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RANDOM DOUBLY STOCHASTIC MATRICES:
THE CIRCULAR LAW

BY HOI H. NGUYEN1

Ohio State University

Let X be a matrix sampled uniformly from the set of doubly stochastic
matrices of size n× n. We show that the empirical spectral distribution of the
normalized matrix

√
n(X − EX) converges almost surely to the circular law.

This confirms a conjecture of Chatterjee, Diaconis and Sly.

1. Introduction. Let M be a matrix of size n × n, and let λ1, . . . , λn be the
eigenvalues of M . The empirical spectral distribution (ESD) μM of M is defined
as

μM := 1

n

∑
i≤n

δλi
.

We also define μcir as the uniform distribution over the unit disk

μcir(s, t) := 1

π
mes

(|z| ≤ 1;�(z) ≤ s,�(z) ≤ t
)
.

Given a random n×n matrix M , an important problem in random matrix theory
is to study the limiting distribution of the empirical spectral distribution as n tends
to infinity. We consider one of the simplest random matrix ensembles, when the
entries of M are i.i.d. copies of the random variable ξ .

When ξ is a standard complex Gaussian random variable, M can be viewed as a
random matrix drawn from the probability distribution P(dM) =

1
πn2 e−tr(MM∗) dM on the set of complex n × n matrices. This is known as the
complex Ginibre ensemble. Following Ginibre [14], one may compute the joint
density of the eigenvalues of a random matrix M drawn from the following com-
plex Ginibre ensemble: (λ1, . . . , λn) has density

p(z1, . . . , zn) := n!
πn
∏n

k=1 k! exp

(
−

n∑
k=1

|zk|2
) ∏

1≤i<j≤n

|zi − zj |2(1.1)

on the set |z1| ≤ · · · ≤ |zn|.
Mehta [24, 25] used the joint density function (1.1) to compute the limiting

spectral measure of the complex Ginibre ensemble. In particular, he showed that if
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M is drawn from the complex Ginibre ensemble, then μ(1/
√

n)M converges to the
circular law μcir. Edelman [11] verified the same limiting distribution for the real
Ginibre ensemble.

For the general case, there is no formula for the joint distribution of the eigenval-
ues, and the problem appears much more difficult. The universality phenomenon
in random matrix theory asserts that the spectral behavior of a random matrix does
not depend on the distribution of the atom variable ξ in the limit n → ∞.

In the 1950s, Wigner [41] proved a version of the universality phenomenon
for Hermitian random matrices. However, the random matrix ensemble described
above is not Hermitian; in fact, many of the techniques used to deal with Hermitian
random matrices do not apply to non-Hermitian matrices.

An important result was obtained by Girko [15, 16] who related the empirical
spectral measure of non-Hermitian matrices to that of Hermitian matrices. Con-
sider the Stieltjes transform sn of μ(1/

√
n)M given by

sn(z) := 1

n

n∑
i=1

1

(1/
√

n)λi − z
=
∫

C

1

x + √−1y − z
dμ1/

√
nM(x, y).

Since sn is analytic everywhere except at the poles, the real part of sn determines
the eigenvalues. We have

�(sn(z))= 1

n

n∑
i=1

(1/
√

n)�(λi) − �(z)

|(1/
√

n)λi − z|2

= − 1

2n

n∑
i=1

∂

∂�(z)
log
∣∣∣∣ 1√

n
λi − z

∣∣∣∣
2

(1.2)

= − 1

2n

∂

∂�(z)
log det

(
1√
n
M − zI

)(
1√
n
M − zI

)∗
,

where I denotes the identity matrix.
In other words, the task of studying the eigenvalues of the non-Hermitian ma-

trix 1√
n
M reduces to studying the eigenvalues of the Hermitian matrix ( 1√

n
M −

zI)( 1√
n
M − zI)∗. The difficulty now is that the log function has two poles, one

at infinity and one at zero. The largest singular value can easily be bounded by a
polynomial in n. The main difficulty is controlling the least singular value.

The first rigorous proof of the circular law for general distributions was by
Bai [1]. He proved the result under a number of moment and smoothness assump-
tions on the atom variable ξ . Important results were obtained more recently by Pan
and Zhou [29] and Götze and Tikhomirov [17]. Using a strong lower bound on the
least singular value, Tao and Vu [34] were able to prove the circular law under the
assumption that E|ξ |2+ε < ∞, for some ε > 0. Recently, Tao and Vu (Appendix
by Krishnapur) [36] established the law assuming only that ξ has finite variance.
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THEOREM 1.1 ([36]). Assume that the entries of M are i.i.d. copies of a com-
plex random variable of mean zero and variance one, then the ESD of the matrix

1√
n
M converges almost surely to the circular measure μcir.

In view of the universality phenomenon, it is important to study the ESD of ran-
dom matrices with nonindependent entries. Probably one of the first results in this
direction is due to Bordenave, Caputo and Chafai [6] who proved the following.

THEOREM 1.2 ([6], Theorem 1.3). Let X be a random matrix of size n × n

whose entries are i.i.d. copies of a nonnegative continuous random variable with
finite variance σ 2 and bounded density function. Then with probability one the
ESD of the normalized matrix

√
nX̄, where X̄ = (x̄ij )1≤i,j≤n and x̄ij := xij /(xi1 +

· · · + xin), converges weakly to the circular measure μcir.

In particular, when x11 follows the exponential law of mean one, Theorem 1.2
establishes the circular law for the Dirichlet Markov ensemble (see also [8]).

Related results with a linear assumption of independence include a result of Tao,
who among other things proves the circular law for random zero-sum matrices.

THEOREM 1.3 ([33], Theorem 1.13). Let X be a random matrix of size n × n

whose entries are i.i.d. copies of a random variable of mean zero and variance
one. Then the ESD of the normalized matrix 1√

n
X̄, where X̄ = (x̄ij )1≤i,j≤n and

x̄ij := xij − 1
n
(xi1 + · · · + xin), converges almost surely to the circular measure

μcir.

With a slightly different assumption of dependence, Vu and the current author
showed in [28] the following.

THEOREM 1.4 ([28], Theorem 1.2). Let 0 < ε ≤ 1 be a positive constant. Let
Mn be a random (−1,1) matrix of size n × n whose rows are independent vectors
of given row-sum s with some s satisfying |s| ≤ (1 − ε)n. Then the ESD of the
normalized matrix 1

σ
√

n
Mn, where σ 2 = 1 − ( s

n
)2, converges almost surely to the

distribution μcir as n tends to ∞.

To some extent, the matrix model in Theorem 1.4 is a discrete version of the
random Markov matrices considered in Theorem 1.2 where the entries are now
restricted to ±1/s. However, it is probably more suitable to compare this model
with that of random Bernoulli matrices. By Theorem 1.1, the ESD of a normalized
random Bernoulli matrix obeys the circular law, and hence Theorem 1.4 serves as
a local version of the law.

Although the entries of the matrices above are mildly correlated, the rows are
still independent. Because of this, we can still adapt the existing approaches to
bear with the problems. Our focus in this note is on a matrix model whose rows
and columns are not independent.
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THEOREM 1.5 (Circular law for random doubly stochastic matrices). Let X

be a matrix chosen uniformly from the set of doubly stochastic matrices. Then the
ESD of the normalized matrix

√
n(X − EX) converges almost surely to μcir.

Little is known about the properties of random doubly stochastic matrices as it
falls outside the scope of the usual techniques from random matrix theory. How-
ever, there have been recent breakthrough by Barvinok and Hartigan; see, for in-
stance, [3–5]. The Birkhoff polytope Mn, which is the set of doubly stochastic
matrices of size n × n, is the basic object in operation research because of its ap-
pearance as the feasible set for the assignment problem. Doubly stochastic matri-
ces also serve as a natural model for priors in statistical analysis of Markov chains.
There is a close connection between the Birkhoff polytope and MS(n, c), the set
of matrices of size n×n with nonnegative integer entries and all column sums and
row sums equal c. These matrices are called magic squares, which are well known
in enumerative combinatorics. We refer the reader to the work of Chatterjee, Dia-
conis and Sly [9] for further discussion.

There is a strong belief that random doubly stochastic matrices behave like i.i.d.
random matrices. This intuition has been verified in [9] in many ways. Among
other things, it has been shown that the normalized entry nx11 converges in total
variation to an exponential random variable of mean one. More generally, the au-
thors of [9] showed that the normalized projection nXk , where Xk is the submatrix

generated by the first k rows and columns of X with k = O(
√

n
logn

), converges in
total variation to the matrix of independent exponential random variables.

Regarding the spectral distribution of X, it has been shown by Chatterjee, Dia-
conis and Sly that the empirical distribution of the singular values of

√
n(X −EX)

obeys the quarter-circular law.

THEOREM 1.6 ([9], Theorem 3). Let 0 ≤ σ1, . . . , σn be the singular values of√
n(X − EX), where X is a random doubly stochastic matrix. Then the empirical

spectral measure 1
n

∑
i≤n δσi

converges in probability and in weak topology to the

quarter-circle measure 1
π

√
4 − x21[0,2] dx.

The key ingredients in the proof of Theorem 1.6 are a sharp concentration re-
sult coupled with two transference principles (Lemmas 2.2 and 2.3 below). These
principles help translate results from i.i.d. random matrices of independent random
exponential variables to random doubly stochastic matrices.

It has been conjectured in [9] that the empirical spectral distribution of
√

n(X −
EX) obeys the circular law, which we confirm now. For the rest of this section we
sketch the general plan to attack Theorem 1.5.

Since the entries of X are exchangeable, EX is the matrix Jn of all 1/n. The
matrix X − EX has a zero eigenvalue, and we want to single this outlier out due
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to several technical reasons. One way to do this is passing to X̄, a matrix of size
(n − 1) × (n − 1) defined as

X̄ :=

⎛
⎜⎜⎜⎜⎝

x22 − x21 · · · x2n − x21

x32 − x31 · · · x3n − x31
...

...
...

xn2 − xn1 · · · xnn − xn1

⎞
⎟⎟⎟⎟⎠ .

It is not hard to show that the spectra of
√

n(X − EX) is the union of zero and
the spectra of

√
nX̄. Indeed, consider the matrix λIn −√

n(X−EX). By adding all
other rows to its first row, and then subtracting the first column from every other
column, we arrive at a matrix whose determinant is λdet(λIn−1 − √

nX̄), thus
confirming our observation. Hence, it is enough to prove the circular law for X̄.

THEOREM 1.7 (Main theorem). Let X be a matrix chosen uniformly from the
set of doubly stochastic matrices. Then the ESD of the matrix

√
nX̄ converges

almost surely to μcir.

One way to prove our main result above is by showing that the Stieltjes trans-
form of μ√

nX̄ converges to that of the circular measure. However, it is slightly
more convenient to work with the logarithmic potential. We will mainly rely on
the following machinery from [36], Theorem 2.1.

LEMMA 1.8. Suppose that M = (mij )1≤i,j≤n is a random matrix. Assume
that:

• 1
n
‖M‖2

HS = 1
n

∑
i,j m2

ij is bounded almost surely;

• for almost all complex numbers z0, the logarithmic potential 1
n

log |det(M −
z0In)| converges almost surely to f (z0) = ∫C log |w − z0|dμcir(w).

Then μM converges almost surely to μcir.

We will break the main task into two parts, one showing the boundedness and
one proving the convergence.

