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INTEGRATION BY PARTS FORMULA AND SHIFT HARNACK
INEQUALITY FOR STOCHASTIC EQUATIONS

BY FENG-YU WANG1

Beijing Normal University and Swansea University

A new coupling argument is introduced to establish Driver’s integra-
tion by parts formula and shift Harnack inequality. Unlike known coupling
methods where two marginal processes with different starting points are con-
structed to move together as soon as possible, for the new-type coupling the
two marginal processes start from the same point but their difference is aimed
to reach a fixed quantity at a given time. Besides the integration by parts for-
mula, the new coupling method is also efficient to imply the shift Harnack
inequality. Differently from known Harnack inequalities where the values of
a reference function at different points are compared, in the shift Harnack in-
equality the reference function, rather than the initial point, is shifted. A num-
ber of applications of the integration by parts and shift Harnack inequality are
presented. The general results are illustrated by some concrete models includ-
ing the stochastic Hamiltonian system where the associated diffusion process
can be highly degenerate, delayed SDEs and semi-linear SPDEs.

1. Introduction. In stochastic analysis for diffusion processes, the Bismut
formula [5] (also known as Bismut–Elworthy–Li formula due to [8]) and the inte-
gration by parts formula are two fundamental tools. Let, for instance, X(t) be the
(nonexplosive) diffusion process generated by an elliptic differential operator on
a Riemannian manifold M , and let Pt be the associated Markov semigroup. For
x ∈ M and U ∈ TxM , the Bismut formula is of type

∇UPtf (x) = E
{
f
(
Xx(t)

)
Mx(t)

}
, f ∈ Bb(M), t > 0,(1.1)

where Xx(t) is the diffusion process starting at point x, Mx(t) is a random vari-
able independent of f and ∇U is the directional derivative along U . When the
curvature of the diffusion operator is bounded below, this formula is available with
Mx(t) explicitly given by U and the curvature operator. There exist a number of
applications of this formula, in particular, letting pt(x, y) be the density (or heat
kernel) of Pt w.r.t. a nice reference measure μ, we have, formally,

∇U logpt(·, y)(x) = E
(
Mx(t) | Xx(t) = y

)
.
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From (1.1) one may also derive gradient-entropy estimates of Pt and thus, the
following Harnack inequality introduced in [16] (see [2, 10]):

|Ptf |p(x) ≤ Pt |f |p(y)eCp(t,x,y),
(1.2)

t > 0,p > 1, x, y ∈ M,f ∈ Bb(M),

where Cp(t, x, y) is determined by moments of M ·(t) and thus, independent of f .
This type of Harnack inequality is a powerful tool in the study of contractiv-
ity properties, functional inequalities and heat kernel estimates; see, for example,
[19] and references within.

On the other hand, to characterize the derivative of pt(x, y) in y, which is es-
sentially different from that in x when Pt is not symmetric w.r.t. μ, we need to
establish the following integration by parts formula (see [7]):

Pt(∇Uf )(x) = E
{
f
(
Xx(t)

)
Nx(t)

}
, f ∈ C1

0(M), t > 0, x ∈ M(1.3)

for a smooth vector field U and some random variable Nx(t). Combining this
formula with (1.1), we are able to estimate the commutator ∇Pt − Pt∇ which is
important in the study of flow properties; see, for example, [9]. Similar to (1.1),
inequality (1.3) can be used to derive a formula for ∇U logpt(x, ·)(y) and the shift
Harnack inequality of type

|Ptf |p(x) ≤ Pt

(|f |p ◦ exp[U ])(x)eCp(t,x,y),
(1.4)

t > 0,p > 1, x, y ∈ M,f ∈ Bb(M),

where expx :TxM → M,x ∈ M , is the exponential map on the Riemannian mani-
fold. Differently from usual Harnack inequalities like (1.2), in (1.4) the reference
function f , rather than the initial point, is shifted. This inequality will lead to dif-
ferent heat kernel estimates from known ones implied by (1.2).

Before moving on, let us make a brief comment concerning the study of these
two formulas. The Bismut formula (1.1) has been widely studied using both Malli-
avin calculus and coupling argument; cf. [18, 20, 22] and references within. Al-
though (1.3) also has strong potential of applications, it is, however, much less
known in the literature due to the lack of efficient tools. To see that (1.3) is harder
to derive than (1.1), let us come back to [7] where an explicit version of (1.3) is
established for the Brownian motion on a compact Riemannian manifold. Unlike
the Bismut formula which only relies on the Ricci curvature, Driver’s integration
by parts formula involves both the Ricci curvature and its derivatives. Therefore,
one can imagine that in general (1.3) is more complicated (and hence harder to
derive) than (1.1).

To establish the integration by parts formula and the corresponding shift Har-
nack inequality in a general framework, in this paper we propose a new coupling
argument. In contrast to usual coupling arguments where two marginal processes
start from different points and meet at some time (called the coupling time), for
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the new-type coupling the marginal processes start from the same point, but their
difference reaches a fixed quantity at a given time.

In the next section, we will introduce some general results and applications on
the integration by parts formula and the shift Harnack inequality using the new
coupling method. The general result obtained in Section 2 will be then applied
in Section 3 to a class of degenerate diffusion processes, in Section 4 to delayed
SDEs and in Section 5 to semi-linear SPDEs.

We remark that the model considered in Section 3 goes back to the stochastic
Hamiltonian system, for which the Bismut formula and the Harnack inequalities
have been investigated in [10, 20, 22] by using both coupling and Malliavin cal-
culus. As will be shown in Section 2.1 with a simple example of this model, for
the study of the integration by parts formula and the shift Harnack inequalities, the
Malliavin calculus can be less efficient than the new coupling argument.

2. Some general results. In Section 2.1 we first recall the argument of cou-
pling by change of measure introduced in [1, 18] for the Harnack inequality and
the Bismut formula, and then explain how can we modify the coupling in order
to derive the integration by parts formula and the shift Harnack inequality, and
introduce the Malliavin calculus for the study of the integration by parts formula.
In the second subsection we present some applications of the integration by parts
formula and the shift Harnack inequalities to estimates of the heat kernel and its
derivatives.

For a measurable space (E,B), let Bb(E) be the class of all bounded measurable
functions on E, and B+

b (E) the set of all nonnegative elements in Bb(E). When
E is a topology space, we always take B to be the Borel σ -field, and let Cb(E)

[resp., C0(E)] be the set of all bounded (compactly supported) continuous func-
tions on E. If, moreover, E is equipped with a differential structure, for any i ≥ 1
let Ci

b(E) be the set of all elements in Cb(E) with bounded continuous derivatives
up to order i, and let Ci

0(E) = C0(E) ∩ Ci
b(E). Finally, a contraction linear op-

erator P on Bb(E) is called a Markov operator if it is positivity-preserving with
P 1 = 1.

2.1. Integration by parts formula and shift Harnack inequality.

DEFINITION 2.1. Let μ and ν be two probability measures on a measurable
space (E,B), and let X,Y be two E-valued random variables w.r.t. a probability
space (�,F,P).

(i) If the distribution of X is μ, while under another probability measure Q on
(�,F) the distribution of Y is ν, we call (X,Y ) a coupling by change of measure
for μ and ν with changed probability Q.

(ii) If μ and ν are distributions of two stochastic processes with path space E,
a coupling by change of measure for μ and ν is also called a coupling by change of
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measure for these processes. In this case X and Y are called the marginal processes
of the coupling.

