈

x0
(
tn1
)
, ei
〉

−
∫ t∧tn2
tn1

〈−Uδn[x0](s) · ∇x(s)−Aαx, ei 〉ds, t ≥ tn1
is a continuous square-integrable Bt -martingale underQx0 , whose quadratic
variation process is given by

〈Mi〉(t ∧ tn2 , x) := ∫ t∧tn2
tn1

∥∥(kδn ∗G)∗(x(s))(ei)∥∥2
U ds,

where the asterisk denotes the adjoint operator of kδn ∗G(x(s)).
(M3) For any q ∈ N, there exists a constant Cq depending on supt∈[0,tn1 ] ‖x0(t)‖H 1

such that

EQx0

(
sup

r∈[tn1 ,tn2 ]
∣∣�3x(r)

∣∣2q +
∫ tn2

tn1

∣∣�3x(r)
∣∣2q−2∣∣�α+3x(r)

∣∣2 dr)

≤ Cq(∣∣�3x0
(
tn1
)∣∣2q + 1

)
.

Now we extend Qx0 to a probability measure on C([tn1 ,+∞),H 1) by Qx0 ◦
ψ−1 with ψ :C([tn1 , tn2 ],H 1) → C([tn1 ,+∞),H 1) by ψx(s) := x(s ∧ tn2 ), s ∈
[tn1 ,+∞). The set of all such martingale solutions is denoted by Qx0 . Now we
can find Qx0 ∈ Qx0 satisfying (M1)–(M3) such that the map x0 	→Qx0 from B0
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to P(�t
n
1

0 ) is measurable with respect to Btn1 . This will be proved in Lemma B.1 in
Appendix B.

For x0 ∈ Bc0 , define Qx0 := δx0|[tn1 ,∞) . Thus, by Theorem 3.2 we get that there

exists P 1
n ⊗tn1 Q ∈ P(C([0,∞),H 1)) such that(

P 1
n ⊗tn1 Q

)
(A)= P 1

n (A), ∀A ∈ Btn1 ,

and for P 1
n ⊗tn1 Q-almost all x ∈�0

Qx = (
P 1
n ⊗tn1 Q

)
(·|Btn1 )(x).

Here, Qx0 extends to a probability measure on C([0,∞),H 1) by the following:
Let δx0 be the point-mass on C([0, tn1 ],H 1) at x0|[0,tn1 ], that is,

δx0

(
x ∈ C([0, tn1 ],H 1) :x(t)= x0(t),0 ≤ t ≤ tn1

)= 1.

Define Q̃ = δx0 × Qx0 on X̃ := C([0, tn1 ],H 1) × C([tn1 ,∞),H 1) and set X :=
{(x1, x2) ∈ C([0, tn1 ],H 1) × C([tn1 ,∞),H 1) :x1(t

n
1 ) = x2(t

n
1 )}. Then X is a

measurable subset of X̃ and Q̃(X) = 1. Then Q̃ can be restricted to X.
Finally, � :X → C([0,∞),H 1) defined by �((x1, x2))(t) := x1(t), if 0 ≤
t ≤ tn1 , �((x1, x2))(t) := x2(t), if t > tn1 , is a measurable map form X onto
C([0,∞),H 1). Then Q̃|X ◦ �−1 is the desired measure, which still be denoted
Qx0 .

By (M2), we have for every ei, i ∈N, that the process

Mi
(
t ∧ tn2 , x

)= 〈
x
(
t ∧ tn2

)
, ei
〉− 〈

x0
(
tn1
)
, ei
〉

−
∫ t∧tn2
tn1

〈−Uδn[x0](s) · ∇x(s)−Aαx, ei 〉ds
= 〈
x
(
t ∧ tn2

)
, ei
〉− 〈

x0
(
tn1
)
, ei
〉

−
∫ t∧tn2
tn1

〈−Uδn[x](s) · ∇x(s)−Aαx, ei 〉ds
is a continuous square-integrable Bt -martingale under Qx0 . Thus, by [48], Theo-
rem 1.2.10, we obtain for every ei , i ∈ N, that the process

〈
x
(
t ∧ tn2

)
, ei
〉− ∫ t∧tn2

0

〈−Uδn[x](s) · ∇x(s)−Aαx, ei 〉ds
is a continuous square-integrable Bt -martingale under P 1

n ⊗tn1 Q, whose quadratic
variation process is given by∫ t∧tn2

0

∥∥(kδn ∗G)∗(x(s))(ei)∥∥2
U ds.
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Thus, we construct a martingale solution P 1
n ⊗tn1 Q ∈ P(C([0,∞),H 1)) of

(3.4) on [0, tn2 ]. Then step by step we can construct a martingale solution Pn ∈
P(C([0,∞),H 1)) of (3.4) on [0, T ] for any given T in the following sense:

(M1′) Pn(x(0)= kδn ∗ θ0)= 1 and

Pn

{
x ∈C([0,+∞);H 1) :

∫ T

0

∥∥�2αx(s)+Uδn[x](s) · ∇x(s)
∥∥
H 1 ds

+
∫ T

0

∥∥kδn ∗G(x(s))∥∥2
L2(U ;H 3) ds <+∞

}
= 1.

(M2′) For every ei , the process

〈
x(t ∧ T ), ei 〉− ∫ t∧T

0

〈−Uδn[x](s) · ∇x(s)−Aαx, ei 〉ds
is a continuous square-integrable Bt -martingale under Pn, whose quadratic
variation process is given by∫ t∧T

0

∥∥(kδn ∗G)∗(x(s))(ei)∥∥2
U ds,

where the asterisk denotes the adjoint operator of kδn ∗G(x(s)).
(M3′) Pn(L∞

loc([0,+∞),H 3)∩�0)= 1.

Then by the martingale representation theorem (cf. [41], Theorem 2, [11], The-
orem 8.2) we can find a new probability space (�n,P n,Wn) and θn such that
(θn,Wn) is a weak solution of (3.4) and θn has the same law as Pn.

Step 3: Now we show that θn converge to the solution of (3.1). Since we have〈
un(t) · ∇θn(t), θn(t)〉= 0,

by Itô’s formula we have

d|θn|p + pκ|θn|p−2∣∣�αθn∣∣2 dt ≤ p|θn|p−2〈kδn ∗G(θn) dWn, θn〉
+ p(p− 1)

2
|θn|p−2∥∥kδn ∗G(θn)

∥∥2
L2(U,H)

dt.

By classical arguments, we easily show that there exist positive constants C1,C2
independent of n, such that (cf. [16], Appendix 1) for 2 ≤ p < 1 + 2κ

ρ1
if ρ1 > 0

and for 2 ≤ p <∞ if ρ1 = 0, the following are satisfied:

EP
n
(

sup
0≤s≤T

∣∣θn(s)∣∣p)≤ C1(3.5)

and

EP
n
∫ T

0

∥∥θn(s)∥∥2
Hα ds ≤ C2.(3.6)
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Now we prove that the family D(θn), n ∈ N, is tight in C([0, T ];H−β), for all
β > 3. Here, D(θn) means the law of θn. By (3.5) for each t ∈ [0, T ], D(θn(t))
is tight on H−β . Then by Aldous’ criterion in [1], it suffices to check that for all
stopping times τn ≤ T and ηn → 0,

lim
n
EP

n∥∥θn(τn + ηn)− θn(τn)
∥∥
H−β = 0.(3.7)

We have Pn-a.s.

θn(τn + ηn)− θn(τn)= −
∫ τn+ηn
τn

Aαθn(s) ds −
∫ τn+ηn
τn

un(s) · ∇θn(s) ds

+
∫ τn+ηn
τn

kδn ∗G(θn(s))dWn(s).
It is easy to obtain the following:

EP
n
∥∥∥∥∫ τn+ηn
τn

Aαθn(s) ds

∥∥∥∥
H−β

≤ CηnEPn sup
t∈[0,T ]

∣∣θn(t)∣∣.(3.8)

And since H 2 ⊂ L∞, we obtain that for v ∈H 3,∣∣〈un · ∇θn, v〉
∣∣= ∣∣〈un · ∇v, θn〉

∣∣≤ |θn||un|‖∇v‖L∞ ≤ |θn||un|‖v‖H 3 .

Since sup[0,t] |un| ≤ C sup[0,t] |θn|, we get that

EP
n
∥∥∥∥∫ τn+ηn
τn

un(s) · ∇θn(s) ds
∥∥∥∥
H−β

≤ CηnEPn sup
t∈[0,T ]

∣∣θn(t)∣∣2.(3.9)

In addition by Hypothesis G.1, we have

EP
n
∥∥∥∥∫ τn+ηn
τn

kδn ∗G(θn(s))dW(s)∥∥∥∥2

H−β

≤ CEPn
∫ τn+ηn
τn

∥∥G(θn(s))∥∥2
L2(U,H

−β) ds(3.10)

≤ Cηn
(
EP

n

sup
t∈[0,T ]

∣∣θn(t)∣∣2 + 1
)

→ 0 as ηn → 0.

Thus, (3.7) follows by (3.8), (3.9) and (3.10), which implies the tightness of D(θn)
in C([0, T ],H−β). This yields that for each η > 0

lim
δ→0

sup
n
P n
(

sup
|s−t |≤δ,s,t≤T

∣∣θn(t)− θn(s)∣∣H−β > η
)

= 0.

By this and (3.5), (3.6), it is easy to get that D(θn) is tight in L2([0, T ];H) ∩
C([0, T ],H−β) (cf. [37], Lemma 2.7). Therefore, we find a subsequence, still de-
noted by θn, such that D(θn) converges weakly in

L2([0, T ];H )∩C([0, T ],H−β).
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By Skorohod’s representation theorem, there exist a stochastic basis (�̃, F̃,
{F̃t }t∈[0,T ], P̃ ) and, on this basis, L2([0, T ];H)∩C([0, T ],H−β)-valued random
variables θ̃ , θ̃n, n ≥ 1, such that θ̃n has the same law as θn on L2([0, T ];H) ∩
C([0, T ],H−β), and θ̃n → θ̃ in L2([0, T ];H)∩C([0, T ],H−β) P̃ -a.s. For θ̃n we
also have (3.5) and (3.6). Hence, it follows that

θ̃ (·,ω) ∈ L2([0, T ];Hα)∩L∞([0, T ];H ) for P̃ -a.e. ω ∈�.
For each θ̃n we define ũn :=Uδn[θ̃n] and for each n≥ 1 we define the process

M̃n(t) := θ̃n(t)− kδn ∗ θ0 +
∫ t

0
Aαθ̃n(s) ds +

∫ t

0
ũn(s) · ∇ θ̃n(s) ds.

In fact M̃n is a square integrable martingale with respect to the filtration

{Gn}t = σ {θ̃n(s), s ≤ t}.
For all r ≤ t ∈ [0, T ], all bounded continuous functions φ on C([0, r];H−β) ∩
L2([0, r];H), and all v ∈ C∞(T2), we have

Ẽ
(〈
M̃n(t)− M̃n(r), v〉φ(θ̃n|[0,r]))= 0

and

Ẽ

((〈
M̃n(t), v

〉2 − 〈
M̃n(r), v

〉2 −
∫ t

r

∥∥(kδn ∗G)∗(θ̃n)v
∥∥2
U ds

)
φ(θ̃n|[0,r])

)
= 0.

By the B–D–G inequality, we have for 1< p < 1
2 + κ

ρ1
if ρ1 > 0 and 1< p <∞

if ρ1 = 0, that

sup
n
Ẽ
∣∣〈M̃n(t), v〉∣∣2p ≤ C sup

n
Ẽ

(∫ t

0

∥∥(kδn ∗G)∗(θ̃n)v
∥∥2
U ds

)p
<∞.

Since θ̃n → θ̃ in L2(0, T ;H)∩C(0, T ,H−β), we also have

lim
n→∞ Ẽ

∣∣〈M̃n(t)−M(t), v〉∣∣= 0

and

lim
n→∞ Ẽ

∣∣〈M̃n(t)−M(t), v〉∣∣2 = 0,

where

M(t) := θ̃ (t)− θ0 +
∫ t

0
ũ · ∇ θ̃ +Aαθ̃ ds.

Here, ũ is defined by (1.3) with θ replaced by θ̃ . Taking the limit, we obtain that
for all r ≤ t ∈ [0, T ], all bounded continuous functions φ on C([0, r];H−β) ∩
L2([0, r];H), and v ∈ C∞(T2),

Ẽ
(〈
M(t)−M(r), v〉φ(θ̃ |[0,r]))= 0
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and

Ẽ

((〈
M(t), v

〉2 − 〈
M(r), v

〉2 −
∫ t

r

∥∥G(θ)∗v∥∥2
U ds

)
φ(θ̃ |[0,r])

)
= 0.

Thus, the existence of a weak solution for (3.1) follows by the martingale repre-
sentation theorem (cf. [11], Theorem 8.2, [41], Theorem 2).

Step 4: Now we prove the last statement. It is sufficient to prove that

EP
n

sup
t∈[0,T ]

∥∥θn(t)∥∥pLp ≤ C,

where C is a constant independent of n. We write for simplicity θ(t) = θn(t),
u(t)= un(t), W(t)=Wn(t), P = Pn. By [29], Lemma 5.1, or [4], Theorem 2.4,
we have∥∥θ(t)∥∥pLp = ‖kδn ∗ θ0‖pLp

+
∫ t

0

[
−p

∫
T2

∣∣θ(s)∣∣p−2
θ(s)

(
�2αθ(s)+ u(s) · ∇θ(s))dξ

+ 1

2
p(p− 1)

∫
T2

∣∣θ(s)∣∣p−2
(∑
j

∣∣kδn ∗G(θ(s))(fj )∣∣2)dξ]ds
+ p

∫ t

0

∫
T2

∣∣θ(s)∣∣p−2
θ(s)kδn ∗G(θ(s))dξ dW(s)

≤ ‖kδn ∗ θ0‖pLp
+
∫ t

0

1

2
p(p− 1)

∫
T2

∣∣θ(s)∣∣p−2
(∑
j

∣∣kδn ∗G(θ(s))(fj )∣∣2)dξ ds
+ p

∫ t

0

∫
T2

∣∣θ(s)∣∣p−2
θ(s)kδn ∗G(θ(s))dξ dW(s)

≤ ‖kδn ∗ θ0‖pLp
+
∫ t

0

(
ε

∫
T2

∣∣θ(s)∣∣p dξ
+C(ε)

∫ (∑
j

∣∣kδn ∗G(θ(s))(fj )∣∣2)p/2 dξ)ds
+ p

∫ t

0

∫
T2

∣∣θ(s)∣∣p−2
θ(s)kδn ∗G(θ(s))dξ dW(s),

where in the first inequality we used divu = 0 and
∫ |θ |p−2θ�2αθ ≥ 0 (cf.

[44], Lemma 3.2) as well as Young’s inequality in the second inequality. Then
by the Burkholder–Davis–Gundy inequality and Minkowski’s inequality, we ob-
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tain

E sup
s∈[0,t]

∥∥θ(s)∥∥pLp
≤E‖θ0‖pLp

+E
∫ t

0

(
ε

∫
T2

∣∣θ(s)∣∣p dξ +C
∫ (∑

j

∣∣kδn ∗G(θ(s))(fj )∣∣2)p/2 dξ)ds
+ pE

(∫ t

0

(∫
T2

∣∣θ(s)∣∣p−1
(∑
j

∣∣kδn ∗G(θ(s))(fj )∣∣2)1/2

dξ

)2

ds

)1/2

≤E‖θ0‖pLp

+E
∫ t

0

(
ε

∫
T2

∣∣θ(s)∣∣p dξ +C
∫ (∑

j

∣∣kδn ∗G(θ(s))(fj )∣∣2)p/2 dξ)ds
+ pE sup

s∈[0,t]
∥∥θ(s)∥∥p−1

Lp(3.11)

×
(∫ t

0

(∫
T2

(∑
j

∣∣kδn ∗G(θ(s))(fj )∣∣2)p/2 dξ)2/p

ds

)1/2

≤E‖θ0‖pLp

+E
∫ t

0

(
ε

∫
T2

∣∣θ(s)∣∣p dξ +C
∫ (∑

j

∣∣G(θ(s))(fj )∣∣2)p/2 dξ)ds
+C(T )E sup

s∈[0,t]
∥∥θ(s)∥∥p−1

Lp

(∫ t

0

(∫
T2

(∑
j

∣∣G(θ(s))(fj )∣∣2)p/2 dξ)ds)1/p

≤E‖θ0‖pLp + εE sup
s∈[0,t]

∥∥θ(s)∥∥pLp +C1E

∫ t

0

∥∥θ(s)∥∥pLp ds +C2

≤E‖θ0‖pLp + εE sup
s∈[0,t]

∥∥θ(s)∥∥pLp +C1

∫ t

0
E sup
s∈[0,σ ]

∥∥θ(s)∥∥pLp dσ +C2.

Here, in the fourth inequality, we used (Gp.1) and Young’s inequality. By Gron-
wall’s lemma, the assertion follows. �

4. Existence and uniqueness of probabilistically (strong) solutions in the
subcritical case. In this section, we assume α > 1/2 and prove pathwise unique-
ness for equation (3.1), and hence by the Yamada–Watanabe theorem the existence
of a unique (probabilistically) strong solution to (3.1) in the subcritical case. Let
us first give the definition of a (probabilistically) strong solution to (3.1).
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DEFINITION 4.1. We say that there exists a (probabilistically) strong so-
lution to (3.1) over the time interval [0, T ] if for every probability space
(�,F, {Ft}t∈[0,T ],P ) with an Ft -Wiener process W , there exists an Ft -adapted
process θ : [0, T ] ×�→H such that for P -a.e. ω ∈�

θ(·,ω) ∈ L∞(0, T ;H)∩L2(0, T ;Hα)∩C([0, T ];H−β)
and P -a.e. 〈

θ(t), ϕ
〉+ ∫ t

0

〈
A1/2
α θ(s),A1/2

α ϕ
〉
ds −

∫ t

0

〈
u(s) · ∇ϕ, θ(s)〉ds

(4.1)

= 〈θ0, ϕ〉 +
〈∫ t

0
G
(
θ(s)

)
dW(s), ϕ

〉
for all t ∈ [0, T ] and all ϕ ∈ C1(T2) (assuming also that all integrals in the equation
are defined).

THEOREM 4.2. Assume α > 1
2 . If G satisfies the following condition:∥∥�−1/2(G(u)−G(v))∥∥2
L2(U,H)

≤ β∣∣�−1/2(u− v)∣∣2
(GL.1)

+ β1
∣∣�α−1/2(u− v)∣∣2

for all u, v ∈ Hα , for some β ∈ R independent of u, v, and β1 < 2κ , then (3.1)
admits at most one probabilistically strong solution in the sense of Definition 4.1
such that

sup
t∈[0,T ]

∥∥θ(t)∥∥Lp <∞, P -a.s.

for some p ∈ ((α − 1
2)

−1,∞), and

E sup
t∈[0,T ]

∣∣�−1/2θ(t)
∣∣2 <∞.

REMARK. The examples in Remark 3.4 with g being a Lipschitz function on
R satisfy (GL.1) since∥∥�−1/2(G(u)−G(v))∥∥2

L2(K,H)
=∑

k

∣∣�−1/2(bk(g(u)− g(v)))∣∣2
≤
∫
T2

∑
k

b2
k

(
g(u)− g(v))2 dξ

≤ C|u− v|2
≤ C∣∣�−1/2(u− v)∣∣2 + ε∣∣�α−1/2(u− v)∣∣2.
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PROOF OF THEOREM 4.2. Let θ1, θ2 be two solutions of (3.1), and let {ek}k∈N
be the eigenbasis of Aα from above. Then their difference θ = θ1 − θ2 satisfies for
ψ ∈ C1(T2)

〈
ψ,θ(t)

〉− ∫ t

0
〈u · ∇ψ,θ1〉ds −

∫ t

0
〈u2 · ∇ψ,θ〉ds + κ

∫ t

0

〈
θ,�2αψ

〉
ds

(4.2)

=
∫ t

0

〈
ψ,
(
G(θ1)−G(θ2)

)
dW

〉
.

Here, u1, u2, u satisfy (1.3) with θ replaced by θ1, θ2, θ , respectively. Now set
φk = 〈ek, θ(t)〉, ϕk = 〈�−1ek, θ(t)〉. Itô’s formula and (4.2) yield

φkϕk =
∫ t

0
φk dϕk +

∫ t

0
ϕk dφk + 〈ϕk,φk〉(t)

= 2
∫ t

0
〈u · ∇ek, θ1〉〈�−1θ, ek

〉+ 〈u2 · ∇ek, θ〉〈�−1θ, ek
〉

− κ 〈�2αek, θ
〉〈
�−1θ, ek

〉
ds(4.3)

+ 2
∫ t

0

〈
�−1θ, ek

〉〈
ek,

(
G(θ1)−G(θ2)

)
dW(s)

〉
+
∫ t

0

〈(
G(θ1)−G(θ2)

)∗
ek,

(
G(θ1)−G(θ2)

)∗
�−1ek

〉
U ds.

