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The celebrated results of Komlós, Major and Tusnády [Z. Wahrsch. Verw.
Gebiete 32 (1975) 111–131; Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58] give
optimal Wiener approximation for the partial sums of i.i.d. random variables
and provide a powerful tool in probability and statistics. In this paper we ex-
tend KMT approximation for a large class of dependent stationary processes,
solving a long standing open problem in probability theory. Under the frame-
work of stationary causal processes and functional dependence measures of
Wu [Proc. Natl. Acad. Sci. USA 102 (2005) 14150–14154], we show that,
under natural moment conditions, the partial sum processes can be approx-
imated by Wiener process with an optimal rate. Our dependence conditions
are mild and easily verifiable. The results are applied to ergodic sums, as
well as to nonlinear time series and Volterra processes, an important class of
nonlinear processes.

1. Introduction. Let X1,X2, . . . be independent, identically distributed ran-
dom variables with EX1 = 0, EX2

1 = 1. In their seminal papers, Komlós, Major
and Tusnády (1975, 1976) proved that under E|X1|p < ∞, p > 2, there exists, af-
ter suitably enlarging the probability space, a Wiener process {B(t), t ≥ 0} such
that, setting Sn = ∑n

k=1 Xk , we have

Sn = B(n) + o
(
n1/p)

a.s.(1.1)

Assuming Eet |X1| < ∞ for some t > 0, they obtained the approximation

Sn = B(n) + O(logn) a.s.(1.2)

The remainder terms in (1.1) and (1.2) are optimal. These results close a long de-
velopment in probability theory starting with the classical paper of Erdős and Kac
(1946) introducing the method of invariance principle. The ideas of Erdős and
Kac were developed further by Doob (1949), Donsker (1952), Prohorov (1956)
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and others and led to the theory of weak convergence of probability measures on
metric spaces; see, for example, Billingsley (1968). In another direction, Strassen
(1964) used the Skorohod representation theorem to get an almost sure approxi-
mation of partial sums of i.i.d. random variables by Wiener process. Csörgő and
Révész (1974/75) showed that using the quantile transform instead of Skorohod
embedding yields better approximation rates under higher moments and develop-
ing this idea further, Komlós, Major and Tusnády (1975, 1976) reached the final
result in the i.i.d. case. Their results were extended to the independent, noniden-
tically distributed case and for random variables taking values in R

d , d ≥ 2, by
Sakhanenko, Einmahl and Zaitsev; see Götze and Zaitsev (2009) for history and
references.

Due to the powerful consequences of KMT approximation [see, e.g., Csörgő
and Hall (1984) or the books of Csörgő and Révész (1981) and Shorack and Well-
ner (1986) for the scope of its applications], extending these results for dependent
random variables would have a great importance, but until recently, little progress
has been made in this direction. The dyadic construction of Komlós, Major and
Tusnády is highly technical and utilizes conditional large deviation techniques,
which makes it very difficult to extend to dependent processes. Recently a new
proof of the KMT result for the simple random walk via Stein’s method was given
by Chatterjee (2012). The main motivation of his paper was, as stated by the au-
thor, to get “a more conceptual understanding of the problem that may allow one
to go beyond sums of independent random variables.” Using martingale approxi-
mation and Skorohod embedding, Shao and Lu (1987) and Wu (2007) proved the
approximation

Sn = σB(n) + o
(
n1/p(logn)γ

)
a.s.(1.3)

with some σ ≥ 0, γ > 0 for some classes of stationary sequences (Xk) satisfying
EX1 = 0, E|X1|p < ∞ for some 2 < p ≤ 4. Liu and Lin (2009) removed the log-
arithmic term from (1.3), reaching the KMT bound o(n1/p). Recently Merlevède
and Rio (2012) and Dedecker, Doukhan and Merlevède (2012) extended these re-
sults for a much larger class of weakly dependent processes. Note, however, that
all existing results in the dependent case concern the case 2 ≤ p ≤ 4 and the ap-
plied tools (e.g., Skorohod representation) limit the accuracy of the approximation
to o(n1/4), regardless the moment assumptions on X1.

The purpose of the present paper is to develop a new approximation technique
enabling us to prove the KMT approximation (1.1) for all p > 2 and for a large
class of dependent sequences. Specifically, we will deal with stationary sequences
allowing the representation

Xk = G(. . . , εk−1, εk, εk+1, . . .), k ∈ Z,(1.4)

where εi , i ∈ Z, are i.i.d. random variables, and G : RZ → R is a measurable
function. Sequences of this type have been studied intensively in weak depen-
dence theory [see, e.g., Billingsley (1968) or Ibragimov and Linnik (1971)], and
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many important time series models also have a representation (1.4). Processes of
the type (1.4) also play an important role in ergodic theory, as sequences gener-
ated by Bernoulli shift transformations. The Bernoulli shift is a very important
class of dynamical systems; see Ornstein (1974) and Shields (1973) for the deep
Kolmogorov–Sinai–Ornstein isomorphism theory. There is a substantial amount
of research showing that various dynamical systems are isomorphic to Bernoulli
shifts. As a step further, Weiss (1975) asked,

“having shown that some physical system is Bernoullian, what does that allow one to
say about the system itself? To answer such questions one must dig deeper and gain a
better understanding of a Bernoulli system.”

Naturally, without additional assumptions one cannot hope to prove KMT-type
results (or even the CLT) for Bernoulli systems; the representation (1.4) allows
stationary processes that can exhibit a markedly non-i.i.d. behavior. For limit the-
orems under dynamic assumptions, see Hofbauer and Keller (1982), Denker and
Philipp (1984), Denker (1989), Volný (1999), Merlevède and Rio (2012). The clas-
sical approach to deal with systems (1.4) is to assume that G is approximable with
finite dimensional functions in a certain technical sense; see Billingsley (1968) or
Ibragimov and Linnik (1971). However, this approach leads to a substantial loss
of accuracy and does not yield optimal results. In this paper we introduce a new,
triadic decomposition scheme enabling one to deduce directly, under the depen-
dence measure (1.5) below, the asymptotic properties of Xn in (1.4) from those
of the εn. In particular, this allows us to carry over KMT approximation from the
partial sums of the εn to those of Xn.

To state our weak dependence assumptions on the process in (1.4), assume Xi ∈
Lp , p > 2, namely ‖Xi‖p := [E(|Xi |p)]1/p < ∞. For i ∈ Z define the shift process
Fi = (εl+i , l ∈ Z). The central element of Fi (belonging to l = 0) is εi , and thus
by (1.4) we have Xi = G(Fi ). Let (ε′

j )j∈Z be an i.i.d. copy of (εj )j∈Z, and for
i, j ∈ Z let Fi,{j} denote the process obtained from Fi by replacing the coordinate
εj by ε′

j . Put

δi,p = ‖Xi − Xi,{0}‖p, where Xi,{0} = G(Fi,{0}).(1.5)

The above quantity can be interpreted as the dependence of Xi on ε0 and Xi,{0}
is a coupled version of Xi with ε0 in the latter replaced by ε′

0. If G(Fi ) does not
functionally depend on ε0, then δi,p = 0. Throughout the paper, for a random vari-
able W = H(Fi ), we use the notation W{j} = H(Fi,{j}) for the j -coupled version
of W .