Now, for fixed T > 0, consider the path space ET := E[0,T ] for some T > 0
equipped with the product σ -field BT := B[0,T ]. Let {P x(A) :x ∈ E,A ∈ BT } be
a transition probability such that P x({γ ∈ ET :γ (0) = x}) = 1, x ∈ E. For any
t ∈ [0, T ], let Pt(x, ·) = P x({γ (t) ∈ ·}) be the marginal distribution of P x at time t .
Then

Ptf (x) :=
∫
E

f (y)Pt (x,dy), f ∈ Bb(E), x ∈ E

gives rise to a family of Markov operators (Pt )t∈[0,T ] on Bb(E) with P0 = I .
In order to establish the Harnack inequality, for any two different points

x, y ∈ E, one constructs a coupling by change of measure (X,Y ) for P x and P y

with changed probability Q = RP such that X(T ) = Y(T ). Then∣∣PT f (y)
∣∣p = ∣∣EQf

(
Y(T )

)∣∣p
= ∣∣E{Rf

(
X(T )

)}∣∣p
≤ (

E|f |p(X(T )
))(

ERp/(p−1))p−1

= (
PT |f |p(x)

)(
ERp/(p−1))p−1

.

This implies a Harnack inequality of type (1.2) if ERp/(p−1) < ∞.
To establish the Bismut formula, let, for example, E be a Banach space, and

x, e ∈ E. One constructs a family of couplings by change of measure (Xε,X) for
P x+εe and P x with changed probability Qε := RεP such that Xε(T ) = X(T ), ε ∈
[0,1]. Then, if Nx(T ) := d

dε
Rε|ε=0 exists in L1(P), for any f ∈ Bb(E), we obtain

∇ePT f (x) = d

dε
E
{
Rεf

(
Xε(T )

)}∣∣∣
ε=0

= d

dε
E
{
Rεf

(
X(T )

)}∣∣∣
ε=0

= E
{
f
(
X(T )

)
Nx(T )

}
.

Therefore, the Bismut formula (1.1) is derived.
On the other hand, for the integration by parts formula and shift Harnack in-

equality we need to construct couplings with marginal processes starting from the
same point but their “difference” equals to a fixed value at time T . For simplicity,
below we only consider E being a Banach space. To extend the result to nonlinear
spaces like Riemannian manifolds, one would need to make proper modifications
using the geometric structure in place of the linear structure.

THEOREM 2.1. Let E be a Banach space and x, e ∈ E and T > 0 be fixed.
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(1) For any coupling by change of measure (X,Y ) for P x and P x with changed
probability Q = RP such that Y(T ) = X(T ) + e, there holds the shift Harnack
inequality∣∣PT f (x)

∣∣p ≤ PT

{|f |p(e + ·)}(x)
(
ERp/(p−1))p−1

, f ∈ Bb(E)

and the shift log-Harnack inequality

PT logf (x) ≤ logPT

{
f (e + ·)}(x) + E(R logR), f ∈ Bb(E), f > 0.

(2) Let (X,Xε), ε ∈ [0,1], be a family of couplings by change of measure for
P x and P x with changed probability Qε = RεP such that

Xε(T ) = X(T ) + εe, ε ∈ (0,1].
If R0 = 1 and N(T ) := − d

dε
Rε|ε=0 exists in L1(P), then

PT (∇ef )(x) = E
{
f
(
X(T )

)
N(T )

}
, f,∇ef ∈ Bb(E).(2.1)

PROOF. The proof is similar to that introduced above for the Harnack inequal-
ity and the Bismut formula.

(1) Note that PT f (x) = E{Rf (Y (T ))} = E{Rf (X(T ) + e)}. We have∣∣PT f (x)
∣∣p ≤ (

E|f |p(X(T ) + e
))(

ERp/(p−1))p−1

= PT

{|f |p(e + ·)}(x)
(
ERp/(p−1))p−1

.

Next, by the Young inequality (see [2], Lemma 2.4), for positive f we have

PT logf (x) = E
{
R logf

(
X(T ) + e

)}
≤ log Ef

(
X(T ) + e

)+ E(R logR)

= logPT

{
f (e + ·)}(x) + E(R logR).

(2) Noting that PT f (x) = E{Rεf (Xε(T ))} = E{Rεf (X(T ) + εe)}, we obtain

0 = d

dε
E
{
Rεf

(
X(T ) + εe

)}∣∣∣
ε=0

= PT (∇ef )(x) − E
{
f
(
X(T )

)
N(T )

}
,

provided R0 = 1 and N(T ) := − d
dε

Rε|ε=0 exists in L1(P). �

From Theorem 2.1 and its proof we see that the machinery of the new coupling
argument is very clear. So, in applications the key point of the study lies in the
construction of new type couplings.

Next, we explain how one can establish the integration by parts formula using
Malliavin calculus. Let, for example, W := (W(t))t≥0 be the cylindrical Brownian
motion on an Hilbert space (H, 〈·, ·〉, | · |) w.r.t. a probability space (�,F,P) with
natural filtration {Ft }t≥0. Let

H 1 :=
{
h ∈ C

([0, T ];H ) :‖h‖2
H 1 :=

∫ T

0

∣∣h′(s)
∣∣2 ds < ∞

}
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be the Cameron–Martin space. For a measurable functional of W , denoted
by F(W), such that EF(W)2 < ∞ and

H 1 � h �→ DhF(W) := lim
ε↓0

F(W + εh) − F(W)

ε

gives rise to a bounded linear operator. Then we write F(W) ∈ D(D) and call
DF(W) the Malliavin gradient of F(W). It is well known that (D,D(D)) is
a densely defined closed operator on L2(�,FT ;P); see, for example, [12], Sec-
tion 1.3. Let (D∗,D(D∗)) be its adjoint operator, which is also called the diver-
gence operator.

THEOREM 2.2. Let H,W,D and D∗ be introduced above. Let e ∈ H and
X ∈ D(D). If there exists h ∈ D(D∗) such that DhX = e, then

E(∇ef )(X) = E
{
f (X)D∗h

}
, f ∈ C1

b(H).

PROOF. Since DhX = e, we have

E(∇ef )(X) = E(∇DhXf )(X) = E
{
Dhf (X)

}= E
{
f (X)D∗h

}
. �

Finally, as the integration by parts formula (2.1) and by the Young inequality
(see [2], Lemma 2.4) imply the derivative-entropy inequality∣∣PT (∇ef )

∣∣≤ δ
{
PT (f logf ) − (PT f ) logPT f

}
+ δ log E

{
exp
[ |N(T )|

δ

]}
PT f, δ > 0

and the L2-derivative inequality∣∣PT (∇ef )
∣∣2 ≤ (EN(T )2)PT f 2,

according to the following result it also implies shift Harnack inequalities.

PROPOSITION 2.3. Let P be a Markov operator on Bb(E) for some Banach
space E. Let e ∈ E.

