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REGULARITY AND STOCHASTIC HOMOGENIZATION OF FULLY
NONLINEAR EQUATIONS WITHOUT UNIFORM ELLIPTICITY

BY SCOTT N. ARMSTRONG1 AND CHARLES K. SMART2

University of Wisconsin and Université Paris-Dauphine,
and Massachusetts Institute of Technology

We prove regularity and stochastic homogenization results for certain de-
generate elliptic equations in nondivergence form. The equation is required
to be strictly elliptic, but the ellipticity may oscillate on the microscopic scale
and is only assumed to have a finite dth moment, where d is the dimension. In
the general stationary-ergodic framework, we show that the equation homog-
enizes to a deterministic, uniformly elliptic equation, and we obtain an ex-
plicit estimate of the effective ellipticity, which is new even in the uniformly
elliptic context. Showing that such an equation behaves like a uniformly el-
liptic equation requires a novel reworking of the regularity theory. We prove
deterministic estimates depending on averaged quantities involving the dis-
tribution of the ellipticity, which are controlled in the macroscopic limit by
the ergodic theorem. We show that the moment condition is sharp by giving
an explicit example of an equation whose ellipticity has a finite pth moment,
for every p < d, but for which regularity and homogenization break down. In
probabilistic terms, the homogenization results correspond to quenched in-
variance principles for diffusion processes in random media, including linear
diffusions as well as diffusions controlled by one controller or two competing
players.

1. Introduction. We prove stochastic homogenization and regularity esti-
mates for fully nonlinear elliptic equations in nondivergence form without the
assumption of uniform ellipticity. The equations we consider are strictly elliptic
but may have ellipticities which are arbitrarily large and oscillating on the micro-
scopic scale. We derive new (deterministic) regularity estimates and show that,
under the assumption that the dth moment of the ellipticity is finite, such a de-
generate equation homogenizes in the macroscopic limit to an effective equation
which is uniformly elliptic. Our analysis yields an explicit estimate for the effec-
tive ellipticity which is new, to our knowledge, even in the linear, uniformly elliptic
setting. In terms of probability, the main homogenization result, in the special case
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of linear equations, is equivalent to a quenched invariance principle for a diffusion
in a random environment. For a nonlinear, positively homogeneous equation, the
homogenization result gives similar information about the quenched behavior of
controlled diffusions in random environments.

The simplest example of interest is the linear equation

−
d∑

i,j=1

aij

(
x

ε
,ω

)
uε

xixj
= f in U ⊆ Rd, d ≥ 1.(1.1)

The coefficient matrix (aij ), which depends on the random parameter ω, called
the environment, is assumed to be stationary-ergodic and to satisfy the ellipticity
condition

λ(ω)|ξ |2 ≤
d∑

i,j=1

aij (0,ω)ξiξj ≤ �|ξ |2 for all ξ ∈ Rd,(1.2)

where � > 0 is a given constant and λ = λ(ω) is a nonnegative random variable.
Papanicolaou and Varadhan [27, 28] proved that, if the equation is uniformly el-
liptic, that is, λ(ω) ≥ λ0 > 0, then in the almost sure asymptotic limit ε → 0,
equation (1.1) is governed by an effective equation of the form

−
d∑

i,j=1

āij uxixj
= f,

where the coefficient matrix (āij ) is uniformly elliptic with ellipticity �/λ0, that
is, for every ξ ∈ Rd ,

λ0|ξ |2 ≤
d∑

i,j=1

āij ξiξj ≤ �|ξ |2.(1.3)

In this paper, we extend this result to the case that λ > 0 and infλ = 0 under the
assumption that E[λ−d ] < ∞. Due to the presence of small pockets of arbitrarily
large ellipticity which become dense for small ε, it is by no means clear at first
glance that (1.1) should behave, in the macroscopic limit, like a uniformly elliptic
equation. Our result demonstrates that this finite moment condition on λ−1 ensures
that these tiny regions of very large ellipticity may be effectively controlled and
that (1.1) becomes a uniformly elliptic equation in the limit ε → 0. Furthermore,
we show that the moment condition is sharp by exhibiting an explicit example, for
each p < d in arbitrary dimension d ≥ 1, of a nonlinear equation with a finite pth
moment and having a finite range of dependence, for which homogenization fails.

Previously, in this linear setting, a result similar to our homogenization result
has been proved in a recent paper of Guo and Zeitouni [21] using probabilistic
methods. They give a quenched invariance principle for random walks in a random
environment, which has an equivalent formulation in terms of stochastic homog-
enization of a discrete equation (on the lattice Zd rather than Rd ). They require
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a slightly stronger moment condition, namely that λ−1 have a finite pth moment
for some p > d . That homogenization occurs in the case p = d is new here.

While our results are therefore of interest in the linear setting, we analyze much
more general fully nonlinear equations of the form

F

(
D2uε,

x

ε
,ω

)
= 0.(1.4)

Such nonlinear equations are more difficult to analyze than (1.1), due to the ab-
sence of invariant measures—the key tool used in [27, 28] (and [21]) to overcome
the problem of the “lack of compactness.” The results here are the first for such
equations without a uniform ellipticity assumption. Previously, the homogeniza-
tion of fully nonlinear equations in stationary-ergodic media was proved in the
uniformly elliptic case by Caffarelli, Souganidis and Wang [10]. They introduced
a new method based on the obstacle problem, a strategy which we also use in this
paper.