The functional dependence measure (1.5) is easy to work with, and it is directly
related to the underlying data-generating mechanism. In our main result Theo-
rem 2.1, we express our dependence condition in terms of

�i,p = ∑
|j |≥i

δj,p, i ≥ 0,(1.6)
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which can be interpreted as the cumulative dependence of (Xj )|j |≥i on ε0, or
equivalently, the cumulative dependence of X0 on εj , |j | ≥ i. Throughout the pa-
per we assume that the short-range dependence condition

�0,p < ∞(1.7)

holds. If (1.7) fails, then the process (Xi) can be long-range dependent, and the
partial sum processes behave no longer like Brownian motions. Our main result is
introduced in Section 2, where we also include some discussion on the conditions.
The proof is given in Section 3, with the proof of some useful lemmas postponed
until Section 4.

2. Main results. We introduce some notation. For u ∈ R, let 	u
 = min{i ∈
Z : i ≥ u} and �u� = max{i ∈ Z : i ≤ u}. Write the L2 norm ‖ · ‖ = ‖ · ‖2. Denote
by “⇒” the weak convergence. Before stating our main result, we first introduce
a central limit theorem for Sn. Assume that Xi has mean zero, E(X2

i ) < ∞, with
covariance function γi = E(X0Xi), i ∈ Z. Further assume that

∞∑
i=−∞

∥∥E(Xi |G0) − E(Xi |G−1)
∥∥ < ∞,(2.1)

where Gi = (. . . , εi−1, εi). Then we have

Sn√
n

⇒ N
(
0, σ 2)

where σ 2 = ∑
i∈Z

γi.(2.2)

Results of the above type have been known for several decades; see Hannan (1979),
Woodroofe (1992), Volný (1993) and Dedecker and Merlevède (2003) among
others. Wu (2005) pointed out the inequality ‖E(Xi |G0) − E(Xi |G−1)‖ ≤ δi,2.
Hence (2.1) follows from �0,2 < ∞. With stronger moment and dependence con-
ditions, the central limit theorem (2.2) can be improved to strong invariance prin-
ciples.

There is a huge literature for central limit theorems and invariance principles for
stationary processes; see, for example, the monographs of Ibragimov and Linnik
(1971), Eberlein and Taqqu (1986), Bradley (2007), Dedecker et al. (2007) and
Billingsley (1968), among others. To establish strong invariance principles, here
we shall use the framework of stationary process (1.4) and its associated func-
tional dependence measures (1.5). Many important processes in probability and
statistics assume this form; see the examples at the end of this section, where also
estimates for the functional dependence measure δi,p are given. The following the-
orem, which is the main result of our paper, provides optimal KMT approximation
for processes (1.4) under suitable assumptions on the functional dependence mea-
sure.
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THEOREM 2.1. Assume that Xi ∈ Lp with mean 0, p > 2, and there exists
α > p such that

�α,p :=
∞∑

j=−∞
|j |1/2−1/αδ

p/α
j,p < ∞.(2.3)

Further assume that there exists a positive integer sequence (mk)
∞
k=1 such that

Mα,p :=
∞∑

k=1

3k−kα/pm
α/2−1
k < ∞,(2.4)

∞∑
k=1

3kp/2�
p
mk,p

3k
< ∞(2.5)

and

�mk,p + min
l≥0

(
�l,p + l3k(2/p−1)) = o

(
3k(1/p−1/2)

(log k)1/2

)
.(2.6)

Then there exists a probability space (	c, Ac,Pc) on which we can define random
variables Xc

i with the partial sum process Sc
n = ∑n

i=1 Xc
i , and a standard Brownian

motion Bc(·), such that (Xc
i )i∈Z

D= (Xi)i∈Z and

Sc
n − σBc(n) = oa.s.

(
n1/p)

in (	c, Ac,Pc).(2.7)

Gaussian approximation results of type (2.7) have many applications in statis-
tics. For example, Wu and Zhao (2007) dealt with simultaneous inference of trends
in time series. Eubank and Speckman (1993) considered a similar problem for in-
dependent observations. As pointed out by and C. Wu, Chiang and Hoover (1998),
basic difficulties in the theory of simultaneous inference under dependence are
due to the lack of suitable Gaussian approximation. Using a recent “split” form
of approximation, Berkes, Hörmann and Schauer (2011) obtained asymptotic es-
timates for increments of stationary processes with applications to change point
tests. Theorem 2.1 improves these results and provides optimal rates. Many fur-
ther applications of the KMT theory for i.i.d. sequences also extend easily for
dependent samples via Theorem 2.1.

A crucial issue in applying Theorem 2.1 is to find the sequence mk and to
verify conditions (2.3), (2.4), (2.5) and (2.6). If �m,p decays to zero at the rate
O(m−τ (logm)−A), where τ > 0, then we have the following corollary. An ex-
plicit form of mk can also be given. Let

τp = p2 − 4 + (p − 2)

√
p2 + 20p + 4

8p
.(2.8)

COROLLARY 2.1. Assume that any one of the following holds:
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(i) p > 4 and �m,p = O(m−τp (logm)−A), where A > 2
3(1/p + 1 + τp);

(ii) p = 4 and �m,p = O(m−1(logm)−A) with A > 3/2;
(iii) 2 < p < 4 and �m,p = O(m−1(logm)−1/p).

Then there exists α > p and an integer sequence mk such that (2.3), (2.4), (2.5)
and (2.6) are all satisfied. Hence the strong invariance principle (2.7) holds.

PROOF. If �m,p = O(m−τ (logm)−A), then

�α,p ≤
∞∑
l=1

2l(1/2−1/α)
2l−1∑

j=2l−1

(
δ
p/α
j,p + δ

p/α
−j,p

)

≤
∞∑
l=1

2l(1/2−1/α)2(l−1)(1−p/α)

( 2l−1∑
j=2l−1

(δj,p + δ−j,p)

)p/α

≤
∞∑
l=1

2l(3/2−1/α−p/α)�
p/α

2l−1,p

=
∞∑
l=1

2l(3/2−1/α−p/α)O
[(

2−lτ l−A)p/α]
,

which is finite if 3/2 < (1 + p + pτ)/α or 3/2 = (1 + p + pτ)/α and Ap/α > 1.
(i) Write τ = τp . The quantity τp satisfies the following equation:

τ − (1/2 − 1/p)

τ/p − 1/4 + 1/(2p)
= 2

3
(1 + p + pτ).(2.9)

Let α = 2
3(1 + p + pτp). Then (2.3) requires that Ap/α > 1, or A > α/p. Let

mk = ⌊
3k(α/p−1)/(α/2−1)k−1/(α/2−1)(log k)−1/(p/2−1)⌋,(2.10)

which satisfies (2.4). Then �mk,p = O(m−τ
k k−A). If A > τ/(α/2 − 1), then (2.6)

holds. If A > τ/(α/2−1)+1/p, then (2.5) holds. Combining these three inequal-
ities on A, we have (i), since α/p > τ/(α/2 − 1) + 1/p.