THEOREM 1.9. Let X be a matrix chosen uniformly from the set of doubly
stochastic matrices. Then there exists a constant C such that the following holds:

P
( ∑

2≤i,j≤n

(xij − xi1)
2 ≥ C

)
= O(exp

(−	(
√

n)
)
.

The proof of Theorem 1.9 will be presented at the end of Section 2. The heart
of our paper is to establish the convergence of 1

n
log |det(

√
nX̄ − z0In−1)|.



1166 H. H. NGUYEN

THEOREM 1.10. For almost all complex numbers z0, 1
n

log |det(
√

nX̄ −
z0In−1)| converges almost surely to f (z0).

The main difficulty in establishing Theorem 1.10 is that the entries in each row
and each column of X̄ are not at all independent. To the best of our knowledge,
the convergence for such a model has not been studied before in the literature. We
will present its proof in Section 6.

Notation. Here and later, asymptotic notation such as O,
,	 and so forth, are
used under the assumption that n → ∞. A notation such as OC(·) emphasizes that
the hidden constant in O depends on C.

For a matrix M , we use the notation ri (M) and cj (M) to denote its ith row and
j th column, respectively. For an event A, we use the subscript Px(A) to emphasize
that the probability under consideration is taking according to the random vector x.

For a real or complex vector v = (v1, . . . , vn), we will use the shorthand ‖v‖ for
its L2-norm (

∑
i |vi |2)1/2.

2. Some properties of random doubly stochastic matrices. We will gather
here some basic properties of random doubly stochastic matrices. The reader is
invited to consult [9] for further insights and applications.

2.1. Relation to random i.i.d. matrix of exponentials. Let Mn be the Birkhoff
polytope generated by the permutation matrices. Let � be the projection from Rn2

to R(n−1)2
by mapping (xij )1≤i,j≤n to (xij )2≤i,j≤n.

Let � : R(n−1)2 → Rn2
denote the following function:

�(X) = �(X)ij :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xij , 2 ≤ i, j ≤ n;
1 −

n∑
k=2

xik, 2 ≤ i ≤ n, j = 1;

1 −
n∑

k=2

xkj , 2 ≤ j ≤ n, i = 1;

1 −
n∑

l=2

(
1 −

n∑
k=2

xkl

)
, i = j = 1.

Thus � extends a matrix X of size (n − 1) × (n − 1) to a doubly stochastic
matrix of size n × n whose bottom right corner is X. With the above notation, the
doubly stochastic matrices correspond to (n − 1) × (n − 1)-matrices of the set

Sn := {X = (xij )2≤i,j≤n ∈ [0,1](n−1)2
: 0 ≤ �(X)ij ≤ 1

}
.

The distribution of X as a random doubly stochastic matrix is then given by the
uniform distribution on Sn. We next introduce an asymptotic formula by Canfield
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and Mckay [7] for the volume of Sn,

Vol(Sn) = 1

nn−1

1

(2π)n−1/2n(n−1)2 exp
(

1

3
+ n2 + o(1)

)
.(2.1)

This formula plays a crucial role in the transference principles to be introduced
next.

Define

Dn :=
{
Y = (yij )1≤i,j≤n :�

(
1

n
Y

)
∈ Sn,min

{
1

n
yij − �

(
�

(
1

n
Y

))
ij

}
≥ 0
}
,

where � : Rn2 → R(n−1)2
is the projection X = (xij )1≤i,j≤n �→ (xij )2≤i,j≤n.

Let Y = (yij )1≤i,j≤n be a random matrix where yij are i.i.d. copies of a ran-
dom exponential variable with mean one. As an application of (2.1), it is not hard
to deduce the following transference principle between random doubly stochastic
matrices X and random i.i.d. matrices Y .

LEMMA 2.2 ([9], Lemma 2.1). Conditioning on Y ∈ Dn, we have that
( 1
n
yij )2≤i,j≤n is uniform on Sn. Furthermore, for large n we have

P(Y ∈ Dn) ≥ n−4n.

Lemma 2.2 is useful when we want to pass an extremely rare event from the
model 1

n
Y to the model X. In applications (in particular when working with con-

centration results), it is more useful to work with matrices of bounded entries. With
this goal in mind we define

S̃n :=
{
X̃ = (x̃ij )2≤i,j≤n ∈ [0,1](n−1)2

,0 ≤ �(X̃)ij ≤ 10 logn

n

}

and

D̃n :=
{
Ỹ = (ỹij )1≤i,j≤n ∈ [0,10 logn]n2

,
1

n
Ỹ ∈ S̃n,

0 ≤ 1

n
ỹij − �

(
�

(
1

n
Ỹ

))
ij

≤ n−4
}
.

Observe that S̃n corresponds to doubly stochastic matrices X̃ with entries
bounded by 10 logn/n.

Let Ỹ = (ỹij )1≤i,j≤n where ỹij are i.i.d. copies of a truncated exponential ỹ

with the following density function:

ρỹ(x) =
{

exp(−x)/
(
1 − n−10), if x ∈ [0,10 logn],

0, otherwise.
(2.2)

It is clear that E(ỹ2) = 	(1) and E(ỹ4) = 	(1). We now introduce another
transference principle which is an analogue of Lemma 2.2.



1168 H. H. NGUYEN

LEMMA 2.3 ([9], Lemma 4.1). Conditioning on Ỹ ∈ D̃n, we have that
( 1
n
ỹij )2≤i,j≤n is uniform on S̃n. Furthermore, for large n we have

P(Ỹ ∈ D̃n) ≥ n−10n.

Notice that in the corresponding definition of D̃n in [9], Section 4, the bound
10 logn was replaced by 6 logn, but one can easily check that this modification
does not affect the validity of Lemma 2.3.

2.4. Relation to random stochastic matrices. Let R = Rr,n denote the r(n −
1)-dimensional polytope of nonnegative matrices of size r × n whose rows sum
to 1. Let μr denote the uniform probability measure on R, and let νr denote the
measure on R induced by the first r rows of a random doubly stochastic matrix X.
As another application of (2.1) (to be more precise, we need a more general form
for volume of polytopes generated by rectangular matrices of constant row and
column sums), one can show that these two measures are comparable as long as r

is small.

LEMMA 2.5 ([9], Lemma 3.3). For a fixed integer r ≥ 1 and n > r the Radon–
Nikodym derivative of the measures μr and νr satisfies

dνr

dμr

≤ (1 + o(1)
)

exp(r/2)

as n → ∞.

It then follows that, in terms of order, there is not much difference between the
models X and X̃.

THEOREM 2.6. Assume that B > 4 is a constant, then

PX

(
n−B ≤ nx11 ≤ B logn

)≥ 1 − O
(
n−B/2).

In particular, since the entries of X are exchangeable, Theorem 2.6 yields the
following.

COROLLARY 2.7. Assume that X is a random doubly stochastic matrix, then

P(X ∈ S̃n) = P
(|xij | ≤ 10 logn/n for all 1 ≤ i, j ≤ n

)≥ 1 − O
(
n−3).

PROOF OF THEOREM 2.6. It follows from Lemma 2.5 (for r = 1) that

P
(
n−B ≤ nx11 ≤ B logn

)≤ (1 + o(1)
)

exp(1/2)P
(
n−B ≤ nx1 ≤ B logn

)
,

where x1 has distribution B(1, n − 1).
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The claim then follows because

P
(
n−B ≤ nx1 ≤ B logn

)
= (n − 1)

∫ B logn

n−B
(1 − x)n−2 dx

= 1 − (n − 1)

(∫ n−B

0
(1 − x)n−2 dx +

∫ 1

B logn
(1 − x)n−2 dx

)

≥ 1 − O
(
n−B/2). �

We end this section by giving a proof for the boundedness of Lemma 1.8.

2.8. A proof for Theorem 1.9. We first focus on the random vector x =
(x1, . . . , xn) chosen uniformly from the simplex S = {x = (x1, . . . , xn),0 ≤ xi ≤
1,
∑

i xi = 1}. Because each xi has distribution B(1, n − 1), we have

Ex‖x‖2 = 2

n + 1
.(2.3)

Also, it can be shown that (e.g., from [23], equation (19))

Exx1x2 = 1

n(n + 1)
.(2.4)

It thus follows from (2.3) that ‖x‖ = O(1/
√

n) with high probability. It turns
out that this probability is extremely close to one.

LEMMA 2.9. Assume that x is sampled uniformly from S and assume that
ε > 0 is a sufficiently small constant. Then there exists a positive constant C > 0
such that

P
(‖x‖ ≥ C/

√
n
)≤ exp(−ε

√
n).

We assume Lemma 2.9 for the moment.

PROOF OF THEOREM 1.9. First, it follows from Lemma 2.5 (for r = 1) that

P
(
x2

21 + · · · + x2
n1 ≥ C/n

)
≤ (1 + o(1)

)
exp(1/2)P

(
x2

2 + · · · + x2
n ≥ C/n

)
= O(1)P

(
x2

1 + x2
2 + · · · + x2

n ≥ C/n
)
,

where (x1, x2, . . . , xn) are sampled uniformly from the simplex S. But Lemma 2.9
indicates that the RHS is bounded by exp(−ε

√
n). Thus

P
(
x2

21 + · · · + x2
n1 ≥ C/n

)= O
(
exp(−ε

√
n)
)
.(2.5)
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And so, as xij are exchangeable, for any j we also have

P
(
x2

2j + · · · + x2
nj ≥ C/n

)= O
(
exp(−ε

√
n)
)
.(2.6)

The claim of Theorem 1.9 then follows because
∑

2≤i,j≤n(xij − xi1)
2 ≥ C

would imply
∑n

i=2 x2
ij ≥ C/4n for some j . �

It remains to prove Lemma 2.9. We show that it is a direct consequence of the
following geometric result.

THEOREM 2.10 ([30], Theorem 1.1). There exists an absolute constant c > 0
such that if K is an isotropic convex body in Rn, then

P
(
x ∈ K,‖x‖ ≥ c

√
nLKt

)≤ exp(−√
nt)

for every t ≥ 1, where LK is the isotropic constant of K .

Observe that, by the triangle inequality, for Lemma 2.9 it is enough to give a
similar probability bound for the event ‖x − (1/n, . . . ,1/n)‖ ≥ C/

√
n.

We first shift S to the hyperplane H := {x′ = (x′
1, . . . , x

′
n), x

′
1 + · · · + x′

n = 0}
by the translation x = (x1, . . . , xn) �→ (x1 − 1/n, . . . , xn − 1/n). We then scale the
obtained body by a factor α = 	(n) to obtain a regular simplex S′ of volume one.
Elementary computations show that this is an isotropic body of bounded isotropic
constant. Indeed, if x′ = (x′

1, . . . , x
′
n) is sampled uniformly from S′ and if � =

(θ1, . . . , θn) is any unit vector in H , then by (2.3) and (2.4),

Ex′∈S′
〈
x′,�

〉2 = Ex′∈S′
(∑

i

θix
′
i

)2

= Ex∈S

∑
i

α2
(∑

i

θi

(
xi − 1

n

))2

= α2
∑
i

θ2
i

(
xi − 1

n

)2

+ 2α2
∑
i �=j

θiθj

(
xi − 1

n

)(
xj − 1

n

)

= α2
(

2

n(n + 1)
− 1

n2

)∑
i

θ2
i + 2α2

(
1

n(n + 1)
− 1

n2

)
θiθj

= α2
(

1

n(n + 1)

)∑
i

θ2
i + α2

(
1

n(n + 1)
− 1

n2

)(∑
i

θi

)2

= α2

n(n + 1)
.