The problem one encounters when trying to homogenize (1.4) outside of the
uniformly elliptic regime is that most of the regularity theory needed to implement
the method of [10] is destroyed by (even tiny) regions of high ellipticity. It there-
fore seems hopeless, at first glance, to implement the techniques of [10], since they
make heavy use of the regularity tools.

To overcome this difficulty, prove new (deterministic) regularity estimates in
which the dependence on a uniform upper bound for the ellipticity is replaced by
that of its Ld -norm. In particular, we prove a decay of the oscillation lemma at
unit scale. This result, and the new arguments we introduce to obtain it, are of
independent interest. Indeed, in sharp contrast to the situation for divergence form
equations, there are very few results in the literature for equations in nondivergence
form, which provide estimates of solutions in terms of averaged quantities.

The estimates refine the classical regularity theory [7] and require several new
ideas. One of the basic techniques involves using the area formula to estimate
the size of certain “contact sets” between supersolutions and certain families of
smooth test functions. This method is a generalization of the classical ABP in-
equality and was previously used by Cabré [6] to obtain the Harnack inequality on
Riemannian manifolds with nonnegative sectional curvature, by Savin in his proof
of De Giorgi’s conjecture [30] and in his beautiful proof of the Harnack inequality
in [29]. In each of these works, supersolutions are touched from below not only
by planes, but by translations of balls and paraboloids. In the present paper, one
of the key arguments involves touching from below by translations of the singular
function |x|−α , for suitably large α > 0.

Since the Ld norm of the ellipticity is controlled on the macroscopic scale al-
most surely by the ergodic theorem, the regularity results provide effective control
on the solutions of (1.4) for small ε. This allows us to homogenize the equation
by suitably adapting the arguments of [10]. We expect this two-step approach to
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homogenization, in which one obtains “effective” regularity and then uses this to
homogenize the equation, to be useful in other situations.

As a byproduct of our analysis, we obtain an estimate for the effective ellipticity
which is new even in the uniformly elliptic case, which states that (1.3) holds for
a λ0 > 0 which, in addition to � and d , depends only on E[λ−d ]. It is, to our
knowledge, the first such bound for the homogenized coefficients of nondivergence
form equations which is nontrivial in the sense that it is given in terms on the
averaged microscopic behavior of the equation rather than its uniform properties.

As mentioned above, the homogenization result has an equivalent probabilistic
formulation, at least in the linear case, as a quenched invariance principle for the
corresponding diffusion in the random environment. It also provides information
regarding the recurrence or transience of the diffusion (see [21]). If F is nonlinear
but positively homogeneous, the fully nonlinear equation (1.4) is a Bellman–Isaacs
equation which arises in the theory of stochastic optimal control and two-player
stochastic differential games, and the homogenization result yields similar infor-
mation about these more general diffusion processes. Although we do not explore
this point here, we remark that the recurrence verses transience of such controlled
diffusion processes in an isotropic environment was characterized in [3], and this
result applied to the effective operator �F , together with its proof, gives informa-
tion about the corresponding questions for controlled diffusions in random envi-
ronments.

We now give the precise statement of our results, beginning with the modeling
assumptions.

The model. We work in Euclidean space Rd in dimension d ≥ 1. The random
environment is modeled by a probability space (�,F,P) endowed with an ergodic
group τ = (τy)y∈Rd of F -measurable, P-preserving transformations on �. That is,
the action τ of Rd on � satisfies

P[A] = P[τyA] for every y ∈ Rd,A ∈ F(1.5)

and, for every A ∈F ,

τyA = A for every y ∈ Rd implies that P[A] = 0 or P[A] = 1.(1.6)

The nonlinear elliptic operator is a map F :Sd × Rd × � → R (here Sd denotes
the space of d-by-d symmetric matrices) which satisfies each of the following four
conditions:

(F1) Stationarity: for every M ∈ Sd , y, z ∈ Rd and ω ∈ �,

F(M,y, τzω) = F(M,y + z,ω).

(F2) Local uniform ellipticity: there exists a constant � ≥ 1 and a nonnegative
random variable λ :� → [0,�] such that P[λ > 0] = 1 and, for every M,N ∈ Sd ,
ω ∈ � and y ∈ B1,

P−
λ(ω),�(M − N) ≤ F(M,y,ω) − F(N,y,ω) ≤ P+

λ(ω),�(M − N).
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(Here, P± are the usual Pucci extremal operators; see the next section.)
(F3) Uniform continuity and boundedness: for each R > 0,{

F(·, ·,ω) :ω ∈ �
}

is uniformly equicontinuous on BR ×Rd

and

ess sup
ω∈�

∣∣F(0,0,ω)
∣∣ < +∞.

Moreover, there exists a modulus ρ : [0,∞) → [0,∞) and a constant σ > 1
2 such

that, for all (M,p,ω) ∈ Sd ×Rd × � and y, z ∈ Rd ,∣∣F(M,y,ω) − F(M,z,ω)
∣∣ ≤ ρ

((
1 + |M|)|y − z|σ )

.

(F4) Bounded moment of the ellipticity: the random variable λ satisfies

E
[
λ−d]

< +∞.