Here, 〈ϕk,φk〉(t) denotes the covariation process of ϕk,φk . The dominated con-
vergence theorem implies

∑
k≤N

∫ t

0
〈u · ∇ek, θ1〉〈�−1θ, ek

〉
ds →

∫ t

0
H−1

〈
u · ∇θ1,�

−1θ
〉
H 1 ds, N → ∞,

∑
k≤N

∫ t

0
〈u2 · ∇ek, θ〉〈�−1θ, ek

〉
ds →

∫ t

0
H−1

〈
u2 · ∇θ,�−1θ

〉
H 1 ds, N → ∞

and ∑
k≤N

∫ t

0

〈
�2αek, θ

〉〈
�−1θ, ek

〉
ds→

∫ t

0

〈
θ,�2α−1θ

〉
ds, N → ∞.

Furthermore, since∫ t

0

∣∣�−1/2θ
∣∣2∥∥�−1/2(G(θ1)−G(θ2)

)∥∥2
L2(U,H)

ds

≤ C sup
s≤t

∣∣θ(s)∣∣2 ∫ t

0

∥∥�−1/2(G(θ1)−G(θ2)
)∥∥2
L2(U,H)

ds <∞,
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we obtain∑
k≤N

∫ t

0

〈
�−1θ, ek

〉〈
ek,

(
G(θ1)−G(θ2)

)
dW(s)

〉
→Mt :=

∫ t

0

〈
�−1/2θ,�−1/2(G(θ1)−G(θ2)

)
dW(s)

〉
, N → ∞,

in probability. Finally, the following inequality holds:∑
k≤N

∫ t

0

〈(
G(θ1)−G(θ2)

)∗
ek,

(
G(θ1)−G(θ2)

)∗
�−1ek

〉
U ds

≤
∫ t

0

∥∥�−1/2(G(θ1)−G(θ2)
)∥∥2
L2(U,H)

ds.

Thus, summing up over k ≤N in (4.3) and letting N → ∞, we obtain∣∣�−1/2θ
∣∣2 + 2κ

∫ t

0

∣∣�α−1/2θ
∣∣2 ds

≤ 2M(t)+ 2
∫ t

0
H−1

〈
u · ∇θ1,�

−1θ
〉
H1

+ H−1

〈
u2 · ∇θ,�−1θ

〉
H1
ds

+
∫ t

0

∥∥�−1/2(G(θ1)−G(θ2)
)∥∥2
L2(U,H)

ds.

By [44], we have

H−1
〈
u · ∇θ1,�

−1θ
〉
H 1 = 0

and ∣∣
H−1

〈
u2 · ∇θ,�−1θ

〉
H1

∣∣
≤ ‖u2‖Lp‖θ‖Lp1

∥∥∇�−1θ
∥∥
Lp1 ≤ C‖u2‖Lp‖θ‖H 1/p

∥∥∇�−1θ
∥∥
H 1/p

≤ C‖θ2‖Lp
∥∥�−1θ

∥∥2
H 1+1/p ≤ C‖θ2‖Lp

∥∥�−1θ
∥∥2/r
H 1/2

∥∥�−1θ
∥∥2(1−1/r)
H 1/2+α

≤ ε∣∣�α−1/2θ
∣∣2 +C‖θ2‖rLp

∣∣�−1/2θ
∣∣2,

where 1
p

+ 2
p1

= 1 for p ∈ ((α− 1
2)

−1,+∞), r = α
α−1/2−1/p . Here we use divu2 =

0 in the first inequality, that H 1/p ↪→ Lp1 continuously in the second inequality,
the interpolation inequality (2.3) in the fourth inequality and Young’s inequality in
the last equality.

Now by (GL.1) we have∣∣�−1/2θ
∣∣2 ≤ 2M(t)+

∫ t

0
C‖θ2‖rLp

∣∣�−1/2θ
∣∣2 ds + β

∫ t

0

∣∣�−1/2(θ1 − θ2)
∣∣2 ds.

Let

τ 1
n := inf

{
t > 0,

∥∥θ2(t)
∥∥
Lp > n

}
.
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Then by the weak continuity of θ2, τ 1
n are stopping times with respect to

Ft+, (Ft+ := ⋂
s>t Fs) and ‖θ2(t ∧ τ 1

n )‖Lp ≤ n for large n. Furthermore, let τ 2
n

be a localizing sequence of stopping times for M and τn := τ 1
n ∧ τ 2

n . Then, since
M(t ∧ τn) is a martingale with respect to Ft+, we get

E
∣∣�−1/2θ(t ∧ τn)

∣∣2 ≤ CnrE
∫ t∧τn

0

∣∣�−1/2θ
∣∣2 ds + βE

∫ t∧τn
0

∣∣�−1/2θ
∣∣2 ds

= C(n)
∫ t

0
E
∣∣�−1/2θ(s ∧ τn)

∣∣2 ds
+ β

∫ t

0
E
∣∣�−1/2θ(s ∧ τn)

∣∣2 ds.
By Gronwall’s inequality, we get |�−1/2θ(t ∧ τn)|2 = 0 P -a.s., and recalling that
τn → T P -a.s. as n→ ∞, we obtain that θ(t)= 0 P -a.s. for t ≤ T . By the weak
continuity of θ , we obtain the zero set does not depend on t , thus completing the
proof. �

REMARK. From the proof of Theorem 4.2, we immediately obtain that if there
exists a probabilistically strong solution θ in the sense of Definition 3.1 satisfying

sup
t∈[0,T ]

∥∥θ(t)∥∥Lp <∞, P -a.s.

for some p ∈ ((α− 1
2)

−1,+∞) and G satisfies (GL.1), then for any other solution
θ̃ such that

E sup
t∈[0,T ]

∣∣�−1/2θ̃ (t)
∣∣2 <∞,

it follows that θ̃ = θ , which implies that

sup
t∈[0,T ]

∥∥θ̃ (t)∥∥Lp <∞.

THEOREM 4.3. Assume α > 1
2 and that G satisfies Hypothesis G.1, (GL.1)

and (Gp.1) for some p ∈ ((α − 1
2)

−1,+∞). Then for each initial condition θ0 ∈
Lp , there exists a pathwise unique probabilistically strong solution θ of equation
(3.1) over [0, T ] with initial condition θ(0)= θ0 such that

E sup
t∈[0,T ]

∣∣�−1/2θ(t)
∣∣2 <∞.

Moreover, the solution satisfies

E sup
t∈[0,T ]

∥∥θ(t)∥∥pLp +E
∫ T

0

∣∣�αθ(t)∣∣2 dt <∞.
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PROOF. By Theorem 4.2, Theorem 3.3 and the Yamada–Watanabe theorem
(cf. [45] or [33, 43]), we get that for each initial condition θ0 ∈ Lp , there exists
a pathwise unique probabilistically strong solution θ of equation (3.1) over [0, T ]
with initial condition θ(0)= θ0 such that

sup
t∈[0,T ]

∥∥θ(t)∥∥Lp <∞, P -a.s.,

and

E sup
t∈[0,T ]

∣∣�−1/2θ(t)
∣∣2 <∞.

By the remark before Theorem 4.3, the first result follows. By Theorem 3.3 and
(3.6), the last part of the assertion follows. �

THEOREM 4.4 (Markov property). Assume α > 1
2 and that G satisfies Hy-

pothesis G.1, (GL.1) and (Gp.1) for some p ∈ ((α − 1
2)

−1,+∞). If θ0 ∈ Lp , then
for every bounded, B(H)-measurable F :H →R, and all s, t ∈ [0, T ], s ≤ t

E
(
F
(
θ(t)

)|Fs)(ω)=E(F (θ(t, s, θ(s)(ω)))) for P -a.s. ω ∈�.
Here, θ(t, s, θ(s)(ω)) denotes the solution to (3.1) starting from θ(s) at time s
satisfying

E sup
t∈[s,T ]

∣∣�−1/2θ(t)
∣∣2 <∞.

PROOF. By Theorem 4.3, we have θ(t) = θ(t, s, θ(s)) P -a.s. Then by the
Yamada–Watanabe theorem in [45], we have P -a.s.

E
(
F
(
θ(t)

)|Fs)(ω)= E(F (θ(t, s, θ(s)))|Fs)(ω)
= E(F (H(θ(s),W(· + s)−W(s)))|Fs)(ω)
= E(F (H(θ(s)(ω),W(· + s)−W(s))))
= E(F (θ(t, s, θ(s)(ω)))),

where H is the functional obtained by the Yamada–Watanabe theorem such that
H(θ(0),W) is a strong solution to (3.1). �

We set for B(H)-measurable F :H →R, and t ∈ [0, T ], x ∈ Lp
PtF (x) :=EF (θ(t, x)).

Here, and in the following, we use θ(t, x) to denote a solution with initial value x.
Then by Theorem 4.4, we have for F :H → R, bounded and B(H)-measurable,
s, t ≥ 0,

Ps(PtF )(x)= Ps+tF (x), x ∈ Lp,p ∈ ((α − 1
2

)−1
,+∞)

.
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5. Ergodicity in the subcritical case. Now fix α > 1
2 and we assume U =H ,

W(t) is a cylindrical Wiener process in H defined on a filtered probability space
(�,F, {Ft}t≥0,P ). We make the following assumptions on G.

HYPOTHESIS E.1. G does not depend on θ and there exists σ > 0 such that
G ∈L2(H ;H 2−α+σ ) that is,

E0 := Tr
(
�4−2α+2σGG∗)<∞.

HYPOTHESIS E.2. There exist N ∈ N and g ∈ L(H) such that Gg = PN .

For ε0 > 0 and any W ∈C(R+,H−1−ε0), we define

z(W)(t) :=
∞∑
i,j=1

(
gijβi(t)− λj

∫ t

0
e−λj (t−s)gijβi(s) ds

)
ej ,

if the convergence of the sum is uniformly with respect to t in every bounded time
interval, otherwise set z(W) := +∞. Here, βi(t) := H 1+ε0 〈ei,W(t)〉H−1−ε0 , gij =
〈Gei, ej 〉. Under Hypothesis E.1, there exists �′ ⊂� such that P(�′)= 1 and for
ω ∈�′, z(W(ω)) ∈ C([0,∞),H 2+ε) for some 0< ε < σ , and on (�,F,Ft , P ),
z(W) is the mild solution of the equation: dz+Aαz=GdW with initial condition
z(0)= 0.

Now for v0 ∈H 1,W ∈ C(R+,H−1−ε0) we define

v(t,W,v0) :=
{
v
(
t, v0, z(W)

)
, if z(W) ∈ C(R+,Hm

)
for m< 2 + σ ,

0, otherwise,

where v(t, v0, z(W)) is the solution to (A.1) we obtained in Theorem A.1.
Then by Theorem A.4 in Appendix A, v is a measurable mapping from R

+ ×
C(R+,H−1−ε0)×H 1 into H 1, (t,W, θ0) 	→ v(t,W, θ0). We can now define

θ(t,W, θ0) := v(t,W, θ0)+ z(t,W),
which is a measurable map from R

+ × C(R+,H−1−ε0)×H 1 into H 1. Then for
the cylindrical Wiener process W , θ(t,W, θ0) is a solution to (3.1), whose laws
Pθ0, θ0 ∈ H 1 form a Markov process on H 1, since H 1 is an invariant space for
(3.1) under assumption Hypothesis E.1. Let (Pt )t≥0 be the associated transition
semigroup on Bb(H 1). Now we want to study the long time behavior of the semi-
group Pt .

REMARK 5.1. (i) Hypothesis E.1 obviously implies Hypothesis G.1, (Gp.1)
for all p ∈ ((α− 1

2)
−1,∞) and (GL.1). For x := θ0 ∈ Lp , let Px denote the law of

the corresponding solution θ to (3.1). Then by Theorems 4.3 and 4.4, the measures
Px , x ∈ Lp form a Markov process.
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(ii) The existence of a map g such that Gg = PN is equivalent to the following
property:

PNH ⊂ Im(G).

(iii) Hypothesis E.1 is to make sure that the associated O–U process has a ver-
sion z ∈ C([0,∞);H 1,∞(T2)) (see, e.g., [11], the proof of Theorem 5.16, and
use Sobolev embedding). If we consider the stochastic integral taking values in a
Banach space [e.g., Lp(T2), p > 1] and use the theory developed in [3], we can
change Hypothesis E.1 to the following condition:G ∈ L2(H ;H 1−α+ε1/2) and for
some ε1, q satisfying ε1q > 2∥∥∥∥[∑

k

(
�1−α+ε1Gek

)2]1/2∥∥∥∥
Lq

+
∥∥∥∥[∑

k

(Gek)
2
]1/2∥∥∥∥

L(α+1)/(α−1/2)
<∞.

By this and similar arguments as in [3], we obtain for ε < ε1 and εq > 2 that the
O–U process has a version z ∈ C([0,∞);H 1+ε,q)⊂C([0,∞);H 1,∞(T2)), but in
this paper we stay in the Hilbert space framework for simplicity.

(iv) For more general noise, we do not know how to obtain Proposition 5.7 since
we cannot control E exp‖θ‖pLp . Therefore, we restrict ourselves to additive noise.

5.1. Preliminaries and some useful estimates. First, we want to collect some
useful and fundamental results about coupling from [34] and [36] which we will
use later. Let (�1,�2) be two probability measures on a Polish space E. Let
(Z1,Z2) be a couple of random variables (�,F)→E ×E. We say that (Z1,Z2)

is a coupling of (�1,�2) if �i = D(Zi) for i = 1,2, where we use D(Zi) to
denote the distribution of Zi .

LEMMA 5.2. Let (�1,�2) be two probability measures on a Polish space
(E,B(E)). Then

‖�1 −�2‖var = minP(Z1 �= Z2),

where the minimum is taken over all couplings (Z1,Z2) of (�1,�2). There exists
a coupling for which the minimum value is attained and it is called a maximal
coupling. Moreover, the maximal coupling has the following property:

P(Z1 = Z2,Z1 ∈ �)= (�1 ∧�2)(�), � ∈ B(E).

LEMMA 5.3 (cf. [36], Lemma C.1). Let �1 and �2 be two equivalent proba-
bility measures on E. Then for any p > 1 and any measurable subset A⊂E

Ip(A) :=
∫
A

(
d�1

d�2

)p
d�1 <∞

implies

(�1 ∧�2)(A)≥
(

1 − 1

p

)(
�1(A)

p

pIp(A)

)1/(p−1)

.
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PROPOSITION 5.4 (cf. [40], Proposition 1.4). Let E and F be two Polish
spaces, f0 :E → F be a measurable map and (�1,�2) be two probability mea-
sures on E. Set λi = f ∗

0�i , i = 1,2. Then there exists a coupling (V1,V2) of
(�1,�2) such that (f0(V1), f0(V2)) is a maximal coupling of (λ1, λ2).

Now we give some useful estimates which will be used in the next two subsec-
tions. Let θn denote the approximation in the proof of Theorem 3.3. As will be seen
below, we shall need uniform Lp-estimates, and a crucial ingredient to prove them
is the following improved version of the “positivity lemma,” that is, Lemma 3.2 in
[44].

LEMMA 5.5 (Improved positivity lemma). For α ∈ (0,1), and θ ∈ Lp with
�2αθ ∈ Lp , for some 2<p <∞,∫

|θ |p−2θ

(
κ�2α − 2λ1

p

)
θ ≥ 0.

PROOF. Denote the semigroup with respect to −κ�2α + 2λ1
p

and −κ�2α in

L2 by P 0
t and P 1

t , respectively. Then we have P 0
t f = e2tλ1/pP 1

t f . Since∥∥P 1
t f

∥∥
L2 ≤ e−λ1t‖f ‖L2

and ∥∥P 1
t f

∥∥
L∞ ≤ ‖f ‖L∞,

by the interpolation theorem, we have∥∥P 1
t f

∥∥
Lp ≤ e−2λ1t/p‖f ‖Lp,

which implies that ∥∥P 0
t f

∥∥
Lp ≤ ‖f ‖Lp .

Then we get that

d

dt

∥∥P 0
t θ
∥∥p
Lp =

∫ ∣∣P 0
t θ
∣∣p−2(

P 0
t θ
)(
P 0
t

(
−κ�2α + 2λ1

p

)
θ

)
dx ≤ 0.

Letting t → 0, we obtain the result. �

PROPOSITION 5.6. Let α > 1
2 . Suppose Hypothesis E.1 holds. For x ∈ Lp , let

θ denote the solution of equation (3.1) with the initial value x. Then for 2<p <∞
E
∥∥θ(t)∥∥pLp ≤ ‖x‖pLpe−λ1t +CpS

[1
2p(p− 1)

]p/2
λ

−p/2
1 Ep/20

(
1 − e−λ1t

)
,

where CS is the constant for the Sobolev embedding.
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PROOF. Using [29], Lemma 5.1, or [4], Theorem 2.4, for θn, we obtain∥∥θ(t)∥∥pLp = ∥∥θ(s)∥∥pLp
+
∫ t

s

[
−p

∫
T2

∣∣θ(l)∣∣p−2
θ(l)

(
κ�2αθ(l)+ u(l) · ∇θ(l))dξ

+ 1

2
p(p− 1)

∫
T2

∣∣θ(l)∣∣p−2
(∑
j

∣∣kδn ∗G(ej )
∣∣2)dξ]dl

+ p
∫ t

s

∫
T2

∣∣θ(l)∣∣p−2
θ(l)kδn ∗Gdξ dW(l)

≤ ∥∥θ(s)∥∥pLp − 2λ1

∫ t

s

∫
T2

∣∣θ(l)∣∣p dξ dl
+
∫ t

s

1

2
p(p− 1)

∫
T2

∣∣θ(l)∣∣p−2
(∑
j

∣∣kδn ∗G(ej )
∣∣2)dξ dl(5.1)

+ p
∫ t

s

∫
T2

∣∣θ(l)∣∣p−2
θ(l)kδn ∗Gdξ dW(l)

≤ ∥∥θ(s)∥∥pLp − 2λ1

∫ t

s

∫
T2

∣∣θ(l)∣∣p dξ dl
+
∫ t

s

(
λ1

∫
T2

∣∣θ(l)∣∣p dξ
+
[

1

2
p(p− 1)

]p/2
λ

−(p−2)/2
1

∫ (∑
j

∣∣kδn ∗G(ej )
∣∣2)p/2 dξ)dl

+ p
∫ t

s

∫
T2

∣∣θ(l)∣∣p−2
θ(l)kδn ∗Gdξ dW(l),

where we used Lemma 5.5 to get the first inequality and Young’s inequality to get
the last inequality. Here, for simplicity, we write θ(t)= θn(t, x). Taking expecta-
tion, we obtain

E
∥∥θn(t)∥∥pLp ≤ E∥∥θn(s)∥∥pLp −Eλ1

∫ t

s

∫
T2

∣∣θn(l)∣∣p dξ dl
+CpS

[
1

2
p(p− 1)

]p/2
λ

−(p−2)/2
1 Ep/20 (t − s).

Here, we use
∫
T2(

∑
j |G(ej )|2)p/2 dξ ≤ (∑j (

∫
T2 |G(ej )|p dξ)2/p)p/2 ≤ CpS Ep/20 .

Then Gronwall’s lemma yields that

E
∥∥θn(t)∥∥pLp ≤ ∥∥θn(0)∥∥pLpe−λ1t +CpS

[1
2p(p− 1)

]p/2
λ

−p/2
1 Ep/20

(
1 − e−λ1t

)
.

Letting n→ ∞ in the above inequality, we deduce

E
∥∥θ(t)∥∥pLp ≤ ‖x‖pLpe−λ1t +CpS

[1
2p(p− 1)

]p/2
λ

−p/2
1 Ep/20

(
1 − e−λ1t

)
. �
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5.2. Uniqueness of the invariant measure. In this subsection, we assume con-
ditions Hypotheses E.1 and E.2 to hold. To prove uniqueness of invariant measure
is much harder and in this section we first concrete on proving this. Existence
will be shown in the next subsection. In addition, we shall prove polynomial con-
vergence of the semigroup to the invariant measure in Section 5.3 below. If the
dissipation term is strong enough (i.e., α > 2

3) we actually obtain exponential con-
vergence (see Section 6).