(ii) In this case we can choose α = 6 and mk = �3k/4/k�.
(iii) Since 2 < p < 4, we can choose α such that (2 + p)/(3 − p/2) < α <

(2 + 4p)/3 and mk = �3k(1/2−1/p) log k�. �

Corollary 2.1 indicates that, to establish Gaussian approximation for a Bernoulli
shift process, one only needs to compute the functional dependence measure δi,p

in (1.5). In the following examples we shall deal with some special Bernoulli pro-
cess. Example 2.2 concerns some widely used nonlinear time series, and Exam-
ple 2.3 deals with Volterra processes which play an important role in the study of
nonlinear systems.
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EXAMPLE 2.1. Consider the measure-preserving transformation T x =
2x mod 1 on ([0,1], B,P), where P is the Lebesgue measure on [0,1]. Let
U0 ∼ uniform(0,1) have the dyadic expansion U0 = ∑∞

j=0 εj /21+j , where εj

are i.i.d. Bernoulli random variables with P(εj = 0) = P(εj = 1) = 1/2. Then
Ui = T iU0 = ∑∞

j=i εj /21+j−i , i ≥ 0; see Denker and Keller (1986) for a more
detailed discussion. We now compute the functional dependence measure for
Xi = g(Ui). Assume that

∫ 1
0 g(u)du = 0 and

∫ 1
0 |g(u)|p du < ∞, p > 2. Then

δi,p = 0 if i > 0, and for i ≥ 0 we get by stationarity

δ
p
−i,p = E

∣∣g(U0) − g(U0,{i})
∣∣p

(2.11)

= 1

2

2i∑
j=1

∫ 1

0

∣∣∣∣g
(

j

2i
+ u

2i+1

)
− g

(
j − 1

2i
+ u

2i+1

)∣∣∣∣
p

du.

If Xi = g(Ui) = K(
∑∞

j=i aj−iεj ), where K is a Lipschitz continuous function and∑∞
j=0 |aj | < ∞, then δi,p = O(|ai |). If g has the Haar wavelet expansion

g(u) =
∞∑
i=0

2i∑
j=1

ci,jφi,j (u),(2.12)

where φi,j (u) = 2i/2φ(2iu − j) and φ(u) = 10≤u<1/2 − 11/2≤u<1, then for i ≥ 0,

δ
p
−i,p = O

(
2i(p/2−1)) 2i∑

j=1

|ci,j |p.(2.13)

EXAMPLE 2.2 (Nonlinear time series). Consider the iterated random function

Xi = G(Xi−1, εi),(2.14)

where εi are i.i.d. and G is a measurable function [Diaconis and Freedman (1999)].
Many nonlinear time series including ARCH, threshold autoregressive, random
coefficient autoregressive and bilinear autoregressive processes are of form (2.14).
If there exists p > 2 and x0 such that G(x0, ε0) ∈ Lp and

�p = sup
x �=x′

‖G(x, ε0) − G(x′, ε0)‖p

|x − x′| < 1,(2.15)

then δm,p = O(�m
p ) and also �m,p = O(�m

p ) [Wu and Shao (2004)]. Hence condi-
tions in Corollary 2.1 are trivially satisfied, and thus (2.7) holds.

EXAMPLE 2.3. In the study of nonlinear systems, Volterra processes are
of fundamental importance; see Schetzen (1980), Rugh (1981), Casti (1985),
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Priestley (1988) and Bendat (1990), among others. We consider the discrete-time
process

Xn =
∞∑

k=1

∑
0≤j1<···<jk

gk(j1, . . . , jk)εn−j1 · · · εn−jk
,(2.16)

where εi are i.i.d. with mean 0, εi ∈ Lp , p > 2, and gk are called the kth order
Volterra kernel. Let

Qn,k = ∑
n∈{j1,...,jk}, 0≤j1<···<jk

g2
k (j1, . . . , jk).(2.17)

Assume for simplicity that p is an even integer. Elementary calculations show that
there exists a constant cp , only depending on p, such that

δ2
n,p ≤ cp

∞∑
k=1

‖ε0‖2k
p Qn,k.(2.18)

Assume that for some τ > 0 and A,
∞∑

k=1

‖ε0‖2k
p

∑
jk≥m, 0≤j1<···<jk

g2
k (j1, . . . , jk) = O

(
m−1−2τ (logm)−2A)

(2.19)

as m → ∞. Then
∞∑

n=m

δ2
n,p ≤ cp

∞∑
k=1

‖ε0‖2k
p

∞∑
n=m

Qn,k = O
(
m−1−2τ (logm)−2A)

,(2.20)

which implies �m,p = O(m−τ (logm)−A) and hence Corollary 2.1 is applicable.

For further examples of processes allowing the representation (1.4), we refer to
Wiener (1958), Tong (1990), Priestley (1988), Shao and Wu (2007), Wu (2011)
and the examples in Berkes, Hörmann and Schauer (2011).

3. Proof of Theorem 2.1. The proof of Theorem 2.1 is quite intricate. To
simplify the notation, we assume that (Xi) is a function of a one-sided Bernoulli
shift,

Xi = G(Fi ), where Fi = (. . . , εi−1, εi),(3.1)

where εk, k ∈ Z, are i.i.d. Clearly, in this case in (1.5) we have δi,p = 0 for i < 0.
As argued in Wu (2011), (3.1) itself defines a very large class of stationary pro-
cesses, and many widely used linear and nonlinear processes fall within the frame-
work of (3.1). Our argument can be extended to the two-sided process (1.4) in a
straightforward manner since our primary tool is the m-dependence approxima-
tion technique. In Section 3.1 we shall handle the pre-processing work of trunca-
tion, m-dependence approximation and blocking, and in Section 3.2 we shall apply
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Sakhanenko’s (2006) Gaussian approximation result to the transformed processes
and establish conditional Gaussian approximations. Section 3.3 removes the con-
ditioning, and an unconditional Gaussian approximation is obtained. In Section 3.4
we refine the unconditional Gaussian approximation in Section 3.3 by linearizing
the variance function, so that one can have the readily applicable form (2.7).