The main result. We now present the homogenization result, which for sim-
plicity we state in terms of the Dirichlet problem⎧⎨⎩F

(
D2uε,

x

ε
,ω

)
= 0, in U ,

uε = g, on ∂U .
(1.7)

Here, U ⊆Rd is a bounded Lipschitz domain and g ∈ C(∂U), and the PDE is to be
understood in the viscosity sense (cf. [7, 12]). By modifying our argument in a very
minor way (only small changes in part three of Section 4), we may homogenize
any other well-posed problem involving F , including parabolic equations like

ut + F

(
D2u,

x

ε
,ω

)
= 0

with appropriate boundary/initial conditions.
Note that by (F1) and (F2), for each ε > 0, equation (1.7) is uniformly ellip-

tic with probability one. Indeed, if we take {B(xj ,1) : 1 ≤ j ≤ k} to be a finite
covering of ε−1U , then its ellipticity is bounded by the random variable

� sup
1≤j≤k

λ−1(τxj /εω),

which is almost surely finite by (F2). See (2.1) below. As a consequence, (1.7) is
well-posed and has a unique viscosity solution uε = uε(x,ω) belonging to C(�U).

The main homogenization result is the following theorem.

THEOREM 1. Assume (F1), (F2), (F3) and (F4). Then there exists an event
�1 ∈ F of full probability, a positive constant 0 < λ0 < � which depends only
on d , � and E[λ−d ] and a function �F :Sd →R which satisfies

P−
λ0,�

(M − N) ≤ �F(M) − �F(N) ≤ P+
λ0,�

(M − N)
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such that, for every ω ∈ �1, every bounded Lipschitz domain U ⊆ Rd and each
g ∈ C(∂U), the unique solution uε = uε(x,ω) of the boundary value problem (1.7)
satisfies

lim
ε→0

sup
x∈U

∣∣uε(x,ω) − u(x)
∣∣ = 0,

where u ∈ C(�U) is the unique solution of the Dirichlet problem{ �F (
D2u

) = 0, in U ,

u = g, on ∂U .
(1.8)

A brief literature review. The modern regularity theory for elliptic equations in
nondivergence form began in the 1980s with the groundbreaking work of Krylov
and Safonov, Evans, Caffarelli and others, and we refer to [7] and the references
there for more. For degenerate equations, we are unaware of much work that can
be compared to ours here. An exception is the linearized Monge–Ampère equa-
tion which, although degenerate, possesses a special geometric structure allowing
for the development of a regularity theory, as discovered by Caffarelli and Gutiér-
rez [8] (see also Gutiérrez and Nguyen [22] and the references therein). Recently,
there has been some progress in obtaining Harnack inequalities and Hölder regu-
larity for certain nonlinear degenerate equations (see, e.g., [16, 23, 24]). In these
works, the degeneracy of the equation is typically compensated in some way by
dependence on the gradient. A typical model equation considered is

|Du|γ F
(
D2u

) = 0,(1.9)

where γ > 0 and F is uniformly elliptic. A solution u of (1.9) may only be ir-
regular if |Du| is small, and this allows to compensate for the degeneracy. This is
a very different situation from the “naked” degeneracy of the equations considered
here.

The homogenization of linear uniformly elliptic equations in random media
originated in the work of Papanicolaou and Varadhan [27, 28] and Kozlov [25, 26].
Later, Dal Maso and Modica [14, 15] obtained stochastic homogenization results
for nonlinear equations in divergence form and convex variational problems. The
homogenization of uniformly elliptic, nonlinear equations in nondivergence form
was first considered in the periodic setting by Evans [17] and much later by Caf-
farelli, Souganidis and Wang [10] in random media. In contrast to the divergence
form case (cf. [11]), little seems to be known about the homogenized coefficients
for nondivergence form equations, even in the periodic case, other than what is
inherited from the uniform properties of the medium. As far as quantitative ho-
mogenization results, we mention the work of Yurinskiı̆ [31] and Gloria and Otto
[19, 20] for linear equations and Caffarelli and Souganidis [9] for fully nonlinear
equations.
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Outline of the paper. In the next section, we give some preliminary results
and notation needed later in the paper and make some comments about our as-
sumptions. In Section 3, we develop the deterministic regularity theory. The proof
of Theorem 1 is then given in Section 4. Finally, in Section 5 we construct an
explicit example to show that the moment condition (F4) is sharp for general non-
linear equations.

2. Preliminaries. In this section, we present some background results needed
in the rest of the paper, including the statements of the ergodic theorems we cite,
some remarks about our model and some general remarks concerning viscosity
solutions and semiconcave functions. We begin by reviewing the notation.

Notation. The symbols C and c denote positive constants which may vary
at each occurrence and which typically depend on known quantities. We work
in Euclidean space Rd for d ≥ 1. We denote the set of natural numbers by N :=
{0,1, . . .} and Q is the set of rational numbers. If r ∈ R, then 	r
 denotes the small-
est positive natural number which is greater than or equal to r , and we write �r� :=
−	−r
. The family of bounded Lipschitz subsets of Rd is denoted by L. The
open ball centered at y ∈ Rd with radius r > 0 is Br(y) := {x ∈ Rd : |x − y| < r}
and we write Br := Br(0). If E ⊆ Rd is a bounded Borel set, then �E is its clo-
sure and |E| is the Lebesgue measure of E. If f ∈ L1(E), then the average
of f in E is

ffl
E

f (x) dx := |E|−1
´
E

f (x) dx. If f :E → R, then we denote
oscE f := supE f − infE f . The characteristic function of a Borel set E is χE .
We work with a probability space (�,F,P) as described in the previous section.
The indicator random variable of an event A ∈ F is written 1A. We say that A ∈ F
is of full probability if P[A] = 1. The space of symmetric d-by-d matrices is Sd .
If M,N ∈ Sd , we write M ≥ N if the eigenvalues of M − N are nonnegative. If
x, y ∈ Rd , then x ⊗ y denotes the d-by-d matrix with entries (xiyj ). The trace of
M ∈ Sd is tr(M). Recall that any M ∈ Sd can be uniquely expressed as a difference
M = M+ − M− where M+M− = 0 and M+,M− ≥ 0. In particular, if r ∈ R, then
we write r+ := max{0, r} and r− := (−r)+. The Pucci extremal operators P± are
defined for 0 < μ ≤ � and M ∈ Sd by