(1) Let δe ∈ (0,1) and βe ∈ C((δe,∞) × E; [0,∞)). Then∣∣P(∇ef )
∣∣≤ δ

{
P(f logf ) − (Pf ) logPf

}+ βe(δ, ·)Pf, δ ≥ δe(2.2)

holds for any positive f ∈ C1
b(E) if and only if

(Pf )p ≤ (P {f p(re + ·)})
(2.3)

× exp
[∫ 1

0

pr

1 + (p − 1)s
βe

(
p − 1

r + r(p − 1)s
, · + sre

)
ds

]

holds for any positive f ∈ Bb(E), r ∈ (0, 1
δe

) and p ≥ 1
1−rδe

.
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(2) Let C ≥ 0 be a constant. Then

∣∣P(∇ef )
∣∣2 ≤ CPf 2, f ∈ C1

b(E), f ≥ 0(2.4)

is equivalent to

Pf ≤ P
{
f (αe + ·)}+ |α|

√
CPf 2, α ∈R, f ∈ B+

b (E).(2.5)

PROOF. The proof of (1) is similar to that of [10], Proposition 4.1, while (2) is
comparable to [17], Proposition 1.3.

(1) Let β(s) = 1 + (p − 1)s, s ∈ [0,1]. By the monotone class theorem, it suf-
fices to prove for f ∈ C1

b(E). Since p−1
rβ(s)

≥ δe for p ≥ 1
1−rδe

, it follows from (2.2)
that

d

ds
log
(
P
{
f β(s)(sre + ·)}(x)

)p/β(s)

= 1

β(s)2P
{
f β(s)(sre + ·)}(x)

×(p(p − 1)
[
P
{(

f β(s) logf β(s))(sre + ·)}
− (P {f β(s)(sre + ·)}) logP

{
f β(s)(sre + ·)}]

+ prP
{∇ef

β(s)(sre + ·)})(x)

≥ − rp

β(s)
βe

(
p − 1

rβ(s)
, x + sre

)
, s ∈ [0,1].

Taking the integral over [0,1] w.r.t. ds we prove (2.3).
Next, let z, e ∈ E be fixed, and assume that P(∇ef )(z) ≥ 0 (otherwise, simply

use −e to replace e). Then (2.3) with p = 1 + δer implies that

δ
{
(Pf ) logPf

}
(z) + ∣∣P(∇ef )

∣∣(z)
= lim sup

r→0

(P {f (re + ·)})1+δr (z) − Pf (z)

r

≤ lim sup
r→0

1

r

{(
Pf 1+δr)(z)

× exp
[∫ 1

0

(1 + δr)r

1 + δrs
βe

(
δ

1 + δrs
, γ (r)

)
dr

]
− Pf (z)

}

= δP (f logf )(z) + βe(δ)Pf (z).

Therefore, (2.2) holds.
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(2) Let r > 0. For nonnegative f ∈ C1
b(E), (2.4) implies that

d

ds
P

{
f

1 + srf

(
α(1 − s)e + ·)}

= −P

{
rf 2

1 + srf

(
α(1 − s)e + ·)}− αP

{
∇e

(
f

1 + srf

)(
α(1 − s)e + ·)}

≤ −rP

{
f 2

1 + srf

(
α(1 − s)e + ·)}

+ |α|
(
CP

{
f 2

(1 + srf )2

(
α(1 − s)e + ·)})1/2

≤ α2C

4r
.

Noting that

f

1 + rf
= f − rf 2

1 + rf
≥ f − rf 2,

we obtain

Pf ≤ P
{
f (αe + ·)}+ rPf 2 + α2C

4r
, r > 0.

Minimizing the right-hand side in r > 0, we prove (2.5).
On the other hand, let x ∈ E. Without loss of generality we assume that

P(∇ef )(x) ≤ 0, otherwise it suffices to replace e by −e. Then (2.5) implies that

∣∣P(∇ef )(x)
∣∣= lim

α↓0

Pf (x) − P {f (αe + ·)}(x)

α
≤
√

CPf 2(x).

Therefore, (2.4) holds. �

To conclude this section, we would like to compare the new coupling argument
with known coupling arguments and the Malliavin calculus, from which we see
that the study of the integration by parts formula and the shift Harnack inequal-
ity is, in general, more difficult than that of the Bismut formula and the Harnack
inequality.

First, when a strong Markov process is concerned, for a usual coupling
(X(t), Y (t)) one may ask that the two marginal processes move together after
the coupling time, so that to ensure X(T ) = Y(T ), one only has to confirm that
the coupling time is not larger than the given time T . But for the new coupling ar-
gument, we have to prove that at time T , the difference of the marginal processes
equals to a fixed quantity, which cannot be ensured, even if the difference already
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reached this quantity at a (random) time before T . From this we see that con-
struction of a new-type coupling is, in general, more difficult than that of a usual
coupling.

Second, it is well known that the Malliavin calculus is a very efficient tool to
establish Bismut-type formulas. To see the difficulty for deriving the integration
by parts formula using Malliavin calculus, we look at a simple example of the
model considered in Section 3, that is, (X(t), Y (t)) is the solution to the following
degenerate stochastic equation on R2:

{dX(t) = Y(t)dt,

dY(t) = dW(t) + Z
(
X(t), Y (t)

)
dt,

(2.6)

where W(t) is the one-dimensional Brownian motion and Z ∈ C1
b(R2). For this

model the Bismut formula and Harnack inequalities can be easily derived from
both the coupling method and Malliavin calculus; see [10, 20, 22]. We now explain
how can one establish the integration by parts formula using Malliavin calculus.
For fixed T > 0 and, for example, e = (0,1), to derive the integration by parts
formula for the derivative along e using Theorem 2.2, one needs to find h ∈D(D∗)
such that

Dh

(
X(T ),Y (T )

)= e.(2.7)

To search for such an element h, we note that (2.6) implies

d
(
DhX(t),DhY (t)

)= (
0, h′(t)

)
dt + G(t)

(
DhX(t)

DhY (t)

)
dt

and

DhX(0) = DhY(0) = 0,

where

G(t) :=
(

0 1
Z′(·, Y (t)

)(
X(t)

)
Z′(X(t), ·)(Y(t)

)) .

Then, (2.7) is equivalent to

∫ T

0
e
∫ T
t G(s)ds

(
0

h′(t)

)
dt = (0,1).

It is, however, very hard to solve h from this equation for general Z ∈ C1
b(R2). On

the other hand, we will see in Section 3 that the coupling argument we proposed
above is much more convenient for deriving the integration parts formula for this
example.
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2.2. Applications. We first consider E = Rd for some d ≥ 1, and to estimate
the density w.r.t. the Lebesgue measure for distributions and Markov operators
using integration by parts formulas and shift Harnack inequalities.

THEOREM 2.4. Let X be a random variable on Rd such that for some N ∈
L2(� → Rd;P)

E(∇f )(X) = E
{
f (X)N

}
, f ∈ C1

b

(
Rd).(2.8)

(1) The distribution PX of X has a density ρ w.r.t. the Lebesgue measure, which
satisfies

∇ logρ(x) = −E(N | X = x), PX-a.s.(2.9)

Consequently, for any e ∈ Rd and any convex positive function H ,∫
Rd

{
H
(|∇e logρ|)ρ}(x)dx ≤ EH

(∣∣〈e,N〉∣∣).
(2) For any U ∈ C1

0(Rd;Rd),

E(∇Uf )(X) = E
{
f (X)

(〈
U(X),N

〉− (divU)(X)
)}

, f ∈ C1(Rd).
PROOF. (1) We first observe that if PX has density ρ, then for any f ∈

C1
0(Rd), ∫

Rd

{
ρ(x)∇f (x)

}
dx = E(∇f )(X)

= E
{
f (X)E(N | X)

}
=
∫
Rd

{
f (x)E(N | X = x)

}
PX(dx).