3.1. Truncation, m-dependence approximation and blocking. For a > 0, de-
fine the truncation operator Ta by

Ta(w) = max
(
min(w,a),−a

)
, w ∈ R.(3.2)

Then Ta is Lipschitz continuous and the Lipschitz constant is 1. For n ≥ 2 let
hn = 	(logn)/(log 3)
, so that 3hn−1 < n ≤ 3hn . Define

Wk,l =
l+3k−1∑

i=1+3k−1

[
T3k/p (Xi) − ET3k/p (Xi)

]
(3.3)

and the mk-dependent process

X̃k,j = E
[
T3k/p (Xj )|εj−mk

, . . . , εj−1, εj

] − ET3k/p (Xj ).(3.4)

Let

S†
n =

hn−1∑
k=1

Wk,3k−3k−1 +
n∑

i=1+3hn−1

[
T3hn/p (Xi) − ET3hn/p (Xi)

]
(3.5)

and

S̃n =
hn−1∑
k=1

W̃k,3k−3k−1 + W̃hn,n−3hn−1 where W̃k,l =
l+3k−1∑

i=1+3k−1

X̃k,i .(3.6)

If n = 1, we let S
†
1 = S̃1 = 0. Since Xi ∈ Lp , we have

max
1≤i≤n

∣∣Si − S
†
i

∣∣ = oa.s.
(
n1/p)

.(3.7)

Note that there exists a constant cp such that, for all k ≥ 1,∥∥∥ max
3k−1<l≤3k

|W̃k,l − Wk,l|
∥∥∥
p

≤ cp

(
3k − 3k−1)1/2

�1+mk,p.(3.8)

Hence, by the Borel–Cantelli lemma and condition (2.5), we have

max
1≤i≤n

∣∣S̃i − S
†
i

∣∣ = oa.s.
(
n1/p)

.(3.9)

Let qk = �2 × 3k−2/mk� − 2. By (2.4), mk = o(3k(α/p−1)/(α/2−1)). Hence
limk→∞ qk = ∞. Choose K0 ∈ N such that qk ≥ 2 whenever k ≥ K0, and let
N0 = 3K0 . For k ≥ K0 define

Bk,j =
3(j+1)mk+3k−1∑
i=1+3jmk+3k−1

X̃k,i, j = 1,2, . . . , qk.(3.10)



KOMLÓS–MAJOR–TUSNÁDY APPROXIMATION 803

Let Bk,j ≡ 0 if k < K0. In the sequel we assume throughout that k ≥ K0 and
n ≥ N0. By Markov’s inequality and the stationarity of the process (X̃k,i)i∈Z,

P

(
max

1≤l≤2×3k−1

∣∣∣∣∣W̃k,l −
�l/(3mk)�∑

j=1

Bk,j

∣∣∣∣∣ ≥ 3k/p

)

≤ 2 × 3k−1

mk

P
(

max
1≤l≤3mk

|W̃k,l| ≥ 3k/p
)

(3.11)

≤ 3kE(max1≤l≤3mk
|W̃k,l|α)

mk3kα/p
.

We define the functional dependence measure for the process (T3k/p (Xi))i∈Z as

δk,j,ι = ∥∥T3k/p (Xi) − T3k/p (Xi,{i−j})
∥∥
ι,(3.12)

where ι ≥ 2, and similarly the functional dependence measure for (X̃k,i) as

δ̃k,j,ι = ‖X̃k,i − X̃k,i,{i−j}‖ι.(3.13)

For those dependence measures, we can easily have the following simple relation:

δ̃k,j,ι ≤ δk,j,ι, δk,j,p ≤ δj,p and δk,j,2 ≤ δj,2.(3.14)

By the above relation, a careful check of the proof of Lemma 4.3 below indicates
that, under (2.3) and (2.4), there exists a constant c = cα,p such that

∞∑
k=K0

3k

mk

E(max1≤l≤3mk
|W̃k,l|α)

3kα/p
≤ c

(
Mα,p�α

0,2 + �α
α,p + ‖X1‖p

p

)
.(3.15)

The above inequality plays a critical role in our proof, and it will be used again
later. In (3.11), the largest index j is �2 × 3k−1/(3mk)� = qk + 2. Note that Bk,qk

is independent of Bk+1,1. This motivates us to define the sum

S�
n =

hn−1∑
k=K0

qk∑
j=1

Bk,j +
τn∑

j=1

Bhn,j , where τn =
⌊
n − 3hn−1

3mhn

⌋
− 2.(3.16)

We emphasize that the sums
∑qk

j=1 Bk,j , k = 1,2, . . . , hn − 1 and
∑τn

j=1 Bhn,j are
mutually independent. By (3.11), (3.15) and the Borel–Cantelli lemma, we have

max
N0≤i≤n

∣∣S̃i − S�
i

∣∣ = oa.s.
(
n1/p)

,(3.17)

where we recall N0 = 3K0 . Summarizing the truncation approximation (3.7), the
m-dependence approximation (3.9) and the block approximation (3.17), we have

max
N0≤i≤n

∣∣Si − S�
i

∣∣ = oa.s.
(
n1/p)

,(3.18)

and by Lemma 4.1 in Chapter 4 it remains to show that (2.7) holds with S�
n .
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3.2. Conditional Gaussian approximation. For 3k−1 < i ≤ 3k , k ≥ K0, let Gk

be a measurable function such that

X̃k,i = Gk(εi−mk
, . . . , εi).(3.19)

Recall qk = �2 × 3k−2/mk� − 2. For j = 1,2, . . . , qk define

Jk,j = {
3k−1 + (3j − 1)mk + l, l = 1,2, . . . ,mk

}
.(3.20)

Let a = (ak,3j ,1 ≤ j ≤ qk)
∞
k=K0

be a vector of real numbers, where ak,3j = (al, l ∈
Jk,j ), j = 1, . . . , qk . Define the random functions

Fk,3j (ak,3j ) =
3jmk∑

i=1+(3j−1)mk

Gk(ai+3k−1, . . . , a3jmk+3k−1,

ε3jmk+1+3k−1, . . . , εi+mk+3k−1);

Fk,3j+1 =
(3j+1)mk∑
i=1+3jmk

Gk(εi+3k−1, . . . , ε(3j+1)mk+3k−1,

ε(3j+1)mk+1+3k−1, . . . , εi+mk+3k−1);

Fk,3j+2(ak,3j+3) =
(3j+2)mk∑

i=1+(3j+1)mk

Gk(εi+3k−1, . . . , ε(3j+2)mk+3k−1,

a(3j+2)mk+1+3k−1, . . . , ai+mk+3k−1).

Let ηk,3j = (εl, l ∈ Jk,j ), j = 1, . . . , qk , and η = (ηk,3j ,1 ≤ j ≤ qk)
∞
k=K0

. Then

Bk,j = Fk,3j (ηk,3j ) + Fk,3j+1 + Fk,3j+2(ηk,3j+3).(3.21)

Note that EFk,3j+1 = 0. Define the mean functions

�k,0(ak,3j ) = EFk,3j (ak,3j ), �k,2(ak,3j+3) = EFk,3j+2(ak,3j+3).

Introduce the centered process

Yk,j (ak,3j ,ak,3j+3) = [
Fk,3j (ak,3j ) − �k,0(ak,3j )

]
(3.22)

+ Fk,3j+1 + [
Fk,3j+2(ak,3j+3) − �k,2(ak,3j+3)

]
.