P+
μ,�(M) := −μ tr(M+) + � tr(M−)

and

P−
μ,�(M) := −� tr(M+) + μ tr(M−).

The elementary properties of the Pucci operators can be found in [7]. Here, we
remark only that they are uniformly elliptic, P+

μ,� is convex and P−
μ,� is concave.

The set of upper and lower semicontinuous functions on V ⊆ Rd are denoted by
USC(V ) and LSC(V ), respectively.
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Brief remarks concerning the assumptions. Note that the restriction of (F2) to
y ∈ B1 is merely for convenience, it may be extended to all y ∈ Rd by stationarity.
Indeed, the combination of (F1) and (F2) yields, for all y, z ∈ Rd with |y − z| < 1,

P−
λ(τzω),�(M − N) ≤ F(M,y,ω) − F(N,y,ω) ≤ P+

λ(τzω),�(M − N).(2.1)

In light of (2.1), it is convenient to abuse notation by writing λ(z,ω) = λ(τzω).
Note also that due to (F3) we may suppose that{

λ(·,ω) :ω ∈ �
}

is uniformly equicontinuous on Rd .(2.2)

Otherwise, we simply redefine λ to be the largest quantity which satisfies (F2),
which then satisfies (2.2) by (F3). The operators on the leftmost and rightmost
side of (2.1) are the minimal and maximal operators, respectively, which satisfy
conditions (F1)–(F3). In particular, since λ(·,ω) > 0, our equation is locally uni-
formly elliptic in the sense that, almost surely, infV λ(·,ω) > 0 for each V ∈ L.

Using ergodicity, we may improve the second part of (F3) to

sup
y∈Rd

ess sup
ω∈�

∣∣F(0, y,ω)
∣∣ < +∞.

Using then the continuity of F and intersecting the event on which the latter holds
over all the rational points of Rd , we obtain

ess sup
ω∈�

sup
y∈Rd

∣∣F(0, y,ω)
∣∣ < +∞.

Applying also (F2), this yields, for C0 := ess supω∈� |F(0, y,ω)| and all M ∈ Sd ,

ess sup
ω∈�

sup
y∈Rd

∣∣F(M,y,ω)
∣∣ ≤ C0 + � tr(M+ + M−) ≤ C

(
1 + |M|).(2.3)

The second statement in assumption (F3) is taken in order that the comparison
principle hold in each bounded domain for the operator F(·, ·,ω) and for every
ω ∈ �. This is a consequence of the local uniform ellipticity of F and standard
comparison results (see [12]).

A brief remark concerning viscosity solutions. All differential inequalities in
this paper are to be interpreted in the viscosity sense (cf. [7, 12]). We remark that,
while it is not obvious—in fact, it is equivalent to the comparison principle—we
have transitivity of inequalities in the viscosity sense (see [2], Lemma 3.2). For
example, if V ∈ L and u,−v ∈ USC(V ) satisfy

F
(
D2u,y,ω

) ≥ 0 and F
(
D2u,y,ω

) ≤ 0 in V

then formally it follows that for w := u − v we have

0 ≤ F
(
D2u,y,ω

) − F
(
D2u,y,ω

) ≤ P+
λ(x,ω),�

(
D2w

)
.(2.4)

We emphasize that we may also deduce P+
λ(x,ω),�(D2w) ≥ 0 in the viscosity sense,

and make other similar formal deductions rigorous, using [2], Lemma 3.2.
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Pointwise notions of twice differentiability and C1,1. We require the following
pointwise regularity notions. We say that u ∈ C(B(0,1)) is twice differentiable at
x ∈ B1 if there exist (X,p) ∈ Sd ×Rd such that

lim sup
r→0

sup
y∈Br(x)

r−2
∣∣∣∣u(y) − u(x) − p · (y − x) − 1

2
(y − x) · X(y − x)

∣∣∣∣ = 0,

in which case we write D2u(x) := X and Du(x) := p. We also say that u is C1,1

on a set E ⊆ B(0,1) if u is differentiable at each point of E and

sup
x∈E

sup
y∈B1

|u(y) − u(x) − Du(x) · (y − x)|
|x − y|2 < +∞.

A function u is semiconcave if there exist k > 0 such that the map x �→ u(x) −
k|x|2 is concave. In this paper, we rely many times on the observation that, for
any a > 0, a semiconcave function is C1,1 on the set of points at which it can be
touched from below by a C2 functions with Hessian bounded by a. Moreover, by
Rademacher’s theorem and the Lebesgue differentiation theorem, any C1,1 func-
tion on a set E is twice differentiable at (Lebesgue) almost every point of E.