This implies (2.9). To prove the existence of ρ, let ρn be the distribution density
function of Xn := X + ζ

n
, n ≥ 1, where ζ is the standard Gaussian random variable

on Rd independent of X and N . It follows from (2.8) that

E(∇f )(Xn) = E
{∇f (ζ/n + ·)}(X) = E

{
f (Xn)N

}
.

Then

4
∫
Rd

|∇√
ρn|2(x)dx = E|∇ρn|2(Xn) ≤ EN2 < ∞.

So, the sequence {√ρn}n≥1 is bounded in W 2,1(Rd;dx). Thus, up to a subse-
quence,

√
ρn → √

ρ in L2
loc(dx) for some nonnegative function ρ. On the other

hand, we have ρn(x)dx → PX(dx) weakly. Therefore, PX(dx) = ρ(x)dx.
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(2) As for the second assertion, noting that for U =∑d
i=1 Ui∂i one has

∇Uf =
d∑

i=1

∂i(Uif ) − f divU,

it follows from (2.8) that

E(∇Uf )(X) =
d∑

i=1

E
{
∂i(Uif )(X)

}− E{f divU}(X)

=
d∑

i=1

E
{
(Uif )(X)Ni

}− E{f divU}

= E
{
f (X)

(〈
U(X),N

〉− (divU)(X)
)}

. �

Next, we consider applications of a general version of the shift Harnack. Let
P(x,dy) be a transition probability on a Banach space E. Let

Pf (x) =
∫
Rd

f (y)P (x,dy), f ∈ Bb

(
Rd)

be the associated Markov operator. Let  : [0,∞) → [0,∞) be a strictly increas-
ing and convex continuous function. Consider the shift Harnack inequality


(
Pf (x)

)≤ P
{
 ◦ f (e + ·)}(x)eC(x,e), f ∈ B+

b (E)(2.10)

for some x, e ∈ E and constant C(x, e) ≥ 0. Obviously, if (r) = rp for some
p > 1, then this inequality reduces to the shift Harnack inequality with power p,
while when (r) = er , it becomes the log shift Harnack inequality.

THEOREM 2.5. Let P be given above and satisfy (2.10) for all x, e ∈ E := Rd

and some nonnegative measurable function C on Rd ×Rd . Then

sup
f ∈B+

b (Rd ),
∫
Rd ◦f (x)dx≤1

(Pf )(x) ≤ 1∫
Rd e−C(x,e) de

, x ∈ Rd .(2.11)

Consequently:

(1) If (0) = 0, then P has a transition density �(x, y) w.r.t. the Lebesgue
measure such that∫

Rd
�(x, y)−1(�(x, y)

)
dy ≤ −1

(
1∫

Rd e−C(x,e) de

)
.(2.12)

(2) If (r) = rp for some p > 1, then∫
Rd

�(x, y)p/(p−1) dy ≤ 1

(
∫
Rd e−C(x,e) de)1/(p−1)

.(2.13)
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PROOF. Let f ∈ B+
b (Rd) such that

∫
Rd (f )(x)dx ≤ 1. By (2.10) we have

(Pf )(x)e−C(x,e) ≤ P
{
 ◦ f (e + ·)}(x) =

∫
Rd

 ◦ f (y + e)P (x,dy).

Integrating both sides w.r.t. de and noting that
∫
Rd  ◦ f (y + e)de = ∫

Rd  ◦
f (e)de ≤ 1, we obtain

(Pf )(x)

∫
Rd

e−C(x,e) de ≤ 1.

This implies (2.11). When (0) = 0, (2.11) implies that

sup
f ∈B+

b (Rd ),
∫
Rd ◦f (x)dx≤1

Pf (x) ≤ −1
(

1∫
Rd e−C(x,e) de

)
< ∞(2.14)

since by the strictly increasing and convex properties we have (r) ↑ ∞ as r ↑ ∞.
Now, for any Lebesgue-null set A, taking fn = n1A we obtain from (0) = 0 that∫

Rd
 ◦ fn(x)dx = 0 ≤ 1.

Therefore, applying (2.14) to f = fn we obtain

P(x,A) = P 1A(x) ≤ 1

n
−1

(
1∫

Rd e−C(x,e) de

)
,

which goes to zero as n → ∞. Thus P(x, ·) is absolutely continuous w.r.t. the
Lebesgue measure, so that the density function �(x, y) exists, and (2.12) follows
from (2.11) by taking f (y) = −1(�(x, y)).

Finally, let (r) = rp for some p > 1. For fixed x, let

fn(y) = {n ∧ �(x, y)}1/(p−1)

(
∫
Rd {n ∧ �(x, y)}p/(p−1) dy)1/p

, n ≥ 1.

It is easy to see that
∫
Rd f

p
n (y)dy = 1. Then it follows from (2.11) with (r) = rp

that∫
Rd

{
n ∧ �(x, y)

}p/(p−1) dy ≤ (Pfn(x)
)p/(p−1) ≤ 1

(
∫
Rd e−C(x,e) de)1/(p−1)

.

Then (2.13) follows by letting n → ∞. �

Finally, we consider applications of the shift Harnack inequality to distribution
properties of the underlying transition probability.

THEOREM 2.6. Let P be given above for some Banach space E, and let (2.10)
hold for some x, e ∈ E, finite constant C(x, e) and some strictly increasing and
convex continuous function .



1006 F.-Y. WANG

(1) P(x, ·) is absolutely continuous w.r.t. P(x, · − e).
(2) If (r) = r�(r) for some strictly increasing positive continuous function

� on (0,∞). Then the density �(x, e;y) := P(x,dy)
P (x,dy−e)

satisfies∫
E


(
�(x, e;y)

)
P(x,dy − e) ≤ �−1(eC(x,e)).

PROOF. For P(x, · − e)-null set A, let f = 1A. Then (2.10) implies that
(P (x,A)) ≤ 0, hence P(x,A) = 0 since (r) > 0 for r > 0. Therefore, P(x, ·)
is absolutely continuous w.r.t. P(x, · − e). Next, let (r) = r�(r). Apply-
ing (2.10) for f (y) = �(n ∧ �(x, e;y)) and noting that

Pf (x) =
∫
E

{
�
(
n ∧ �(x, e;y)

)}
P(x,dy) ≥

∫
E


(
n ∧ �(x, e;y)

)
P(x,dy − e),

we obtain ∫
E


(
n ∧ �(x, e;y)

)
P(x,dy − e) ≤ �−1(eC(x,e)).

Then the proof is complete by letting n → ∞. �

3. Stochastic Hamiltonian system. Consider the following degenerate sto-
chastic differential equation on Rm+d =Rm ×Rd (m ≥ 0, d ≥ 1):{

dX(t) = {
AX(t) + BY(t)

}
dt,

dY(t) = Z
(
t,X(t), Y (t)

)
dt + σ(t)dW(t),

(3.1)

where A and B are two matrices of order m × m and m × d , respectively,
Z : [0,∞) × Rm+d → Rd is measurable with Z(t, ·) ∈ C1(Rm+d) for t ≥ 0,
{σ(t)}t≥0 are invertible d ×d-matrices measurable in t such that the operator norm
‖σ(·)−1‖ is locally bounded and W(t) is the d-dimensional Brownian motion.