Thus the isotropic constant of S′ is of constant order. Theorem 2.10 applied to
x′ yields the following for a sufficiently large constant C:

P
(
x′ ∈ S′,

∥∥x′∥∥≥ C
√

n
)≤ exp(−ε

√
n).

Lemma 2.9 then follows because α‖x − (1/n, . . . ,1/n)‖ = ‖x′‖.



RANDOM DOUBLY STOCHASTIC MATRICES: THE CIRCULAR LAW 1171

REMARK 2.11. The proof above heavily relies on the isotropic property of the
simplex S. It is perhaps more natural to relate x = (x1, . . . , xn) to (y1/(y1 + · · · +
yn), . . . , yn/(y1 + · · · + yn)), where yi are i.i.d. copies of a random exponential
random variable of mean one.2 The probability P(‖x‖ ≥ C/

√
n) is then bounded

by the sum P(y1 + · · · + yn ≤ n/
√

C) + P(y2
1 + · · · + y2

n ≥ Cn). As now we only
need to work with sum of i.i.d. random variables, by choosing C sufficiently large,
it is not hard to show that both P(y1 +· · ·+yn ≤ n/

√
C) and P(y2

1 +· · ·+y2
n ≥ Cn)

are bounded from above by exp(−	(
√

n)).

3. The singularity of X̄. In order to justify Theorem 1.10, one of the key
steps is to bound the singularity probability of the matrix

√
nX̄ − z0In−1. This

problem is of interest on its own.
We will show the following general result regarding the least singular value

σn−1.

THEOREM 3.1. Let F = (fij )2≤i,j≤n be a deterministic matrix where |fij | ≤
nγ with some positive constant γ . Let X be an n×n matrix chosen uniformly from
the set of doubly stochastic matrices. Then for any positive constant B there exists
a positive constant A such that

P
(
σn−1(X̄ + F) ≤ n−A)≤ n−B.

Combine with Theorem 2.7 we obtain the following important corollary which
we reserve for later applications.

COROLLARY 3.2. Let F = (fij )2≤i,j≤n be a deterministic matrix where
|fij | ≤ nγ with some positive constant γ . Let X̃ = (xij ) be a random doubly
stochastic matrix where xij ≤ 10 logn/n for all 1 ≤ i, j ≤ n. Then there exists
a positive constant A such that

P
(
σn−1(

¯̃
X + F) ≤ n−A)= O

(
n−3).

Here ¯̃
X is obtained from X̃ in the same way that X̄ was defined from X.

We remark that a similar version of Theorem 3.1 has appeared in [36] to deal
with random matrices of i.i.d. entries; see also [6, 28] and the references therein.
However, our task here looks much harder as the entries in each row and each
column are not independent. We will now sketch the proof of Theorem 3.1; more
details will be presented in Section 4.

Assume that σn−1(X̄ + F) ≤ n−A. Then, by letting C = (cij )2≤i,j≤n be the
cofactor matrix of X̄ + F , there exist vectors x and y such that ‖x‖ = 1 and ‖y‖ ≤
n−A and

Cy = det(X̄ + F)x.

2The author is grateful to the anonymous referee for this suggestion.
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So

‖Cy‖ = ∣∣det(X̄ + F)
∣∣.

Thus by the Cauchy–Schwarz inequality, with a loss of a factor of n in proba-
bility and without loss of generality, we can assume that

n∑
j=2

|c2j |2 ≥ n2A−1∣∣det(X̄ + F)
∣∣2.(3.1)

In what follows we fix the matrix X(n−2)×(n−1) generated by the last (n − 2)

rows and the last (n − 1) columns of X [equivalently, we fix the last (n − 2) rows
of X̄].

Let s2, . . . , sn be the column sums of X(n−2)×(n−1). By Theorem 2.6, the prob-
ability that all x11, . . . , x1n, x21, . . . , x2n are greater than n−2B−2 is bounded from
below by 1 − O(n−B), in which case we have

si ≤ 1 − n−2B−2 for all i ≥ 2 and
(3.2)

0 ≤ s1 := (n − 2) − (s2 + · · · + sn) ≤ 1 − n−2B−2.

Thus it is enough to justify Theorem 3.1 conditioning on this event.
Next, given a sequence s2, . . . , sn satisfying (3.2), we will choose x2 :=

x22, . . . , xn := x2n uniformly and, respectively, from the interval [0,1 − s2], . . . ,
[0,1 − sn] such that

s1 ≤ x2 + · · · + xn ≤ 1.(3.3)

The upper bound guarantees that x1 := x21 = 1 − (x2 + · · · + xn) ≥ 0, while the
lower bound ensures that x11 = 1 − s1 − x21 = x2 + · · · + xn − s1 ≥ 0.

We now express det(X̄ + F) as a linear form of its first row (x2 − x1 +
f22, . . . , xn − x1 + f2n),

det(X̄ + F) = ∑
2≤j≤n

c2j (X̄ + F)(xj − x1 + f2j ).

By using the fact that x1 = 1 −∑2≤j≤n xj we can rewrite the above as

det(X̄ + F) = ∑
2≤j≤n

(
c2j + ∑

2≤i≤n

c2i

)
xj + c,(3.4)

where c is a constant depending on the c2j ’s and f2j ’s.
Observe that

∑
2≤j≤n

∣∣∣∣c2j + ∑
2≤i≤n

c2i

∣∣∣∣
2

= ∑
2≤j≤n

|c2j |2 + (n + 1)

∣∣∣∣ ∑
2≤j≤n

c2j

∣∣∣∣
2

≥ ∑
2≤j≤n

|c2j |2.
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Thus, by increasing A if needed, we obtain from (3.1) and (3.4) the following:∣∣∣∣ ∑
2≤j≤n

xjaj + c

∣∣∣∣≤ n−A,

where

aj := c2j +∑2≤i≤n c2i

(
∑

2≤j≤n |c2j +∑2≤i≤n c2i |2)1/2 .(3.5)

Roughly speaking, our approach to prove Theorem 3.1 consists of two main
steps:

• Inverse step. Given the matrix X(n−2)×(n−1) for which all the column sums si
satisfy (3.2), assume that

Px2,...,xn

(∣∣∣∣ ∑
2≤j≤n

ajxj + c

∣∣∣∣≤ n−A

)
≥ n−B,

where the probability is taken over all xi,2 ≤ i which satisfy (3.3). Then there
is a strong structure among the cofactors c2j of X(n−2)×(n−1).

• Counting step. With respect to X(n−2)×(n−1), the probability that there is a
strong structure among the cofactors c2j is negligible.

We pause to discuss the structure mentioned in the inverse step. A set Q ⊂ C is
a GAP of rank r if it can be expressed as in the form

Q = {g0 + k1g1 + · · · + krgr |ki ∈ Z,Ki ≤ ki ≤ K ′
i for all 1 ≤ i ≤ r

}
for some (g0, . . . , gr) ∈ Cr+1 and (K1, . . . ,Kr), (K

′
1, . . . ,K

′
r ) ∈ Zr .

It is convenient to think of Q as the image of an integer box B := {(k1, . . . , kr) ∈
Zr |Ki ≤ ki ≤ K ′

i} under the linear map � : (k1, . . . , kr) �→ g0 + k1g1 + · · · + krgr .
The numbers gi are the generators of Q, the numbers K ′

i and Ki are the dimen-
sions of Q, and Vol(Q) := |B| is the size of B . We say that Q is proper if this
map is one to one, or equivalently if |Q| = Vol(Q). For nonproper GAPs, we of
course have |Q| < Vol(Q). If −Ki = K ′

i for all i ≥ 1 and g0 = 0, we say that Q is
symmetric.

We are now ready to state both of our steps in details.

THEOREM 3.3 (Inverse step). Let 0 < ε < 1 and B > 0 be given constants.
Assume that

Px2,...,xn

(∣∣∣∣ ∑
2≤j≤n

ajxj + c

∣∣∣∣≤ n−A

)
≥ n−B

for some sufficiently large integer A, where aj are defined in (3.5), and xj are
chosen uniformly from the intervals [0,1 − si] such that the constraint (3.3) holds.
Then there exists a vector u = (u2, . . . , un) ∈ Cn−1 which satisfies the following
properties:
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• 1/2 ≤ ‖u‖ ≤ 2 and |〈u, ri (X̄ +F)〉| ≤ n−A+γ+2 for all but the first row r1(X̄ +
F) of X̄ + F .

• All but n′ components ui belong to a GAP Q (not necessarily symmetric) of
rank r = OB,ε(1), and of cardinality |Q| = nOB,ε(1).

• All the real and imaginary parts of ui and of the generators of Q are rational
numbers of the form p/q , where |p|, |q| ≤ n2A+3/2.

In the second step of the approach we show that the probability for X(n−2)×(n−1)

having the above properties is negligible.

THEOREM 3.4 (Counting step). With respect to X(n−2)×(n−1), or equivalently,
with respect to the last (n − 2) rows of X̄, the probability that there exists a vector
u as in Theorem 3.3 is exp(−	(n)).

PROOF. First, we show that the number of structural vectors u described in
Theorem 3.3 is bounded by nOB,ε(n)+OA(nε). Indeed, because each GAP is deter-
mined by its generators and its dimensions, and because all the real and complex
parts of the genrators are of the form p/q where |p|, |q| ≤ n2A+3/2, there are
nOA,B,ε(1) GAPs which have rank OB,ε(1) and size nOB,ε(1). Next, for each de-
termined GAP Q of size nOB,ε(1), there are |Q|n = nOB,ε(n) ways to choose the
ui as its elements. For the remaining O(nε) exceptional ui that may not belong
to Q, there are nOA(nε) ways to choose them as numbers of the form p/q where
|p|, |q| ≤ n2A+3/2. Putting these together we obtain the bound as claimed.

Second, as for each fixed structural vector u from Theorem 3.3 we have
|〈u, ri(X̄ + F)〉| = O(n−A+γ+2) for all 2 ≤ i ≤ n − 1. So∣∣∣∣∑

2≤j

uj (xij − xi1 + fij )

∣∣∣∣=
∣∣∣∣∑
2≤j

xij

(
uj +∑

2≤k

uk

)
−∑

2≤j

uj +∑
2≤j

ujfij

∣∣∣∣
(3.6)

= O
(
n−A+γ+2).

We next view this inequality for the matrix model Y and Ȳ , where Y was in-
troduced in Section 2, and Ȳ is obtained from Y in the same way as how X̄ was
defined from X,∣∣∣∣∑

2≤j

1

n
yij

(
uj +∑

2≤k

uk

)
−∑

2≤j

uj +∑
2≤j

ujfij

∣∣∣∣= O
(
n−A+γ+2).(3.7)

Observe that ∑
2≤j≤k

∣∣∣∣uj + ∑
2≤k≤n

uk

∣∣∣∣
2

≥ ∑
2≤k≤n

u2
k ≥ 1/4.