Infimal convolution. We recall a standard tool (cf. [7, 12] for details) in the
theory of viscosity solutions. We denote the infimal convolution of u ∈ LSC(B1)

by

uε(x) := inf
y∈B1

(
u(y) + 2

ε
|x − y|2

)
.(2.5)

The function uε is more regular than u and, in particular, is semiconcave. It is
a good approximation to u in the sense that uε → u locally uniformly in B1 as
ε → 0. Moreover, if f,λ ∈ C(B1), λ > 0 and

P+
λ(x),�

(
D2u

) ≥ f in B1,

then there exist sequences of functions λ′
ε, f

′
ε ∈ C(B1) which converge locally

uniformly to λ and f , respectively, as ε → 0, such that uε satisfies

P+
λ′

ε(x),�

(
D2uε

) ≥ f ′
ε in B1−rε ,

where rε → 0 as ε → 0. We refer to [7, 12] for details. For us, the principle utility
of these approximations is the semiconcavity of uε . If uε can be touched from
below by a smooth function ϕ at some point z ∈ B1, then uε is C1,1 at z, with
norm depending only ε and |D2ϕ(z)|. See [7], Theorem 5.1.

Statements of the ergodic theorems. We next recall the two versions of the
(multiparameter) ergodic theorem used in this paper. The first is nearly a conse-
quence of the second, but since it is simpler we give it separately. A nice proof can
be found in Becker [4].
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We emphasize that the assumptions on the probability space (�,F,P), in par-
ticular (1.5) and (1.6), are in force. Recall that L denotes the set of all bounded
Lipschitz subsets of Rd .

PROPOSITION 2.1 (Wiener’s ergodic theorem). Let f ∈ L1(�). Then there
exists a subset �0 ∈ F of full probability such that, for every ω ∈ �0 and V ∈ L,

lim
t→∞

 
tV

f (τyω)dy = E[f ].(2.6)

In particular, the map y �→ f (τyω) belongs to L1
loc(R

d) for every ω ∈ �0.

The version of Proposition 2.1 proved in [4] actually requires V to be star-
shaped with respect to the origin. As is well known, this restriction may be re-
moved as follows. First we notice that the conclusion holds for any cube V = Q

with sides parallel to the coordinate axes, since any such cube either contains the
origin or has the property that, for some larger cube Q̃, both Q̃ \ Q and Q̃ are
star-shaped with respect to the origin. Since it holds for such cubes, it holds for an
arbitrary finite disjoint union of them, and hence any V ∈ L by approximation.

We next state the multiparameter subadditive ergodic theorem of Akcoglu and
Krengel [1] as modified by Dal Maso and Modica [15], which requires some fur-
ther notation. We denote by U0 the family of bounded subsets of Rd . A function
f :U0 →R is subadditive if

f (A) ≤
k∑

j=1

f (Aj ),

whenever k ∈ N and A,A1, . . . ,Ak ∈ U0 are such that
⋃k

j=1 Aj ⊆ A, the sets
A1, . . . ,Ak are pairwise disjoint and |A \ ⋃k

j=1 Aj | = 0. Let M be the collection
of subadditive functions f :U0 →R which satisfy

0 ≤ f (A) ≤ |A| for every A ∈ U0.

A subadditive process is a function f :� → M. It is sometimes convenient to
write f (A,ω) = f (ω)(A), in which case we have f (A, τyω) = f (y + A,ω).

PROPOSITION 2.2 (Subadditive ergodic theorem). Let f :� → M be a sub-
additive process. Then there exists an event �0 ∈ F of full probability and a con-
stant 0 ≤ a ≤ 1 such that, for every ω ∈ �0 and V ∈ L,

lim
t→∞

f (tV ,ω)

|tV | = a.(2.7)

This version of the subadditive ergodic theorem is [1], Proposition 1, in the
special case that L is replaced by the family of all cubes, and we recover the
general case by an easy approximation argument.
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3. Regularity in the macroscopic limit. The classical regularity theory for
uniformly elliptic equations (as developed, e.g., in [7]) does not directly help us
to homogenize (1.4) because, as ε becomes small, the ergodic theorem guarantees
that the set where (1.4) has very high ellipticity becomes dense. What we need are
estimates which do not degenerate as ε → 0, and for this it is necessary to revisit
the regularity from the beginning.

What the ergodic theorem ensures is that, almost surely in ω, for every μ > 0,

lim
ε→0

 
V ∩{λ<μ}

λ−d

(
x

ε
,ω

)
dx = E

[
λ−d1{λ<μ}

]
.(3.1)

In this section we develop a deterministic regularity theory for solutions of (1.4)
which will be robust in the almost sure macroscopic limit ε → 0 by virtue of (3.1).

Since the random environment plays no role here, we drop dependence on ω.
Throughout this section, we consider a continuous function λ :Rd → (0,�], and
we study the regularity of subsolutions and/or supersolutions of the extremal op-
erators P±

λ(x),� in bounded Lipschitz domains V ∈ L. Our estimates must depend
only on d , � and, for μ > 0, the quantitiesˆ

V ∩{λ<μ}
λ−d(x) dx.

As it is purely deterministic, the regularity developed here is of independent inter-
est.