When m ≥ 1 this equation is degenerate, and when m = 0 we set Rm = {0}, so
that the first equation disappears and thus, the equation reduces to a nondegenerate
equation on Rd . To ensure the existence of the transition density (or heat kernel) of
the associated semigroup Pt w.r.t. the Lebesgue measure on Rm+d , we make use of
the following Kalman rank condition (see [11]) which implies that the associated
diffusion is subelliptic,

There exists 0 ≤ k ≤ m − 1 such that Rank
[
B,AB, . . . ,AkB

]= m.(H)

When m = 0 this condition is trivial, and for m = 1 it means that Rank(B) = 1,
that is, B �= 0. For any m > 1 and d ≥ 1, there exist plenty of examples for ma-
trices A and B such that (H) holds; see [11]. Therefore, we allow that m is much
larger than d , so that the associated diffusion process is highly degenerate; see
Example 3.1 below.

It is easy to see that if m = d,σ (t) = Id×d , B is symmetric and

Z(x, y) = −{∇V (x) + A∗y + F(x, y)(Ax + By)
}
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for some smooth functions V and F , then (3.1) reduces to the Hamiltonian system{dXt = ∇H(Xt, ·)(Yt )dt,

dYt = −{∇H(·, Yt )(Xt ) + F(Xt , Yt )∇H(Xt, ·)(Yt )
}

dt + dW(t)
(3.2)

with Hamiltonian function

H(x,y) = V (x) + 〈Ax,y〉 + 1
2〈By,y〉;

see, for example, [14]. If, in particular, A = 0,B = Id×d and F ≡ c for some
constant c, the corresponding Fokker–Planck equation is known as the “kinetic
Fokker–Planck equation” in PDE (see [15]), and the stochastic equation is called
“stochastic damping Hamiltonian system”; see [21].

Let the solution to (3.1) be nonexplosive, and let

Ptf = Ef
(
X(t), Y (t)

)
, t ≥ 0, f ∈ Bb

(
Rm+d).

To state our main results, let us fix T > 0. For nonnegative φ ∈ C([0, T ]) with
φ > 0 in (0, T ), define

Qφ =
∫ T

0
φ(t)e(T −t)ABB∗e(T −t)A∗

dt.

Then Qφ is invertible; cf. [13]. For any z ∈Rm+d and r > 0, let B(z; r) be the ball
centered at z with radius r .

THEOREM 3.1. Assume (H) and that the solution to (3.1) is nonexplosive such
that

sup
t∈[0,T ]

E
{

sup
B(X(t),Y (t);r)

∣∣∇Z(t, ·)∣∣2}< ∞, r > 0.(3.3)

Let φ,ψ ∈ C1([0, T ]) such that φ(0) = φ(T ) = 0, φ > 0 in (0, T ), and

ψ(T ) = 1, ψ(0) = 0,

∫ T

0
ψ(t)e(T −t)AB dt = 0.(3.4)

Moreover, for e = (e1, e2) ∈ Rm+d , let

h(t) = φ(t)B∗e(T −t)A∗
Q−1

φ e1 + ψ(t)e2 ∈ Rd,

�(t) =
(∫ t

0
e(t−s)ABh(s)ds, h(t)

)
∈ Rm+d, t ∈ [0, T ].

(1) For any f ∈ C1
b(Rm+d), there holds

PT (∇ef ) = E
{
f
(
X(T ),Y (T )

)

×
∫ T

0

〈
σ(t)−1{h′(t) − ∇�(t)Z(t, ·)(X(t), Y (t)

)}
,dW(t)

〉}
.
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(2) Let (X(0), Y (0)) = (x, y) and

R = exp
[
−
∫ T

0

〈
σ(t)−1ξ1(t),dW(t)

〉− 1

2

∫ T

0

∣∣σ(t)−1ξ1(t)
∣∣2 dt

]
,

where ξ1(t) = h′(t) + Z(t,X(t), Y (t)) − Z(t,X1(t), Y 1(t)) with

X1(t) = X(t) +
∫ t

0
e(t−s)ABh(s)ds, Y 1(t) = Y(t) + h(t), t ≥ 0.

Then ∣∣PT f (x, y)
∣∣p ≤ PT

{|f |p(e + ·)}(x, y)
(
ERp/(p−1))p−1

,

p > 1, f ∈ Bb(E),

PT logf (x, y) ≤ logPT

{
f (e + ·)}(x, y) + E(R logR),

0 < f ∈ Bb(E).

PROOF. We only prove (1), since (2) follows from Theorem 2.1 with the cou-
pling constructed below for ε = 1. Let (X0(t), Y 0(t)) = (X(t), Y (t)) solve (3.1)
with initial data (x, y), and for ε ∈ (0,1] let (Xε(t), Y ε(t)) solve the equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dXε(t) = {
AXε(t) + BYε(t)

}
dt,

Xε(0) = x,

dY ε(t) = σ(t)dW(t) + {Z(t,X(t), Y (t)
)+ εh′(t)

}
dt,

Y ε(0) = y.

(3.5)

Then it is easy to see that⎧⎨
⎩

Y ε(t) = Y(t) + εh(t),

Xε(t) = X(t) + ε

∫ t

0
e(t−s)ABh(s)ds.

(3.6)

Combining this with φ(0) = φ(T ) = 0 and (3.4), we see that h(T ) = e2 and∫ T

0
e(T −t)ABh(t)dt

=
∫ T

0
φ(t)e(T −t)ABB∗e(T −t)A∗

Q−1
φ e1 dt +

∫ T

0
ψ(t)e(T −t)ABe2 dt

= e1.

Therefore, (
Xε(T ),Y ε(T )

)= (
X(T ),Y (T )

)+ εe, ε ∈ [0,1].(3.7)

Next, to see that ((X(t), Y (t)), (Xε(t), Y ε(t))) is a coupling by change of measure
for the solution to (3.1), reformulate (3.5) as{

dXε(t) = {
AXε(t) + BYε(t)

}
dt, Xε(0) = x,

dY ε(t) = σ(t)dWε(t) + Z
(
t,Xε(t), Y ε(t)

)
dt, Y ε(0) = y,

(3.8)
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where

Wε(t) := W(t)

+
∫ t

0
σ(s)−1{εh′(s) + Z

(
s,X(s), Y (s)

)− Z
(
s,Xε(s), Y ε(s)

)}
ds,

t ∈ [0, T ].
Let

ξε(s) = εh′(s) + Z
(
s,X(s), Y (s)

)− Z
(
s,Xε(s), Y ε(s)

)
(3.9)

and

Rε = exp
[
−
∫ T

0

〈
σ(s)−1ξε(s),dW(s)

〉− 1

2

∫ T

0

∣∣σ(s)−1ξε(s)
∣∣2 ds

]
.

By Lemma 3.2 below and the Girsanov theorem, Wε(t) is a d-dimensional Brow-
nian motion under the probability measure Qε := RεP. Therefore, ((X(t), Y (t)),

(Xε(t), Y ε(t))) is a coupling by change of measure with changed probability Qε .
Moreover, combining (3.6) with the definition of Rε , we see from (3.3) that

−dRε

dε

∣∣∣∣
ε=0

=
∫ T

0

〈
σ−1

s

{
h′(s) − ∇�(s)Z(s, ·)(X(s), Y (s)

)}
,dW(s)

〉
holds in L1(P). Then the proof is complete by Theorem 2.1(2). �

LEMMA 3.2. Let the solution to (3.1) be nonexplosive such that (3.3) holds,
and let ξε be in (3.9). Then for any ε ∈ [0,1] the process

Rε(t) = exp
[
−
∫ t

0

〈
σ(s)−1ξε(s),dW(s)

〉− 1

2

∫ t

0

∣∣σ(s)−1ξε(s)
∣∣2 ds

]
,

t ∈ [0, T ]
is a uniformly integrable martingale with supt∈[0,T ] E{Rε(t) logRε(t)} < ∞.