Then Yk,j (ak,3j ,ak,3j+3), j = 1, . . . , qk , k ≥ K0, are mean zero independent ran-
dom variables with variance function

Vk(ak,3j ,ak,3j+3) = ∥∥Yk,j (ak,3j ,ak,3j+3)
∥∥2

= ∥∥Fk,3j (ak,3j ) − �k,0(ak,3j )
∥∥2 + ‖Fk,3j+1‖2

+ 2E
{
Fk,3j+1

[
Fk,3j (ak,3j ) − �k,0(ak,3j )

]}
(3.23)

+ ∥∥Fk,3j+2(ak,3j+3) − �k,2(ak,3j+3)
∥∥2

+ 2E
{
Fk,3j+1

[
Fk,3j+2(ak,3j+3) − �k,2(ak,3j+3)

]}
,
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since [Fk,3j (ak,3j ) − �k,0(ak,3j )] and [Fk,3j+2(ak,3j+3) − �k,2(ak,3j+3)] are in-
dependent. Following the definition of S�

n in (3.16), we let

Hn(a) =
hn−1∑
k=K0

qk∑
j=1

Yk,j (ak,3j ,ak,3j+3)

(3.24)

+
τn∑

j=1

Yhn,j (ahn,3j ,ahn,3j+3).

Define the mean function

Mn(a) =
hn−1∑
k=K0

qk∑
j=1

[
�k,0(ak,3j ) + �k,2(ak,3j+3)

]

+
τn∑

j=1

[
�hn,0(ahn,3j ) + �hn,2(ahn,3j+3)

]
,

and the variance of Hn(a),

Qn(a) =
hn−1∑
k=K0

qk∑
j=1

Vk(ak,3j ,ak,3j+3) +
τn∑

j=1

Vhn(ahn,3j ,ahn,3j+3).

Let

V ◦
k (ak,3j ) = ∥∥[

Fk,3j (ak,3j ) − �k,0(ak,3j )
]

+ Fk,3j+1 + [
Fk,3j+2(ak,3j ) − �k,2(ak,3j )

]∥∥2

= ∥∥Fk,3j (ak,3j ) − �k,0(ak,3j )
∥∥2 + ‖Fk,3j+1‖2

+ 2E
{
Fk,3j+1

[
Fk,3j (ak,3j ) − �k,0(ak,3j )

]}
+ ∥∥Fk,3j+2(ak,3j ) − �k,2(ak,3j )

∥∥2(3.25)

+ 2E
{
Fk,3j+1

[
Fk,3j+2(ak,3j ) − �k,2(ak,3j )

]}
,

Lk(ak,3j ) = ∥∥Fk,3j+1 + [
Fk,3j+2(ak,3j ) − �k,2(ak,3j )

]∥∥2

= ∥∥Fk,3j+1
∥∥2 + ∥∥[

Fk,3j+2(ak,3j ) − �k,2(ak,3j )
]∥∥2

+ 2E
{
Fk,3j+1

[
Fk,3j+2(ak,3j ) − �k,2(ak,3j )

]}
.

By the formulas of Vk(ak,3j ,ak,3j+3) in (3.23) and V ◦
k (ak,3j ) and Lk(ak,3j )

in (3.25), we have the following identity:

Lk(ak,3) +
t∑

j=1

Vk(ak,3j ,ak,3j+3) =
t∑

j=1

V ◦
k (ak,3j ) + Lk(ak,3+3t )(3.26)
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holds for all t ≥ 1. The above identity motivates us to introduce the auxiliary pro-
cess

�n(a) =
hn−1∑
k=K0

Lk(ak,3)
1/2ζk + Lhn(ahn,3)

1/2ζhn,(3.27)

where ζl, l ∈ Z, are i.i.d. standard normal random variables which are independent
of (εi)i∈Z. Then in view of (3.26), the variance of Hn(a) + �n(a) is given by

Q◦
n(a) =

hn−1∑
k=K0

[ qk∑
j=1

V ◦
k (ak,3j ) + Lk(ak,3+3qk

)

]

(3.28)

+
τn∑

j=1

[
V ◦

hn
(ahn,3j ) + Lhn(ahn,3+3τn)

]
.

In studying Hn(a) + �n(a), for notational convenience, for j = 0 we let Yk,0(ak,0,

ak,3) = Lk(ak,3)
1/2ζk . We shall now apply Sakhanenko’s (1991, 2006) Gaussian

approximation result. To this end, for x > 0, we define

�h(a, x,α)

=
h∑

k=K0

qk∑
j=0

E min
{∣∣Yk,j (ak,3j ,ak,3j+3)/x

∣∣α,
∣∣Yk,j (ak,3j ,ak,3j+3)/x

∣∣2}
(3.29)

≤
h∑

k=K0

qk∑
j=0

E
∣∣Yk,j (ak,3j ,ak,3j+3)/x

∣∣α.

By Theorem 1 in Sakhanenko (2006), there exists a probability space (	a, Aa,Pa)

on which we can define a standard Brownian motion Ba and random variables Ra
k,j

such that the distributional equality(
Ra

k,j

)
0≤j≤qk,k≥K0

D= (
Yk,j (ak,3j ,ak,3j+3)

)
0≤j≤qk,k≥K0

(3.30)

holds, and, for the partial sum processes

ϒa
n =

h−1∑
k=K0

qk∑
j=1

Ra
k,j +

τn∑
j=1

Ra
hn,j and μa

n =
h−1∑

k=K0

Ra
k,0 + Ra

hn,0,(3.31)

we have for all x > 0 and α > p that

Pa

[
max

N0≤i≤3h

∣∣(ϒa
i + μa

i

) − Ba
(
Q◦

i (a)
)∣∣ ≥ c0αx

]
≤ �h(a, x,α).(3.32)

Here c0 is an absolute constant. By Jensen’s inequality, for both j = 0 and j > 0,
there exists a constant cα such that

E
[∣∣Yk,j (ηk,3j ,ηk,3j+3)

∣∣α] ≤ cαE
(|W̃k,mk

|α)
.(3.33)
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In (3.32) we let x = 3h/p and by Lemma 4.2 in the next chapter [see also (3.15)],

∞∑
h=K0

E
[
�h

(
η,3h/p,α

)] ≤
∞∑

h=K0

h∑
k=K0

qk + 1

3αh/p
cαE

(|W̃k,mk
|α)

≤
∞∑

k=K0

∞∑
h=k

3kcα

mk3αh/p
E
(

max
1≤l≤3mk

|W̃k,l|α
)

(3.34)

< ∞.

Hence, by the Borel–Cantelli lemma, we obtain

max
i≤n

∣∣(ϒη
i + μ

η
i

) − Bη
(
Q◦

i (η)
)∣∣ = oa.s.

(
n1/p)

.(3.35)

The probability space for the above almost sure convergence is

(	∗, A∗,P∗) = (	, A,P) × ∏
τ∈	

(	η(τ ), Aη(τ ),Pη(τ )),(3.36)

where (	, A,P) is the probability space on which the random variables (εi)i∈Z are
defined and, for a set A ⊂ 	∗ with A ∈ A∗, the probability measure P∗ is defined
as

P∗(A) =
∫
	

Pη(ω)(Aω)P(dω),(3.37)

where Aω is the ω-section of A. Here we recall that, for each a, (	a, Aa,Pa) is
the probability space carrying Ba and Ra

k,j given η = a. On the probability space

(	∗, A∗,P∗), the random variable R
η
k,j is defined as R

η
k,j (ω, θ(·)) = R

η(ω)
k,j (θ(ω)),

where (ω, θ(·)) ∈ 	∗, θ(·) is an element in
∏

τ∈	 	η(τ ) and θ(τ ) ∈ 	η(τ ), τ ∈ 	.
The other random processes μ

η
i and Bη(Q

◦
i (η)) can be similarly defined.