The primary goal is to obtain an improvement of oscillation result on unit scales,
giving us a modulus of continuity [and a Hölder estimate in the macroscopic limit
for solutions of (1.4)]. Our arguments are loosely based on the arguments in the
classical regularity theory [7], with some nice modifications due to Savin [29], but
require several new ideas to overcome the degeneracy of the equation. For instance,
“two important tools” are introduced in [7], Section 4.1, which are used repeatedly
in what has become the standard proof of the Harnack inequality. In our situation,
neither of these tools can be applied in a straightforward way.

First, showing that an appropriate barrier (or “bump”) function exists—which is
easy in the uniformly elliptic situation (see [7], Lemma 4.1)—is a very nontrivial
matter. We construct a barrier by touching a candidate function from below by
translations of the singular function |x|−α with α � 1 and then adapting the proof
of the ABP inequality to show that the corresponding contact set would be too
large if the function failed to be a barrier. Second, the measure-theoretic argument
involving the Calderón–Zygmund cube decomposition must be altered due to the
presence of “bad” cubes of high ellipticity, and we use an alternative idea based on
the Besicovitch covering theorem.

The development is essentially self-contained and depends also on some novel
uses of the area formula for Lipschitz functions, similar to the proof of the ABP
inequality, and partially inspired by Savin [29, 30]. The main result of this section
is the following proposition.
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PROPOSITION 3.1 (Decay of oscillation). There exists δ > 0, depending only
on d and �, such that if 0 < μ < 1

2 and
ˆ

B1∩{λ<μ}
λ−d(x) dx < δ,

then there exist constants 0 < τ < 1 depending only on d , � and μ, such that for
all α > 0 and u ∈ C(B1) satisfying

P+
λ(x),�

(
D2u

) ≥ −α and P−
λ(x),�

(
D2u

) ≤ α in B1,

we have

osc
B1/8

u ≤ τ osc
B1

u + α.

Proceeding with the proof of Proposition 3.1, we begin with three applications
of area formula for Lipschitz functions (cf. [18]), which asserts that∣∣f (E)

∣∣ =
ˆ

E

∣∣detDf (x)
∣∣dx

for all Lebesgue measurable sets E ⊆ Rd and injective Lipschitz maps f :E →Rd.
The first is the Alexandroff–Bakelman–Pucci (ABP) inequality. The version we

give here is not new: it is actually a corollary to the proof of [7], Theorem 3.2.
We include a proof below both for completeness and in order to introduce the
style of argument we use below, in a more complicated form, to obtain the barrier
function. The argument here is much simpler than the one in [7], which is due to
the observation that a semiconcave function is necessarily C1,1 on the set where it
can be touched from below by a plane.

PROPOSITION 3.2 (ABP inequality). Let f ∈ C(B1) and suppose that u ∈
LSC(�B1) satisfies {

P+
λ(x),�

(
D2u

) ≥ −f, in B1,

u ≥ 0, on ∂B1.

Then

u−(0) ≤
(

1

|B1|
ˆ

{�u=u}
λ−d(x)f d+(x) dx

)1/d

,

where

�u(x) := sup
p∈Rd

inf
y∈B1

(
p · (x − y) − u−(y)

)
is convex envelope of −u− := min{0, u}.
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PROOF. By approximating u by its infimal convolution, we may assume that
u is a semiconcave [it is straightforward to see that the limsup of the contact sets
for uε in (2.5) are contained in the contact set for u].

Let a := −u(0) and assume a > 0. Since u ≥ 0 on ∂B1, for every p ∈ Ba , there
exists z̄(p) ∈ B1 such that u(z̄(p)) < 0 and the map x �→ −u−(x)−p ·x attains its
infimum over B1 at z̄(p). Note that we can arrange for z̄ :Ba → B1 to be Lebesgue
measurable by choosing z̄, say, lexicographically among the minimizers closest to
the origin. Since u is semiconcave and can be touched from below by a plane on
A := z̄(Ba), it is C1,1 on A. In particular, z̄ has a Lipschitz inverse p̄ :A → B1
given by p̄(z) := Du(z).

By Rademacher’s theorem (cf. [18]) and the Lebesgue differentiation theo-
rem, u is twice differentiable at Lebesgue almost every point of A. At every
such z ∈ A, we have that D2u(z) ≥ 0, since u can be touched from below by a
plane at z, and so the supersolution inequality gives

−f (z) ≤ P+
λ(z),�

(
D2u(z)

) = −λ(z) tr
(
D2u(z)

)
.

Thus, at almost every point z ∈ A,

0 ≤ D2u(z) ≤ λ−1(z)f+(z)I.(3.2)

The area formula yields

ad |B1| = |Ba| =
ˆ

A

∣∣detDp̄(x)
∣∣dx =

ˆ
A

∣∣detD2u(x)
∣∣dx ≤

ˆ
A

λ−d(x)f d+(x) dx.

Since A ⊆ {�u = u}, we obtain the proposition. �

Using a more sophisticated version of the above argument, we next construct
the barrier function, which below plays a critical role in the proof of Lemma 3.6
below, similar to that of the “bump” function in [7]. It is also needed in the next
section in proof of Theorem 1 to verify that the limit function satisfies the Dirichlet
boundary condition.