PROOF. Let τn = inf{t ≥ 0 : |X(t)| + |Y(t)| ≥ n}, n ≥ 1. Then τn ↑ ∞ as
n ↑ ∞. It suffices to show that

sup
t∈[0,T ],n≥1

E
{
Rε(t ∧ τn) logRε(t ∧ τn)

}
< ∞.(3.10)

By (3.6), there exists r > 0 such that(
Xε(t), Y ε(t)

) ∈ B
(
X(t), Y (t); r), t ∈ [0, T ], ε ∈ [0,1].(3.11)

Let Qε,n = Rε(T ∧ τn)P. By the Girsanov theorem, {Wε(t)}t∈[0,T ∧τn] is the
d-dimensional Brownian motion under the changed probability Qε,n. Then, due
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to (3.11),

sup
t∈[0,T ]

E
{
Rε(t ∧ τn) logRε(t ∧ τn)

}

= 1

2
EQε,n

∫ T ∧τn

0

∣∣σ(s)−1ξε(s)
∣∣2 ds

≤ C + CEQε,n

∫ T ∧τn

0
sup

B(Xε(t),Y ε(t);r)
∣∣∇Z(t, ·)∣∣2 dt

holds for some constant C > 0 independent of n. Since the law of (Xε(· ∧ τn),

Y ε(· ∧ τn)) under Qε,n coincides with that of (X(· ∧ τn), Y (· ∧ τn)) under P, com-
bining this with (3.3), we obtain

sup
t∈[0,T ]

E
{
Rε(t ∧ τn) logRε(t ∧ τn)

}

≤ C + C

∫ T

0
E sup

B(X(t),Y (t);r)
∣∣∇Z(t, ·)∣∣2 dt < ∞.

Therefore, (3.10) holds. �

REMARK 3.1. (a) As shown in [10], Lemma 2.4, condition (3.3) is implied by
the Lyapunov condition (A) therein, for which some concrete examples have been
presented in [10]. Moreover, as shown in [10], Section 3 (see also Theorem 4.1
in [20]) that under reasonable grown conditions of ∇Z(t, ·) one obtains from The-
orem 3.1(1)

Pt |∇f | ≤ δ
{
Pt(f logf ) − (Ptf ) logPtf

}+ W(t, ·)
δ

Ptf,

t > 0, f ∈ B+
b

(
Rm+d

)
, δ > δ0

for some constant δ0 ≥ 0 and some positive functions W(t, ·). According to Theo-
rem 2.2, this inequality implies the shift Harnack inequality.

(b) For any T2 > T1. Applying Theorem 3.1 to (X(T1 + t), Y (T1 + t)) in place
of (X(t), Y (t)), we see that the assertions in Theorem 3.1 hold for

PT1,T2f (x, y) := E
(
f
(
X(T2), Y (T2)

) | (X(T1), Y (T1)
)= (x, y)

)
in place of PT f with T and 0 replaced by T2 and T1, respectively.

To derive explicit inequalities from Theorem 3.1, we consider below a special
case where ‖∇Z(t, ·)‖∞ is bounded and Al = 0 for some natural number l ≥ 1.

COROLLARY 3.3. Assume (H). If ‖∇Z(t, ·)‖∞ and ‖σ(t)−1‖ are bounded in
t ≥ 0, and Al = 0 for some l ≥ 1. Then there exists a constant C > 0 such that for
any positive f ∈ Bb(Rm+d), T > 0 and e = (e1, e2) ∈ Rm+d :
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(1) (PT f )p ≤ PT {f p(e + ·)} exp[ Cp
p−1(

|e2|2
1∧T

+ |e1|2
(1∧T )4k+3 )], p > 1;

(2) PT logf ≤ logPT {f (e + ·)} + C(
|e2|2
1∧T

+ |e1|2
(1∧T )4k+3 );

(3) for f ∈ C1
b(Rm+d), |PT ∇ef |2 ≤ C|PT f 2|( |e2|2

1∧T
+ |e1|2

(1∧T )4k+3 );

(4) for strictly positive f ∈ C1
b(Rm+d),∣∣PT ∇ef

∣∣(x, y) ≤ δ
{
PT (f logf ) − (PT f ) logPT f

}
+ C

δ

( |e2|2
1 ∧ T

+ |e1|2
(1 ∧ T )4k+3

)
PT f, δ > 0.

PROOF. According to Remark 3.1(b), PT = PT −1PT −1,T and the Jensen in-
equality, we only need to prove for T ∈ (0,1]. Let φ(t) = t (T −t)

T 2 . Then φ(0) =
φ(T ) = 0 and due to [20], Theorem 4.2(1), the rank condition (H) implies that∥∥Q−1

φ

∥∥≤ cT −(2k+1)(3.12)

for some constant c > 0 independent of T ∈ (0,1]. To fix the other reference func-
tion ψ in Theorem 3.1, let {ci}1≤i≤l+1 ∈ R be such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +
l+1∑
i=1

ci = 0,

1 +
l+1∑
i=1

j + 1

j + 1 + i
ci = 0, 0 ≤ j ≤ l − 1.

Take

ψ(t) = 1 +
l+1∑
i=1

ci

(T − t)i

T i
, t ∈ [0, T ].

Then ψ(0) = 0,ψ(T ) = 1 and
∫ T

0 (T − t)jψ(t)dt = 0 for 0 ≤ j ≤ l − 1. Since
Al = 0, we conclude that

∫ T
0 ψ(t)e(T −t)A dt = 0. Therefore, (3.4) holds. It is easy

to see that ∣∣ψ(t)
∣∣≤ c,

∣∣ψ ′(t)
∣∣≤ cT −1, t ∈ [0, T ]

holds for some constant c > 0. Combining this with (3.12), (3.6) and the bounded-
ness of ‖∇Z‖∞ and ‖σ−1‖, we obtain∣∣ξ1(t)

∣∣+ ∣∣h′(t)
∣∣≤ c

(
T −2(k+1)|e1| + T −1|e2|),

(3.13) ∣∣�(t)
∣∣≤ c

(
T −(2k+1)|e1| + |e2|)

for some constant c > 0. From this and Theorem 3.1, we derive the desired asser-
tions. �
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COROLLARY 3.4. In the situation of Corollary 3.3. Let ‖ · ‖p→q be the oper-
ator norm from Lp to Lq w.r.t. the Lebesgue measure on Rm+d . Then there exists
a constant C > 0 such that

‖PT ‖p→∞ ≤ C1/p

(
p

p − 1

)(m+d)/(2p)

(1 ∧ T )−(d+(4k+3)m)/(2p),

(3.14)
p > 1, T > 0.

Consequently, the transition density pT ((x, y), (x′, y′)) of PT w.r.t. the Lebesgue
measure on Rm+d satisfies∫

Rm+d
pT

(
(x, y),

(
x′, y′))p/(p−1) dx′ dy′

≤ C1/(p−1)

(
p

p − 1

)(m+d)/(2(p−1))

(1 ∧ T )−(d+(4k+3)m)/(2(p−1)),(3.15)

T > 0, (x, y) ∈ Rm+d,p > 1.