Thus there exits j0 such that∣∣∣∣uj0 + ∑
2≤k≤n

uk

∣∣∣∣≥ 1/2
√

n.
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It then follows that for each i, with room to spare,

P
(∣∣∣∣∑

2≤j

1

n
yij

(
uj +∑

2≤k

uk

)
−∑

2≤j

uj +∑
2≤j

ujfij

∣∣∣∣= O
(
n−A+γ+2))

= Pyij ,j �=j0Pyij0

(∣∣∣∣1nyij0

(
uj0 + ∑

2≤k≤n

uk

)

+ ∑
j �=j0

1

n
yij

(
uj + ∑

2≤k≤n

uk

)
− · · ·

∣∣∣∣
= O

(
n−A+γ+2)|yij,j �=j0

)

= O
(
n−A+γ+10),

where in the last conditional probability estimate we used the fact that yij are i.i.d.
exponentials of mean one.

Hence, for each fixed structural vector u, the probability Pu that (3.7) holds for
all rows ri (Ȳ + F),2 ≤ i ≤ n − 1, is bounded by

Pu ≤ n(−A+γ+10)(n−2).

Summing over structural vectors u, we thus obtain the following upper bound
for the probability that there exists a structural vector u for which (3.7) holds for
all rows ri (Ȳ + F),2 ≤ i ≤ n − 1∑

u
Pu ≤ nOB,ε(n)+OA(nε)n(−A+γ+10)(n−2) = O

(
n−An/2),

provided that A is large enough.
To conclude the proof of Theorem 3.4, we use Lemma 2.2 to pass from Y

and Ȳ back to X and X̄. The probability that there exists a structural vector u
for which (3.6) holds for all rows ri (X̄ + F),2 ≤ i ≤ n − 1, is then bounded by
O(n−An/2+4n) = O(exp(−	(n))), provided that A is sufficiently large. �

4. Proof of Theorem 3.3. We recall from the assumptions of Theorem 3.3
that

Px2,...,xn

(∣∣∣∣∑
j≥2

ajxj + c

∣∣∣∣≤ n−A

)
≥ n−B,(4.1)

where x2, . . . , xn are uniformly sampled from the interval [0,1 − s2], . . . , [0,1 −
sn], respectively, so that (3.3) holds.

This is a large concentration inequality for linear forms of mildly dependent
random variables. Our first goal is to relax these dependencies.

4.1. A simple reduction step. Let En be the set of all (x2, . . . , xn) uniformly
sampled from [0,1− s2]× · · ·×[0,1− sn] so that (3.3) holds. We recall from (3.2)
that si ≤ 1 − n−2B−2.
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Consider the event s1 ≤ x′
2 + · · · + x′

n ≤ 1, where x′
i are independently and

uniformly sampled from the interval [0,1 − si], respectively.
Note that E(x′

2 +· · ·+ x′
n) =∑2≤i≤n(1 − si)/2 = (1 − s1)/2. Since the random

variables x′
i − (1 − si)/2 are symmetric and uniform, the density function f (x)

of x′
2 + · · · + x′

n is maximized at (1 − s1)/2 and decreases as |x − (1 − s1)/2)|
increases. Thus we have

P
((

x′
2, . . . , x

′
n

) ∈ En

)= P
(
s1 ≤ x′

2 + · · · + x′
n ≤ 1

)

=
∫ 1

s1

f (x) dx =
∫ 1
s1

f (x) dx∫ (1−s2)+···+(1−sn)
0 f (x) dx

≥ 1 − s1

(1 − s2) + · · · + (1 − sn)
= 1 − s1

1 + s1

= 

(
n−2B−2),

where we noted from (3.2) that s1 ≤ 1 − n−2B−2.
Observe that if we condition on sn ≤ x′

2 + · · · + x′
n ≤ 1, then the distribution of

(x′
2, . . . , x

′
n) is uniform over the set En. It thus follows from (4.1) that

Px′
2,...,x

′
n

(∣∣∣∣∑
j≥2

ajx
′
j + c

∣∣∣∣≤ n−A

)
≥ n−3B−2.(4.2)

In the next step of the reduction, we divide the intervals [0,1 − si] into disjoint
intervals Ii1, . . . , Iiki

of length n−3B−2, where ki = (1 − si)/n−3B−2 (without loss
of generality, we assume that ki are integers). Next, to sample x′

i uniformly from
the interval [0,1 − si] we first choose at random an interval from {Ii1, . . . , Iiki

}
and then sample x′

i from it. In this way, (4.2) implies that there exist intervals
Iiji

,2 ≤ i ≤ n, such that if x′
i are chosen uniformly from Iiji

then

Px′
2,...,x

′
n

(∣∣∣∣∑
j≥2

ajx
′
j + c

∣∣∣∣≤ n−A

)
≥ n−3B−2.(4.3)

Observe furthermore that, by shifting c if needed, we can assume that Iiji
=

[0, n−3B−2] for all i. Finally, by passing to x′′
i := n3B+2x′

i and by decreasing A to
A − (3B + 2), we can assume that all x′

i are uniformly sampled from the interval
[0,1].

4.2. High concentration of linear form. A classical result of Erdős [12] and
Littlewood–Offord [22] asserts that if bi are real numbers of magnitude |bi | ≥ 1,
then the probability that the random sum

∑n
i=1 bixi concentrates on an interval

of length one is of order O(n−1/2), where xi are i.i.d. copies of a Bernoulli ran-
dom variable. This remarkable inequality has generated an impressive amount of
research, particularly from the early 1960s to the late 1980s. We refer the reader to
[19, 21] and the references therein for these developments.
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Motivated by inverse theorems from additive combinatorics, Tao and Vu studied
the underlying reason as to why the concentration probability of

∑n
i=1 bixi on a

short interval is large. A closer look at the definition of GAPs defined in the previ-
ous section reveals that if bi are very close to the elements of a GAP of rank O(1)

and size nO(1), then the concentration probability of
∑n

i=1 bixi on a short interval
is of order n−O(1), where xi are i.i.d. copies of a Bernoulli random variable.

It has been shown by Tao and Vu [35–37] in an implicit way, and by the cur-
rent author and Vu [27] in a more explicit way that these are essentially the only
examples that have high concentration probability.

We say that a complex number a is δ-close to a set Q ⊂ C if there exists q ∈ Q

such that |a − q| ≤ δ.

THEOREM 4.3 (Inverse Littlewood–Offord theorem for linear forms [27],
Corollary 2.10). Let 0 < ε < 1 and C > 0. Let β > 0 be an arbitrary real number
that may depend on n. Suppose that bi = (bi1, bi2) are complex numbers such that∑n

i=1 ‖bi‖2 = 1, and

sup
a

Px

(∣∣∣∣
n∑

i=1

bixi − a

∣∣∣∣≤ β

)
= ρ ≥ n−C,

where x = (x1, . . . , xn), and xi are i.i.d. copies of random variable ξ satisfy-
ing P(c1 ≤ ξ − ξ ′ ≤ c2) ≥ c3 for some positive constants c1, c2 and c3. Then,
for any number n′ between nε and n, there exists a proper symmetric GAP
Q = {∑r

i=1 kigi :ki ∈ Z, |ki | ≤ Li} such that:

• at least n − n′ numbers bi are β-close to Q;
• Q has small rank, r = OC,ε(1), and small cardinality

|Q| ≤ max
(
OC,ε

(
ρ−1
√

n′

)
,1
)
;

• there exists a nonzero integer p = OC,ε(
√

n′) such that all generators gi =
(gi1, gi2) of Q have the form gij = β

pij

p
, with pij ∈ Z and |pij | =

OC,ε(β
−1

√
n′).

Theorem 4.3 was proved in [27] with c1 = 1, c2 = 2 and c3 = 1/2, but the proof
there automatically extends to any constants 0 < c1 < c2 and 0 < c3.

The interested reader is invited to also read [26, 31, 40] for other variants and
further developments of such inverse results.

We now prove Theorem 3.3. Theorem 4.3 applied to (4.3), with n′ = nε,C =
3B + 2 and xi being independently and uniformly distributed over the interval
[0,1], implies that there exists a vector v = (v2, . . . , vn) such that:

• |ai − vi | ≤ n−A for all indices i from {2, . . . , n};
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• all but n′ numbers vi belong to a GAP Q of small rank, r = OB,ε(1), and of
small cardinality |Q| = O(nOB,ε(1));

• all the real and imaginary parts of vi and of the generators of Q are rational
numbers of the form p/q , with p,q ∈ Z and |p|, |q| = OB,ε(n

A+1/2).

Recall that

aj = c2j +∑2≤i≤n c2i

(
∑

2≤j≤n |c2j +∑2≤i≤n c2i |2)1/2 .

We will translate the above useful information on the aj ’s to the cj ’s. To do so
we fist find a number of the form p/nA, where p ∈ Z and −nA ≤ p ≤ nA such
that ∣∣∣∣ p

nA
−

∑
2≤j≤n c2j

(
∑

j |c2j +∑2≤i≤n c2i |2)1/2

∣∣∣∣≤ 1

nA
.

Thus, by shifting the GAP Q by p/nA, we obtain |a′
j − v′

j | ≤ 2n−A, and so∥∥a′ − v′∥∥= O
(
n−A+1/2),

where a′ = (a′
2, . . . , a

′
n),v′ = (v′

2, . . . , v
′
n) and

a′
j = c2j

(
∑

j |c2j +∑2≤i≤n c2i |2)1/2 as well as v′
j = vj − p

nA
.

By definition, 1/2n2 ≤∑ |a′
j |2 ≤ 1, so by the triangle inequality∥∥v′∥∥≥ ∥∥a′∥∥− O
(
n−A+1/2)≥ 1/

√
2n − O

(
n−A+1/2)

and ∥∥v′∥∥≤ ∥∥a′∥∥+ O
(
n−A+1/2)≤ 1 + O

(
n−A+1/2).

More importantly, as a′ is proportional to (c22, . . . , c2n) (which are the cofactors
of X̄ + F ), a′ is orthogonal to all but the first row of X̄ + F . In other words,
|〈a′, ri (X̄ + F)〉| = 0 for all i ≥ 2. It is thus implied that∣∣〈v′, ri (X̄ + F)

〉∣∣≤ n−A+γ+1.

In the last step of the proof, we find nonzero numbers p′, q ′ ∈ Z, |p′|, |q ′| =
O(n) so that ‖v′‖/2 ≤ p′/q ′ ≤ 2‖v′‖.

Set

u := q ′

p′ v
′,

and we then have:

• 1/2 ≤ ‖u‖ ≤ 2 and 〈u, ri(X̄ + F)〉 ≤ n−A+γ+2 for all but the first rows of X̄ +
F ;

• all but n′ components ui belong to a GAP Q′ (not necessarily symmetric) of
small rank, r = OB,ε(1), and of small cardinality |Q′| = O(nOB,ε(1));

• all the real and imaginary parts of ui and of the generators of Q′ are rational
numbers of the form p/q , with p,q ∈ Z and |p|, |q| = OB,ε(n

2A+3/2).
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5. Spectral concentration of i.i.d. random covariance matrices. From now
on we will mainly focus on the bounded model X̃ rather than on X. This is the
model where we can relate to Ỹ , a matrix of bounded i.i.d. entries (defined in Sec-
tion 2) for which concentration results may easily apply. Furthermore, by Corol-
lary 2.7, there is not much difference between the two models X and X̃.

Having learned from Corollary 3.2 that |det(
√

n
¯̃
X − z0In−1)| is bounded away

from zero, we will show that 1
n

log |det(
√

n
¯̃
X − z0In−1)| is well concentrated

around its mean. This result will then immediately imply Theorem 1.10.