LEMMA 3.3. For each 0 < r < 1
2 , there exists δ > 0, depending only on

d and �, such that if 0 < μ < 1
2 andˆ

B1∩{λ<μ}
λ−d(x) dx < δrd,

then there exists a constant β > 0, depending only on d , �, r and μ, such that for
each u ∈ LSC(�B1 \ Br) satisfying⎧⎪⎨⎪⎩

P+
λ(x),�

(
D2u

) ≥ −1, in B1 \ �Br ,

u ≥ 0, on ∂B1,

u ≥ β, on ∂Br ,

we have u > 0 on B1−r \ Br .
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PROOF. By approximating u by its infimal convolution, we may assume that
u is semiconcave. Define

α := 2(d − 1)� + 2

μ
and β :=

(
4

r

)α

.

The idea is to show that if u is negative somewhere in B1−r \ Br , then it can
be touched from below by (too many) small translations of the singular function
φ(x) := 2α|x|−α . Let us suppose that u(x0) < 0 for some x0 ∈ B1−r \ Br . As
a consequence we find that, for every y ∈ Br/2, the map x �→ u(x) − φ(x − y)

attains its infimum at some point z̄(y) ∈ B1 \ Br . To verify this we check that, for
y ∈ Br/2,

inf
x∈∂B1

(
u(x) − φ(x − y)

) ≥ −2α

∣∣∣∣1 − r

2

∣∣∣∣−α

(3.3)
≥ −φ(x0 − y) > u(x0) − φ(x0 − y)

and, by our choice of β ,

u(x) ≥ β ≥ φ(x − y) for every x ∈ ∂Br.(3.4)

It is easy to arrange for the function z̄ :Br/2 → B1 \Br to be Lebesgue measurable.
To obtain the contradiction, we eventually apply the area formula to the inverse
of z̄. Most of the rest of the argument is concerned with showing that the image of
z̄ is contained in the region where λ is small, that z̄ has an inverse ȳ and estimating
the determinant of the Jacobian of ȳ.

The Hessian of φ is given by

D2φ(x) = α2α|x|−α−2
(
(α + 1)

x ⊗ x

|x|2 −
(
I − x ⊗ x

|x|2
))

(3.5)

and thus

the eigenvalues of D2φ(x) = α2α|x|−α−2 ·
{

(α + 1), with multiplicity 1,

−1, with multiplicity d − 1.

The differential inequality for u at z = z̄(y) yields

−1 ≤ P+
λ(z),�

(
D2φ(z − y)

) = α2α|z − y|−α−2(
(d − 1)� − (α + 1)λ(z)

)
≤ α(α + 1)2α|z − y|−(α+2)

(
μ

2
− λ(z)

)
.

Using that 2α|z − y|−(α+2) ≥ 1
4 and α(α + 1) ≥ 8/μ and rearranging this, we get

λ(z) < μ.(3.6)

We conclude that

A := z̄(Br/2) ⊆ {
x ∈ B1 :λ(x) < μ

}
.(3.7)
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Since u is semiconcave and |D2ϕ| is bounded in Rd \Br/2, we see that u is C1,1

on A. In particular, u is differentiable at each point of A and, by Rademacher’s the-
orem and the Lebesgue differentiation theorem, twice differentiable at Lebesgue
almost every point of A. For each y ∈ Br/2,

Du
(
z̄(y)

) = Dφ
(
z̄(y) − y

) = −α2α
∣∣z̄(y) − y

∣∣−(α+2)(
z̄(y) − y

)
.

Hence, ∣∣Du
(
z̄(y)

)∣∣ = α2α
∣∣z̄(y) − y

∣∣−(α+1)(3.8)

and substituting this into the previous line yields

Du
(
z̄(y)

) = −(
α2α)−1/(α+1)∣∣Du

(
z̄(y)

)∣∣(α+2)/(α+1)(
z̄(y) − y

)
.

Solving this for y, we find that z̄ has Lipschitz inverse ȳ :A → Br/2 given by

ȳ(z) := z + (
α2α)1/(α+1)∣∣Du(z)

∣∣−(α+2)/(α+1)
Du(z).

Since Du(z̄(y)) = Dφ(z̄(y)−y) �= 0 at each y ∈ Br/2 on A, it is clear that Du �= 0
on A and thus ȳ is differentiable at each z ∈ A at which u is twice differentiable;
at such z ∈ A, we compute

Dȳ(z) = I + (
α2α)1/(α+1)∣∣Du(z)

∣∣−(α+2)/(α+1)

×
(
D2u(z)

(
I − α + 2

α + 1

Du(z)

|Du(z)| ⊗ Du(z)

|Du(z)|
))

.

Using (3.8) we conclude that, at almost every z ∈ A,∣∣Dȳ(z)
∣∣ ≤ C

(
1 + (

α2α)−1∣∣ȳ(z) − z
∣∣α+2∣∣D2u(z)

∣∣),(3.9)

where C > 0 is a constant depending only on d .
It remains to estimate |D2u| on A. Using (3.5) and that φ touches u from below

on A, we have, at each z ∈ A at which u is twice differentiable,

D2u(z) ≥ D2φ
(
z − ȳ(z)

) ≥ −α2α
∣∣z − ȳ(z)

∣∣−(α+2)
I.(3.10)

On the other hand, the differential inequality gives

−1 ≤ P+
λ(z),�

(
D2u(z)

) = � tr
(
D2u(z)

)
− − λ(z) tr

(
D2u(z)

)
+.