PROOF. By Corollary 3.3(1), (3.14) follows from (2.11) for PT = P ,
(r) = rp and

C

(
(x, y), (e1, e2)

)= Cp

p − 1

( |e2|2
1 ∧ T

+ |e1|2
(1 ∧ T )4k+3

)
.

Moreover, (3.15) follows from (2.13). �

EXAMPLE 3.1. A simple example for Theorem 3.3 to hold is that σ(t) = σ

and Z(t, ·) = Z are independent of t with ‖∇Z‖∞ < ∞, A = 0 and Rank(B) = m.
In this case we have d ≥ m; that is, the dimension of the generate part is controlled
by that of the nondegenerate part. In general, our results allow m to be much larger
than d . For instance, let m = ld for some l ≥ 2 and

A =

⎛
⎜⎜⎜⎜⎝

0 Id×d 0 · · · 0 0
0 0 Id×d · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 Id×d

0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠

(ld)×(ld)

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
·
·
·
0

Id×d

⎞
⎟⎟⎟⎟⎟⎟⎠

(ld)×d

.

Then Al = 0 and (H) holds for k = m − 1. Therefore, assertions in Corollary 3.3
hold for k = l − 1.

4. Functional stochastic differential equations. The purpose of this section
is to establish Driver’s integration by parts formula and shift Harnack inequality
for delayed stochastic differential equations. In this case the associated segment
processes are functional-valued, and thus, infinite-dimensional. As continuation
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to Section 3, it is natural for us to study the generalized stochastic Hamiltonian
system with delay as in [3], where the Bismut formula and the Harnack inequalities
are derived using coupling. However, for this model it seems very hard to construct
the required new-type couplings. So, we only consider here the nondegenerate
setting.

Let τ > 0 be a fixed number, and let C = C([−τ,0];Rd) be equipped with
uniform norm ‖ · ‖∞. For simplicity, we will use ∇ to denote the gradient operator
both on Rd and C. For instance, for a differentiable function F on C and ξ ∈ C,
∇F(ξ) is a linear operator from C to R with

C � η �→ ∇ηF (ξ) = lim
ε→0

F(ξ + εη) − F(ξ)

ε
.

Moreover, let ‖ · ‖ be the operator norm for linear operators. Finally, for a func-
tion h ∈ C([−τ,∞);Rd) and t ≥ 0, let ht ∈ C be such that ht (θ) = h(t + θ),
θ ∈ [−τ,0].

Consider the following stochastic differential equations on Rd :

dX(t) = b(t,Xt)dt + σ(t)dW(t), t ≥ 0,(4.1)

where W(t) is the Brownian motion on Rd , b : [0,∞) × C → Rd is measurable
such that ‖∇b(t, ·)‖∞ is locally bounded in t , and σ : [0,∞) → Rd ⊗Rd is mea-
surable with ‖σ(t)−1‖ locally bounded. We remark that the local boundedness
assumption of ‖∇b(t, ·)‖∞ is made only for simplicity and can be weakened by
some growth conditions as in [3].

Now, for any ξ ∈ C, let Xξ(t) be the solution to (4.1) for X0 = ξ , and let X
ξ
t be

the associated segment process. Let

PtF (ξ) = EF
(
X

ξ
t

)
, t ≥ 0, ξ ∈ C,F ∈ Bb(C).

We aim to establish the integration by parts formula and shift Harnack inequal-
ity for PT . It turns out that we are only able to make derivatives or shifts along
directions in the Cameron–Martin space

H :=
{
h ∈ C :‖h‖2

H :=
∫ 0

−τ

∣∣h′(t)
∣∣2 dt < ∞

}
.

THEOREM 4.1. Let T > τ and η ∈ H be fixed. For any φ ∈ Bb([0, T − τ ])
such that

∫ T −τ
0 φ(t)dt = 1, let

�(t) =
{

φ(t)η(−τ), if t ∈ [0, T − τ ],
η′(t − T ), if t ∈ (T − τ, T ].

Let ‖σ(t)−1‖ ≤ K(T ),‖∇b(t, ·)‖∞ ≤ κ(T ) for t ∈ [0, T ].
(1) For any F ∈ C1

b(C),

PT (∇ηF ) = E
(
F(XT )

∫ T

0

〈
σ(t)−1(�(t) − ∇�t b(t, ·)(Xt)

)
,dW(t)

〉)
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holds for

�(t) =
∫ t∨0

0
�(s)ds, t ∈ [−τ, T ].

Consequently, for any δ > 0 and positive F ∈ C1
b(C),∣∣PT (∇ηF )

∣∣≤ δ
{
PT (F logF) − (PT F ) logPT F

}
+ 2K(T )2(1 + κ(T )2T 2)

δ

(
‖η‖2

H + |η(−τ)|2
T − τ

)
PT F.

(2) For any nonnegative F ∈ Bb(C),

(PT F )p ≤ (PT

{
F(η + ·)}p)

× exp
[

2pK(T )2(1 + κ(T )2T 2)

p − 1

(
‖η‖2

H + |η(−τ)|2
T − τ

)]
.

(3) For any positive F ∈ Bb(C),

PT logF ≤ logPT

{
F(η + ·)}+ 2K(T )2(1 + κ(T )2T 2)(‖η‖2

H + |η(−τ)|2
T − τ

)
.

PROOF. For fixed ξ ∈ C, let X(t) solve (4.1) for X0 = ξ . For any ε ∈ [0,1],
let Xε(t) solve the equation

dXε(t) = {
b(t,Xt ) + ε�(t)

}
dt + σ(t)dW(t), t ≥ 0,Xε

0 = ξ.

Then it is easy to see that

Xε
t = Xt + ε�t , t ∈ [0, T ].(4.2)

In particular, Xε
T = XT + εη. Next, let

Rε = exp
[
−
∫ T

0

〈
σ(t)−1{ε�(t) + b(t,Xt ) − b

(
t,Xε

t

)}
,dW(t)

〉

− 1

2

∫ T

0

∣∣σ(t)−1{ε�(t) + b(t,Xt ) − b
(
t,Xε

t

)}∣∣2 dt

]
.

By the Girsanov theorem, under the changed probability Qε := RεP, the process

Wε(t) := W(t) +
∫ t

0
σ(s)−1(�(s) + b(s,Xs) − b

(
s,Xε

s

))
ds, t ∈ [0, T ]

is a d-dimensional Brownian motion. So, (Xt ,X
ε
t ) is a coupling by change of mea-

sure with changed probability Qε . Then the desired integration by parts formula
follows from Theorem 2.1 since R0 = 1 and due to (4.2),

d

dε
Rε

∣∣∣∣
ε=0

= −
∫ T

0

〈
σ(t)−1(�(t) − ∇�t b(t, ·)(Xt)

)
,dW(t)

〉
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holds in L1(P). Taking φ(t) = 1
T −τ

, we have
∫ T

0

∣∣�(t)
∣∣2 dt ≤ ‖η‖2

H + |η(−τ)|2
T − τ

,

∥∥∇�t b(t, ·)∥∥2
∞ ≤ κ(T )2

(∫ T

0

∣∣�(t)
∣∣dt

)2

≤ κ(T )2T

∫ T

0

∣∣�(t)
∣∣2 dt.