In order to study the concentration of det(
√

n
¯̃
X − z0In−1), we might first relate

it to the counterpart ¯̃
Y . However, the entries of the later model are not indepen-

dent, and so certain well-known concentration results for i.i.d. matrices are not
applicable. To avoid this technical issue, we will modify

√
n

¯̃
X as follows. Observe

that

det(
√

n
¯̃
X − z0In−1) = 1√

n
det(

√
nX̃(n−1)×n − Fz0),(5.1)

where Fz0 is the deterministic matrix obtained from z0In−1 by attaching (−√
n,

. . . ,−√
n) and (−√

n,0, . . . ,0)T as its first row and first column, respectively, and
X̃(n−1)×n is the matrix obtained from X̃ by replacing its first row by a zero vector,

√
nX̃(n−1)×n − Fz0 :=

⎛
⎜⎜⎜⎜⎝

√
n

√
n · · · √

n√
nx̃21

√
nx̃22 − z0 · · · √

nx̃2n

...
...

. . .
...√

nx̃n1
√

nx̃n2 · · · √
nx̃nn − z0

⎞
⎟⎟⎟⎟⎠ .

As it turns out, it is more pleasant to work with X̃(n−1)×n because the entries of

its counterpart Ỹ(n−1)×n are now independent. To relate the singularity of
√

n
¯̃
X −

z0In−1 to that of
√

nX̃(n−1)×n − Fz0 , we have a crucial observation below.

CLAIM 5.1. Suppose that A is a sufficiently large constant. We have

σn(
√

nX̃(n−1)×n − Fz0) ≥ 1

n
min

(
1√
2n

σn−1(
√

n
¯̃
X − z0In−1) − O

(
n−A), n−A

)
.

To prove this claim, let c1, . . . , cn be the columns of
√

nX̃(n−1)×n − Fz0 . Let
v = (v1, . . . , vn) be any unit vector. If |v1 + · · · + vn| ≥ n−A−1/2, then it is clear
that ‖(√nX̃(n−1)×n − Fz0)v‖ ≥ |√n(v1 + · · · + vn)| ≥ n−A. Otherwise, as |v1|2 +
· · · + |vn|2 = 1, we can easily deduce that |v2|2 + · · · + |vn|2 ≥ 1/2n. Next, by the
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triangle inequality,∥∥(√nX̃(n−1)×n − Fz0)v
∥∥

=
∥∥∥∥ ∑

2≤i≤n

vici

∥∥∥∥=
∥∥∥∥ ∑

2≤i≤n

vi(ci − c1) + (v1 + · · · + vn)c1

∥∥∥∥
≥
∥∥∥∥ ∑

2≤i≤n

vici

∥∥∥∥− n−A−1/2‖c1‖

≥ (|v2|2 + · · · + |vn|2)1/2
σn−1(

√
n

¯̃
X − z0In−1) − √

2n−A

≥ 1√
2n

σn−1(
√

n
¯̃
X − z0In−1) − O

(
n−A).

Claim 5.1 guarantees that the polynomial probability bound for σn−1(
√

n
¯̃
X −

z0In−1) from Corollary 3.2 continues to hold for σn(
√

nX̃(n−1)×n − Fz0) (with
probably a worse value of A).

THEOREM 5.2. There exists a positive constant A such that

P
(
σn(

√
nX̃(n−1)×n − Fz0) ≤ n−A)= O

(
n−3).

Our goal is then to establish a large concentration of 1
n

log |det(
√

nX̃(n−1)×n −
Fz0)| around its mean. We now consider Ỹ .

5.3. Large concentration for Ỹ . Consider the i.i.d. matrices Ỹ defined from
Section 2, and let Ỹ(n−1)×n be the matrix obtained from Ỹ by replacing its first row
by the zero vector.

We first observe from Claim 5.1 that

σn

(
1√
n
Ỹ(n−1)×n − Fz0

)

≥ 1

n
min

(
1√
2n

σn−1

(
1√
n

¯̃
Y − z0In−1

)
− O

(
n−A), n−A

)
,

where

1√
n
Ỹ(n−1)×n − Fz0 =

⎛
⎜⎜⎜⎜⎜⎝

√
n

√
n · · · √

n
1√
n
ỹ21

1√
n
ỹ22 − z0 · · · 1√

n
ỹ2n

...
...

. . .
...

1√
n
ỹn1

1√
n
ỹn2 · · · 1√

n
ỹnn − z0

⎞
⎟⎟⎟⎟⎟⎠ .

On the other hand, conditioning on ỹ21, . . . , ỹn1, the entries ỹij − ỹi1 of the

matrix ¯̃
Y are independent, and so we can apply known singularity bounds, for
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instance [34], Theorem 2.1, for i.i.d. matrices to conclude that for any positive

constant B , there exists a positive constant A such that P(σn−1(
1√
n

¯̃
Y − z0In−1) ≤

n−A) = O(n−B). Returning to Ỹ(n−1)×n, we hence obtain the following.

THEOREM 5.4. For any positive constant B , there exists a positive constant A

such that

P
(
σn

(
1√
n
Ỹ(n−1)×n − Fz0

)
≤ n−A

)
= O

(
n−B).

This bound will be exploited later on.
Next, let H denote the following Hermitian matrix:

H :=
(

1√
n
Ỹ(n−1)×n − Fz0

)∗( 1√
n
Ỹ(n−1)×n − Fz0

)
.

It is clear that the eigenvalues λ1(H), . . . , λn(H) of H can be written as

λ1(H) = σ 2
1

(
1√
n
Ỹ(n−1)×n − Fz0

)
, . . . , λn(H) = σ 2

n

(
1√
n
Ỹ(n−1)×n − Fz0

)
,

where σi(
1√
n
Ỹ(n−1)×n − Fz0) are the singular values of 1√

n
Ỹ(n−1)×n − Fz0 .

The following concentration result will serve as our main lemma.

LEMMA 5.5. Assume that f is a function so that g(x) := f (x2) is convex and
has finite Lipshitz norm ‖g‖L. Then for any δ ≥ CK‖g‖L/n, where K = 10 logn

is the upper bound for the entries of Ỹ(n−1)×n and C is a sufficiently large absolute
constant, we have

P

(∣∣∣∣∣
n∑

i=1

f
(
λi(H)

)− E

(
n∑

i=1

f
(
λi(H)

))∣∣∣∣∣≥ δn

)
= O

(
exp
(
−C′ n2δ2

K2‖g‖2
L

))
;

here C′ and the implied constant depend on C.

We remark that when Fz0 vanishes, Lemma 5.5 is essentially [18], Corollary 1.8,
of Guionnet and Zeitouni. We will show that the method there can be easily ex-
tended for any deterministic matrix Fz0 .

PROOF OF LEMMA 5.5. Consider the following Hermitan matrix K2n of size
2n × 2n

K2n =

⎛
⎜⎜⎝

0
(

1√
n
Ỹ(n−1)×n − Fz0

)∗

1√
n
Ỹ(n−1)×n − Fz0 0

⎞
⎟⎟⎠ .
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Apparently,

K2
2n =

⎛
⎝
(

1√
n
Ỹ(n−1)×n − Fz0

)∗( 1√
n
Ỹ(n−1)×n − Fz0

)
0

0(
1√
n
Ỹ(n−1)×n − Fz0

)(
1√
n
Ỹ(n−1)×n − Fz0

)∗
⎞
⎠ .

So to prove Lemma 5.5, it is enough to show that

P

(∣∣∣∣∣
2n∑
i=1

g
(
λi(K2n)

)− E

( 2n∑
i=1

g
(
λi(K2n)

))∣∣∣∣∣≥ 2δn

)

(5.2)

= O

(
exp
(
−C′ n2δ2

K2‖g‖2
L

))
,

where λi(K2n) are the eigenvalues of K2n.
Next, by following [18], Lemma 1.2, we obtain the following.

LEMMA 5.6. The function M �→ tr(g( 1√
n
M + F)) of Hermitian matrices

M = (mij )1≤i,j≤n, where F is a deterministic Hermitian matrix whose entries
may depend on n, is a:

• convex function;
• Lipschitz function of constant bounded by 2‖g‖L.

We refer the reader to Appendix A for a proof of Lemma 5.6. To deduce (5.2)
from Lemma 5.6, we apply the following well-known Talagrand concentration
inequality [32].

LEMMA 5.7. Let D be the disk {z ∈ C, |z| ≤ K}. For every product probability
μ in DN , every convex function F : CN �→ R of Lipschitz norm ‖F‖L, and every
r ≥ 0,

P
(∣∣F − M(F)

∣∣≥ r
)≤ 4 exp

(−r2/16K2‖F‖2
L

)
,

where M(F) denotes the median of F .

Indeed, let F be the function : Ỹ ′ �→ tr(g(K2n)) = tr(g( 1√
n
Ỹ ′ + F ′)), where

Ỹ ′ =
(

0 Ỹ ∗
(n−1)×n

Ỹ(n−1)×n 0

)

and

F ′ =
(

0 −F ∗
z0

−Fz0 0

)
.
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Observe that the entries of Ỹ ′ are supported on |x| ≤ K = 10 logn. By
Lemma 5.6, F is a convex function with Lipschitz constant bounded by 2‖g‖L.
The conclusion (5.2) of Lemma 5.5 then follows by applying Lemma 5.7. �

In what follows we will apply Lemma 5.5 for two functions: one gives an almost
complete control on the large spectra of H , and the other yields a good bound on
the number of small spectra of H . We will choose c to be a sufficiently small
constant, and with room to spare we set

ε = δ = 	
(
n−c).

5.8. Concentration of large spectra for i.i.d. matrices. Following [10]
and [13], we first apply Lemma 5.5 to the cut-off function fε(x) := log(max(ε, x)).
Note that fε(x

2) has Lipschitz constant 2ε−1/2. Although the function is not con-
vex, it is easy to write it as a difference of two convex functions of Lipschitz
constant O(ε−1/2), and so Lemma 5.5 applies because δ = 	(n−c) ≥ Cε1/2K/n.

THEOREM 5.9. We have

P
(∣∣∣∣ ∑

σ 2
i ((1/

√
n)Ỹ(n−1)×n−Fz0 )∈Sε

logσi

(
1√
n
Ỹ(n−1)×n − Fz0

)

− E
( ∑

σ 2
i (···)∈Sε

logσi(· · ·)
)∣∣∣∣≥ δn

)

= O
(
exp
(−n2δ2ε/K2))= O

(
exp
(−n log2 n

))
,

where Sε := {x ∈ R, x ≥ ε}.
For short, from now on we set

h
ε,Ỹ(n−1)×n

(z0) := 1

n
E
( ∑

σ 2
i ((1/

√
n)Ỹ(n−1)×n−Fz0 )∈Sε

logσi

(
1√
n
Ỹ(n−1)×n − Fz0

))
.

Serving as the main term, h
ε,Ỹ(n−1)×n

(z0) will play a key role in our analysis. In
the next subsection we apply Lemma 5.5 to another function f .

5.10. Concentration of the number of small eigenvalues for i.i.d. matrices.
Let I be the interval [0, ε]. We are going to show that the number NI of the eigen-
values λi(H) which belong to I is small with very high probability.

It is not hard to construct two functions f1, f2 such that (f1 − f2) − 1I is
nonnegative and supported on an interval of length ε/C, and so that both of
g1(x) = f1(x

2) and g2(x) = f2(x
2) are convex functions of Lipschitz constant

O(ε−1/2). (E.g., one may construct f1(x), f2(x) in such a way that the even func-
tion g1(x) = f1(x

2) is identical to 1 on the interval [−ε1/2, ε1/2] and being straight
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concave down from both edges with a slope of O(ε−1/2), while the graph of the
function g2(x) = f2(x

2) is obtained from that of g1(x) by replacing its positive
part with zero).