3.3. Unconditional Gaussian approximation. In this subsection we shall work
with the processes ϒ

η
i , μ

η
i and Bη(Q

◦
i (η)). Based on (3.28), we can construct

i.i.d. standard normal random variables Za
i,l, i, l ∈ Z, and standard normal random

variables G a
i,l , such that

Ba
(
Q◦

n(a)
) = �n(a) + ϕn(a),(3.38)

where

�n(a) =
hn−1∑
k=K0

qk∑
j=1

V ◦
k (ak,3j )

1/2Za
k,j +

τn∑
j=1

V ◦
hn

(ahn,3j )
1/2Za

hn,j ,

ϕn(a) =
hn−1∑
k=K0

Lk(ak,3+3qk
)1/2G a

k,1+qk
+ Lhn(ahn,3+3τn)

1/2G a
hn,1+τn

.
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In particular,

V ◦
hn

(ahn,3j )
1/2Za

hn,j = Ba

(
Q◦

3hn−1(a) +
j∑

j ′=1

V ◦
hn

(ahn,3j ′)

)

− Ba

(
Q◦

3hn−1(a) +
j−1∑
j ′=1

V ◦
hn

(ahn,3j ′)

)

and

Lhn(ahn,3+3τn)
1/2G a

hn,1+τn
= Ba

(
Q◦

n(a)
) − Ba

(
Q◦

3hn−1(a) +
τn∑

j=1

V ◦
hn

(ahn,3j )

)
.

Note that the standard normal random variables G a
i,l, i, l, can be possibly dependent

and (G a
i,l)il and (Za

i,l)il can also be possibly dependent.
Let Z�

i,l, i, l ∈ Z, independent of (εj )j∈Z, be also i.i.d. standard normal random
variables, and define

�n =
hn−1∑
k=K0

qk∑
j=1

V ◦
k (ηk,3j )

1/2Z�
k,j +

τn∑
j=1

V ◦
hn

(ηhn,3j )
1/2Z�

hn,j .

Since Za
i,l , are i.i.d. standard normal, the conditional distribution [�n(η)|η = a],

namely the distribution of �n(a), is same as that of �n. Hence

(�i)i≥N0
D= (

�i(η)
)
i≥N0

.(3.39)

By Jensen’s inequality, E[|Lk(ηk,3j+3)
1/2|α] ≤ 3αE(|W̃k,mk

|α). By (3.15),

∞∑
k=K0

P
(

max
1≤j≤qk

∣∣Lk(ηk,3j+3)
1/2Gη

k,1+j

∣∣ ≥ 3k/p
)

≤
∞∑

k=K0

qk

E[|Lk(ηk,3)
1/2Gη

k,1|α]
3kα/p

(3.40)

≤
∞∑

k=K0

qk

cαE(|W̃k,mk
|α)

3kα/p

< ∞,

which by the Borel–Cantelli lemma implies

max
i≤n

∣∣ϕi(η)
∣∣ = oa.s.

(
n1/p)

.(3.41)

The same argument also implies that maxi≤n |�i(η)| = oa.s.(n
1/p) and conse-

quently

max
i≤n

∣∣μη
i

∣∣ = oa.s.
(
n1/p)

(3.42)
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in view of (3.30) with j = 0. Hence by (3.35) and (3.38), we have maxi≤n |ϒη
i −

�i(η)| = oa.s.(n
1/p). Observe that, by (3.30), (3.31), (3.21) and (3.22), we have

the distributional equality

(
ϒ

η
i + Mi(η)

)
i≥N0

D= (
S�

i

)
i≥N0

,(3.43)

where we recall (3.16) for the definition of S�
n . Then it remains to establish a strong

invariance principle for �n + Mn(η). To this end, let

Ak,j = V ◦
k (ηk,3j )

1/2Z�
k,j + �k,0(ηk,3j ) + �k,2(ηk,3j ),(3.44)

which are independent random variables for j = 1, . . . , qk and k ≥ K0, and let

S�
n =

hn−1∑
k=K0

qk∑
j=1

Ak,j +
τn∑

j=1

Ahn,j(3.45)

and R
�
n = �n + Mn(η) − S

�
n. Note that

R�
n =

hn−1∑
k=K0

[
�k,2(ηk,3+3qk

) − �k,2(ηk,3)
] + [

�hn,2(ηhn,3+3τn
) − �hn,2(ηhn,3)

]
.

Then using the same argument as in (3.40), we have

max
i≤n

∣∣R�
i

∣∣ = max
i≤n

∣∣�i + Mi(η) − S
�
i

∣∣ = oa.s.
(
n1/p)

.(3.46)

The variance of S
�
n equals to

σ 2
n =

hn−1∑
k=K0

qk∑
j=1

‖Ak,j‖2 +
τn∑

j=1

‖Ahn,j‖2

(3.47)

=
hn−1∑
k=K0

qk‖Ak,1‖2 + τn‖Ahn,1‖2.

Again by Theorem 1 in Sakhanenko (2006), on the same probability space that de-
fines (Ak,j )1≤j≤qk,k≥K0 , by the argument in (3.32)–(3.35), there exists a standard
Brownian motion B such that

max
i≤n

∣∣S�
i − B

(
σ 2

i

)∣∣ = oa.s.
(
n1/p)

.(3.48)

3.4. Regularizing the Gaussian approximation. In this section we shall regu-
larize the Gaussian approximation (3.48) by replacing the variance function σ 2

i by
the asymptotic linear form φi or the linear form iσ 2, and the latter is more easily
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usable. By (3.25), we obtain

V ◦
k (ak,3j ) = ∥∥Fk,3j (ak,3j )

∥∥2 − �k,0(ak,3j )
2 + ‖Fk,3j+1‖2

+ 2E
{
Fk,3j+1Fk,3j (ak,3j )

}
(3.49)

+ ∥∥Fk,3j+2(ak,3j )
∥∥2 − �k,2(ak,3j )

2

+ 2E
{
Fk,3j+1Fk,3j+2(ak,3j )

}
,

which, by the expression of Ak,j , implies that

‖Ak,j‖2 = E
[
V ◦

k (ηk,3j )
] + E

[
�k,0(ηk,3j ) + �k,2(ηk,3j )

]2

(3.50)
= 3E

[
W̃ 2

k,mk
+ 2W̃k,mk

(W̃k,2mk
− W̃k,mk

)
]
.