Now we build an auxiliary process θ̃ . The aim is to find a shift h belonging to
Cameron–Martin space of the driving process such that E‖θ(t)− θ̃ (t)‖H−1/2 → 0
as t → ∞. Fix θ , and consider⎧⎪⎨⎪⎩

dθ̃(t)+Aαθ̃(t) dt + ũ(t) · ∇ θ̃ (t) dt +K0PN
(
θ̃ − θ(t,W, θ0)

)
dt

=GdW(t),
θ̃ (0)= θ̃0 ∈H 1,

(5.2)

where ũ satisfies (1.3) with θ replaced by θ̃ and K0 is a constant to be determined
later. Since ‖PNθ̃‖Lp ≤ CN‖θ̃‖Lp for p ≥ 2, by a similar argument as in the proof
of Theorems A.4 in Appendix A we obtain that there exists a measurable mapping
from R

+ ×C(R+,H−1−ε)×H 1 ×H 1 into H 1, (t,W, θ0, θ̃0) 	→ θ̃ (t,W, θ0, θ̃0),
such that θ̃ (t,W, θ0, θ̃0) is the solution of (5.2). Moreover, by the ω-wise unique-
ness of (3.1) and (5.2) (which can be easily checked by a similar argument as the
proof of Theorem 4.2), we have(
θ(t, θ0), θ̃(t, θ0, θ̃0)

)= (
θ
(
t, s, θ(s)

)
, θ̃
(
t, s, θ(s, θ0), θ̃(s, θ0, θ̃0)

))
P -a.s.,

which implies that (θ(t), θ̃ (t)) = (θ(t,W, θ0), θ̃(t,W, θ0, θ̃0)) defines a Markov
process. Here, for simplicity, we omit W and θ(t, s, θ(s)), θ̃ (t, s, θ(s, θ0),

θ̃ (s, θ0, θ̃0)) denote the solutions to (3.1), (5.2) starting from θ(s), θ̃(s) at time
s, respectively.

Now we derive a uniform | · |4 estimate for θ̃ . Here, we give formal calculations
which can be made rigorous by using Galerkin approximations:

d
∣∣θ̃ (t)∣∣4 + 4κ

∣∣θ̃ (t)∣∣2‖θ̃‖2
Hα dt + 4K0

∣∣θ̃ (t)∣∣2|PNθ̃ |2 dt
≤ 4

∣∣θ̃ (t)∣∣2〈GdW(t), θ̃ 〉+ 4K0
∣∣θ̃ (t)∣∣2|PNθ̃ ||θ |dt + 6|θ̃ |2‖G‖2

L2(H,H)
dt

≤ 4
∣∣θ̃ (t)∣∣2〈GdW(t), θ̃ 〉+ ε∣∣θ̃ (t)∣∣4 dt +C(ε)(|θ |4 + 1

)
dt.

Taking expectation and by Proposition 5.6, we obtain

E
∣∣θ̃ (t)∣∣4 ≤ C, ∀t ≥ 0,(5.3)

where C is a constant independent of t .
Define h(θ, θ̃) := −gK0PN(θ̃ − θ) for g in Hypothesis E.2. Then for any

(t, θ0, θ̃0) ∈ R
+ × H 1 × H 1 and the cylindrical Wiener process W we have for
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ω ∈ �′ that z(W(ω)), z(W(ω) + ∫ ·
0 h(θ(s,W(ω), θ0), θ̃ (s,W(ω), θ0, θ̃0)) ds) ∈

C([0,∞),H 2+ε), ε < σ . Then for ω ∈�′,

θ

(
t,W(ω)+

∫ ·
0
h
(
θ
(
s,W(ω), θ0

)
, θ̃
(
s,W(ω), θ0, θ̃0

))
ds, θ̃0

)
− z(W(ω))

is a solution to the following equation:

dṽ(t)+Aαṽ(t) dt + uṽ+z(t) · ∇(ṽ+ z)(t) dt +K0PN
(
ṽ− v(t,W, θ0)

)
dt = 0,

where uṽ+z satisfies (1.3) with θ replaced by ṽ + z. Since for every ω ∈ �′ the
above equation admits at most one solution, for ω ∈�′ we have

θ̃
(
t,W(ω), θ0, θ̃0

)
(5.4)

= θ
(
t,W(ω)+

∫ ·
0
h
(
θ
(
s,W(ω), θ0

)
, θ̃
(
s,W(ω), θ0, θ̃0

))
ds, θ̃0

)
.

Now for ρ = θ̃ (t,W, θ0, θ̃0)− θ(t,W, θ0), we have the following results. Here,
we want to emphasize that although the initial value θ0 ∈H 1, we can only obtain
that ρ converges to 0 in H−1/2 norm.

PROPOSITION 5.7. Fix α > 1/2. Let δ0 := λN+1 − 2p/2CpRC
2p
S κ

1−p[p(p −
1)]p/2λ−p/2

1 Ep/20 > 0 for p = α+1
α−1/2 , where N is as in Hypothesis E.2, and CS ,

CR are the constants for the Sobolev embedding and Riesz transform, respectively.
Then for ‖θ0‖2m(p−1)

L2m(p−1) + ‖θ̃0‖2m(p−1)
L2m(p−1) ≤ 2C0 for some m> 5, K0 > λN+1 and 1<

q < m−1
4 , there exists a positive constant C such that for any t > 0

E
∣∣�−1/2ρ(t)

∣∣2 ≤ C

(t + 1)2q

(where we can chooseC0 large enough such thatC0 > 4CpS [1
2p(p−1)]p/2λ−p/2

1 ×
Ep/20 ).

REMARK 5.8. From the condition λN+1 − 2p/2CpRC
2p
S κ

1−p[p(p− 1)]p/2 ×
λ

−p/2
1 Ep/20 > 0, which also appears in the main theorem, we know that if the vis-

cosity constant κ is large enough or E0 is small enough we could even take N = 0.

PROOF OF PROPOSITION 5.7. In the proof, we omit W for simplicity. From
(3.1) and (5.2), we obtain that ρ satisfies the following equation in the weak sense:

dρ(t)

dt
= −Aαρ −K0PNρ − ũ · ∇ θ̃ + u · ∇θ
= −Aαρ −K0PNρ − u · ∇ρ − uρ · ∇ θ̃ ,
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where uρ satisfies (1.3) with θ replaced by ρ. Taking the inner product with�−1ρ

in H , and using that

H−1
〈
uρ · ∇ θ̃ ,�−1ρ

〉
H 1 = 0

(cf. [44]), we obtain

1

2

d

dt

∣∣�−1/2ρ
∣∣2 = −κ∣∣�α−1/2ρ

∣∣2 −K0
∣∣PN�−1/2ρ

∣∣2 − H−1
〈
u · ∇ρ,�−1ρ

〉
H 1 .

We have∣∣
H−1

〈
u · ∇ρ,�−1ρ

〉
H 1

∣∣
≤ ‖u‖Lp‖ρ‖Lp1

∥∥∇�−1ρ
∥∥
Lp1 ≤ CS‖u‖Lp‖ρ‖H 1/p

∥∥∇�−1ρ
∥∥
H 1/p

≤ CSCR‖θ‖Lp
∥∥�−1ρ

∥∥2
H 1+1/p ≤ CSCR‖θ‖Lp

∥∥�−1ρ
∥∥2/r
H 1/2

∥∥�−1ρ
∥∥2(1−1/r)
H 1/2+α

≤ κ

2

∣∣�α−1/2ρ
∣∣2 +Cr1

(
κ

2

)1−r
‖θ‖rLp

∣∣�−1/2ρ
∣∣2,

where CS , CR are the constants for Sobolev embedding and Riesz transform, re-
spectively, and C1 = CSCR . Here, 1

p
+ 2

p1
= 1 for p > 1

α−1/2 , r = α
α−1/2−1/p

and we use Hölder’s inequality and that divu = 0 in the first inequality and
H 1/p ↪→ Lp1 continuously in the second inequality, the interpolation inequality
(2.3) in the fourth inequality and Young’s inequality in the last equality. Then we
obtain

d

dt

∣∣�−1/2ρ
∣∣2 ≤ −κ∣∣�α−1/2ρ

∣∣2 −K0
∣∣PN�−1/2ρ

∣∣2
+ 2Cr1

(
κ

2

)1−r
‖θ‖rLp

∣∣�−1/2ρ
∣∣2.

Since, because K0 > λN+1, we have

λN+1
∣∣�−1/2ρ

∣∣2 ≤ κ∣∣QN�α−1/2ρ
∣∣2 +K0

∣∣PN�−1/2ρ
∣∣2

≤ κ∣∣�α−1/2ρ
∣∣2 +K0

∣∣PN�−1/2ρ
∣∣2,

it follows that

d

dt

∣∣�−1/2ρ
∣∣2 +

(
λN+1 − 2Cr1

(
κ

2

)1−r
‖θ‖rLp

)∣∣�−1/2ρ
∣∣2 ≤ 0.

Thus, by Gronwall’s lemma, we obtain∣∣�−1/2ρ(t)
∣∣2 ≤ et�(t,θ0)

∣∣�−1/2ρ(0)
∣∣2,

where

�(t, θ0)= −λN+1 + 2Cr1

(
κ

2

)1−r 1

t

∫ t

0

∥∥θ(s)∥∥rLp ds.
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By the same arguments as in the proof of Theorem A.1 in Appendix A, we have
θn → θ in L2([0, T ],H 1) a.s. Letting n→ ∞ in (5.1), by (3.11) we obtain

∥∥θ(t)∥∥pLp + λ1

∫ t

0

∫
T2

∣∣θ(l)∣∣p dξ dl
≤ ‖θ0‖pLp +CpS

[
1

2
p(p− 1)

]p/2
λ

−(p−2)/2
1 Ep/20 t

+ p
∫ t

0

∫
T2

∣∣θ(l)∣∣p−2
θ(l)Gdξ dW(l).

Here, we use that
∫
T2(

∑
j |G(ej )|2)p/2 dξ ≤ (

∑
j (
∫
T2 |G(ej )|p dξ)2/p)p/2 ≤

C
p
S E

p/2
0 .

Since p = α+1
α−1/2 implies p = r , we get

�(t, θ0)≤ −λN+1 + 2Cp1

(
κ

2

)1−p 1

t

∫ t

0

∥∥θ(s)∥∥pLp ds
≤ −λN+1 + 2Cp1

(
κ

2

)1−p 1

tλ1
‖θ0‖pLp

+ 2p/2Cp1 C
p
S κ

1−p[p(p− 1)
]p/2

λ
−p/2
1 Ep/20

+ 2Cp1

(
κ

2

)1−p p
tλ1

∫ t

0

∫
T2

∣∣θ(l)∣∣p−2
θ(l)Gdξ dW(l).

For M(t) := p ∫ t0 ∫T2 |θ(l)|p−2θ(l)Gdξ dW(l), we have

〈M〉t ≤ p2E0C
2
S

∫ t

0

(∫
T2

∣∣θ(s)∣∣p−1
dξ

)2

ds,

where we use that
∑
j |G(ej )|2(ξ)≤∑

j ‖G(ej )‖2
L∞ ≤ C2

SE0. Then for any m> 1

〈M〉mt ≤ C2m
S p

2mEm0
(∫ t

0

(∫
T2

∣∣θ(s)∣∣p−1
dξ

)2

ds

)m
≤ C2m

S p
2mEm0 tm−1

∫ t

0

(∫
T2

∣∣θ(s)∣∣2m(p−1)
dξ

)
ds.

Since ‖θ0‖2m(p−1)
L2m(p−1) ≤ 2C0 by Proposition 5.6 there exists a constant Cp,m(C0)

independent of t such that E‖θ(t)‖2m(p−1)
L2m(p−1) ≤ Cp,m for t ≥ 0. Thus, for Mn =

supn−1≤t<nM(t), we have

P

(
|Mn|> ελ1

4Cp1 (κ/2)
1−p n

)
≤ p2mEm0 Cp,mnmC2m

S

(εκp−1λ1/(2p+1C
p
1 ))

2mn2m
.
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Now define the following random times:

Tbound := sup
{
n : |Mn|> ελ1

4Cp1 (κ/2)
1−p n

}
.

By [35], Lemma 5, we have that if m> 1, then Tbound is finite almost surely. Set

τ := max
(
Tbound,

2p+1C
p/(2m(p−1))
0 C

p
1

κp−1λ1ε

)
,

then we have

t > τ ⇒ �(t, θ0)− (−δ0) < ε,

where δ0 = λN+1 − 2p/2Cp1 C
p
S κ

1−p[p(p − 1)]p/2λ−p/2
1 Ep/20 , which implies that

for δ ∈ (0, δ0) and t > τ ,∣∣�−1/2ρ(t)
∣∣2 ≤ ∣∣�−1/2(θ0 − θ̃0)

∣∣2e−δt .
For p0 ∈ (0,m− 1), by [35], Lemma 5, Eτp0 is finite. Moreover, we obtain that
for 1< q < m−1

4 , there exists C > 0 such that for any t > 0

E
∣∣�−1/2ρ(t)

∣∣2
≤ Ce−δt + (

E
∣∣�−1/2ρ(t)

∣∣4)1/2P(τ > t)1/2(5.5)

≤ C 1

(t + 1)2q
,

where we used (5.3) in the last inequality. �

Now we fix m> 35 and 8< q < m−3
4 . Proposition 5.7 still holds for such m, q .

Moreover, we also have for any t0 ≥ 0

P

(∫ ∞
t0

∣∣h(t)∣∣2 dt ≥ C 1

(t0 + 1)q

)

≤ C (t0 + 1)q

C

∫ ∞
t0

E
∣∣�−1/2ρ(t)

∣∣2 dt(5.6)

≤ C 1

(t0 + 1)q
,

where h(t)= h(θ(t,W, θ0), θ̃(t,W, θ0, θ̃0)) and we used Proposition 5.7 in the last
inequality. Moreover, by Theorem 5.9, we obtain that there exists p2 > 0 such that

P

(∫ ∞
0

∣∣h(t)∣∣2 ≥ C
)

≤ C1

C
E

∫ ∞
0

∣∣�−1/2ρ(t)
∣∣2 dt

(5.7)
≤ 1 − p2,

where C can be chosen large enough such that (5.5), (5.6) and (5.7) are satisfied.
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Now we use a similar coupling method as in [40] to deduce the uniqueness of
the invariant measure. More precisely, we have the following result.

THEOREM 5.9. Fix α > 1/2. Assume Hypotheses E.1 and E.2 hold. Let δ0 :=
λN+1 − 2p/2CpRC

2p
S κ

1−p[p(p− 1)]p/2λ−p/2
1 Ep/20 > 0 for p = α+1

α−1/2 , where N is
as in Hypothesis E.2, and CS,CR are the constants for Sobolev embedding and
Riesz transform, respectively. Then there exists at most one invariant measure for
the Markov semigroup Pt on H 1.

PROOF. Step 1. Construction of a coupling of the solutions.
For θ1

0 , θ
2
0 ∈ H 1 and T > 0, we apply [40], Corollary 1.5, to (θ(·,W, θ1

0 ), θ(·,
W, θ2

0 ), θ̃(·,W, θ1
0 , θ

2
0 )) on [0, T ] and obtain (θ0

1 (·, θ1
0 , θ

2
0 ), θ

0
2 (·, θ1

0 , θ
2
0 ), θ̃

0(·, θ1
0 ,

θ2
0 )) on [0, T ] such that the law of (θ0

1 (·, θ1
0 , θ2

0 ), θ̃
0(·, θ1

0 , θ
2
0 )) is the same as

(θ(·,W, θ1
0 ), θ̃(·,W, θ1

0 , θ
2
0 )) and (θ0

2 (·, θ1
0 , θ

2
0 ), θ̃

0(·, θ1
0 , θ

2
0 )) is a maximal cou-

pling of (D(θ(·,W, θ2
0 )),D(θ̃(·,W, θ1

0 , θ
2
0 ))) on [0, T ].

Then we obtain a sequence of independent versions of the mapping(
θ1

0 , θ
2
0
)→ (

θ0
1
(·, θ1

0 , θ
2
0
)
, θ0

2
(·, θ1

0 , θ
2
0
)
, θ̃0(·, θ1

0 , θ
2
0
))
.

We denote this sequence by (θn1 , θ
n
2 , θ̃

n)n and define recursively⎧⎪⎨⎪⎩
θ1
(
nT + ·, θ1

0 , θ
2
0

)= θn1
(·, θ1(nT ), θ2(nT )

)
,

θ2
(
nT + ·, θ1

0 , θ
2
0

)= θn2
(·, θ1(nT ), θ2(nT )

)
,

θ̃
(
nT + ·, θ1

0 , θ
2
0

)= θ̃ n(·, θ1(nT ), θ2(nT )
)
.

Then θ1(t, θ
1
0 , θ

2
0 ), θ2(t, θ

1
0 , θ

2
0 ), θ̃(t, θ

1
0 , θ

2
0 ) is defined for all t ∈ [0,∞) such that

(θ1(·, θ1
0 , θ

2
0 ), θ2(·, θ1

0 , θ
2
0 )) is a coupling of (D(θ(·,W, θ1

0 )),D(θ(·,W, θ2
0 ))). We

denote the associated probability space by (�,F,Ft , P ). Moreover, (θ1(nT , θ
1
0 ,

θ2
0 ), θ2(nT , θ

1
0 , θ

2
0 ), θ̃(nT , θ

1
0 , θ

2
0 ))n is a Markov chain and θ1(·, θ1

0 , θ
2
0 ), θ2(·, θ1

0 ,

θ2
0 ), θ̃(·, θ1

0 , θ
2
0 ) satisfy the following property:

E(θ
1
0 ,θ

2
0 )
[
f (θ1, θ2, θ̃ ) ◦�kT |FkT ]=E(θ1(kT ),θ2(kT ))f (θ1, θ2, θ̃ ),

where �t is the shift operator.
Step 2. Introduction of l0.
We set

l0(k)= min{l ≤ k|Pl,k},
where min∅= ∞ and

(Pl,k)

{
θ̃
(·, θ1

0 , θ
2
0

)= θ2
(·, θ1

0 , θ
2
0

)
on (lT , kT ),∥∥θ1

(
lT , θ1

0 , θ
2
0

)∥∥2m(p−1)
L2m(p−1) + ∥∥θ2

(
lT , θ1

0 , θ
2
0

)∥∥2m(p−1)
L2m(p−1) ≤ 2C0.
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Then by (5.5) and the Markov property of θ1(·, θ1
0 , θ

2
0 ), θ2(·, θ1

0 , θ
2
0 ), θ̃(·, θ1

0 , θ
2
0 )

we have for t > lT

E
(∣∣�−1/2(θ2

(
t, θ1

0 , θ
2
0
)− θ1

(
t, θ1

0 , θ
2
0
))∣∣1l0(∞)≤l)

=
l∑
k=0

E
(∣∣�−1/2(θ2

(
t, θ1

0 , θ
2
0
)− θ1

(
t, θ1

0 , θ
2
0
))∣∣1l0(∞)=k)

=
l∑
k=0

E
[
E
(∣∣�−1/2(θ2

(
t − kT + kT , θ1

0 , θ
2
0
)− θ1

(
t − kT + kT , θ1

0 , θ
2
0
))∣∣

· 1l0(∞)=k|FkT
)]

=
l∑
k=0

E
[
E(θ1(kT ),θ2(kT ))

[∣∣�−1/2(θ2
(
t − kT , θ1(kT ), θ2(kT )

)
− θ1

(
t − kT , θ1(kT ), θ2(kT )

))∣∣
· 1{θ2(·−kT ,θ1(kT ),θ2(kT ))=θ̃ (·−kT ,θ1(kT ),θ2(kT ))}

]
· 1{‖θ1(kT )‖2m(p−1)

L2m(p−1)+‖θ2(kT )‖2m(p−1)

L2m(p−1)≤2C0}
]

≤
l∑
k=0

E
[
E(θ1(kT ),θ2(kT ))

[∣∣�−1/2(θ̃(t − kT ,W, θ1(kT ), θ2(kT )
)

− θ(t − kT ,W, θ1(kT )
))∣∣]

· 1{‖θ1(kT )‖2m(p−1)

L2m(p−1)+‖θ2(kT )‖2m(p−1)

L2m(p−1)≤2C0}
]

≤ C
l∑
k=0

(t − kT + 1)−q ≤ C(t − lT + 1)−q+1,

where we used θi(kT ) to denote θi(kT , θ1
0 , θ

2
0 ) for simplicity.

Step 3. Construction of Wiener processes.
Now we want to estimate P(l0(k + 1)= 0|l0(k)= 0). As in most papers using

coupling methods for SPDEs, our tool is the Girsanov transform. Set⎧⎪⎪⎪⎨⎪⎪⎪⎩
h(t,W)= h(θ(t − kT ,W, θ1

(
kT , θ1

0 , θ
2
0

))
,

θ̃
(
t − kT ,W, θ1

(
kT , θ1

0 , θ
2
0

)
, θ2

(
kT , θ1

0 , θ
2
0

)))
,

τ1(W)= inf
{
t ∈ (kT , (k + 1)T

]∣∣∣ ∫ t

kT

∣∣h(t,W)∣∣2 dt > C(kT + 1)−q
}
.

Then by Proposition 5.4, we obtain cylindrical Wiener processes W1,W2 on
(�̃, F̃, P̃ ) such that (

W2,W1 +
∫ τ1(W1)∧·
kT

h(t,W1) dt

)
,
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is a maximal coupling of (D(W),D(W + ∫ τ1(W)∧·
kT h(t,W)dt)) on [kT , (k+ 1)T ].