Next, by Lemma 5.5 we have

P
(∣∣∣∣ ∑

λi(H)

f1
(
λi(H)

)− E
( ∑

λi(H)

f1
(
λi(H)

))∣∣∣∣≥ δn

)
= O

(
exp
(−n log2 n

))

and

P
(∣∣∣∣ ∑

λi(H)

f2
(
λi(H)

)− E
( ∑

λi(H)

f2
(
λi(H)

))∣∣∣∣≥ δn

)
= O

(
exp
(−n log2 n

))
.

By the triangle inequality, we thus have

P
(∣∣∣∣ ∑

λi(H)

(f1 − f2)
(
λi(H)

)− E
( ∑

λi(H)

(f1 − f2)
(
λi(H)

))∣∣∣∣≥ 2δn

)

= O
(
exp
(−n log2 n

))
.

Because the error-function f = (f1 − f2) − 1I is nonnegative, it follows that with
probability 1 − O(exp(−n log2 n))∑

λi(H)

1I

(
λi(H)

)+ ∑
λi(H)

f
(
λi(H)

)≤ E
( ∑

λi(H)

(f1 − f2)
(
λi(H)

))+ 2δn,

and hence

NI = ∑
λi(H)

1I

(
λi(H)

)≤ E
( ∑

λi(H)

(f1 − f2)
(
λi(H)

))+ 2δn

≤ 2E
( ∑

λi(H)

1J

(
λi(H)

))+ 2δn

≤ 2E(NJ ) + 2δn,

where J is the interval [0, ε + ε/C] and NJ is the number of eigenvalues of H

in J . (Strictly speaking, we have to set J = [−ε/C, ε + ε/C]. However, as λi are
nonnegative, we can omit its negative interval.)

To exploit the above information furthermore, we apply a result saying that NJ

has small expected value (see also [39], Proposition 28 and the references therein).

LEMMA 5.11. For all J ⊂ R with |J | ≥ K2 log2 n/n1/2, one has

NJ � n|J |
with probability 1 − exp(−ω(logn)). In particular,

E(NJ ) ≤ Cn|J |,
where C is a sufficiently large constant.
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We remark that this result holds for any deterministic matrix F0 in the definition
of H . We defer the proof of Lemma 5.11 to Appendix B.

In summary, we have obtained the following result.

THEOREM 5.12. With probability O(exp(−n log2 n)), we have

NI ≥ 2Cεn + 2δn,

where NI is the number of σi(
1√
n
Ỹ(n−1)×n − Fz0) such that σ 2

i ( 1√
n
Ỹ(n−1)×n −

Fz0) ∈ [0, ε].
Consequently, it follows from Theorems 5.4 and 5.12 that with probability 1 −

O(n−B) the following holds:
1

n

∑
σ 2

i ((1/
√

n)Ỹ(n−1)×n−Fz0 )∈[0,ε]
logσi

(
1√
n
Ỹ(n−1)×n − Fz0

)
= O

(
(ε + δ) logn

)

= O
(
n−c logn

)
.

Thus, combining with Theorem 5.9, we infer the following.

THEOREM 5.13. Let z0 be fixed, and let B be a positive constant. Then the
following holds with probability 1 − O(n−B):∣∣∣∣1n log

∣∣∣∣det
(

1√
n
Ỹ(n−1)×n − Fz0

)∣∣∣∣− h
ε,Ỹ(n−1)×n

(z0)

∣∣∣∣ ≤ 2δ + O
(
n−c logn

)
= O

(
n−c logn

)
,

where the implied constants depend on B .

5.14. Asymptotic formula for h
ε,Ỹ(n−1)×n

(z0). We next claim that
1
n

log |det( 1√
n
Ỹ(n−1)×n − Fz0)| also converges to the corresponding part of the

circular law, and so gives an asymptotic formula for h
ε,Ỹ(n−1)×n

(z0).

THEOREM 5.15. For almost all z0, the following holds with probability one:
1

n
log
∣∣∣∣det

(
1√
n
Ỹ(n−1)×n − Fz0

)∣∣∣∣−
∫

C
log |w − z0|dμcir(w) = o(1).(5.3)

Note that this result is more or less the circular law for random matrices with
i.i.d. entries. To prove it we simply rely on [36].

PROOF OF THEOREM 5.15. We first pass to ¯̃
Y

¯̃
Y =

⎛
⎜⎜⎜⎜⎝

ỹ22 − ỹ21 · · · ỹ2n − ỹ21

ỹ32 − ỹ31 · · · ỹ3n − ỹ31
...

...
...

ỹn2 − ỹn1 · · · ỹnn − ỹn1

⎞
⎟⎟⎟⎟⎠ ,
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where ỹij are i.i.d. copies of ỹ.
As

det
(

1√
n
Ỹ(n−1)×n − Fz0

)
= √

ndet
(

1√
n

¯̃
Y − z0In−1

)
,

it is enough to prove the claim for det( 1√
n

¯̃
Y − z0In−1).

View ¯̃
Y as a sum of the matrix (ỹij )2≤i,j≤n and R, the (n − 1) × (n − 1) ma-

trix formed by (−ỹi1, . . . ,−ỹi1) for 2 ≤ i ≤ n. Because R has rank one and the
average square of its entries 1

n−1
∑

i ỹ
2
i1 is bounded almost surely (with respect

to ỹ21, . . . , ỹn1), [36], Corollary 1.15, applied to ¯̃
Y implies that the ESD of 1√

n

¯̃
Y

converges almost surely to the circular law.
Finally, thanks to [36], Theorem 1.20, for almost all z0 the following holds with

probability one:

1

n
log
∣∣∣∣det

(
1√
n

¯̃
Y − z0In−1

)∣∣∣∣−
∫

C
log |w − z0|dμcir(w) = o(1). �

Theorems 5.13 and 5.15 immediately imply that for almost all z0,

h
ε,Ỹ(n−1)×n

(z0) −
∫

C
log |w − z0|dμcir(w) = o(1).(5.4)

By substituting (5.4) back into Theorem 5.9, we have

P
(∣∣∣∣1n

∑
σ 2

i ((1/
√

n)Ỹ(n−1)×n−Fz0 )∈Sε

logσi

(
1√
n
Ỹ(n−1)×n − Fz0

)

−
∫

C
log |w − z0|dμcir(w)

∣∣∣∣≥ δ + o(1)

)
(5.5)

= O
(
exp
(−n log2 n

))
.

6. Large concentration for X̃, proof of Theorem 1.10. In this section we
will apply the transference principle of Lemma 2.3 to pass the results of Section 5
back to X̃. Our treatment here is similar to [9], Section 4.

By Lemma 2.3 and (5.5), conditioning on Ỹ ∈ D̃n we have

P
(∣∣∣∣1n

∑
σ 2

i ((1/
√

n)Ỹ(n−1)×n−Fz0 )∈Sε

logσi

(
1√
n
Ỹ(n−1)×n − Fz0

)

−
∫

C
log |w − z0|dμcir(w)

∣∣∣∣≥ δ + o(1)|Ỹ ∈ D̃n

)
(6.1)

= O
(
n10n exp

(−n log2 n
))= O

(
exp
(−n log2 n/2

))
.
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Next, for each Ỹ ∈ D̃n we will compare the singular values of 1√
n
Ỹ(n−1)×n −Fz0

with those of
√

nX̃(n−1)×n − Fz0 , where X̃ is determined by �( 1
n
Ỹ ), that is, x̃ij =

1
n
ỹij for all 2 ≤ i, j ≤ n.
By definition, as Ỹ ∈ D̃n, we have | 1

n
ỹi1 − x̃i1| ≤ n−4, and so the operator norm

of the difference matrix is bounded by∥∥∥∥
(

1√
n
Ỹ(n−1)×n − Fz0

)
− (

√
nX̃(n−1)×n − Fz0)

∥∥∥∥≤ 1

n2 .

This leads to a similar bound for the singular values for every i (see, e.g., [20])∣∣∣∣σi

(
1√
n
Ỹ(n−1)×n − Fz0

)
− σi(

√
nX̃(n−1)×n − Fz0)

∣∣∣∣≤ 1

n2 .(6.2)

Notice furthermore that, conditioning on Ỹ ∈ D̃n, �( 1
n
Ỹ ) is uniformly dis-

tributed on the set S̃n of bounded doubly stochastic matrices X̃. Thus, with a slight
modification to ε by an amount of n−2 [thus the order of ε remains 	(n−c)], we
obtain from (6.1) the following upper tail bound with respect to X̃:

P
(

1

n

∑
σ 2

i (
√

nX̃(n−1)×n−Fz0 )∈S
ε+n−2

logσi(
√

nX̃(n−1)×n − Fz0)

−
∫

C
log |w − z0|dμcir(w) ≥ δ + o(1)

)

= O
(
exp
(−n log2 n/2

))
.

Also, we obtain a similar probability bound for the lower tail

P
(

1

n

∑
σ 2

i (
√

nX̃(n−1)×n−Fz0 )∈S
ε−n−2

logσi(
√

nX̃(n−1)×n − Fz0)

−
∫

C
log |w − z0|dμcir(w) ≤ −(δ + o(1)

))

= O
(
exp
(−n log2 n/2

))
.

Notice that these bounds hold for any ε = 	(n−c). By gluing them together we
infer the following variant of (6.1).

THEOREM 6.1. With respect to X̃ we have

P
(∣∣∣∣1n

∑
σ 2

i (
√

nX̃(n−1)×n−Fz0 )∈Sε

logσi(
√

nX̃(n−1)×n − Fz0)

−
∫

C
log |w − z0|dμcir(w)

∣∣∣∣≥ δ + o(1)

)

= O
(
exp
(−n log2 n/2

))
.
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Next, conditioning on Ỹ ∈ D̃n, by Theorem 5.12 and Lemma 2.3, with proba-
bility O(n10n exp(−n log2 n)) = O(exp(−n log2 n/2)) we have

NI ≥ 2Cεn + 2δn,

where NI is the number of σi(
1√
n
Ỹ(n−1)×n − Fz0) such that σ 2

i ( 1√
n
Ỹ(n−1)×n −

Fz0) ∈ [0, ε].
Because �( 1

n
Ỹ ) is uniformly distributed on the set S̃n conditioning on Ỹ ∈ D̃n,

and also because of (6.2), we imply the following.

THEOREM 6.2. With probability O(exp(−n log2 n)) with respect to X̃, we
have

NI ≥ 2C

(
ε + 1

n2

)
n + 2δn,

where NI is the number of σi(
√

nX̃(n−1)×n − Fz0) such that σ 2
i (

√
nX̃(n−1)×n −

Fz0) ∈ [0, ε].

We now gather the ingredients together to complete the proof of our main result.

PROOF OF THEOREM 1.10 FOR X̃. By Theorems 5.2 and 6.2, we have that

P
(

1

n

∑
σ 2

i (
√

nX̃(n−1)×n−Fz0 )∈[0,ε]
logσi(

√
nX̃(n−1)×n − Fz0) = O

(
(ε + δ) logn

))

= 1 − O
(
n−3).