Then ∫ T

0

∣∣�(t) − ∇θt b(t, ·)(Xt)
∣∣2 dt ≤ 2

(
1 + T 2κ(T )2)(‖η‖2

H + |η(−τ)|2
T − τ

)
.(4.3)

So,

log E exp
[

1

δ

∫ T

0

〈
σ(t)−1{�(t) − ∇�t b(t, ·)(Xt)

}
,dW(t)

〉]

≤ 1

2
log E exp

[
2K(T )2

δ2

∫ T

0

∣∣�(t) − ∇�t b(t, ·)(Xt)
∣∣2 dt

]

≤ 2K(T )2(1 + T 2κ(T )2)

δ2

(
‖η‖2

H + |η(−τ)|2
T − τ

)
.

Then the second result in (1) follows from the Young inequality∣∣PT (∇ηF )
∣∣≤ δ

{
PT (F logF) − (PT F ) logPT F

}
+ δ log E exp

[
1

δ

∫ T

0

〈
σ(t)−1{�(t) − ∇�t b(t, ·)(Xt)

}
,dW(t)

〉]
.

Finally, (2) and (3) can be easily derived by applying Theorem 2.1 for the above
constructed coupling with ε = 1, and using (4.2) and (4.3). �

From Theorem 4.1 we may easily derive regularization estimates on PT (ξ, ·),
the distribution of X

ξ
T . For instance, Theorem 4.1(1) implies estimates on the

derivative of PT (ξ,A + ·) along η ∈ H for ξ ∈ C and measurable A ⊂ C; and due
to Theorems 2.6, 4.1(2) and 4.1(3) imply some integral estimates on the density
pT (ξ, η;γ ) := PT (ξ,dγ )

PT (ξ,dγ−η)
for η ∈ H. Moreover, since H is dense in C, the shift

Harnack inequality in Theorem 4.1(2) implies that PT (ξ, ·) has full support on C
for any T > τ and ξ ∈ C.

5. Semi-linear stochastic partial differential equations. The purpose of this
section is to establish Driver’s integration by parts formula and shift Harnack in-
equality for semi-linear stochastic partial differential equations. We note that the
Bismut formula has been established in [4] for a class of delayed SPDEs, but for
technical reasons we only consider here the case without delay.

Let (H, 〈·, ·〉, | · |) be a real separable Hilbert space, and (W(t))t≥0 a cylindrical
Wiener process on H with respect to a complete probability space (�,F,P) with
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the natural filtration {Ft }t≥0. Let L(H) and LHS(H) be the spaces of all linear
bounded operators and Hilbert–Schmidt operators on H , respectively. Denote by
‖ · ‖ and ‖ · ‖HS the operator norm and the Hilbert–Schmidt norm, respectively.

Consider the following semi-linear SPDE:{
dX(t) = {

AX(t) + b
(
t,X(t)

)}
dt + σ(t)dW(t),

X(0) = x ∈ H,
(5.1)

where

(A1) (A,D(A)) is a linear operator on H generating a contractive, strongly
continuous semigroup (etA)t≥0 such that

∫ 1
0 ‖esA‖2

HS ds < ∞.
(A2) b : [0,∞) × H → H is measurable, and Fréchet differentiable in the sec-

ond variable such that ‖∇b(t, ·)‖∞ := supx∈H ‖∇b(t, ·)(x)‖ is locally bounded in
t ≥ 0.

(A3) σ : [0,∞) → L(H) is measurable and locally bounded, and σ(t) is invert-
ible such that ‖σ(t)−1‖ is locally bounded in t ≥ 0.

Then the equation (5.1) has a unique a mild solution (see [6]), which is an adapt
process (X(t))t≥0 on H such that

X(t) = etAx +
∫ t

0
e(t−s)Ab

(
s,X(s)

)
ds +

∫ t

0
e(t−s)Aσ (s)dW(s), t ≥ 0.

Let

Ptf
(
X(0)

)= Ef
(
X(t)

)
, t ≥ 0,X(0) ∈ H,f ∈ Bb(H).

Finally, for any e ∈ H , let

e(t) =
∫ t

0
esAe ds, t ≥ 0.

THEOREM 5.1. Let T > 0 and e ∈ D(A) be fixed. Let ‖σ(t)−1‖ ≤ K(T ),
‖∇b(t, ·)‖∞ ≤ κ(T ) for t ∈ [0, T ].

(1) For any f ∈ C1
b(H),

PT (∇e(T )f ) = E
(
f
(
X(T )

) ∫ T

0

〈
σ(t)−1(e − ∇e(t)b(t, ·)(X(t)

))
,dW(t)

〉)
.

Consequently, for any δ > 0 and positive f ∈ C1
b(H),∣∣PT (∇e(T )f )

∣∣≤ δ
{
PT (f logf ) − (PT f ) logPT f

}
+ K(T )2|e|2

δ

(
T + T 2κ(T ) + T 3κ(T )2

3

)
PT f.

(2) For any nonnegative F ∈ Bb(H),

(PT F )p ≤ (PT

{
F
(
e(T ) + ·)}p) exp

[
pK(T )2|e|2

p − 1

(
T + T 2κ(T ) + T 3κ(T )2

3

)]
.
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(3) For any positive F ∈ Bb(H),

PT logF ≤ logPT

{
F
(
e(T ) + ·)}

+ K(T )2|e|2
(
T + T 2κ(T ) + T 3κ(T )2

3

)
.

PROOF. For fixed x ∈ H , let X(t) solve (4.1) for X(0) = x. For any ε ∈ [0,1],
let Xε(t) solve the equation

dXε(t) = {
AXε(t) + b

(
t,X(t)

)+ εe
}

dt + σ(t)dW(t),

t ≥ 0,Xε(0) = x.

Then it is easy to see that

Xε(t) = X(t) + εe(t), t ∈ [0, T ].(5.2)

In particular, Xε(T ) = X(T ) + εe(T ). Next, let

Rε = exp
[
−
∫ T

0

〈
σ(t)−1{εe + b

(
t,X(t)

)− b
(
t,Xε(t)

)}
,dW(t)

〉

− 1

2

∫ T

0

∣∣σ(t)−1{εe + b
(
t,X(t)

)− b
(
t,Xε(t)

)}∣∣2 dt

]
.

By the Girsanov theorem, under the weighted probability Qε := RεP, the process

Wε(t) := W(t) +
∫ t

0
σ(s)−1(εe + b(s,Xs) − b

(
s,Xε

s

))
ds, t ∈ [0, T ]

is a d-dimensional Brownian motion. So, (X(t),Xε(t)) is a coupling by change
of measure with changed probability Qε . Then the desired integration by parts
formula follows from Theorem 2.1 since R0 = 1 and due to (5.2),

d

dε
Rε

∣∣∣∣
ε=0

= −
∫ T

0

〈
σ(t)−1(e − ∇e(t)b(t, ·)(X(t)

))
,dW(t)

〉
holds in L1(P). This formula implies the second inequality in (1) due to the given
upper bounds on ‖σ(t)−1‖ and ‖∇b(t, ·)‖ and the fact that∣∣PT (∇ηF )

∣∣− δ
{
PT (F logF) − (PT F ) logPT F

}
≤ δ log E exp

[
1

δ

∫ T

0

〈
σ(t)−1(e − ∇e(t)b(t, ·)(X(t)

))
,dW(t)

〉]
PT F

≤ δ

2
log E exp

[
2

δ2

∫ T

0

∣∣σ(t)−1(e − ∇e(t)b(t, ·)(X(t)
))∣∣2 dt

]
PT F.

Finally, since |e(t)| ≤ t |e|, (2) and (3) can be easily derived by applying Theo-
rem 2.1 for the above constructed coupling with ε = 1. �
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