If l0(k)= 0, by construction in Step 1, we have

P
(
l0(k + 1)= 0|FkT )

= P (θ̃(t, θ1
0 , θ

2
0
)= θ2

(
t, θ1

0 , θ
2
0
)

for t ∈ [kT , (k + 1)T
]|FkT )

≥ P̃ (θ̃(· − kT ,W1, θ1
(
kT , θ1

0 , θ
2
0
)
, θ2

(
kT , θ1

0 , θ
2
0
))

(5.8)

= θ(· − kT ,W2, θ2
(
kT , θ1

0 , θ
2
0
))

for t ∈ [kT , (k + 1)T
])

≥ P̃
(
W2 =W1 +

∫ τ1(W1)∧·
kT

h(t,W1) dt and τ1(W1)= (k + 1)T
)
,

where we used that (θ̃(·, θ1
0 , θ

2
0 ), θ2(·, θ1

0 , θ
2
0 )) is a maximal coupling of (θ̃(· −

kT ,W1, θ1(kT , θ
1
0 , θ

2
0 ), θ2(kT , θ

1
0 , θ

2
0 )), θ(· − kT ,W2, θ2(kT , θ

1
0 , θ

2
0 ))) in the first

inequality and (5.4) in the last inequality.
Now set A := {W |τ1(W)= (k+ 1)T },�1 := D(W),�2 := D(W + ∫ τ1(W)∧·

kT ×
h(t,W)dt). Then the Novikov condition is satisfied for �1 and �2, which by the
Girsanov transform implies that(

d�1

d�2

)
(W)= exp

(
−
∫ τ1(W)

kT
h(t,W)dW(t)− 1

2

∫ τ1(W)

kT

∣∣h(t,W)∣∣2 dt).
Thus, we have∫ (

d�1

d�2

)2

d�1 ≤E(M2e
∫ τ1(W)
kT |h(t,W)|2 dt )≤ eC(kT+1)−q ,

whereM2 = exp(−2
∫ τ1(W)
kT h(t,W)dW(t)−2

∫ τ1(W)
kT |h(t,W)|2 dt) andEM2 ≤ 1.

By this, (5.7), (5.8) and Lemmas 5.2 and 5.3, we obtain

P
(
l0(1)= 0

)≥ (�1 ∧�2)(A)
(5.9)

≥ 1

4

(∫ (
d�1

d�2

)2

d�1

)−1

�1(A)
2 ≥ p2

2

4
e−C.

Step 4. Estimate for P(l0(k + 1) �= 0, l0(k)= 0).
By (5.8), we obtain

P
(
l0(k + 1) �= 0|FkT )

≤ P̃
(
W2 =W1 +

∫ τ1(W1)∧·
kT

h(t,W1) dt and τ1(W1) < (k + 1)T
)

+ P̃
(
W2 �=W1 +

∫ τ1(W1)∧·
kT

h(t,W1) dt

)
.
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Since (W2,W1 + ∫ τ1(W1)∧·
0 h(t,W1) dt) is a maximal coupling, it follows from

Lemma 5.2 and the construction of τ1 that

P̃

(
W2 �=W1 +

∫ τ1(W1)∧·
kT

h(t,W1) dt

)
= ‖�1 −�2‖var

(5.10)

≤ 1

2

√∫ (
d�1

d�2

)2

d�2 − 1 ≤ 1

2

√∫ ((
d�1

d�2

)2

d�1

)1/2

− 1

≤ eC/4(kT + 1)−q/2.

Since by the Markov property of (θ1(·, θ1
0 , θ

2
0 ), θ̃(·, θ1

0 , θ
2
0 )), we have

P̃

(
W2 =W1 +

∫ τ1(W1)∧·
kT

h(t,W1) dt and τ1(W1) < (k + 1)T
)

≤ P̃
(
θ
(· − kT ,W2, θ2

(
kT , θ1

0 , θ
2
0
))

= θ̃(· − kT ,W1, θ1
(
kT , θ1

0 , θ
2
0
)
, θ2

(
kT , θ1

0 , θ
2
0
))

and τ1(W1) < (k + 1)T
)

≤ P̃
(∫ (k+1)T

kT

∣∣h(t,W1)
∣∣2 dt > C(kT + 1)−q

)

≤ P
(∫ (k+1)T

kT

∣∣h(θ(t,W, θ1
0
)
, θ̃
(
t,W, θ1

0 , θ
2
0
))∣∣2 dt > C(kT + 1)−q

)
,

by (5.6) and (5.10), we obtain

P
(
l0(k + 1) �= 0 and l0(k)= 0

)≤ C(kT + 1)−q/2,(5.11)

where C depends on C.
Step 5. Estimate for El0(∞)q .
Since l0(k)= 0 implies l0(l)= 0 for any 0 ≤ l ≤ k ≤ ∞,

P
(
l0(∞) �= 0

)≤
∞∑
k=0

P
(
l0(k + 1) �= 0 and l0(k)= 0

)
.

By (5.9) and (5.11), we obtain

P
(
l0(∞) �= 0

)≤ 1 − p2
2

4
e−C +C

∞∑
k=1

(kT + 1)−q/2.

Then there exists T0 such that for T ≥ T0 we have

P
(
l0(∞)= 0

)≥ p0 = p2
2

8
e−C.(5.12)
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Now fix T = T0. Define

σ := inf
{
n ∈ N|l0(n) > 0

}
.

It follows from (5.11) that

P(σ = k + 1)≤ C(kT + 1)−q/2.

Now for 1< q1 <
q
2 − 1,

Eσq11σ<∞ ≤K1,(5.13)

whereK1 is a constant. For δ:=min{n ∈N|‖θ1(nT )‖2m(p−1)
L2m(p−1)+‖θ2(nT )‖2m(p−1)

L2m(p−1) ≤
2C0}, by Proposition 5.6 we obtain that there exist γ > 0 and c > 0 such that

E
(
eγ δ

)≤ c(1 + ‖θ0
1 ‖2m(p−1)
L2m(p−1) + ‖θ0

2 ‖2m(p−1)
L2m(p−1)

)
(5.14)

(cf. [36], [38], (1.56)), where we used C0 > 4CpS [1
2p(p− 1)]p/2λ−p/2

1 Ep/20 . Set⎧⎨⎩
δ0 := δ,
σk+1 := ∞ if δk = ∞; σk+1 := σ ◦�δkT + δk else,
δk := ∞ if σk = ∞; δk := δ ◦�σkT + σk else,

where �t is the shift operator. Set η := σ + δ ◦�σT . If l0(0)= 0, by the Markov
property, (5.13) and (5.14)

E
(
ηq11η<∞

)≤ C(E(σq11σ<∞
)+E((δ ◦�σT )q11δ◦�σ<∞1σ<∞

))
≤ C(E(σq11σ<∞

)
+ cE(1 + ∥∥θ1(σT )

∥∥2m(p−1)
L2m(p−1) + ∥∥θ2(σT )

∥∥2m(p−1)
L2m(p−1)

)
1σ<∞

)
≤ C(1 + ∥∥θ0

1

∥∥2m(p−1)
L2m(p−1) + ∥∥θ0

2

∥∥2m(p−1)
L2m(p−1)

)
,

where we used Proposition 5.6 in the last inequality. Since δk = δk−1 +η ◦�δk−1T ,
we obtain for 1< q1 <

q
2 − 1,

E
(
δ
q1
k 1δk<∞

)≤ (k + 1)q1−1

(
Eδq1 +

k−1∑
n=0

E(η ◦�δnT )q11η◦�δnT <∞
)

(5.15)
≤ C(k + 1)q1

(
1 + ∥∥θ0

1

∥∥2m(p−1)
L2m(p−1) + ∥∥θ0

2

∥∥2m(p−1)
L2m(p−1)

)
.

Moreover, if δk <∞, then σk+1 = ∞ deduces that l0(∞)= δk . Define

k0 := inf
{
k ∈ Z

+|σk+1 = ∞}
.

Then (5.12) implies that

P(k0 ≥ n)≤ (1 − p0)
n.(5.16)
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By (5.16), we obtain k0 <∞ a.s., which implies l0(∞) <∞ a.s. Moreover, we
have for 1< q2 <

q
2 − 1,

E
(
l0(∞)q2

)≤ ∞∑
n=0

E
(
δq2
n 1δn<∞1k0=n

)
.

Then by Hölder’s inequality, we have for 1
p1

+ 1
p′

1
= 1, p1,p

′
1 > 1, satisfying

p1q2 <
q
2 − 1

E
(
l0(∞)q2

)≤ ∞∑
n=0

(
Eδp1q2

n 1δn<∞
)1/p1P(k0 = n)1/p′

1 .

By (5.15) and (5.16), we obtain

E
(
l0(∞)q2

) ≤ C
( ∞∑
n=0

(n+ 1)q2(1 − p0)
n/p′

1

)(
1 + ∥∥θ0

1

∥∥2m(p−1)
L2m(p−1) + ∥∥θ0

2

∥∥2m(p−1)
L2m(p−1)

)
<∞.

Step 6. Conclusion.
By Step 2 and Step 5, we have for t > 0 and 1< q2 <

q
2 − 1

E
∣∣�−1/2(θ2

(
t, θ1

0 , θ
2
0
)− θ1

(
t, θ1

0 , θ
2
0
))∣∣

≤E(∣∣�−1/2(θ2
(
t, θ1

0 , θ
2
0
)− θ1

(
t, θ1

0 , θ
2
0
))∣∣1l0(∞)≤l)

+CP (l0(∞)≥ l + 1
)1/2

≤ C(1 + ∥∥θ0
1

∥∥2m(p−1)
L2m(p−1) + ∥∥θ0

2

∥∥2m(p−1)
L2m(p−1)

)[
(t + 1 − lT )−q+1 + (l + 1)−q2/2

]
,

where we used Proposition 5.6 in the first inequality. Choosing l = [ t+1
2T ], we ob-

tain for 1< q3 <
q
4 − 1

E
∣∣�−1/2(θ2

(
t, θ1

0 , θ
2
0
)− θ1

(
t, θ1

0 , θ
2
0
))∣∣

(5.17)
≤ C(1 + ∥∥θ0

1

∥∥2m(p−1)
L2m(p−1) + ∥∥θ0

2

∥∥2m(p−1)
L2m(p−1)

)
(t + 1)−q3 .

Thus, for ψ ∈ C(H 1) with Cψ := supx,y∈H 1
|ψ(x)−ψ(y)|
|�−1/2(x−y)| <∞, we have∣∣Ptψ(x)− Ptψ(y)∣∣

≤ CψE
∣∣�−1/2(θ2(t, x, y)− θ1(t, x, y)

)∣∣(5.18)

≤ CCψ (1 + ‖x‖2m(p−1)
L2m(p−1) + ‖y‖2m(p−1)

L2m(p−1)

)
(t + 1)−q3 .

By Proposition 5.6, we obtain that for 2<p2 <∞
E
∥∥θ(t)∥∥p2

Lp2 ≤ ‖x‖p2
Lp2 e

−λ1t

+Cp2
S

[
1

2
p2(p2 − 1)

]p2/2

λ
−p2/2
1 Ep2/2

0

(
1 − e−λ1t

)
.
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Since for any invariant measure μ on H 1 and any ε > 0, there exists bε > 0 such
that μ(x ∈H 1 :‖x‖p2

Lp2 > bε)≤ ε, we obtain that for any L> 0∫ (‖x‖p2
Lp2 ∧L)dμ≤

∫
{x:‖x‖p2

Lp2 ≤bε}
(
Ex
∥∥θ(t)∥∥p2

Lp2 ∧L)dμ+Lε

≤ bεe−λ1t +Cp2
S

[
1

2
p2(p2 − 1)

]p2/2

λ
−p2/2
1 Ep2/2

0

(
1 − e−λ1t

)
+Lε.

Letting t → ∞, ε→ 0 and L→ ∞, we obtain that for any invariant measure μ∫
‖x‖p2

Lp2 dμ(x)≤ Cp2
S

[
1

2
p2(p2 − 1)

]p2/2

λ
−p2/2
1 Ep2/2

0 .(5.19)

Then by (5.18), (5.19) for any invariant measures μ1, μ2 we obtain for ψ ∈
C(H 1) with Cψ <+∞ and 1< q3 <

q
4 − 1,∣∣∣∣∫ ψ(x)μ1(dx)−

∫
ψ(x)μ2(dx)

∣∣∣∣
≤ CCψ

(
1 +

∫
‖x‖2m(p−1)

L2m(p−1) μ1(dx)+
∫

‖x‖2m(p−1)
L2m(p−1) μ2(dx)

)
(t + 1)−q3 .

Letting t → ∞, we get that μ1 = μ2. �

REMARK 5.10. (i) The coupling method has been introduced, for example,
in [13, 30–32, 36] to study ergodicity for stochastic partial differential equations.
In these papers, they decompose the process into the sum of a strongly dissipative
process h and another finite dimensional dynamics l driven by a nondegenerate
noise. The process is uniquely determined by the nondegenerate part l which can
be treated by probabilistic arguments. However, in our case, we cannot decompose
the process into the two desired parts since the uniqueness of the process h depends
on the Lp-norm estimate, which cannot be obtained for h.

(ii) It is not clear how to directly use the results in [40] for the following two
reasons: Although we consider the semigroup in H 1, the convergence we used in
Theorem 5.9 is in H−1/2. In [40], only one state space has been considered. If we
choose the general Hilbert space in [40] asH 1, we cannot get the estimate (5.5) for
theH 1-norm. If we choose the general Hilbert space in [40] asH−1/2, the estimate
(5.5) does also not hold for rough initial values in H−1/2. The second reason is
that, since Theorem 5.9 depends on the Lp-norm estimate, we can only prove
E‖θ1(t, θ

1
0 , θ

2
0 )− θ2(t, θ

1
0 , θ

2
0 )‖H−1/2 converges to zero polynomially fast instead

of exponentially fast, when time goes to infinity, where (θ1(t, θ
1
0 , θ

2
0 ), θ2(t, θ

1
0 , θ

2
0 ))

denotes a coupling of two solutions to (3.1) with different initial values θi0 ∈H 1,
i = 1,2.
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(iii) In the situation of Theorem 5.9, we also obtain that Pt on H 1 is asymptoti-
cally strong Feller. In fact, for x, y ∈H 1, define dn(x, y) := 1 ∧ n|�−1/2(x − y)|.
For any two probabilities on H 1 μ1, μ2, we denote the set of positive measures on
H 1 ×H 1 with marginals μ1 and μ2 by C(μ1,μ2). Define the Wasserstein distance

‖μ1 −μ2‖d := inf
μ∈C(μ1,μ2)

∫
H 1×H 1

d(x, y)μ(dx, dy).

By definition and (5.17), we obtain∥∥Pn(x, ·)− Pn(y, ·)∥∥dn ≤ nE∣∣�−1/2(θ2(n, x, y)− θ1(n, x, y)
)∣∣

≤ C(‖x‖L2m(p−1) ,‖y‖L2m(p−1)
)
nn−q3 .

Then we have

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ )

∥∥Pn(x, ·)− Pn(y, ·)∥∥dn = 0,

where B(x, γ ) denotes the ball in H 1 with center x and radius γ , which implies
that Pt on H 1 is asymptotically strong Feller.

(iv) It seems difficult to directly verify the gradient estimate for the semigroup as
[21] did for the 2D Navier–Stokes equation. By their method, we need to consider
an infinitesimal perturbation to the initial condition and to estimate the derivative
of the solution Dθ with respect to the initial value, which requires a good estimate
for E exp‖θ‖pLp . However, this cannot be obtained for α > 1

2 . Even if the noise
is nondegenerate and we use the Bismut–Elworthy–Li formula to compute the
gradient of the semigroup, the ergodicity results only holds for α > 2

3 by delicate
estimates (see Section 6). We cannot directly use the criterion in [27], since it is
not clear how to verify the e-property in [27] for the semigroup associated with the
2D stochastic quasi-geostrophic equation.

5.3. Existence of invariant measures for α > 1
2 . Assume that G satisfies con-

dition Hypothesis E.1.

LEMMA 5.11. Let α > 1
2 . If θ0 ∈H 1, t > 0, then:

(i) E(|θ(t)|2)+E ∫ t0 |�αθ(r)|2 dr ≤ |θ0|2 + t Tr[GG∗],
(ii) for δ ≤ 1 and q ≥ 2α+2

2α−1 ,p ≥ 1, we have

E

∫ t

0

|�δ+αθ(r)|2
(1 + |�δθ(r)|2)p+1 dr ≤ C

(∫ t

0
E
∥∥θ(r)∥∥qLq dr+1

)
≤ Ct(‖θ0‖qLq +1

)
,

(iii) for q ≥ 2α+2
2α−1 , there exist 0< δ1 < 1 − α and 0< γ0 < 1 such that

E

[∫ t

0

∣∣Aδ1α θ(r)∣∣2γ0
H 1 dr

]
≤ C(1 + t)(‖θ0‖qLq + 1

)
.
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PROOF. (i) is well known and follows from Itô’s formula applied to |θ(t)|2. By
Theorems A.1, A.2 in Appendix A, we obtain θ ∈ C([0,∞),H 1) ∩ L2

loc([0,∞),
H 1+α) P -a.s. By a similar argument as in the proof of Theorem 4.2, we obtain for
δ ≤ 1

1
2d
∣∣�δθ ∣∣2 + κ∣∣�δ+αθ ∣∣2 dt + 〈

�δ−α(u · ∇θ),�δ+αθ 〉dt
= 〈
�δθ,�δGdWt

〉+ 1
2 Tr

[
GG∗�2δ]dt.

Then we apply Itô’s formula to the function (1 + |�δθ |2)−p and get

1

(1 + |�δθ(t)|2)p − 1

(1 + |�δθ0|2)p

= 2pκ
∫ t

0

|�δ+αθ |2
(1 + |�δθ |2)p+1 dr + 2p

∫ t

0

〈�δ−α(u · ∇θ),�δ+αθ〉
(1 + |�δθ |2)p+1 dr

− 2p
∫ t

0

〈�δθ,�δGdWr〉
(1 + |�δθ |2)p+1 − p

∫ t

0

Tr[GG∗�2δ]
(1 + |�δθ |2)p+1 dr

+ 2p(p+ 1)
∫ t

0

|G∗�2δθ |2
(1 + |�δθ |2)p+2 dr,

where the last term is meaningful since |G∗�2δθ |2 ≤ |�δθ |2‖�δG‖2
L2(H,H)

. For

q ≥ 2α+2
2α−1 and σ := 2

q
< 2α− 1, we have∣∣〈�δ−α(u · ∇θ),�δ+αθ 〉∣∣= ∣∣〈�δ−α∇ · (uθ),�δ+αθ 〉∣∣

≤ C∣∣�δ−α+1+σ θ
∣∣ · ‖θ‖Lq ∣∣�δ+αθ ∣∣

≤ C‖θ‖2α/(2α−1−σ)
Lq

∣∣�δθ ∣∣2 + κ∣∣�δ+αθ ∣∣2,
where we used divu= 0 in the first equality and Lemmas 2.1 and 2.2 in the first
inequality and Young’s together with the interpolation inequality (2.3) in the last
inequality.

Hence, we obtain

E

∫ t

0

|�δ+αθ |2
(1 + |�δθ |2)p+1 dr ≤C

(∫ t

0
E‖θ‖qLq dr + t

)
≤ Ct(‖θ0‖qLq + 1

)
,

where we used Proposition 5.6 in the last step.
(iii) Since by Young’s inequality for some γ0 > 0, we have

∣∣�δ+αθ ∣∣2γ0 ≤ c
[ |�δ+αθ |2
(1 + |�δθ |2)p+1 + 1 + ∣∣�δθ ∣∣2],

we obtain for δ+ α > 1

E

[∫ t

0

∣∣�δ+αθ ∣∣2γ0 dr

]
≤ C(1 + t)(‖θ0‖qLq + 1

)
. �
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THEOREM 5.12. Let α > 1
2 and suppose Hypothesis E.1 holds. Then (Pt )t≥0

is H 1-Feller, that is, for every t > 0 and ψ ∈ Cb(H 1), Ptψ ∈ Cb(H 1). Further-
more, there exists an invariant measure ν on H 1 of the transition semigroup
(Pt )t≥0. Moreover, there are 0< δ1 < 1 − α and 0< γ0 < 1 such that∫ ∣∣Aδ1α x∣∣2γ0

H 1 dν <∞.

PROOF. Choose x0 ∈H 1 and define for t > 0

μt := 1

t

∫ t

0
P ∗
r δx0 dr.

By Lemma 5.11(iii), we have for t > 1 that∫ ∣∣Aδ1α x∣∣2γ0
H 1μt(dx)≤ C.

This implies that {μt |t > 0} is tight on H 1. By Theorem A.3 in Appendix A,
we obtain that (Pt )t≥0 is H 1-Feller. Hence, any limit point of μt is an invariant
measure for (Pt )t≥0. �

Combining Theorem 5.9 and Theorem 5.12, we obtain the following results.