Let γ̃k,i = E(X̃k,0X̃k,i). Then νk := ‖Ak,j‖2/(3mk) has the expression

νk = 1

mk

E
[
W̃ 2

k,mk
+ 2W̃k,mk

(W̃k,2mk
− W̃k,mk

)
]

(3.51)

=
mk∑

i=−mk

γ̃k,i + 2
mk∑
i=1

(1 − i/mk)γ̃k,mk+i .

We now prove that

νk − σ 2 = O
[
�mk,p + min

l≥0

(
�l,p + l3k(2/p−1))],(3.52)

which converges to 0 if k → ∞. Let X̂k,i = T3k/p (Xi) and γ̂k,i = cov(X̂k,0, X̂k,i) =
E(X̂k,0X̂k,i)−[E(X̂k,0)]2. Note that if |Xi | ≤ 3k/p , then Xi = X̂k,i . Since Xi ∈ Lp ,∣∣E(X0Xi) − E(X̂k,0X̂k,i)

∣∣ = ∣∣E(X0Xi1|X0|≤3k/p,|Xi |≤3k/p ) − E(X̂k,0X̂k,i)

+ E(X0Xi1max(|X0|,|Xi |)>3k/p )
∣∣

≤ ∣∣E(X̂k,0X̂k,i1max(|X0|,|Xi |)>3k/p )
∣∣

(3.53)
+ ∣∣E(X0Xi1max(|X0|,|Xi |)>3k/p )

∣∣
≤ 2E

[(|X0| + |Xi |)21|X0|+|Xi |>3k/p

]
= o

(
3k(2−p)/p)

.

Clearly, we also have E(X̂k,0) = o(3k(2−p)/p). Hence

sup
i

|γ̂k,i − γi | = o
(
3k(2−p)/p)

.(3.54)

For all j ≥ 1, we have ‖Wk,j − W̃k,j‖ ≤ j1/2�mk,2 ≤ j1/2�mk,p . Then∣∣EW 2
k,j − EW̃ 2

k,j

∣∣ ≤ ‖Wk,j − W̃k,j‖‖Wk,j + W̃k,j‖ ≤ 2j�mk,p�0,p.(3.55)
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Since limj→∞ j−1EW̃ 2
k,j = ∑mk

i=−mk
γ̃k,i and limj→∞ j−1EW 2

k,j = ∑
i∈Z γ̂k,i ,

(3.55) implies that ∣∣∣∣∣
mk∑

i=−mk

γ̃k,i − ∑
i∈Z

γ̂k,i

∣∣∣∣∣ ≤ 2�mk,p�0,p.(3.56)

Let the projection operator Pl· = E(·|Fl) − E(·|Fl−1). Then X̂k,i = ∑
l∈Z PlX̂k,i .

By the orthogonality of Pl , l ∈ Z, and inequality (3.14),

|γ̂k,i | =
∣∣∣∣∑
l∈Z

∑
l′∈Z

E
[
(PlX̂k,0)(Pl′X̂k,i)

]∣∣∣∣
(3.57)

≤ ∑
l∈Z

‖PlX̂k,0‖‖PlX̂k,i‖ ≤
∞∑

j=0

δj,pδj+i,p.

The same inequality also holds for |γi | and |γ̃k,i |. For any 0 ≤ l ≤ mk , we have
by (3.57) that

∞∑
i=l

(|γ̂k,i | + |γ̃k,i | + |γi |) ≤ 3
∞∑
i=l

∞∑
j=0

δj,pδj+i,p ≤ 3�0,p�l,p,(3.58)

which entails (3.52) in view of (3.54), (3.56) and (3.51).
Recall (3.47) and (3.48) for σ 2

n . Now we shall compare σ 2
n with

φn =
hn−1∑
k=1

(
3k − 3k−1)

νk + (
n − 3hn−1)

νhn.(3.59)

Then φn is a piecewise linear function. Observe that, by (2.4),

max
i≤n

∣∣φi − σ 2
i

∣∣ ≤ 3 max
k≤hn

(mkνk) = o
(
n(α/p−1)/(α/2−1)).(3.60)

By increment properties of Brownian motions, we obtain

max
i≤n

∣∣B(φi) − B
(
σ 2

i

)∣∣ = oa.s.
(
n(α/p−1)/(α−2) logn

) = oa.s.
(
n1/p)

.(3.61)

Note that by (3.52), φi is asymptotically linear with slope σ 2. Here we emphasize
that, under (2.3), (2.4), (2.5), a strong invariance principle with the Brownian mo-
tion B(φi) holds in view of (3.18), (3.43), (3.46), (3.48), (3.61) and Lemma 4.1
in the next chapter. However, the approximation B(φi) is not convenient for use
since φi is not genuinely linear.

Next, under condition (2.6), we shall linearize the variance function φi , so that
one can have the readily applicable form (2.7). Based on the form of φi , we write

B(φn) =
hn−1∑
k=1

3k−3k−1∑
j=1

ν
1/2
k Zk,j +

n−3hn−1∑
j=1

ν
1/2
hn

Zhn,j ,(3.62)
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where Zk,j are i.i.d. standard normal random variables. Define

B
‡(n) =

hn−1∑
k=1

3k−3k−1∑
j=1

Zk,j +
n−3hn−1∑

j=1

Zhn,j ,(3.63)

which is a standard Brownian motion for integer values of n. Then we can write

B(φn) − σB
‡(n) =

n∑
i=2

biZi,(3.64)

where (Z2,Z3,Z4, . . .) = (Z1,1,Z1,2,Z2,1,Z2,2, . . . ,Z2,6, . . . ,Zk,1, . . . ,

Zk,3k−3k−1, . . .) is a lexicographic re-arrangement of Zk,j , and the coefficients

bn = ν
1/2
hn

− σ . Then

ς2
n = ∥∥B(φn) − σB

‡(n)
∥∥2 =

n∑
i=2

b2
i

(3.65)

=
hn−1∑
k=1

(
3k − 3k−1)(

ν
1/2
k − σ

)2 + (
n − 3hn−1)(

ν
1/2
hn

− σ
)2

and ς2
n is nondecreasing. If limn→∞ ς2

n < ∞, then trivially we have

B(φn) − σB
‡(n) = oa.s.

(
n1/p)

.(3.66)

We shall now prove (3.66) under the assumption that limn→∞ ς2
n = ∞. Under the

latter condition, note that we can represent B(φn) − σB
‡(n) as another Brownian

motion B0(ς
2
n), and by the law of the iterated logarithm for Brownian motion, we

have

lim
n→∞

B(φn) − σB
‡(n)√

2ς2
n log logς2

n

= ±1 almost surely.(3.67)

Then (3.66) follows if we can show that

ς2
n log logn = o

(
n2/p)

.(3.68)

Note that (3.52) and (2.6) imply that 3k(ν
1/2
k − σ)2 = o(32k/p/ logk), which en-

tails (3.68) in view of (3.65).