A combination of this fact with Theorem 6.1 implies that for almost all z0,

P
(∣∣∣∣1n log |det(

√
nX̃(n−1)×n − Fz0) −

∫
C

log |w − z0|dμcir(w)

∣∣∣∣= o(1)

)

= 1 − O
(
n−3).

Hence, by (5.1),

P
(∣∣∣∣1n log |det(

√
n

¯̃
X−z0In−1)−

∫
C

log |w−z0|dμcir(w)

∣∣∣∣= o(1)

)
= 1−O

(
n−3),

completing the proof. �

APPENDIX A: PROOF OF LEMMA 5.6

The main goal of this section is to justify Lemma 5.6. Although our proof is
identical to [18], Theorem 1.1 and [18], Corollary 1.8, let us present it here for the
sake of completeness.
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A.1. Convexity. For simplicity, we first show that the function M �→
tr(g(M + F)) is convex. It then follows that the function M �→ tr(g( 1√

n
M + F))

is also convex.
For any Hermitian matrices U and V

g(V + F) − g(U + F) =
∫ 1

0
Dg
(
U + F + η(V − U)

)
�(V − U)dη

where

Dg(U + F)�(V ) = lim
ε→0

ε−1(g(U + F + εV ) − g(U + F)
)
.

For polynomial functions g, the noncommutative derivation D can be com-
puted, and one finds in particular that for any p ∈ N,

(V + F)p − (U + F)p

=
∫ 1

0

(p−1∑
k=0

(
U + F + η(V − U)

)k
(V − U)(A.1)

× (U + F + η(V − U)
)p−k−1

)
dη.

For such a polynomial function, by taking the trace and using tr(AB) = tr(BA),
one deduces that

tr
(
(U + F)p

)− tr
((

U + V

2
+ F

)p)
(A.2)

= p

∫ 1

0
tr
((

U + V

2
+ F + η

U − V

2

)p−1 U − V

2

)
dη,

tr
(
(V + F)p

)− tr
((

U + V

2
+ F

)p)
(A.3)

= p

∫ 1

0
tr
((

U + V

2
+ F − η

U − V

2

)p−1 V − U

2

)
dη.

It follows from (A.1), (A.2) and (A.3) that

� := tr
(
(U + F)p

)+ tr
(
(V + F)p

)− 2tr
((

U + V

2
+ F

)p)
(A.4)

= p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
η dη dθ tr

(
(U − V )Zk

η,θ (U − V )Z
p−2−k
η,θ

)
with

Zη,θ := U + V

2
+ F − η

U − V

2
+ ηθ(U − V ).
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Next, for fixed η, θ ∈ [0,1]2, and fixed U,V,F Hermitian matrices, Zη,θ is also
Hermitian, and so we can find a unitary matrix Uη,θ and a diagonal matrix Dη,θ

with real diagonal entries λη,θ (1), . . . , λη,θ (n) so that

Zη,θ = Uη,θDη,θU
∗
η,θ .

Let Wη,θ = Uη,θ = U∗
η,θ (U − V )Uη,θ . Then

� = p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
η dη dθ tr

(
Wη,θD

k
η,θWη,θD

p−2−k
η,θ

)
(A.5)

= p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
η dη dθ

p−2∑
k=0

∑
1≤i,j≤n

λk
η,θ (i)λ

p−2−k
η,θ (j)

∣∣Wη,θ (ij)
∣∣2.

But
p−2∑
k=0

λk
η,θ (i)λ

p−2−k
η,θ (j) = λ

p−1
η,θ (i) − λ

p−1
η,θ (j)

λη,θ (i) − λη,θ (j)

= (p − 1)

∫ 1

0

(
αλη,θ (j) + (1 − α)λη,θ (i)

)p−2
dα.

Hence, substituting into (A.5) gives

� = 1

2

∑
1≤i,j≤n

∫ 1

0

∫ 1

0

∫ 1

0
dαη dη dθ

∣∣Wη,θ (ij)
∣∣2

× g′′(αλη,θ (j) + (1 − α)λη,θ (i)
)

(A.6)

≥ 0

for the polynomial g(x) = xp .
Now, with U,V,F being fixed, the eigenvalues λη,θ (1), . . . , λη,θ (n) and the

entries of Wη,θ are uniformly bounded. Hence, by Runge’s theorem, we can de-
duce by approximation that (A.6) holds for any twice continuously differentiable
function g. As a consequence, for any such convex function we have g′′ ≥ 0 and

� = tr
(
g(U + F)

)+ tr
(
g(V + F)

)− 2tr
(
g

(
U + V

2
+ F

))
≥ 0.

A.2. Boundedness. Now we show that the function M �→ tr(g( 1√
n
M + F))

has Lipschitz constant bounded by 2‖g‖L.
First, for any bounded continuously differentiable function g we will show that

∑
1≤i,j≤n

(
d�(xij )tr

(
g

(
1√
n
M + F

)))2

+ ∑
1≤i,j≤n

(
d�(xij )tr

(
g

(
1√
n
M + F

)))2

≤ 4‖g‖2
L.
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We can verify that

d�(xij )tr
(
g

(
1√
n
M + F

))
= 1√

n
tr
(
g′
(

1√
n
M + F

)
�ij

)
,(A.7)

where �ij (kl) = 1 if kl = ij or ji and zero otherwise.
Indeed, (A.7) is a consequence of (A.1) for polynomial functions, and it can be

extended for bounded continuously differentiable functions by approximations. In
other words, we have

d�(xij )tr
(
g

(
1√
n
M + F

))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
n

(
g′
(

1√
n
M + F

)
(ij) + g′

(
1√
n
M + F

)
(j i)

)
, i �= j ;

1√
n
g′
(

1√
n
M + F

)
(ii), i = j.

Hence,

∑
i,j

(
d�(xij )tr

(
g

(
1√
n
M + F

)))2

≤ 2

n

∑
i,j

∣∣∣∣g′
(

1√
n
M + F

)
(ij)

∣∣∣∣
2

= 2

n
tr
(
g′
(

1√
n
M + F

)
g′
(

1√
n
M + F

)∗)
.

But if λ1, . . . , λn denote the eigenvalues of 1√
n
M + F , then

tr
(
g′
(

1√
n
M + F

)
g′
(

1√
n
M + F

)∗)
= 1

n

∑(
g′(λi)

)2 ≤ ∥∥g′∥∥2
∞.

Thus we have

∑
i,j

(
d�(xij )tr

(
g

(
1√
n
M + F

)))2

≤ 2
∥∥g′∥∥2

∞.

The same argument applies for derivatives with respect to �(xij ), and so by
integration by parts and by the Cauchy–Schwarz inequality,∣∣∣∣tr

(
g

(
1√
n
U + F

))
− tr

(
g

(
1√
n
V + F

))∣∣∣∣≤ 2‖g‖L‖U − V ‖

for any U and V .
Observe that the last result for bounded continuously differentiable functions

naturally extends to Lipschitz functions by approximation, completing the proof.
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APPENDIX B: PROOF OF LEMMA 5.11

Note that if Fz0 vanishes, then Lemma 5.11 is just [39], Proposition 28; see
also [2]. We show that the method there extends easily to any deterministic Fz0 .

Assume for contradiction that

|NJ | ≥ Cn|J |
for some large constant C to be chosen later. We will show that this will lead to a
contradiction with high probability.

We will control the eigenvalue counting function NJ via the Stieltjes transform

s(z) := 1

n

n∑
j=1

1

λj (H) − z
.

Fix J and let x be the midpoint of J . Set η := |J |/2 and z := x + iη, and we
then have

�(s(z))≥ 4

5

NJ

ηn
.

Hence,

�(s(z))� C.(B.1)

Next, with H ′ := ( 1√
n
�(Ỹ ) − Fz0)(

1√
n
�(Ỹ ) − Fz0)

∗ = 1
n
MM∗ where M :=

�(Ỹ ) − √
nFz0 , we have (see also [2], Chapter 11)

s(z) = 1

n

∑
k≤n

1

h′
kk − z − a∗

k(H
′
k − zI)−1ak

,

where h′
kk is the kk entry of H ′; H ′

k is the n − 1 by n − 1 matrix with the kth row
and kth column of H ′ removed; and ak is the kth column of H ′ with the kth entry
removed.

Note that �(1
z
) ≤ 1

�(z)
, one concludes from (B.1) that

1

n

∑
k≤n

1

|η + �(a∗
k(H

′
k − zI)−1ak)| � C.

By the pigeonhole principle, there exists k such that

1

|η + �(a∗
k(H

′
k − zI)−1ak)| � C.(B.2)

Fix such k, note that

ak = 1

n
Mkr∗

k and H ′
k = 1

n
MkM

∗
k ,
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where rk = rk(M) and Mk is the (n − 1) × n matrix formed by removing
rk(M) from M . Thus if we let v1 = v1(Mk), . . . ,vn−1 = vn−1(Mk) and u1 =
u1(Mk), . . . ,un−1 = un−1(Mk) be the orthogonal systems of left and right singu-
lar vectors of Mk , and let λj = λj (H

′
k) = 1

n
σ 2

j (Mk) be the associated eigenvalues,
one has

a∗
k

(
H ′

k − zI
)−1ak = ∑

1≤j≤n−1

|a∗
kvj |2

λj − z
.

Thus

�(a∗
k

(
H ′

k − zI
)−1ak

)≥ η
∑

1≤j≤n−1

|a∗
kvj |2

η2 + |λj − x|2 .

We conclude from (B.2) that

∑
1≤j≤n−1

|a∗
kvj |2

η2 + |λj − x|2 � 1

Cη
.

Note that a∗
kvj can be written as

a∗
kvj = σj (Mk)

n
rkuj .

Next, from the Cauchy interlacing law, one can find an interval L ⊂ {1, . . . , n−
1} of length

|L| � Cηn

such that λj ∈ L. We conclude that

∑
j∈L

σ 2
j

n2 |rkuj |2 � η

C
.

Since λj ∈ J , one has σj = 	(
√

n), and thus∑
j∈L

|rkuj |2 � ηn

C
.

The LHS can be written as ‖πV (r∗
k)‖2, where V is the span of the eigenvectors

uj for j ∈ L, and πV (·) is the projection onto V . But from Talagrand’s inequality
for distance (Lemma B.1 below), we see that this quantity is � ηn with very high
probability, giving the desired contradiction.

LEMMA B.1. Assume that V ⊂ Cn is a subspace of dimension dim(V ) =
d ≤ n − 10. Let f be a fixed vector (whose coordinates may depend on n). Let
y = (0, y2, . . . , yn), where y = ỹi −1 and ỹi are i.i.d. copies of ỹ defined from (2.2).
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Let σ = 	(1) denote the standard deviation of ỹ and K = 10 logn denote the
upper bound of ỹ, and then for any t > 0 we have

Py
(
πV (y + f) ≥ √

2σ
√

d/2 − O(K) − t
)≥ 1 − O

(
exp
(
− t2

16K2

))
.

We now give a proof of Lemma B.1. It is clear that the function (y2, . . . , yn) �→
πV (y + f) is convex and 1-Lipschitz. Thus by Theorem 5.7 we have

Py
(∣∣πV (y + f) − M

(
πV (y + f)

)∣∣≥ t
)= O

(
exp
(−16t2/K2)).(B.3)

Hence, it is implied that

Py,y′
(∣∣πV (y + f) + πV

(
y′ + f

)− 2M
(
πV (y + f)

)∣∣≤ 2t
)

= (1 − O
(
exp
(−16t2/K2)))2(B.4)

= 1 − O
(
exp
(−16t2/K2)),

where y′ is an independent copy of y.
On the other hand, by the triangle inequality

πV (y + f) + πV

(
y′ + f

)≥ πV

(
y − y′).