THEOREM 5.13. Fix α > 1/2. Assume Hypotheses E.1 and E.2 hold. Let δ0 =
λN+1 − 2p/2CpRC

p+1
S κ1−p[p(p − 1)]p/2λ−p/2

1 Ep/20 > 0 for p = α+1
α−1/2 , where N

is as in Hypothesis E.2, CS,CR are the constants for Sobolev embedding and Riesz
transform, respectively. Then there exists exactly one invariant probability measure
ν for Pt .

Moreover, for ψ ∈ C(H 1) with Cψ := supx,y∈H 1
|ψ(x)−ψ(y)|
|�−1/2(x−y)| <∞ and any ini-

tial distribution μ0 on H 1 with
∫ ‖x‖2m(p−1)

L2m(p−1) dμ0 <∞ for some m> 35, the fol-

lowing polynomial bound is satisfied for 1< q3 <
m−19

16 :∣∣∣∣∫ Ptψ(x)μ0(dx)−
∫
ψ(x)ν(dx)

∣∣∣∣
(5.20)

≤ CCψ
(

1 +
∫

‖x‖2m(p−1)
L2m(p−1) μ0(dx)

)
(t + 1)−q3 .

PROOF. (5.20) can be easily deduced from (5.18) and (5.19). �

5.4. Law of large numbers. In this section, we establish the law of large num-
bers for the solution of the stochastic quasi-geostrophic equation. The proof is
mainly inspired by the approach used in [28].
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THEOREM 5.14. Fix α > 1/2. Assume Hypotheses E.1 and E.2 hold. Set
δ0 := λN+1 − 2p/2CpRC

2p
S κ

1−p[p(p − 1)]p/2λ−p/2
1 Ep/20 > 0 for p = α+1

α−1/2 ,
where N is as in Hypothesis E.2, CS,CR are the constants for the Sobolev em-
bedding and Riesz transform, respectively. Then for ψ ∈ C(H 1) with Cψ :=
supx,y∈H 1

|ψ(x)−ψ(y)|
|�−1/2(x−y)| < ∞ and any initial distribution μ0 on H 1 with∫ ‖x‖2m(p−1)

L2m(p−1) dμ0 <∞ for some m> 35,

lim
T→∞

1

T

∫ T

0
ψ
(
θ(s)

)
ds =

∫
ψ dν in probability.

PROOF. (5.20) implies that for ψ ∈ C(H 1) with Cψ <∞

lim
T→∞

∣∣∣∣ 1

T

∫ T

0
Eψ

(
θ(t)

)
dt −

∫
ψ(x)ν(dx)

∣∣∣∣= 0.(5.21)

Now we want to prove that for bounded ψ ∈ C(H 1) with Cψ <∞

lim
T→∞

∣∣∣∣ 1

T 2E

(∫ T

0
ψ
(
θ(t)

)
dt

)2

−
(∫

ψ(x)ν(dx)

)2∣∣∣∣= 0.(5.22)

We have

1

T 2E

(∫ T

0
ψ
(
θ(t)

)
dt

)2

= 1

T 2E

(∫ T

0
ψ
(
θ(t)

)
dt

∫ T

0
ψ
(
θ(s)

)
ds

)

= 2

T 2

∫ T

0

∫ t

0
E
[
ψ
(
θ(t)

)
ψ
(
θ(s)

)]
dt ds

= 2

T 2

∫ T

0

∫ t

0
〈μ0Ps,ψPt−sψ〉dt ds.

Moreover, we have that for B := {‖x‖L2m(p−1) ≤R},∣∣∣∣ 2

T 2

∫ T

0

∫ t

0

〈
μ0Ps,ψ

(
Pt−sψ −

∫
ψ(x)ν(dx)

)〉
dt ds

∣∣∣∣
≤
∣∣∣∣ 2

T 2

∫ T

0

∫ t

0

〈
μ0Ps,1Bψ

(
Pt−sψ −

∫
ψ(x)ν(dx)

)〉
dt ds

∣∣∣∣
+
∣∣∣∣ 2

T 2

∫ T

0

∫ t

0

〈
μ0Ps,1Bcψ

(
Pt−sψ −

∫
ψ(x)ν(dx)

)〉
dt ds

∣∣∣∣
:= IT + IIT .

By (5.20), we obtain that there exists T1 > 0 such that for any T > T1

sup
x∈B

∣∣∣∣ 1

T

∫ T

0
Ptψ(x)−

∫
ψ dν

∣∣∣∣< ε.(5.23)
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Thus, for the first term we have the following:

IT =
∣∣∣∣ 2

T 2

∫ T

0
(T − s)

〈
μ0Ps,1Bψ

[
1

T − s
∫ T−s

0

(
Ptψ −

∫
ψ(x)ν(dx)

)
dt

]〉
ds

∣∣∣∣
≤
∣∣∣∣ 2

T 2

∫ T1

0
s

〈
μ0PT−s,1Bψ

[
1

s

∫ s

0

(
Ptψ −

∫
ψ(x)ν(dx)

)
dt

]〉
ds

∣∣∣∣
+
∣∣∣∣ 2

T 2

∫ T

T1

s

〈
μ0PT−s,1Bψ

[
1

s

∫ s

0

(
Ptψ −

∫
ψ(x)ν(dx)

)
dt

]〉
ds

∣∣∣∣
≤ 4‖ψ‖2

L∞
(
T1

T

)2

+ ε‖ψ‖L∞,

where we used (5.23) in the last step. For the second term by Proposition 5.6, we
have

IIT ≤ 4‖ψ‖2
L∞

T 2

∫ T

0

∫ t

0
μ0Ps

(
Bc
)
ds dt

≤ ‖ψ‖2
L∞
C

R
.

Choosing R large enough, we obtain for any ε > 0 that there exists T0 such that
for T ≥ T0 ∣∣∣∣ 2

T 2

∫ T

0

∫ t

0

〈
μ0Ps,ψ

(
Pt−sψ −

∫
ψ(x)ν(dx)

)〉
dt ds

∣∣∣∣≤ ε.
The latter implies

lim
T→∞

∣∣∣∣ 1

T 2E

(∫ T

0
ψ
(
θ(t)

)
dt

)2

−
(∫

ψ(x)ν(dx)

)2∣∣∣∣
≤ lim
T→∞

∣∣∣∣ 2

T 2

∫
ψ(x)ν(dx)

∫ T

0

∫ t

0
〈μ0Ps,ψ〉dt ds −

(∫
ψ(x)ν(dx)

)2∣∣∣∣
=
∣∣∣∣∫ ψ(x)ν(dx)∣∣∣∣ lim

T→∞

∣∣∣∣ 2

T 2

∫ T

0
t dt

[
1

t

∫ t

0
〈μ0Ps,ψ〉ds −

∫
ψ(x)ν(dx)

]∣∣∣∣
= 0.

Now by (5.21) and (5.22) we obtain for bounded ψ with Cψ <∞,

lim
T→∞

1

T

∫ T

0
ψ
(
θ(s)

)
ds =

∫
ψ dν in probability.

In general, we can remove the restriction of the boundedness of ψ by defining
ψL =ψ ∧L∨ (−L) for L ∈ R

+. Since for x, y ∈H 1∣∣ψL(x)−ψL(y)∣∣≤ ∣∣ψ(x)−ψ(y)∣∣≤Cψ ∣∣�−1/2(x − y)∣∣,



1244 M. RÖCKNER, R. ZHU AND X. ZHU

we have

lim
T→∞

1

T

∫ T

0
ψL

(
θ(s)

)
ds =

∫
ψL dν in probability.(5.24)

Since
∫ |ψ |dν <∞, it is clear that

lim
L→∞

∫
ψL dν =

∫
ψ dν.

Applying (5.21) for |ψ −ψL|, we have

lim
L→∞ lim

T→∞E
1

T

∫ T

0

∣∣ψL(θ(s))−ψ(θ(s))∣∣ds = lim
L→∞

∫
|ψL −ψ |dν = 0.

Now the result follows by taking the limit on both sides of (5.24). �

6. Exponential convergence for α > 2
3 . Under the conditions (Hypothe-

ses E.1, E.2) on G we only obtain the semigroup converges to the invariant mea-
sure polynomially fast [see (5.20)]. In this section, we prove that the convergence
is exponentially fast, however, under stronger conditions for α and G. We assume
that α > 2

3 , and that G satisfies:

HYPOTHESIS E.3. There are an isomophism Q0 of H and a number s ≥ 1
such that G = A

−(s+α)/(2α)
α Q

1/2
0 , and furthermore, G satisfies (Gp.1) for some

fixed p ∈ ((α− 1
2)

−1,∞) (which is, e.g., always the case if Q0 = I ).

For x := θ0 ∈ Lp , let Px denote the law of the corresponding solution θ(·, x) to
(3.1). Since Hypothesis G.1, (Gp.1) and (GL.1) are satisfied under Hypothesis E.3,
by Theorems 4.3 and 4.4 the measures Px , x ∈ Lp , form a Markov process. Let
(Pt )t≥0 be the associated transition semigroup on Bb(H), defined as

Pt(ϕ)(x) :=E[ϕ(θ(t, x))], x ∈Lp,ϕ ∈ Bb(H).(6.1)

REMARK 6.1. If Hypothesis E.3 is satisfied with s > 3 − 2α, then Hypothe-
ses E.1, E.2 hold for G and (Gp.1) holds for any p ∈ (0,∞).

6.1. The strong Feller property for α > 2
3 . In this subsection, we prove that its

transition semigroup has the strong Feller property under Hypothesis E.3.

REMARK 6.2. (i) Since in our case α < 1, the linear part (−
)α in (1.1)
is less regularizing. As G = A

−(s+α)/(2α)
α Q

1/2
0 , we get the trajectories z of the

associated O–U process to be in C([0,∞),Hs+2α−1−ε0) for every ε0 > 0 (cf. [11],
Theorem 5.16, [14], Proposition 3.1). However, in order to prove the weak-strong
uniqueness principle (see Theorem 6.4 below) and the strong Feller property of the
semigroup associated with the solution of the cutoff equation (see Proposition 6.5
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below), we need z ∈ C([0,∞),H s+1−α+σ1) for some σ1 > 0. Therefore, we need
s + 2α − 1 > s + 1 − α, that is, α > 2

3 . The situation of the 3D Navier–Stokes
equation is different. While in our case the needed regularity of z is higher than
the regularity of our solution space C((0,∞),H s) for the cutoff equation (6.2),
for the 3D Navier–Stokes equation the needed regularity of z is the same as for the
solution of the cutoff equation.

(ii) Since α < 1, we cannot apply the same type of estimate as in [18] (cf.
[18], Lemma D.2). Instead, we use Lemma 2.1 and choose suitable parameters
(s, σ1, σ2) such that the approach in [18] can be modified to apply here [see (6.6)–
(6.10) and so on].

(iii) It seems difficult to use the Kolmogorov equation method as in [10, 14] or
a coupling approach as in [39] in our situation. In fact, to get a uniform Hs -norm
estimate for the solutions of the Galerkin approximations of equation (1.1) for
some s > 0, the regularity, needed for the trajectories of the associated Ornstein–
Uhlenbeck (O–U) process z is higher than Hs , which is entirely different from the
situation of the 3D Navier–Stokes equation. According to the method in [10, 14]
and [39], we should use the solutions’ Hs+α-norm to control the Hs+α-norm of
the derivative of the solutions as required for the Bismut–Elworthy–Li formula. In
particular, the associated O–U process z should be also in Hs+α . However, under
Hypothesis E.3 for the noise, the O–U process z is only in L2([0, T ],H s+2α−1).
As a consequence, for their method to apply here, we need even α ≥ 1.

Fix s > 1 as in Hypothesis E.3 and set W := Hs and |x|W := ‖x‖Hs . In this
subsection, we choose

� := C([0,∞);H−β)
for some β > 3 and let B denote the Borel σ -algebra on �.

Now we state the main result of this section.

THEOREM 6.3. Fix α > 2
3 . Under Hypothesis E.3, (Pt )t≥0 is W-strong Feller,

that is, for every t > 0 and ψ ∈ Bb(H), Ptψ ∈Cb(W).
We shall use [18], Theorem 5.4, which is an abstract result to prove the strong

Feller property. In order to use [18], Theorem 5.4, we follow the idea of [18],
Theorem 5.11, to construct P (R)x . We introduce an equation which differs from the
original one by a cut-off only, so that with large probability they have the same
trajectories on a small random time interval [see (6.3) below]. We consider the
equation

dθ(t)+Aαθ(t) dt + χR(|θ |2W)
u(t) · ∇θ(t) dt =GdW(t),(6.2)

where χR :R→ [0,1] is of class C∞ such that χR(|θ |)= 1 if |θ | ≤R, χR(|θ |)= 0
if |θ |>R+ 1 and with its first derivative bounded by 1. Then, if we can prove the
following Theorem 6.4 and Proposition 6.5, Theorem 6.3 follows.
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THEOREM 6.4 (Weak–strong uniqueness). Fix α > 2
3 . Suppose Hypothe-

sis E.3 holds. Then for every x ∈ W , equation (6.2) has a unique martingale solu-
tion P (R)x , with

P (R)x

[
C
([0,∞);W)]= 1.

Let τR :�→ [0,∞] be defined by

τR(ω) := inf
{
t ≥ 0 :

∣∣ω(t)∣∣2W ≥R},
and τR(ω) := ∞ if this set is empty. If x ∈ W and |x|2W <R, then

lim
ε→0

P
(R)
x+h[τR ≥ ε] = 1, uniformly in h ∈ W, |h|W < 1.(6.3)

Moreover,

EP
(R)
x
[
ϕ(ωt )1[τR≥t]

]=EPx [ϕ(ωt )1[τR≥t]
]

(6.4)

for every t ≥ 0 and ϕ ∈ Bb(H).

PROOF. Let z denote the solution to

dz(t)+Aαz(t) dt =GdW(t),
with initial data z(0)= 0 and let v(R)x be the solution to the auxiliary problem

dv(R)(t)

dt
+Aαv(R)(t)+ u(R)(t) · ∇(v(R)(t)+ z(t))χR(∣∣v(R) + z∣∣2W)= 0,(6.5)

with v(R)(0)= x. Here, u(R)(t)= uv(R)(t)+ uz(t), uv(R) and uz satisfy (1.3) with
θ replaced by v(R) and z, respectively. Moreover, define θ(R) := v(R)+ z, which is
a weak solution to equation (6.2). We denote its law on � by P (R)x . By Hypothe-
sis E.3, the trajectories of the noise belong to

�∗ := ⋂
β∈(0,1/2),η∈[0,(s+α)/(2α)−1/(2α))

Cβ
([0,∞);D(Aηα)),

with probability one. Hence, the analyticity of the semigroup generated by Aα
implies that for each ω ∈�∗, z(ω) ∈ C([0,∞),H s+2α−1−ε0) for every ε0 > 0.

Now, for ω ∈�∗ we prove that equation (6.5) with z(ω) replacing z has a unique
global weak solution in the space C([0,∞);W). First, we obtain the following a
priori estimate for suitable σ1, σ2 > 0 with σ2 ≤ s, σ2 + σ1 = 1, s + σ1 − α + 1<
s + 2α − 1< s + α, where we used that α > 2

3 since 0< σ1 < 3α− 2:

1

2

d

dt

∣∣�sv(R)∣∣2 + κ∣∣�s+αv(R)∣∣2
= χR(∣∣θ(R)∣∣2W)〈

�s−α∇ · (u(R)θ(R)),�s+αv(R)〉
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≤ CχR(∣∣θ(R)∣∣2W)∣∣�s−α+1(u(R)θ(R))∣∣ · ∣∣�s+αv(R)∣∣
≤ CχR(∣∣θ(R)∣∣2W)∣∣�s−α+1+σ1θ(R)

∣∣∣∣�σ2θ(R)
∣∣ · ∣∣�s+αv(R)∣∣

≤ CχR(∣∣θ(R)∣∣2W)(∣∣�s−α+1+σ1v(R)
∣∣+ ∣∣�s−α+1+σ1z

∣∣) · ∣∣�s+αv(R)∣∣(6.6)

≤ CχR(∣∣θ(R)∣∣2W)(
C
∣∣�sv(R)∣∣1−r1 ∣∣�s+αv(R)∣∣r1 + ∣∣�s−α+1+σ1z

∣∣)
· ∣∣�s+αv(R)∣∣

≤ CχR(∣∣θ(R)∣∣2W)(∣∣�sv(R)∣∣2 + ∣∣�s−α+1+σ1z
∣∣2)+ κ

2

∣∣�s+αv(R)∣∣2
≤ CχR(∣∣θ(R)∣∣2W)(

C(R)+ ∣∣�s−α+1+σ1z
∣∣2)+ κ

2

∣∣�s+αv(R)∣∣2,
where r1 := 1−α+σ1

α
. Here, in the first equality, we used divu = 0, and in the

second inequality we used Lemmas 2.1 and 2.2, and in the fourth inequality we
used the interpolation inequality (2.3) and that s − α + 1 + σ1 < s + 2α − 1,
and in the fifth inequality we used Young’s inequality and in the last inequal-
ity we used |�sv(R)| ≤ |�sθ(R)| + |�s−α+1+σ1z|. Then as in the proof of The-
orem A.1 in Appendix A, we prove (6.5) has a weak solution in L∞([0, T ],W)∩
L2([0, T ],H s+α).

Continuity. For each ω ∈ �∗, σ1 and σ2 as in (6.6), since s − α + 1 + σ1 <

s + 2α − 1, we have z ∈ C([0,∞);Hs−α+1+σ1). Since s > 3 − 3α, multiplying
the equations (6.5) by d

dt
�2(s−α)v(R), we obtain

κ

2

d

dt

∣∣�sv(R)∣∣2 + ∣∣�s−αv̇(R)∣∣2
=CχR(∣∣θ(R)∣∣2W)〈

�s−α∇ · (u(R)θ(R)),�s−αv̇(R)〉
≤CχR(∣∣θ(R)∣∣2W)∣∣�s−α+1(u(R)θ(R))∣∣ · ∣∣�s−αv̇(R)∣∣

(6.7)
≤CχR(∣∣θ(R)∣∣2W)∣∣�s−α+1+σ1θ(R)

∣∣∣∣�σ2θ(R)
∣∣ · ∣∣�s−αv̇(R)∣∣

≤CχR(∣∣θ(R)∣∣2W)(∣∣�s+αv(R)∣∣2 + ∣∣�sv(R)∣∣2 + ∣∣�s−α+1+σ1z
∣∣2)

+ 1

2

∣∣�s−αv̇(R)∣∣2.
Here, v̇(R) = dv(R)

dt
and in the first equality we used divu = 0, in the second in-

equality we used Lemmas 2.1 and 2.2, and in the third inequality we used the
interpolation inequality (2.3), that s − α+ 1 + σ1 ≤ s + α and Young’s inequality.

As
∫ T

0 |�s+αv(R)(t)|2 dt can be dominated by (6.6), we get an a priori estimate
for the time derivative d

dt
v(R) in L2(0, T ;Hs−α). Then by [49], we obtain v(R) ∈

C([0, T ],W).
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Uniqueness. Let v1, v2 be two solutions of equation (6.5) in C([0,∞);W) and
set w := v1 − v2 and uw := u1 − u2, where u1, u2 satisfy (1.3) with θ replaced
by θ1 = v1 + z, θ2 = v2 + z. Then by a similar argument as in the proof of Theo-
rem 4.2, we have for small 0< ε1 < (2α − 1 − σ1)∧ σ1 with σ1 as in (6.6)

1

2

d

dt

∣∣�s−αw∣∣2 + κ∣∣�sw∣∣2
= −(χR(|θ1|2W

)− χR(|θ2|2W
))〈
�s+ε1−2α(u1 · ∇θ1),�

s−ε1w
〉

− χR(|θ2|2W
)〈
�s−2α(u1 · ∇w),�sw〉

− χR(|θ2|2W
)〈
�s−2α(uw · ∇θ2),�

sw
〉

= I + II + III.