4. Some useful lemmas. In this section we shall provide some lemmas that
are used in Section 3. Lemma 4.1 is a “gluing” lemma, and it concerns how to com-
bine almost sure convergences in different probability spaces. Lemma 4.2 relates
truncated and original moments, and Lemma 4.3 gives an inequality for moments
of maximum sums.
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LEMMA 4.1. Let (T1,n)n≥1 and (U1,n)n≥1 be two sequences of random vari-
ables defined on the probability space (	1, A1,P1) such that T1,n − U1,n → 0
almost surely; let (T2,n)n≥1 and (U2,n)n≥1 be another two sequences of random
variables defined on the probability space (	2, A2,P2) such that T2,n − U2,n → 0

almost surely. Assume that the distributional equality (U1,n)n≥1
D= (T2,n)n≥1 holds.

Then we can construct a probability space (	†, A†,P†) on which we can define

(T ′
1,n)n≥1 and (U ′

2,n)n≥1 such that (T ′
1,n)n≥1

D= (T1,n)n≥1, (U ′
2,n)n≥1

D= (U2,n)n≥1

and T ′
1,n − U ′

2,n → 0 almost surely in (	†, A†,P†).

PROOF. Let T1 = (T1,n)n≥1, U1 = (U1,n)n≥1, T2 = (T2,n)n≥1, U2 =
(U2,n)n≥1; let μT1|U1 and μU2|T2 denote, respectively, the conditional distribution
of T1 given U1 and the conditional distribution of U2 given T2. Let (	†, F †,P †)

be a probability space on which there exists a vector U′
1 distributed as U1. By

enlarging (	†, F †,P †) if necessary, there exist random vectors T′
1 and U′

2 on
this probability space such that the conditional distribution of T′

1 given U′
1 equals

μT1|U1 , and the conditional distribution of U′
2 given U′

1 equals μU2|T2 . Then by

U1
D= T2 we have (T′

1,U′
1)

D= (T1,U1) and (U′
1,U′

2)
D= (T2,U2), so that for the

components we have T ′
1,n − U ′

1,n → 0 a.s. and U ′
1,n − U ′

2,n → 0 a.s., so that
T ′

1,n − U ′
2,n → 0 a.s. �

LEMMA 4.2. Let X ∈ Lp , 2 < p < α. Then there exists a constant c = cα,p

such that
∞∑
i=1

3iP
(|X| ≥ 3i/p) +

∞∑
i=1

3iE min
(∣∣X/3i/p

∣∣α,
∣∣X/3i/p

∣∣2) ≤ cE
(|X|p)

.(4.1)

PROOF. That the first sum is finite follows from
∞∑
i=1

3iP
(|X| ≥ 3i/p) ≤ 3

∞∑
i=1

∫ 3i

3i−1
P

(|X|p > u
)
du ≤ 3E

(|X|p)
.(4.2)

For the second one, let qi = P(3i−1 ≤ |X|p < 3i ). Then

∞∑
i=1

3iE
(∣∣X/3i/p

∣∣21|X|p≥3i

) ≤
∞∑
i=1

3i
∞∑

j=1+i

3(j−i)2/pqj

=
∞∑

j=2

j−1∑
i=1

3i3(j−i)2/pqj(4.3)

= c1

∞∑
j=2

3j qj ≤ c1E
(|X|p)
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for some constant c1 only depending on p and α. Similarly, there exists c2 such
that

∞∑
i=1

3iE
(∣∣X/3i/p

∣∣α1|X|p<3i

) ≤
∞∑
i=1

3i
i∑

j=−∞
3(j−i)α/pqj

=
∞∑

j=−∞

∞∑
i=max(1,j)

3i(1−α/p)3jα/pqj ≤ c2E
(|X|p)

.

For the last relation, we consider the two cases
∑0

j=−∞ and
∑∞

j=1 separately. The
lemma then follows from (4.2) and (4.3). It is easily seen that (4.1) also holds with
the factor 3 therein replaced by any θ > 1. In this case the constant c depends on
p,α and θ . �

LEMMA 4.3. Recall (2.3) and (2.4) for �α,p and Mα,p , respectively, and (3.3)
for Wk,l . Then there exists a constant c, only depending of α and p, such that

∞∑
k=1

3k

mk

E(max1≤l≤mk
|Wk,l|α)

3kα/p
≤ cMα,p�α

0,2 + c�α
α,p + c‖X1‖p

p.(4.4)

PROOF. Recall (3.12) for the functional dependence measure δk,j,ι. Since Ta

has Lipschitz constant 1, we have

δι
k,j,ι ≤ E

[
min

(
2 × 3k/p, |Xi − Xi,{i−j}|)ι]

(4.5)
≤ 2ιE

[
min

(
3k/p, |Xj − Xj,{0}|)ι].

We shall apply the Rosenthal-type inequality in Liu, Han and Wu (2013): there
exists a constant c, only depending on α, such that

∥∥∥ max
1≤l≤mk

|Wk,l|
∥∥∥
α

≤ cm
1/2
k

[
mk∑
j=1

δk,j,2 +
∞∑

j=1+mk

δk,j,α + ∥∥T3k/p (X1)
∥∥

2

]

+ cm
1/α
k

[
mk∑
j=1

j1/2−1/αδk,j,α + ∥∥T3k/p (X1)
∥∥
α

]
(4.6)

≤ c(Ik + IIk + IIIk),

where

Ik = m
1/2
k

∞∑
j=1

δj,2 + m
1/2
k ‖X1‖2,

IIk = m
1/α
k

∞∑
j=1

j1/2−1/αδk,j,α,(4.7)

IIIk = m
1/α
k

∥∥T3k/p (X1)
∥∥
α.
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Here we have applied the inequality δk,j,2 ≤ δj,2, since Ta has Lipschitz con-
stant 1. Since

∑∞
j=1 δj,2 + ‖X1‖2 ≤ 2�0,2, by (2.4), we obtain the upper bound

cMα,p�α
0,2 in (4.4), which corresponds to the first term Ik in (4.6). For the third

term IIIk , we obtain the bound c‖X1‖p
p in (4.6) in view of Lemma 4.2 by noting

that |T3k/p (X1)| ≤ min(3k/p, |X1|) and min(|v|α, v2) ≥ min(|v|α,1).
We shall now deal with IIk . Let β = α/(α − 1), so that β−1 + α−1 = 1; let

λj = (j1/2−1/αδ
p/α
j,p )−1/β . Recall (2.3) for �α,p . By Hölder’s inequality,( ∞∑

j=1

j1/2−1/αδk,j,α

)α

≤ �α/β
α,p

∞∑
j=1

λα
j

(
j1/2−1/αδk,j,α

)α
.(4.8)

Hence, by (4.5) and Lemma 4.2, we complete the proof of (4.4) in view of
∞∑

k=1

3k

mk

IIα
k

3αk/p
≤

∞∑
k=1

3k−kα/p�α/β
α,p

∞∑
j=1

λα
j

(
j1/2−1/αδk,j,α

)α

= �α/β
α,p

∞∑
j=1

λα
j jα/2−1

∞∑
k=1

3k−kα/pδα
k,j,α(4.9)

≤ �α/β
α,p

∞∑
j=1

λα
j jα/2−1cα,pδ

p
j,p = cα,p�α

α,p.
�
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