Applying Talagrand’s inequality once more for the random vector y − y′ (see,
e.g., [38], Lemma 68), we see that

Py,y′
(∣∣πV

(
y − y′)− √

2σ
√

d
∣∣≥ t

)= O
(
exp
(−t2/16K2)).

Thus,

Py,y′
(
πV (y) + πV

(
y′)≥ √

2σ
√

d − t
)= 1 − O

(
exp
(−t2/16K2)).

By comparing with (B.4), we deduce that

M
(
πV (y + f)

)≥√1/2σ
√

d − O(K).

Substituting this bound back into (B.4), we obtain the one-sided estimate as
desired.

Acknowledgments. The author is grateful to M. Meckes for pointing out ref-
erences [23] and [30] and to A. Guionnet for a helpful e-mail exchange regarding
Lemma 5.5. He is particularly thankful to R. Pemantle and V. Vu for helpful dis-
cussions and enthusiastic encouragement.



RANDOM DOUBLY STOCHASTIC MATRICES: THE CIRCULAR LAW 1195

REFERENCES

[1] BAI, Z. D. (1997). Circular law. Ann. Probab. 25 494–529. MR1428519
[2] BAI, Z. D. and SILVERSTEIN, J. (2006). Spectral Analysis of Large Dimensional Random

Matrices. Mathematics Monograph Series 2. Science Press, Beijing.
[3] BARVINOK, A. and HARTIGAN, J. A. (2010). Maximum entropy Gaussian approximations for

the number of integer points and volumes of polytopes. Adv. in Appl. Math. 45 252–289.
MR2646125

[4] BARVINOK, A. and HARTIGAN, J. A. (2012). An asymptotic formula for the number of non-
negative integer matrices with prescribed row and column sums. Trans. Amer. Math. Soc.
364 4323–4368. MR2912457

[5] BARVINOK, A. and HARTIGAN, J. A. (2013). The number of graphs and a random graph with
a given degree sequence. Random Structures Algorithms 42 301–348. MR3039682

[6] BORDENAVE, C., CAPUTO, P. and CHAFAÏ, D. (2012). Circular law theorem for random
Markov matrices. Probab. Theory Related Fields 152 751–779. MR2892961

[7] CANFIELD, E. R. and MCKAY, B. D. (2009). The asymptotic volume of the Birkhoff polytope.
Online J. Anal. Comb. 4 4. MR2575172

[8] CHAFAÏ, D. (2010). The Dirichlet Markov ensemble. J. Multivariate Anal. 101 555–567.
MR2575404

[9] CHATERJEE, S., DIACONIS, P. and SLY, A. (2014). Properties of random doubly stochastic
matrices. Annales de l’Institut Henri Poincaré. To appear. Available at arXiv:1010.6136.

[10] COSTELLO, K. P. and VU, V. (2009). Concentration of random determinants and permanent
estimators. SIAM J. Discrete Math. 23 1356–1371. MR2556534

[11] EDELMAN, A. (1997). The probability that a random real Gaussian matrix has k real eigen-
values, related distributions, and the circular law. J. Multivariate Anal. 60 203–232.
MR1437734

[12] ERDÖS, P. (1945). On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. (N.S.) 51
898–902. MR0014608

[13] FRIEDLAND, S., RIDER, B. and ZEITOUNI, O. (2004). Concentration of permanent estimators
for certain large matrices. Ann. Appl. Probab. 14 1559–1576. MR2071434

[14] GINIBRE, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math.
Phys. 6 440–449. MR0173726

[15] GIRKO, V. L. (1984). Circular law. Theory Probab. Appl. 29 694–706.
[16] GIRKO, V. L. (2004). The strong circular law. Twenty years later. II. Random Oper. Stoch. Equ.

12 255–312. MR2085255
[17] GÖTZE, F. and TIKHOMIROV, A. (2010). The circular law for random matrices. Ann. Probab.

38 1444–1491. MR2663633
[18] GUIONNET, A. and ZEITOUNI, O. (2000). Concentration of the spectral measure for large

matrices. Electron. Commun. Probab. 5 119–136 (electronic). MR1781846
[19] HALÁSZ, G. (1977). Estimates for the concentration function of combinatorial number theory

and probability. Period. Math. Hungar. 8 197–211. MR0494478
[20] HORN, R. A. and JOHNSON, C. R. (1990). Matrix Analysis. Cambridge Univ. Press, Cam-

bridge. MR1084815
[21] KLEITMAN, D. J. (1970). On a lemma of Littlewood and Offord on the distributions of linear

combinations of vectors. Adv. Math. 5 155–157. MR0265923
[22] LITTLEWOOD, J. E. and OFFORD, A. C. (1943). On the number of real roots of a random

algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S. 12(54) 277–286. MR0009656
[23] MECKES, E. S. and MECKES, M. W. (2007). The central limit problem for random vectors

with symmetries. J. Theoret. Probab. 20 697–720. MR2359052
[24] MEHTA, M. L. (1967). Random Matrices and the Statistical Theory of Energy Levels. Aca-

demic Press, New York. MR0220494

http://www.ams.org/mathscinet-getitem?mr=1428519
http://www.ams.org/mathscinet-getitem?mr=2646125
http://www.ams.org/mathscinet-getitem?mr=2912457
http://www.ams.org/mathscinet-getitem?mr=3039682
http://www.ams.org/mathscinet-getitem?mr=2892961
http://www.ams.org/mathscinet-getitem?mr=2575172
http://www.ams.org/mathscinet-getitem?mr=2575404
http://arxiv.org/abs/arXiv:1010.6136
http://www.ams.org/mathscinet-getitem?mr=2556534
http://www.ams.org/mathscinet-getitem?mr=1437734
http://www.ams.org/mathscinet-getitem?mr=0014608
http://www.ams.org/mathscinet-getitem?mr=2071434
http://www.ams.org/mathscinet-getitem?mr=0173726
http://www.ams.org/mathscinet-getitem?mr=2085255
http://www.ams.org/mathscinet-getitem?mr=2663633
http://www.ams.org/mathscinet-getitem?mr=1781846
http://www.ams.org/mathscinet-getitem?mr=0494478
http://www.ams.org/mathscinet-getitem?mr=1084815
http://www.ams.org/mathscinet-getitem?mr=0265923
http://www.ams.org/mathscinet-getitem?mr=0009656
http://www.ams.org/mathscinet-getitem?mr=2359052
http://www.ams.org/mathscinet-getitem?mr=0220494


1196 H. H. NGUYEN

[25] MEHTA, M. L. (2004). Random Matrices, 3rd ed. Pure and Applied Mathematics (Amsterdam)
142. Elsevier/Academic Press, Amsterdam. MR2129906

[26] NGUYEN, H. H. (2012). Inverse Littlewood–Offord problems and the singularity of random
symmetric matrices. Duke Math. J. 161 545–586. MR2891529

[27] NGUYEN, H. H. and VU, V. (2011). Optimal inverse Littlewood–Offord theorems. Adv. Math.
226 5298–5319. MR2775902

[28] NGUYEN, H. H. and VU, V. H. (2013). Circular law for random discrete matrices of given row
sum. J. Comb. 4 1–30. MR3064040

[29] PAN, G. and ZHOU, W. (2010). Circular law, extreme singular values and potential theory.
J. Multivariate Anal. 101 645–656. MR2575411

[30] PAOURIS, G. (2006). Concentration of mass on convex bodies. Geom. Funct. Anal. 16 1021–
1049. MR2276533

[31] RUDELSON, M. and VERSHYNIN, R. (2008). The Littlewood–Offord problem and invertibility
of random matrices. Adv. Math. 218 600–633. MR2407948

[32] TALAGRAND, M. (1996). A new look at independence. Ann. Probab. 24 1–34. MR1387624
[33] TAO, T. (2013). Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations.

Probab. Theory Related Fields 155 231–263. MR3010398
[34] TAO, T. and VU, V. (2008). Random matrices: The circular law. Commun. Contemp. Math. 10

261–307. MR2409368
[35] TAO, T. and VU, V. (2009). From the Littlewood–Offord problem to the circular law: Univer-

sality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.) 46
377–396. MR2507275

[36] TAO, T. and VU, V. (2010). Random matrices: Universality of ESDs and the circular law. Ann.
Probab. 38 2023–2065. MR2722794

[37] TAO, T. and VU, V. (2010). Smooth analysis of the condition number and the least singular
value. Math. Comp. 79 2333–2352. MR2684367

[38] TAO, T. and VU, V. (2011). Random matrices: Universality of local eigenvalue statistics. Acta
Math. 206 127–204. MR2784665

[39] TAO, T. and VU, V. (2012). Random covariance matrices: Universality of local statistics of
eigenvalues. Ann. Probab. 40 1285–1315. MR2962092

[40] VERSHYNIN, R. (2014). Invertibility of symmetric random matrices. Random Structures and
Algorithms. To appear. Available at arXiv:1102.0300.

[41] WIGNER, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of
Math. (2) 67 325–327. MR0095527

DEPARTMENT OF MATHEMATICS

OHIO STATE UNIVERSITY

100 MATH TOWER

231 WEST 18TH AVENUE

COLUMBUS, OHIO 43210
USA
E-MAIL: hoi.nguyen@yale.edu

http://www.ams.org/mathscinet-getitem?mr=2129906
http://www.ams.org/mathscinet-getitem?mr=2891529
http://www.ams.org/mathscinet-getitem?mr=2775902
http://www.ams.org/mathscinet-getitem?mr=3064040
http://www.ams.org/mathscinet-getitem?mr=2575411
http://www.ams.org/mathscinet-getitem?mr=2276533
http://www.ams.org/mathscinet-getitem?mr=2407948
http://www.ams.org/mathscinet-getitem?mr=1387624
http://www.ams.org/mathscinet-getitem?mr=3010398
http://www.ams.org/mathscinet-getitem?mr=2409368
http://www.ams.org/mathscinet-getitem?mr=2507275
http://www.ams.org/mathscinet-getitem?mr=2722794
http://www.ams.org/mathscinet-getitem?mr=2684367
http://www.ams.org/mathscinet-getitem?mr=2784665
http://www.ams.org/mathscinet-getitem?mr=2962092
http://arxiv.org/abs/arXiv:1102.0300
http://www.ams.org/mathscinet-getitem?mr=0095527
mailto:hoi.nguyen@yale.edu

	Introduction
	Some properties of random doubly stochastic matrices
	Relation to random i.i.d. matrix of exponentials
	Relation to random stochastic matrices
	A proof for Theorem 1.9

	The singularity of X
	Proof of Theorem 3.3
	A simple reduction step
	High concentration of linear form

	Spectral concentration of i.i.d. random covariance matrices
	Large concentration for Y
	Concentration of large spectra for i.i.d. matrices
	Concentration of the number of small eigenvalues for i.i.d. matrices
	Asymptotic formula for hepsilon,Y(n-1)xn(z0)

	Large concentration for X, proof of Theorem 1.10
	Appendix A: Proof of Lemma 5.6
	Convexity
	Boundedness

	Appendix B: Proof of Lemma 5.11
	Acknowledgments
	References
	Author's Addresses