As∣∣χR(|θ1|2W
)− χR(|θ2|2W

)∣∣≤ C(R)|w|W [
1[0,R+1]

(|θ1|2W
)+ 1[0,R+1]

(|θ2|2W
)]
,

we get for σ1, σ2 as in (6.6),

I = −(χR(|θ1|2W
)− χR(|θ2|2W

))〈
�s+ε1−2α∇ · (u1θ1),�

s−ε1w
〉

≤ C[1[0,R+1]
(|θ1|2W

)+ 1[0,R+1]
(|θ2|2W

)]
× |w|W

∣∣�s−2α+ε1+1+σ1θ1
∣∣∣∣�σ2θ1

∣∣∣∣�s−ε1w
∣∣(6.8)

≤ C(R, |θ1|W , |θ2|W)|w|W
∣∣�s−ε1w

∣∣
≤ C(R, |θ1|W , |θ2|W)∣∣�s−αw∣∣2 + κ

4
|w|2W ,

where in the first equality we used divu1 = 0 and in the first inequality we used
Lemmas 2.1 and 2.2, in the second inequality we used that s−2α+ε1 +1+σ1 < s,
that is, ε1 < 2α − 1 − σ1 and in the third inequality we used the interpolation
inequality (2.3) and Young’s inequality. In a similar way, we obtain

II ≤ ∣∣�sw∣∣∣∣�s−2α+1(u1w)
∣∣

≤ C∣∣�sw∣∣[∣∣�s−2α+1+σ1θ1
∣∣∣∣�s−ε1w

∣∣+ ∣∣�s−2α+1+σ1w
∣∣∣∣�sθ1

∣∣]
≤ C(R, |θ1|W)∣∣�s−αw∣∣2 + κ

4
|w|2W ,

where in the first inequality we used divu1 = 0 and in the second inequality we
used Lemmas 2.1 and 2.2 and s − ε1 ≥ 1 − σ1, and in the third inequality we used
the interpolation inequality (2.3) and Young’s inequality. Similarly,

III ≤ C(R, |θ2|W)∣∣�s−αw∣∣2 + κ

4
|w|2W .
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Then we obtain

1

2

d

dt

∣∣�s−αw∣∣2 + κ∣∣�sw∣∣2
≤ C

(
R, sup

t∈[0,T ]
∣∣θ1(t)

∣∣
W , sup

t∈[0,T ]
∣∣θ2(t)

∣∣
W

)∣∣�s−αw∣∣2 + 3κ

4
|w|2W .

Gronwall’s lemma now yields that |�s−αw| = 0, which implies w = 0.
So, equation (6.5) has a unique global weak solution in the space C([0,∞);W).
Next, we prove (6.3). In order to do so, it is sufficient to show that P (R)x [τR <

ε] ≤ C(ε,R)withC(ε,R) ↓ 0 as ε ↓ 0, for all x ∈W , with |x|2W ≤ R
8 . So, fix ε > 0

small enough, let �ε,R := supt∈[0,ε] |�s−α+1+σ1z(t)| and assume that �2
ε,R ≤ R

8 .
Setting ϕ(t) := |v(R)|2W +�2

ε,R , by (6.6) we get ϕ̇ ≤ C(R). This implies, together
with the bounds on x and �ε,R , that

sup
t∈[0,ε]

∣∣θ(R)(t)∣∣2W ≤R

for ε small enough. It follows that τR ≥ ε. Hence,

P (R)x [τR < ε] ≤ P (R)x

[
sup
t∈[0,ε]

∣∣�s+1+σ1−αz(t)
∣∣2 > R

8

]
.

Letting ε ↓ 0, we have P (R)x [τR < ε] → 0, and the claim is proved, since the prob-
ability above is independent of x.

Finally, the same arguments as in the proof of Theorem 4.2 imply that

θ
(
t ∧ τR(θ(R)))= θ(R)(t ∧ τR(θ(R))) ∀t,P -a.s.

Moreover, since θ is H -valued weakly continuous, we obtain τR(θ(R)) = τR(θ).
�

In order to apply [18], Theorem 5.4, we now only need the following result.

PROPOSITION 6.5. Fix α > 2
3 . Suppose Hypothesis E.3 holds. For every R >

0, the transition semigroup (P (R)t )t≥0 associated to equation (6.2) is W-strong
Feller.

PROOF. We shall provide formal estimates, that can, however, be made rigor-
ous through Galerkin approximations. Let ( ,F, (Ft )t≥0,P) be a filtered proba-
bility space, (Wt)t≥0 a cylindrical Wiener process on H and, for every x ∈ W , let
θ
(R)
x be the solution to equation (6.2) with initial value x ∈ W . By the Bismut–

Elworthy–Li formula,

Dy
(
P
(R)
t ψ

)
(x)= 1

t
EP

[
ψ
(
θ(R)x (t)

) ∫ t

0

〈
G−1Dyθ

(R)
x (l), dW(l)

〉]
,
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where Dy(P
(R)
t ψ) denotes 〈D(P (R)t ψ), y〉 for y ∈ H , Dyθ

(R)
x = Dθ

(R)
x · y and

Dθ
(R)
x denotes the derivative of θ(R)x with respect to the initial value. Then for

‖ψ‖∞ ≤ 1, by the B–D–G inequality∣∣(P (R)t ψ
)
(x0 + h)− (

P
(R)
t ψ

)
(x0)

∣∣
≤ C

t
sup
η∈[0,1]

EP

[(∫ t

0

∣∣G−1Dhθ
(R)
x0+ηh(l)

∣∣2 dl)1/2]
.

The proposition is proved once we prove that the right-hand side of the above
inequality converges to 0 as |h|W → 0.

Fix x ∈ W , h ∈H and write θ = θ(R)x , v = v(R), u= u(R),Dθ =Dhθ for sim-
plicity. The term Dθ solves the following equation:

d

dt
Dθ + κ�2α(Dθ)

= −[χR(|θ |2W)[Du · ∇θ + u · ∇Dθ ] + 2χ ′
R

(|θ |2W)〈θ,Dθ〉Wu · ∇θ],
with initial value Dθ(0)= h and Du satisfying (1.3) with θ replaced by Dθ . Mul-
tiplying the above equation with �2sDθ and taking the inner product in L2, we
have

1

2

d

dt

∣∣�sDθ ∣∣2 + κ∣∣�s+α(Dθ)∣∣2
= −〈[χR(|θ |2W)[Du · ∇θ + u · ∇Dθ ] + 2χ ′

R

(|θ |2W)〈θ,Dθ〉Wu · ∇θ],
�2sDθ

〉
.

For the first term on the right-hand side, we have for |θ |2W ≤R∣∣〈Du · ∇θ,�2sDθ
〉∣∣= ∣∣〈�s−α∇ · (Duθ),�s+αDθ 〉∣∣

≤ C∣∣�s−α+1+σ1θ
∣∣ · ∣∣�σ2Dθ

∣∣ · ∣∣�s+αDθ ∣∣
+C∣∣�s−α+1+σ1Dθ

∣∣ · ∣∣�σ2θ
∣∣ · ∣∣�s+αDθ ∣∣(6.9)

≤ ε∣∣�s+αDθ ∣∣2
+C(C(R)+ ∣∣�s+αv∣∣2 + ∣∣�s−α+1+σ1z

∣∣2)∣∣�sDθ ∣∣2
for σ1, σ2 as (6.6), where we used divDu= 0 in the first equality and Lemmas 2.1
and 2.2 in the first inequality as well as the interpolation inequality (2.3) and
Young’s inequality in the second inequality.

The second term can be estimated similarly. For the third term, by Lemmas 2.1
and 2.2, we have∣∣〈u · ∇θ,�2sDθ

〉∣∣= ∣∣〈�s−α∇ · (uθ),�s+αDθ 〉∣∣
≤ C∣∣�s−α+1+σ1θ

∣∣∣∣�σ2θ
∣∣ · ∣∣�s+αDθ ∣∣(6.10)

≤ C(∣∣�s+αv∣∣+ ∣∣�s−α+1+σ1z
∣∣)∣∣�sθ ∣∣∣∣�s+αDθ ∣∣,
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where in the first equality we used divu= 0. Then we obtain

1

2

d

dt

∣∣�sDθ ∣∣2 + κ∣∣�s+α(Dθ)∣∣2
≤ κ

2

∣∣�s+α(Dθ)∣∣2 +C(C(R)+ ∣∣�s+αv∣∣2 + ∣∣�s−α+1+σ1z
∣∣2)∣∣�sDθ ∣∣2.

From Gronwall’s inequality and (6.6), we finally get∫ t

0

∣∣�s+α(Dθ(l))∣∣2 dl
≤ C∣∣�sh∣∣2 + exp

(
C

∫ t

0

(
C(R)+ ∣∣�s+αv∣∣2 + ∣∣�s−α+1+σ1z

∣∣2 dl))∣∣�sh∣∣2
≤ C∣∣�sh∣∣2 + exp

(
C

(∣∣�sx∣∣2 +
∫ t

0

(
C(R)+ ∣∣�s−α+1+σ1z

∣∣2 dl)))∣∣�sh∣∣2.
Since by s − α + 1 + σ1 < s + 2α − 1, z is a Gaussian random variable in
C([0,∞);Hs−α+1+σ1) (cf. [9], Proposition 2.15), by Fernique’s theorem we could
choose t0 small enough and obtain

E

∫ t0

0

∣∣�s+α(Dθ(l))∣∣2 dl ≤ c(t0,R)∣∣�sh∣∣2,
which, as G−1 =Q−1/2

0 �s+α , implies the assertion for t0. For general t , by the
semigroup property the assertion follows easily. �

6.2. A support theorem for α > 2/3. A Borel probability measure μ on H
is fully supported on W if μ(U) > 0 for every nonempty open set U ⊂ W . Set
W1 :=Hs−α+1+σ1 , where σ1 is the same as (6.6) and we will use it below.

LEMMA 6.6 (Approximate controllability). Let R > 0, T > 0. Let x ∈W and
y ∈ W , with Aαy ∈ W1, such that

|x|2W ≤ R

2
, |y|2W ≤ R

2
.

Then there exist (a control function) ω ∈ Lip([0, T ];W1) and

θ ∈ C([0, T ];W)∩L2([0, T ];Hs+α),
such that θ solves the equation

θ(t)− x +
∫ t

0
Aαθ(r)+ χR(|θ |2W)

u(r) · ∇θ(r) dr
(6.11)

= ω(t) dt-a.e. t ∈ [0, T ],
with θ(0)= x and θ(T )= y, and

sup
t∈[0,T ]

∣∣θ(t)∣∣2W ≤R.(6.12)
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PROOF. First consider ω = 0. By similar arguments as in Theorems A.1
and A.2, there exist a unique solution θ ∈ C([0, T ],W). Then by a similar cal-
culation as (6.6), we get

d

dt
|θ |2W + κ∣∣�αθ ∣∣2W ≤ C(R).

Hence, θ(t) ∈Hs+α for almost every t ∈ [0, T ] and, by solving again the equation
with one of these regular points as initial condition and using Lemmas 2.1 and 2.2
we have

d

dt

∣∣�α+sθ
∣∣2 + κ∣∣�2α+sθ

∣∣2
W = χR(|θ |2W)〈

�s∇ · (uθ),�2α+sθ
〉

≤ CχR(|θ |2W)∣∣�2α+sθ
∣∣∣∣�s+1+σ3θ

∣∣‖θ‖Lp
≤ C(R)∣∣�s+αθ ∣∣2 + κ

2

∣∣�s+2αθ
∣∣2,

where σ3 = 2
p
< 2α − 1 and we used divu= 0 in the first equality and Hs ⊂ Lp

and the interpolation inequality (2.3), Young’s inequality in the last step. Then by
a boot strapping argument, we find a small T∗ ∈ (0, T2 ) such that |θ(t)|2W ≤ R and
Aαθ(T∗) ∈ W1 for all t ≤ T∗. Define θ to be the solution above for t ∈ [0, T∗] and
extended by linear interpolation between y and θ(T∗) in [T∗, T ]. Then obviously
(6.12) follows.

Next, if we set

η := ∂tθ +Aαθ + χR(|θ |2W)
u · ∇θ, T∗ ≤ t ≤ T ,

ω := 0 for t ≤ T∗ and ω(t)= ∫ t
T∗ ηs ds for t ∈ [T∗, T ], we also have (6.11). It re-

mains to prove that η ∈ L∞(0, T ;W1). For the first two terms of η, this is obvious.
For the nonlinear term, we have that

|u · ∇θ |W1 = ∣∣∇ · (uθ)∣∣W1
≤ C∣∣�2αθ

∣∣2
W1

for any θ ∈ W1, where in the first equality we used divu= 0 and in the last step
we used Lemma 2.1. �

Let l ∈ (0, 1
2) and p > 1 such that l− 1

p
> 0. Under Hypothesis E.3, we see that

for every α1 <
s+α−1

2α the map

ω 	→ z(·,ω) :Wl,p([0, T ];D(Aα1
α

))→ C
([0, T ];D(Aα1+l−1/p−ε

α

))
is continuous, for all ε > 0 (cf. [12]), where z is the solution to the following
equation:

z(t)+
∫ t

0
Aαz(s) ds = ω(t).(6.13)

In particular, it is possible to find α1 ∈ (0, s+α−1
2α ) and p such that the above map is

continuous from Wl,p([0, T ];D(Aα1
α )) to C([0, T ];Hs−α+1+σ1) since α > 2

3 and
σ1 < 3α − 2.
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LEMMA 6.7 (Continuity with respect to the control functions). Let l, p and
α1 be chosen as above, and let ωn → ω in Wl,p([0, T ];D(Aα1

α )). Let θ be the
solution to equation (6.11) corresponding to ω and some initial condition x ∈ W
(the solution exists by the same arguments as the proof of Theorem A.1), and let

τ = inf
{
t ≥ 0 :

∣∣θ(t)∣∣2W ≥R},
where as usual we set inf∅ = ∞. For each n ∈ N, define similarly θn and τn
corresponding to ωn with the same initial condition x. If τ > T , then τn > T for n
large enough and

θn → θ in C
([0, T ];W)

.

PROOF. Set vn := θn − zn for each n ∈ N, and v := θ − z, where zn, z are
the solutions to (6.13) corresponding to ωn,ω, respectively. Since ωn → ω in
Wl,p([0, T ];D(Aα1

α )), we can find a common lower bound for (τn)n∈N and τ by
(6.6). For every time smaller than this lower bound t0, by (6.6), we have

sup
(0,t0)

∣∣�sθn∣∣2 ≤R, sup
(0,t0)

∣∣�sθ ∣∣2 ≤R, sup
(0,t0)

∣∣�s−α+1+σ1zn
∣∣≤ C,

and

sup
(0,t0)

∣∣�s−α+1+σ1z
∣∣≤ C,

∫ t0

0

∣∣�s+αvn(l)∣∣2 dl ≤ C(R), ∫ t0

0

∣∣�s+αv(l)∣∣2 dl ≤ C(R),
where C(R) is a constant depending only on R. Moreover, we obtain for t ≤ t0

d

dt
|v− vn|2W + 2κ

∣∣�α(vn − v)∣∣2W
= 〈
un · ∇θn,�2s(v − vn)〉− 〈

u · ∇θ,�2s(v − vn)〉
= [〈

(uvn − uv) · ∇θn,�2s(v − vn)〉+ 〈
u · ∇(vn − v),�2s(v − vn)〉

+ 〈
(uzn − uz) · ∇θn,�2s(v − vn)〉+ 〈

u · ∇(zn − z),�2s(v − vn)〉],
where uvn, uzn satisfy (1.3) with θ replaced by vn, zn, respectively. For the first
term on the right-hand side, we have∣∣〈(uvn − uv) · ∇θn,�2s(v − vn)〉∣∣

= ∣∣〈�s−α∇ · ((uvn − uv)θn),�s+α(v − vn)〉∣∣
≤ C∣∣�s+α(v − vn)

∣∣∣∣�s−α+1+σ1(v − vn)
∣∣∣∣�σ2θn

∣∣
+C∣∣�s+α(v − vn)

∣∣∣∣�s−α+1+σ1θn
∣∣∣∣�σ2(v − vn)

∣∣
≤ κ

4

∣∣�s+α(v − vn)
∣∣2 +C(C(R)+ ∣∣�s+αvn∣∣2)∣∣�s(v − vn)

∣∣2
+ c∣∣�s−α+1+σ1zn

∣∣2∣∣�s(v − vn)
∣∣2.
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Here, σ1, σ2 are as (6.6) and we used div(uvn − uv) = 0 in the first equality and
Lemmas 2.1 and 2.2 in the first inequality and the interpolation inequality (2.3)
and Young’s inequality in the last step. The other term can be estimated similarly.
Then we obtain

d

dt
|v − vn|2W + 2κ

∣∣�α(vn − v)∣∣2W
≤ κ∣∣�α(vn − v)∣∣2W

+C(C(R)+ ∣∣�αvn∣∣2W + ∣∣�αv∣∣2W)(|v − vn|2W + ∣∣�s−α+1+σ1(z− zn)
∣∣2).

Then Gronwall’s lemma yields that

|v− vn|2W ≤�n exp
(
C

∫ t

0

(
C(R)+ ∣∣�αvn∣∣2W + ∣∣�αv∣∣2W)

dl

)
×
∫ t

0

(
C(R)+ ∣∣�αvn∣∣2W + ∣∣�αv∣∣2W)

dl,

where �n = sup[0,T ] |�s−α+1+σ1(z− zn)|. We conclude θn → θ in C([0, T ];W).
Now, since τ > T , if S = supt∈[0,T ] |�sθ(t)|2, then S < R and we find δ > 0 (de-
pending only on R and S) and n0 ∈ N such that �2

n < δ and |vn − v|2W < δ for all
n≥ n0, and so∣∣θn(t)∣∣W ≤ ∣∣vn(t)− v(t)∣∣W +�n + ∣∣θ(t)∣∣W ≤ 2

√
δ + √

S ≤ √
R− δ.

Then τn > T for all n≥ n0. �

THEOREM 6.8. Fix α > 2
3 . Suppose Hypothesis E.3 holds and for x ∈ W let

Px be the distribution of the solution of (3.1) with initial value θ(0)= x. Then for
every x ∈ W and every T > 0, the image measure of Px at time T is fully supported
on W .

PROOF. Fix x ∈ W and T > 0. We need to show that for every y ∈ W and
ε > 0, Px[|θT − y|W < ε] > 0. Let ȳ ∈ W ∩ D(Aα) such that Aαȳ ∈ W1 and
|y − ȳ|W < ε

2 . Choose R > 0 such that 3|x|2W <R and 3|y|2W <R. Then by The-
orem 6.4,

Px
[|θT − y|W < ε

] ≥ Px
[
|θT − ȳ|W <

ε

2

]
≥ Px

[
|θT − ȳ|W <

ε

2
, τR > T

]
= P (R)x

[
|θT − ȳ|W <

ε

2
, τR > T

]
.

By Lemma 6.6, there is a control ω̄ ∈ Wl,p([0, T ];D(Aα1
α )), with l, p and

α1 chosen as in Lemma 6.7, such that the solution θ̄ to the control problem
(6.11) corresponding to ω̄ satisfies θ̄ (0) = x, θ̄(T ) = ȳ and |θ̄ (t)|2W ≤ 2

3R. By
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Lemma 6.7, there exists δ > 0 such that for all ω ∈ Wl,p([0, T ];D(Aα1
α )) with

|ω− ω̄|
Wl,p([0,T ];D(Aα1

α ))
< δ, we have∣∣θ(T ,ω)− ȳ∣∣W <

ε

2
and sup

t∈[0,T ]
∣∣θ(t,ω)∣∣2W <R,

where θ(·,ω) is the solution to the control problem (6.11) corresponding to ω and
starting at x. Hence,

P (R)x

[
|θT − ȳ|W <

ε

2
, τR > T

]
≥ P (R)x

[|η− ω̄|
Wl,p([0,T ];D(Aα1

α ))
< δ

]
,

where ηt = θt −x+ ∫ t
0 (Aαθs +χR(|θs |2W)u · ∇θs) ds, hence θT = θ(T , η), and the

right-hand side of the inequality above is strictly positive since by Hypothesis E.3
η is a Gaussian process in D(Aα1

α ). �

THEOREM 6.9. Let α > 2
3 and suppose Hypothesis E.3 holds. Then there

exists a unique invariant measure ν on W for the transition semigroup (Pt )t≥0.
Moreover:

(i) The invariant measure ν is ergodic.
(ii) The transition semigroup (Pt )t≥0 is W-strong Feller, irreducible and, there-

fore, strongly mixing. Furthermore, Pt(x, dy), t > 0, x ∈ W , are mutually
equivalent.

(iii) There exist 0< δ1 <
s+α−1

2α and 0< γ0 < 1 such that∫ ∣∣Aδ1α x∣∣2γ0
W dν <∞.

PROOF. By similar methods as the proof of Theorem 5.12, we obtain the ex-
istence of the invariant measures. In fact, under Hypothesis E.3, we could choose
the following approximation:

dθn(t)+Aαθn(t) dt + un(t) · ∇θn(t) dt = kδn ∗GdW(t),
with initial data θn(0) = x ∈ Hs,un satisfying (1.3) with θ replaced by θn and
kδn is the periodic Poisson kernel as in the proof of Theorem 3.3. By the same
arguments as Theorems A.1 and A.2, we obtain that there exist a unique solution
to the above equation with θn ∈ C([0,∞),H s)∩L2

loc([0,∞),H s+α) P -a.s. Then
do the same calculations for θn as in Lemma 5.11, we obtain that there exists
0< γ0 < 1,0< δ̃1 < s + α− 1 such that

E

[∫ t

0

∣∣�δ̃1+sθn∣∣2γ0 dr

]
≤ C(1 + t)(‖x‖qLq + 1

)
.

Choose x0 ∈H 1 and define

μt = 1

t

∫ t

0
P ∗
r δx0 dr.
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Since by similar arguments as in the proof of Theorem A.1, we have P -a.s. θn → θ

in L2([0, T ],H) and for 2αδ1 ≤ δ̃1, 0< γ0 < 1∫ ∣∣Aδ1α x∣∣2γ0
Hs μt(dx)=

1

t
Ex0

[∫ t

0

∣∣Aδ1α θ ∣∣2γ0
Hs dr

]
,

by the above estimates we have for t > 1∫ ∣∣Aδ1α x∣∣2γ0
Hs μt (dx)≤ C.

This implies that μt is tight on Hs . Hence, any limit point of μt is an invariant
measure for (Pt )t≥0. Therefore, by Doob’s theorem, the strongly mixing property
is a consequence of Theorem 6.3 and Theorem 6.8. �

REMARK 6.10 (Mildly degenerate noise). We can also consider the ergodicity
of the equation driven by a mildly degenerate noise as in [15]. For this, we have to
use an extension of the Bismut–Elworthy–Li formula. We have the same problem
as explained in Remark 6.2. So, we can just get the result for α > 2/3.

6.3. Exponential convergence for α > 2
3 . In this subsection, we assume that

α > 2
3 and s > 3 − 2α. Then under Hypothesis E.3 the associated O–U process

z ∈C([0,∞),H 2+δ0) for some 0< δ0 < s + 2α − 3.

LEMMA 6.11. Fix α > 2/3. Let θ denote the solution of (3.1) and take p >
2

3α−2 , then for every R0 ≥ 1, there exist values T1 = T1(R0) and C̃1 = C̃1(R0) such

that if supt∈[0,T1] ‖θ(t)‖pLp ≤ R0, and supt∈[0,T1] |�s+2α−1−εz(t)|2 ≤ R0 for some

0< ε < 3α − 2 − 2
p

, then |�s+δθ(T1)|2 ≤ C̃1 for some δ > 0.

PROOF. For v = θ − z, we have the following estimate:

1

2

d

dt
|v|2 + κ∣∣�αv∣∣2 = 〈−u · ∇(v + z), v〉= 〈−u · ∇z, v〉

≤ C‖∇z‖L∞
[|v|2 + |v| · |z|],

which implies that there exist C̃0 = C̃0(R0) > 0 and for P -a.s. ω, ∃0< t0(ω) < 1
such that ∣∣�αθ(t0)∣∣2 ≤ C̃0.

For any r̃ > 0 with r̃ − α + 1 + σ3 < s + 2α − 1 − ε for σ3 = 2
p

, we have the
following a priori estimate for v, r = α

α−1/2−1/p :

d

dt

∣∣�r̃v∣∣2 + 2κ
∣∣�r̃+αv∣∣2

≤ 2
∣∣〈�r̃−α∇ · (uθ),�r̃+αv〉∣∣(6.14)
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≤ C∣∣�r̃+αv∣∣ · ∣∣�r̃−α+1+σ3θ
∣∣ · ‖θ‖Lp

≤ κ

4

∣∣�r̃+αv∣∣2 +C‖θ‖rLp
∣∣�r̃v∣∣2 +C∣∣�r̃−α+1+σ3z

∣∣2 · ‖θ‖2
Lp,

where we used divu= 0 in the first inequality and Lemmas 2.1, 2.2 in the second
inequality and the interpolation inequality (2.3) and Young’s inequality in the last
inequality. We choose the approximation vn as in the proof of Theorem A.1 with
initial time t = 0 replaced by initial time t = t0(ω). Then by a similar argument as
in the proof of Theorem A.1 we have the following Lp-norm estimate of vn,

d

dt
‖vn‖pLp ≤ Cp‖∇z‖∞

(‖vn‖pLp + ‖z‖Lp‖vn‖p−1
Lp

)
.

Thus, we have
d

dt
‖vn‖Lp ≤ C‖∇z‖∞

(‖vn‖Lp + ‖z‖Lp ).
Then by Gronwall’s lemma and s > 3 − 2α, we obtain the uniform Lp-norm
estimates as (A.6) for vn. Moreover, by (6.14) and Gronwall’s lemma, we ob-
tain the uniform Hα-norm estimates as (A.7) for vn. By a similar argument
as in the proof of Theorem A.1, we have vn converges to some process ṽ in
L2([t0, T ],H) such that ṽ + z is the solution of (3.1) in [t0, T ]. Then by the
uniqueness proof in Theorem 4.2, we have ṽ = v, which implies for P -a.s. ω,
v ∈L∞

loc([t0,∞),Hα)∩L2
loc([t0,∞),H 2α). Therefore, (6.14) also holds for v with

r̃ = α, which implies that∣∣�αv(t)∣∣2 + κ
∫ t

t0

∣∣�2αv(l)
∣∣2 dl ≤ (∣∣�αv(t0)∣∣2 +C(R0)

)(
exp

[
C(R0)t

]+ 1
)
,

which implies that there exist C̃1 = C̃1(R0) > 0 and T̃0(R0) such that |�αv(T̃0)| ≤
C̃1(R0). Moreover, there exists t1 = t1(ω) > t0(ω) such that |�2αv(t1)| ≤ C̃1. Us-
ing (6.14) for r̃ = 2α and by similar arguments as above, we obtain that there
exists T0 = T0(R0) independent of ω such that |�2αv(T0)| ≤ C̃1. Then we pro-
ceed analogously and obtain that there exists T1 = T1(R0) > T0(R0) such that
|�s+δv(T1)| ≤ C̃1 for some 0< δ < 3α − 2 − σ3 − ε. �

LEMMA 6.12. Let α > 2/3. Suppose Hypothesis E.3 holds with s > 3 − 2α.
Then for each R ≥ 1 there exist T1 > 0 and a compact subset K ⊂ W such that

inf‖x‖Lp≤RPT1(x,K) > 0

for p in Lemma 6.11.

PROOF. Define K := {x : |�s+δx|2 ≤ C̃1(R0)}, where C̃1(R0), δ comes from
the previous lemma. By Lemma 6.11, for R ≤R0, we have

inf‖x‖Lp≤RPT1(x,K)≥ inf‖x‖Lp≤R
(
1 − Px

[
sup

t∈[0,T1]
∣∣�s+2α−1−εz(t)

∣∣2 >R0

]
− Px

[
sup

t∈[0,T1]
∥∥θ(t)∥∥pLp > R0

])
.
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Under Hypothesis E.3, since z is a Gaussian process, one deduces that there exist
η,C > 0 such that

Px

[
sup

t∈[0,T1]
∣∣�s+2α−1−εz(t)

∣∣2 >R0

]
≤ Ce−η(R2

0/T1)

(see, e.g., [17], Proposition 15). Also by Theorem 3.3, we obtain

sup
‖x‖Lp≤R

Px

[
sup

t∈[0,T1]
∥∥θ(t)∥∥pLp > R0

]
≤ sup

‖x‖Lp≤R
Ex[supt∈[0,T1] ‖θ(t)‖pLp ]

R0
≤ C(R)

R0
.

Choosing R0 big enough, we prove the assertion. �

The exponential convergence now follows from Lemma 6.12 and an abstract
result of [19], Theorem 3.1. For p > 2

3α−2 let V :Lp → R be a measurable func-

tion and define ‖φ‖V := supx∈Lp
|φ(x)|
V (x)

and ‖ν‖V := sup‖φ‖V≤1〈ν,φ〉 for a signed
measure ν.

THEOREM 6.13. Let α > 2/3. Assume that Hypothesis E.3 holds with s >
3 − 2α and let V (x) := 1 + ‖x‖pLp for p > 2

3α−2 . Then there exist Cexp > 0 and
a > 0 such that∥∥P ∗

t δx0 −μ∥∥var ≤ ∥∥P ∗
t δx0 −μ∥∥V ≤ Cexp

(
1 + ‖x0‖pLp

)
e−at

for all t > 0 and x0 ∈ Lp , where ‖ ·‖var is the total variation distance on measures.

PROOF. By [19], Theorem 3.1, we need to verify the following four condi-
tions:

1. the measures (Pt (x, ·))t>0,x∈Lp are equivalent,
2. x→ Pt(x,�) is continuous in W for all t > 0 and all Borel sets � ⊂H ,
3. for each R ≥ 1 there exist T1 > 0 and a compact subset K ⊂ W such that

inf‖x‖Lp≤RPT1(x,K) > 0,

4. there exist k, b, c > 0 such that for all t ≥ 0,

EPx
[∥∥θ(t)∥∥pLp ]≤ k‖x‖pLpe−bt + c.

Condition 1 can be verified by [19], Lemma 3.2, and Pt(x,W)= 1 for x ∈ Lp
since for fixed t > 0 the solution θ will go intoHs space if the initial value x ∈ Lp .
Other conditions can be verified by Theorem 6.9, Lemma 6.12 and Proposition 5.6.

�

REMARK 6.14. For α > 3
4 , we could get a better result following a similar

argument as in [46]. Namely, there exist Cexp > 0 and a > 0 such that∥∥P ∗
t δx0 −μ∥∥TV ≤ ∥∥P ∗

t δx0 −μ∥∥V ≤ Cexp
(
1 + |x0|2)e−at
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for all t > 0 and x0 ∈ H . Here, Pt could be every Markov selection obtained in
Theorem C.5 associated to the solution of equation (3.1). The reason why α > 3

4
is needed is as follows.

As in Theorem 6.3, we can prove Pt is Hs -strong Feller with s > 3 − 3α. And
for a solution θ of equation (3.1) starting from x ∈ H , we can only prove that it
will enter Hα under Hypothesis E.3. If the process θ enters Hs , we can prove that
it satisfies the above four conditions. Hence, to obtain exponential convergence for
every x ∈ H , we need the process starting from x ∈ H to enter Hs . Hence, we
need 3 − 3α < s ≤ α, that is, α > 3

4 .

APPENDIX A

In this appendix, we construct a measurable map associated with the stochas-
tic quasi-geostrophic equation, which will be used in the proof of Section 6. This
proof is similar as done in [50], Section 3. Here, we give it for the reader’s conve-
nience.

Assume that for any m< 2 + σ , z ∈ C((0,∞),Hm) with σ in Hypothesis E.1.
Then consider the following equation:

dv

dt
+Aαv + (uv + uz) · ∇(v+ z)= 0.(A.1)

For (A.1), we obtain the following existence and uniqueness result if the initial
value starts from H 1.

THEOREM A.1. Fix α > 1/2. Suppose that for any m< 2 +σ , z ∈ C((0,∞),
Hm). For any v0 ∈ H 1, there exists a unique solution v ∈ L∞

loc([0,∞);H 1) ∩
L2

loc([0,∞);H 1+α) of equation (A.1) with v(0)= v0, that is, for any ϕ ∈ C1(T2)〈
v(t), ϕ

〉− 〈v0, ϕ〉
+
∫ t

0

〈
A1/2
α v(r),A1/2

α ϕ
〉
dr −

∫ t

0

〈
(uv + uz)(r) · ∇ϕ, (v+ z)(r)〉dr = 0,

where uv,uz satisfy (1.3) with θ replaced by v, z, respectively.

PROOF. We construct an approximation of (A.1) by a similar construction as
in the proof of Theorem 3.3.

We pick a smooth φ ≥ 0, with suppφ ⊂ [1,2], ∫∞
0 φ = 1, and for δ > 0 let

Uδ[θ ](t) :=
∫ ∞

0
φ(τ)

(
kδ ∗R⊥θ

)
(t − δτ ) dτ,

where kδ is the periodic Poisson kernel in T
2 given by k̂δ(ζ ) = e−δ|ζ |, ζ ∈ Z

2,
and we set θ(t) = 0, t < 0. We take a zero sequence δn, n ∈ N, and consider the
equation

dvn(t)+Aαvn(t) dt + un(t) · ∇(vn(t)+ z)dt = 0,(A.2)
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with initial data vn(0) = v0 and un = Uδn[vn + z]. For a fixed n, this is a linear
equation in vn on each subinterval [tk, tk+1] with tk = kδn, since un is determined
by the values of vn on the two previous subintervals. By a similar argument as
in the proof of Theorem 3.3, we obtain the existence and uniqueness of a solution
vn ∈ C([0, T ],H 1)∩L2([0, T ],H 1+α) to (A.2) (for more details, we refer to [50]).
Now we take any p satisfying 2

2α−1 < p <∞. From now on, we fix such p and
we have H 1 ⊂ Lp by Lemma 2.2. Since the periodic Riesz transform is bounded
on Lp , we have for t > 0

sup
[0,t]

∥∥Uδ[θ ]∥∥Lp ≤C sup
[0,t]

‖θ‖Lp,(A.3)

and also ∫ t

0

∥∥Uδ[θ ]∥∥pLp dτ ≤ C
∫ t

0
‖θ‖pLp dτ.(A.4)

By Lemma 5.5, we obtain for vn the following inequality by taking inner prod-
uct with |vn|p−2vn in L2:

d

dt
‖vn‖pLp + 2λ1‖vn‖pLp ≤ p∣∣〈un · ∇(vn + z), |vn|p−2vn

〉∣∣
(A.5)

≤ p‖∇z‖∞‖un‖Lp‖vn‖p−1
Lp ,

where we used divun = 0 and Hölder’s inequality in the last inequality. Therefore,∥∥vn(t)∥∥pLp − ∥∥vn(0)∥∥pLp +
∫ t

0
2λ1

∥∥vn(τ )∥∥pLp dτ
≤ ε

∫ t

0

(‖un‖pLp + ‖vn‖pLp
)
dτ + pC(ε)

∫ t

0
‖∇z‖p/(p−1)∞ ‖vn‖pLp dτ

≤ ε
∫ t

0
‖vn‖pLp dτ + pC(ε)

∫ t

0
‖∇z‖p/(p−1)∞ ‖vn‖pLp dτ +C

∫ t

0
‖z‖pLp dτ,

where we used (A.4) in the last inequality. Then Gronwall’s lemma and H 1 ⊂ Lp
yield that for any T ≥ 0

sup
t∈[0,T ]

∥∥vn(t)∥∥Lp ≤C,(A.6)

where C is a constant independent of n.
Moreover, we get the following estimate by taking the inner product in L2 with

�ek for (A.2), multiplying both sides by 〈v,�ek〉 and summing up over k:

1

2

d

dt
|�vn|2 + κ∣∣�1+αvn

∣∣2
≤ ∣∣�1−α(un · ∇(vn + z))∣∣∣∣�1+αvn

∣∣
≤ C∣∣�1+αvn

∣∣[∣∣�2−α+σ1(vn + z)∣∣‖un‖Lp + ∣∣�2−α+σ1un
∣∣‖vn + z‖Lp ],
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where σ1 = 2/p < (2α− 1) and we used Lemma 2.1 in the last inequality. Hence,
we obtain that for r = 2α

2α−1−σ1
,

1

2

(∣∣�vn(t)∣∣2 − ∣∣�vn(0)∣∣2)+ κ ∫ t

0

∣∣�1+αvn
∣∣2 dτ

≤ C
∫ t

0

∣∣�1+αvn
∣∣[∣∣�2−α+σ1(vn + z)∣∣‖un‖Lp + ∣∣�2−α+σ1un

∣∣‖vn + z‖Lp ]dτ
≤ κ

2

∫ t

0

∣∣�1+αvn
∣∣2dτ

+C
[

sup
t∈[0,T ]

(∥∥vn(t)+ z(t)∥∥rLp + ∥∥vn(t)+ z(t)∥∥2
Lp

)+ 1
]

×
∫ t

0
|�vn|2 + ∣∣�2−α+σ1z

∣∣2 dτ,
where we used (A.3), (A.4), the interpolation inequality (2.3) and Young’s inequal-
ity in the last inequality. By Gronwall’s lemma and (A.6), we get that for v0 ∈H 1

sup
0≤t≤T

∣∣�vn(t)∣∣2 + κ
∫ T

0

∣∣�1+αvn
∣∣2 dτ ≤ C,(A.7)

where C is a constant independent of n. Now decompose vn as

vn(t)= v0 −
∫ t

0
Aαvn(s) ds −

∫ t

0

(
un(s) · ∇(vn(s)+ z(s)))ds.

By (A.7), we obtain ∥∥∥∥∫ ·
0
Aαvn(s) ds

∥∥∥∥
W 1,2(0,T ,H−α)

≤ C

and ∥∥∥∥∫ ·
0

(
un(s) · ∇(vn(s)+ z(s)))ds∥∥∥∥

W 1,2(0,T ,H−3)

≤ C.

So, we have proved

‖vn‖W 1,2([0,T ],H−3) ≤ C,
where C is a constant independent of n. By the compactness embedding
W 1,2([0, T ],H−3) ∩ L2([0, T ],H 1+α) ⊂ L2([0, T ],H 1) we have that there
exists a subsequence of vn converging in L2([0, T ],H 1) to a solution v ∈
L∞

loc([0,∞);H 1)∩L2
loc([0,∞);H 1+α) of equation (A.1). Thus, (A.7) is also sat-

isfied for v. Uniqueness can be deduced from a similar argument as in the proof of
Theorem 4.2. �

THEOREM A.2. Fix α > 1/2. Suppose that for any m< 2 + σ , z ∈ C([0,∞),
Hm). The solution v obtained in Theorem A.1 is in C([0,∞);H 1).
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PROOF. It is sufficient to show that

�
dv

dt
∈ L2

loc
([0,∞);H−α).

For ϕ smooth enough, we have∣∣∣∣〈dvdt ,�ϕ
〉∣∣∣∣= |κ 〈−�αv,�1+αϕ

〉− 〈(
u · ∇(�ϕ)), v+ z〉

≤ [
κ
∣∣�1+αv

∣∣+C∣∣�2−α(u · (v + z))∣∣]∣∣�αϕ∣∣
≤ C[∣∣�1+αv

∣∣+ ∣∣�2−α+σ1(v + z)∣∣‖v + z‖Lp ]∣∣�αϕ∣∣,
where 0 < σ1 < 2α − 1,p = 2

σ1
and we used Lemma 2.1 in the last inequality.

Then ∥∥∥∥�dvdt
∥∥∥∥
H−α

≤ C(‖v+ z‖Lp + 1
)∣∣�1+αv

∣∣+C‖v+ z‖Lp
∣∣�2−α+σ1z

∣∣.
By (A.6) and (A.7), we obtain for 0< T <∞∫ T

0

∥∥∥∥�dvdt (τ )
∥∥∥∥2

H−α
dτ <∞,

which implies that v ∈ C([0,∞);H 1). �

THEOREM A.3. Fix α > 1/2. Suppose that for any m< 2 + σ , z ∈ C([0,∞),
Hm). For any fixed t > 0, the map v0 	→ v(t, v0) is a continuous map fromH 1 into
itself, where v(t, v0) is the solution of equation (A.1) with v(0)= v0.

PROOF. Let v1, v2 be two solutions of (A.1) and ζ = v1 −v2, θ1 = v1 +z, θ2 =
v2 + z. Then ζ satisfies the following equation:(

d

dt
ζ, ϕ

)
+ κ(�αζ,�αϕ)= −(u1 · ∇ζ,ϕ)− (uζ · ∇θ2, ϕ),

where u1, uζ satisfy (1.3) with θ replaced by θ1, ζ , respectively.
Taking ϕ = �ek , multiplying both sides by 〈ζ,�ek〉 and summing up over k

we have the following estimate since vi ∈ C([0,∞);H 1) ∩ L2
loc([0,∞);H 1+α),

i = 1,2, by Theorems A.1 and A.2:

1

2

d

dt
|�ζ |2 + κ∣∣�1+αζ

∣∣2
= −〈�(u1 · ∇ζ ),�ζ 〉− 〈

uζ · ∇θ2,�
2ζ
〉

≤C∣∣�1+αζ
∣∣[∣∣�2−α(uζ θ2)

∣∣+ ∣∣�2−α(u1ζ )
∣∣]

≤C∣∣�1+αζ
∣∣[∣∣�2−α+σ1ζ

∣∣∣∣�σ2θ2
∣∣+ ∣∣�2−α+σ1θ2

∣∣∣∣�σ2ζ
∣∣

+ ∣∣�2−α+σ1θ1
∣∣∣∣�σ2ζ

∣∣+ ∣∣�2−α+σ1ζ
∣∣∣∣�σ2θ1

∣∣]
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≤ κ

2

∣∣�1+αζ
∣∣2

+C[|�θ2|r + |�θ1|r + ∣∣�1+αv2
∣∣2 + ∣∣�2−α+σ1z

∣∣2 + ∣∣�s+αv1
∣∣2]|�ζ |2,

where r = 2α
2α−1−σ1

, σ2 = 1 − σ1 for some 0 < σ1 < (2α − 1) and we used
Lemma 2.1 in the second inequality and Lemma 2.2, the interpolation inequal-
ity (2.3),H 1 ⊂Hσ2 and Young’s inequality in the last inequality. Then Gronwall’s
lemma yields that

|�ζ |2 ≤ C∣∣�ζ(0)∣∣2 exp
{∫ T

0

∣∣�θ2(τ )
∣∣r + ∣∣�θ1(τ )

∣∣r
+ ∣∣�2−α+σ z

∣∣2 + ∣∣�1+αv1(τ )
∣∣2 + ∣∣�1+αv2(τ )

∣∣2 dτ}.
Thus, the result follows. �

Now for v0 ∈H 1,W ∈ C(R+,H−1−ε0) we define

v(t,W,v0) :=
{
v
(
t, v0, z(W)

)
, if z(W) ∈ C(R+,Hm

)
for m< 2 + σ ,

0, otherwise,

where v(t, v0, z(W)) is the solution to (A.1) we obtained in Theorem A.1.
Combining Theorems A.1–A.3 we obtain the following results.

THEOREM A.4. Fix α > 1/2. v :R+ × C(R+,H−1−ε0)×H 1 	→H 1, (t,W,
v0) 	→ v(t,W,v0) is a measurable map.

PROOF. By Theorems A.1–A.3 t 	→ v(t,W,v0) and v0 	→ v(t,W,v0) is con-
tinuous. Then it is sufficient to prove that if zn → z in C(R+,Hm),m < 2 + σ ,
vn → v in C([0, T ],H 1), where vn = v(·, v0, zn), v = v(·, v0, z). By the same ar-
guments as in the proof of Theorem A.1, we have the following estimate:

sup
[0,T ]

|�vn|2 ≤ C(T ), sup
[0,T ]

|�v|2 ≤ C(T ),

and ∫ T

0

∣∣�1+αvn(l)
∣∣2 dl ≤ C(T ), ∫ T

0

∣∣�1+αv(l)
∣∣2 dl ≤ C(T ).

Since v, vn ∈C([0,+∞),H 1)∩L2
loc((0,+∞),H 1+α), we obtain

d

dt

∣∣�(v − vn)
∣∣2 + 2κ

∣∣�1+α(vn − v)∣∣2
= 〈
(uvn + uzn) · ∇(vn + zn),�2(v − vn)〉
− 〈
(uv + uz) · ∇(v+ z),�2(v − vn)〉

= [〈
(uvn − uv) · ∇(vn + zn),�2(v − vn)〉
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+ 〈
(uv + uz) · ∇(vn − v),�2(v − vn)〉

+ 〈
(uzn − uz) · ∇(vn + zn),�2(v − vn)〉

+ 〈
(uv + uz) · ∇(zn − z),�2(v − vn)〉],

where uvn, uzn satisfy (1.3) with θ replaced by vn, zn respectively. For the first
term on the right-hand side, we have∣∣〈(uvn − uv) · ∇(vn + zn),�2(v − vn)〉∣∣

= ∣∣〈�1−α∇ · ((uvn − uv)(vn + zn)),�1+α(v − vn)〉∣∣
≤C∣∣�1+α(v − vn)

∣∣∣∣�2−α+σ1(v − vn)
∣∣∣∣�σ2(vn + zn)

∣∣
+C∣∣�1+α(v − vn)

∣∣∣∣�2−α+σ1(vn + zn)
∣∣∣∣�σ2(v − vn)

∣∣
≤ κ

4
|�1+α(v − vn)|2 +C(C(T )+ ∣∣�1+αvn

∣∣2)∣∣�(v − vn)
∣∣2

+ c∣∣�2−α+σ1zn
∣∣2∣∣�(v − vn)

∣∣2.
Here, σ1, σ2 are as (6.6) and we used div(uvn − uv) = 0 in the first equality and
Lemmas 2.1 and 2.2 in the first inequality and the interpolation inequality (2.3)
and Young’s inequality in the last step. The other term can be estimated similarly.
Then we obtain

d

dt

∣∣�(v − vn)
∣∣2 + 2κ

∣∣�1+α(vn − v)∣∣2
≤ κ∣∣�1+α(vn − v)∣∣2 +C(C(T )+ ∣∣�1+αvn

∣∣2 + ∣∣�1+αv
∣∣2)

× (∣∣�(v − vn)
∣∣2 + ∣∣�2−α+σ1(z− zn)

∣∣2).
Gronwall’s lemma yields that∣∣�(v − vn)(t)

∣∣2 ≤�n exp
(
C

∫ t

0

(
C(T )+ ∣∣�1+αvn

∣∣2 + ∣∣�1+αv
∣∣2)dl)

×
∫ t

0

(
C(T )+ ∣∣�1+αvn

∣∣2 + ∣∣�1+αv
∣∣2)dl,

where �n = sup[0,T ] |�2−α+σ1(z− zn)|. Then the results follow. �

APPENDIX B

In this appendix, we prove the following lemma to complete the proof of Theo-
rem 3.3.

LEMMA B.1. For any x0 ∈ B0 defined in the proof of Theorem 3.3, there exists

Qx0 ∈ Qx0 such that the map x0 	→ Qx0 from B0 to P(�t
n
1

0 ) is measurable with
respect to Btn1 .
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PROOF. Let B1
tn1

be the Borel σ -algebra on B̃0 := {x(·)1[0,tn1 ](·) + x(tn1 )×
1[tn1 ,∞)(·) :x ∈ B0} with the topology induced by sup0≤t≤tn1 ‖x(t)‖H 3 . Since

{sup0≤t≤tn1 ‖x(t)‖H 3 < a} ∈ Btn1 , we know B1
tn1

⊂ Btn1 . It suffices to prove that if

for {xm,m ∈ N ∪ {0}} ⊂ B̃0, sup0≤t≤tn1 ‖xm(t) − x0(t)‖H 3 → 0 and Qm ∈ Qxm ,
then for some subsequence mk , Qmk weakly converges to some Q ∈ Qx0 , be-
cause then [48], Lemma 12.1.8, Theorem 12.1.10, implies the existence of
a Qx0 ∈ Qx0(·)1[0,tn1 ](·)+x0(t

n
1 )1[tn1 ,∞)(·) such that the map x0 	→ x0(·)1[0,tn1 ](·) +

x(tn1 )1[tn1 ,∞)(·) 	→ Qx0 from B0 to B̃0 toP(�t
n
1

0 ) is measurable with respect to
Btn1 . Moreover, by Qx0 ∈ Qx0 , the result follows.

Step 1: We prove that (Qm)m∈N is tight in S := C([tn1 ,+∞),H 1) ∩ Lqloc([tn1 ,
+∞),H 3) for some q ∈N. Define for each m ∈ N,

Mm(t, x) :=
∞∑
i=1

Mm
i (t, x)ei,

where Mm
i is given in the proof of Theorem 3.3 (Step 2) with x0 replaced by xm.

Then (Mm(t, x))t≥tn1 is a continuous H 3-valued Bt -martingale with respect toQm
and the following equality holds in H 1:

x(t)= xm(tn1 )− ∫ t∧tn2
tn1

(
Aαx(s)+Uδn[xm](s) · ∇x(s))ds

(B.1)
+Mm(t), Qm-a.s.

By Hölder’s inequality and (M3), (M1) for Qm, we have

EQm
[

sup
s �=t∈[tn1 ,tn2 ]

(∥∥∥∥∫ t

s
Aαx(r)+Uδn[xm](r) · ∇x(r) dr

∥∥∥∥γ
H 1

/
|t − s|γ−1

)]

≤ CEQm
[∫ tn2

tn1

∥∥Aαx(r)+Uδn[xm](r) · ∇x(r)∥∥γ
H 1 dr

]
(B.2)

≤ CEQm
[

sup
tn1 ≤r≤tn2

∥∥x(r)∥∥γ
H 3

(
1 + sup

0≤r≤tn1

∥∥xm(r)∥∥γH 1

)]
≤ C(∥∥xm(tn1 )∥∥γH 3 + 1

)(
1 + sup

0≤r≤tn1

∥∥xm(r)∥∥γH 1

)
,

where C is independent of m. For tn1 ≤ s < t ≤ tn2 and q ∈ N, we have

EQm
∥∥Mm(t, x)−Mm(s, x)

∥∥2q
H 1 ≤ CqEQm

(∫ t

s

∥∥�(kδn ∗G(x(r)))∥∥2
L2(U ;H) dr

)q
≤ Cq |t − s|q−1

∫ t

s
EQm

∥∥G(x(r))∥∥2q
L2(U ;H) dr
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≤ Cq |t − s|q−1
∫ t

s
EQm

(∣∣x(r)∣∣2q + 1
)
dr

≤ Cq |t − s|q(∣∣�3xm
(
tn1
)∣∣2q + 1

)
,

where we used Hypothesis G.1 in the third inequality and (M3) in the last inequal-
ity. By Kolmogorov’s criterion for any β ∈ (0, q−1

2q ), we get

EQm
(

sup
s �=t∈[tn1 ,tn2 ]

‖Mm(t, x)−Mm(s, x)‖2q
H 1

|t − s|qβ
)

≤C(∣∣�3xm
(
tn1
)∣∣2q + 1

)
.(B.3)

Combining (B.1)–(B.3) and Qm({x :x(s)= x(tn2 ), s ∈ [tn2 ,+∞)})= 1, we obtain
for β1 = 1 − 1

γ
and any T > 0

sup
m∈N

EQm
(

sup
s �=t∈[tn1 ,T ]

‖x(t)− x(s)‖H 1

|t − s|β1

)
<∞.

Thus, by (M3) for Qm and [20], Lemma 4.3, (Qm)m∈N is tight in S.
Without loss of generality, we assume thatQm weakly converges to some prob-

ability measure Q in S. We need to prove Q ∈ Qx0 .
Step 2: By Skorohod’s representation theorem, there exist a probability space

(�̃, B̃, P̃ ) and S-valued random variable x̃m and x̃ such that:

(i) x̃m has the law Qm for each m ∈ N;
(ii) x̃m → x̃ in S, P̃ -a.e., and x̃ has the law Q.

First, we easily deduce that

Q
(
x
(
tn1
)= x0

(
tn1
))= P̃ (x̃(tn1 )= x0

(
tn1
))

= lim
m→∞Qm

(
x
(
tn1
)= xm(tn1 ))= 1,

Q
(
x(t)= x(tn2 ), t ≥ tn2 )= P̃ (x̃(t)= x̃(tn2 ), t ≥ tn2 )

= lim
m→∞Qm

(
x(t)= x(tn2 ), t ≥ tn2 )= 1.

For q ∈ N, set

ξq(x) := sup
r∈[tn1 ,tn2 ]

∥∥x(r)∥∥2q
H 3 +

∫ tn2

tn1

∥∥x(r)∥∥2(q−1)
H 3

∥∥x(r)∥∥2
H 3+α dr.

Then

EQ
(
ξq(x)

)= EP̃ (ξq(x̃))≤ lim inf
m→∞ EQm

(
ξq(x)

)≤ lim inf
m→∞ C

(∥∥xm(tn1 )∥∥2q
H 3 + 1

)
≤ C(∥∥x0

(
tn1
)∥∥2q
H 3 + 1

)
.

Thus, (M1) and (M3) follow.



STOCHASTIC QUASI-GEOSTROPHIC EQUATION 1267

Now we want to show that (Mi(t, x))t≥tn1 in the proof of Theorem 3.2 (Step 2)
is a continuous Bt -martingale with respect toQ, whose square variation process is
given by

〈Mi〉(t, x)=
∫ t∧tn2
tn1

∥∥(kδn ∗G)∗(x(s))(ei)∥∥2
U ds.

Since sup0≤t≤tn1 ‖xm(t)− x0(t)‖H 3 → 0 and x̃m → x̃ in S, we have

lim
m→∞E

P̃
∫ tn2

tn1

∣∣〈Uδn[xm](s) · ∇x̃m(s)+Aαx̃m(s)

−Uδn[x0](s) · ∇x̃(s)−Aαx̃(s), ei 〉∣∣ds
≤ lim
m→∞E

P̃
∫ tn2

tn1

∣∣〈(Uδn[xm](s)−Uδn[x0](s)) · ∇x̃m(s)
+Uδn[x0](s) · ∇(x̃m(s)− x̃(s))

+Aα(x̃m(s)− x̃(s)), ei 〉∣∣ds
= 0,

which implies that for t ≥ tn1
lim
m→∞E

P̃
∣∣Mm

i (t, x̃m)−Mi(t, x̃)
∣∣= 0.(B.4)

Then we obtain for tn1 ≤ s < t ,
EQ

(
Mi(t, x)|Bs)=Mi(s, x).

On the other hand, by the B–D–G inequality, we have

sup
m
EP̃

∣∣Mm
i (t, x̃m)

∣∣2q ≤ C sup
m

∫ tn2

tn1

EP̃
(∥∥(kδn ∗G)∗(x̃m(s))(ei)∥∥2q

U

)
ds <+∞.

By (B.4), we have

lim
m→∞E

P̃
∣∣Mi(t, x̃m)−Mi(t, x̃)∣∣2 = 0.

Then we obtain

EQ
(
M2
i (t, x)−

∫ t

tn1

∥∥(kδn ∗G)∗(x(r))(ei)∥∥2
U dr|Bs

)

=M2
i (s, x)−

∫ s

tn1

∥∥(kδn ∗G)∗(x(r))(ei)∥∥2
U dr.

Now the results follow. �
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APPENDIX C: MARKOV SELECTIONS IN THE GENERAL CASE

In this appendix, we will use [20], Theorem 4.7, to get an almost sure Markov
family (Px)x∈L2 for equation (3.1). Here, we will use the same notation as in [20].
Below we choose

H = Y= L2(
T

2)
and

X= (
H 2+2α)∗, X

∗ =H 2+2α.

Then X is a Hilbert space and X
∗ ⊂ Y compactly. Let E = {ei, i ∈ N} be the or-

thonormal basis ofH introduced in Section 2. We define the operator A as follows:
for θ ∈ C∞(T2)

A(θ) := −κ(−
)αθ − u · ∇θ,
where u satisfies (1.3). Then by Lemma C.3 below, A can be extended to an oper-
ator A :H →X. For θ not in H define A(θ) := ∞.

Set

� := C([0,∞);X),
and let B denote the σ -field of Borel sets of � and let P(�) denote the set of all
probability measures on (�,B). Define the canonical process x :�→X as

xt (ω)= ω(t).
For each t , Bt = σ(xs : 0 ≤ s ≤ t). Given P ∈ P(�) and t > 0, let P(·|Bt )(ω)
denote a regular conditional probability distribution of P given Bt . In particular,
P(·|Bt )(ω) ∈ P(�) for every ω ∈� and for any bounded B-measurable function
f on �

EP [f |Bt ] =
∫
�
f (y)P (dy|Bt ), P -a.s.,

and there exists a P -null set N ∈ Bt such that for every ω not in N

P(·|Bt )(ω)|Bt = δω (= Dirac measure at ω),

hence,

P
({
y :y(s)= ω(s), s ∈ [0, t]}|Bt )(ω)= 1.

In particular, we can consider P(·|Bt )(ω) as a measure on (�t ,Bt ), that is,

P(·|Bt )(ω) ∈ P
(
�t
)
,

where �t := C([t,∞);X) and Bt := σ(xs : s ≥ t).
We say P ∈ P(�) is concentrated on the paths with values in H , if there exists

A ∈ B with P(A)= 1 such that A⊂ {ω ∈� :xt (ω) ∈H,∀t ≥ 0}. The set of such
measures is denoted by PH(�). The shift operator �t :�→�t is defined by

�t(ω)(s)= ω(s − t), s ≥ t.
Following [20], Definitions 2.5, we introduce the following notions.



STOCHASTIC QUASI-GEOSTROPHIC EQUATION 1269

DEFINITION C.1. A family (Px)x∈H of probability measures in PH(�),
is called an almost sure Markov family if for any A ∈ B, x 	→ Px(A) is
B(H)/B([0,1])-measurable, and for each x ∈ H there exists a Lebesgue null set
TPx ⊂ (0,∞) such that for all t not in TPx and Px -almost all ω ∈�

Px(·|Bt )(ω)= Pω(t) ◦�−1
t .

We now introduce the following notion of a martingale solution to equation
(3.1) and write x(t) instead of xt .

DEFINITION C.2. Let x0 ∈ H . A probability measure P ∈ P(�) is called a
martingale solution of equation (3.1) with initial value x0, if:

(M1) P(x(0)= x0)= 1 and for any n ∈ N

P

{
x ∈� :

∫ n

0

∥∥A(x(s))∥∥
X
ds +

∫ n

0

∥∥G(x(s))∥∥2
L2(U ;H) ds <+∞

}
= 1;

(M2) for every l ∈ E , the process

Ml(t, x) :=X

〈
x(t), l

〉
X∗ −

∫ t

0
X

〈
A
(
x(s)

)
, l
〉
X∗ ds

is a continuous square-integrable Bt -martingale under P , whose quadratic
variation process is given by

〈Ml〉(t, x) :=
∫ t

0

∥∥G∗(x(s))(l)∥∥2
U ds,

where the asterisk denotes the adjoint operator of G(x(s));
(M3) for any p ∈ N, there exist a continuous positive real function t 	→Ct,p (only

depending on p and A,G), a lower semicontinuous positive real functional
Np :Y → [0,∞], and a Lebesgue null set TP ⊂ (0,∞) such that for all
0 ≤ s ∈ [0,∞)\TP and for all t ≥ s

EP
[

sup
r∈[s,t]

∣∣x(r)∣∣2p +
∫ t

s
Np

(
x(r)

)
dr
∣∣∣Bs]≤ Ct−s(∣∣x(s)∣∣2p + 1

)
.

First, we prove the following lemma.

LEMMA C.3. For any θ1, θ2 ∈ C∞(T2),∥∥(−
)αθ1 − (−
)αθ2
∥∥
X

≤ C1|θ1 − θ2|,
‖u1 · ∇θ1 − u2 · ∇θ2‖X ≤ C2

(|θ1| + |θ2|)|θ1 − θ2|
for constants C1,C2. In particular, the operator A :C∞(T2)→ X extends to an
operator A :H →X by continuity.
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PROOF. We only prove the second assertion, the first can be proved analo-
gously. By the Sobolev embedding theorem, we have

‖u1 · ∇θ1 − u2 · ∇θ2‖X
= sup
w∈C∞(T2):‖w‖

H2+2α≤1

∣∣〈u1 · ∇θ1 − u2 · ∇θ2,w〉∣∣
= sup
w∈C∞(T2):‖w‖

H2+2α≤1

∣∣〈u1 · ∇w,θ1〉 − 〈u2 · ∇w,θ2〉
∣∣

= sup
w∈C∞(T2):‖w‖

H2+2α≤1

∣∣〈(u1 − u2) · ∇w,θ1
〉+ 〈u2 · ∇w,θ1 − θ2〉

∣∣
≤ C

[
sup

w∈C∞(T2):‖w‖
H2+2α≤1

‖∇w‖C(T2)

](|u1 − u2| · |θ1| + |θ1 − θ2| · |u2|)
≤ C(|θ1| + |θ2|)|θ1 − θ2|.

In the last inequality, we use (2.1) and the constant C changes from line to line.
�

In order to use [20], Theorem 4.7, we define the functional N1 on Y as follows:

N1(θ) :=
{ ∣∣�αθ ∣∣2, if θ ∈Hα ,

+∞, otherwise.

It is obvious that N1 ∈ U2, defined in [20], Section 4. We recall that a lower semi-
continuous function N :Y → [0,∞] belongs to U2 if N (x) = 0 implies x = 0,
N (cy) ≤ c2N (y),∀c ≥ 0, y ∈ Y and {y ∈ Y :N (y) ≤ 1} is relatively compact
in Y.

THEOREM C.4. Let α ∈ (0,1) and assume G satisfies Hypothesis G.1 with
ρ1 = 0. Then for each x0 ∈H , there exists a martingale solution P ∈ P(�) start-
ing from x0 to equation (3.1) in the sense of Definition C.2.

PROOF. We only need to check (C1)–(C3) in [20], Section 4, for the above A
and G.

The demi-continuity condition (C1) holds since Lemma C.3 and Hypothesis G.1
imply demi-continuity of A and G.

The coercivity condition (C2) follows, because noting that for θ ∈ X
∗

〈u · ∇θ, θ〉 = 0,

we have 〈
A(θ), θ

〉= −N1(θ).
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Also the growth condition (C3) is clear since by Lemma C.3∥∥A(θ)∥∥
X

≤ C|θ |2
and ∥∥G(θ)∥∥L2(K;H) ≤ C

(|θ | + 1
)
. �

The set of all such martingale solutions with initial value x0 is denoted by C(x0).
Using [20], Theorem 4.7, we now obtain the following.

THEOREM C.5. Let α ∈ (0,1). Assume G satisfies Hypothesis G.1 with
ρ1 = 0. Then there exists an almost sure Markov family (Px0)x0∈H for equation
(3.1) and Px0 ∈ C(x0) for each x0 ∈H .
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