A rearrangement of the later yields, in light of (3.10),

tr
(
D2u(z)

)
+ ≤ (

d�α2α
∣∣z − ȳ(z)

∣∣−(α+2) + 1
)
λ−1(z)

and from this we deduce that

D2u(z) ≤ Cλ(z)−1(
α2α

∣∣z − ȳ(z)
∣∣−(α+2) + 1

)
I,(3.11)
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where here and in the rest of the proof C > 0 depends only on d and �. Combin-
ing (3.10) and (3.11), we obtain, at each point z ∈ A at which u is twice differen-
tiable, ∣∣D2u(z)

∣∣ ≤ Cλ−1(z)
(
α2α

∣∣z − ȳ(z)
∣∣−(α+2) + 1

)
.(3.12)

Inserting this into (3.9) and using that α ≥ 1, |z− ȳ(z)| ≤ 2 and λ−1(z) ≥ μ−1 ≥ 2,
we at last deduce∣∣Dȳ(z)

∣∣ ≤ C
(
1 + (

α2α)−1∣∣ȳ(z) − z
∣∣α+2)

λ−1(z) + C ≤ Cλ−1(z)(3.13)

at Lebesgue almost every point z ∈ A.
We finally apply the area formula, using (3.7), (3.13) and the hypothesis of the

lemma to conclude that(
2−d |B1|)rd = |Br/2| =

ˆ
A

∣∣detDȳ(x)
∣∣dx

≤ C

ˆ
A

λ−d(x) dx ≤ C

ˆ
B1∩{λ<μ}

λ−d(x) dx ≤ Cδrd.

We get a contradiction if δ > 0 is sufficiently small, depending on d and �. �

REMARK 3.4. By an easy modification of the above proof, we also obtain
an additional estimate for the barrier. Given h > 0, we can modify the choice of
δ,β > 0 and also select an r ′ ∈ (r,1) depending only on d , �, ε, μ, r and h (but
not β) such that the supersolution u satisfies u ≥ β − h on Br ′ \ Br . Later we use
this observation to verify the Dirichlet boundary condition for the limit function in
the proof of homogenization.

The next lemma, which is inspired by [29], Lemma 2.1, follows from another
application of the area formula and a (much easier) variation of the above argu-
ment. It asserts that, if a supersolution can be touched from below by sufficiently
many translations of a fixed parabola, then the Ld norm of λ−1 on the set of points
at which the touching occurs cannot be too small.

LEMMA 3.5. Let u ∈ LSC(B1) satisfy

P+
λ(x),�

(
D2u

) ≥ −1 in B1.

Suppose that a ≥ 1 and V ⊆ Rd such that, for each y ∈ V , the infimum over B1
of the map z �→ u(z) + a

2 |z − y|2 is attained. Let W ⊆ B1 denote the union over
y ∈ V of the subset of B1 at which this map attains its minimum. Then there exists
a constant δ > 0, depending only on d and �, such thatˆ

W

λ−d(x) dx ≥ δ|V |.
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PROOF. By replacing u by u+α|x|2 and letting α → 0, we may suppose that,
for some small η > 0, W ⊆ B1−η and, for every y ∈ B1,

min
z∈∂B1−η

(
u(z) + a

2
|z − y|2

)
> inf

z∈W

(
u(z) + a

2
|z − y|2

)
.(3.14)

As in the proofs of Proposition 3.2 and Lemma 3.3, we may assume that u is
semiconcave by infimal convolution approximation. Indeed, due to (3.14), the set
V is essentially unchanged by the infimal convolution approximation, while the
set W is unchanged or possibly smaller.

Select a Lebesgue-measurable function z̄ :V → B1 such that the map z �→
u(z) + a

2 |z − y|2 attains its infimum in B1 at z = z̄(y). The function u is C1,1

on A := z̄(V ) and z̄ has a Lipschitz inverse ȳ given by

ȳ(z) := z + 1

a
Du(z).

By Rademacher’s theorem and the Lebesgue differentiation theorem, u is twice dif-
ferentiable at almost every point of z ∈ A and, at such z, we have D2u(z) ≥ −aI ,

Dȳ(z) = I + 1

a
D2u(z) ≥ 0(3.15)

as well as

−λ(z) tr
(
Dȳ(z)

) = P+
λ(z),�

(
Dȳ(z)

) =P+
λ(z),�

(
I + 1

a
D2u(z)

)
≥ 1

a
P+

λ(z),�

(
D2u(z)

) +P−
λ(z),�(I ) ≥ −1

a
− �d

and, therefore,

0 ≤ Dȳ(z) ≤ 1

λ(z)

(
1

a
+ �d

)
.(3.16)

An application of the area formula for Lipschitz functions gives

|V | =
ˆ

A

∣∣detDȳ(x)
∣∣dx ≤

(
1

a
+ �d

)d ˆ
A

λ−d(x) dx

from which we obtain the lemma, using that a ≥ 1 and A ⊆ W . �

We now give the proof of the decay of oscillation.

PROOF OF PROPOSITION 3.1. Now suppose that 0 < μ < 1
2 andˆ

B1∩{λ<μ}
λ−d(x) dx < δ := 1

6Nd

|B1/6|min
{
8−dδ1,32−dδ2

}
,(3.17)

where δ1 is from Lemma 3.3, δ2 is from Lemma 3.5 and Nd is the constant from
the Besicovitch covering theorem in dimension d .
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We first make a reduction by noticing that, to obtain the proposition for τ :=
(1 − 1/k), it suffices to consider v ∈ C(B1) which satisfies

P+
λ(x),�

(
D2v

) ≥ −1 and P−
λ(x),�

(
D2v

) ≤ 1 in B1(3.18)

and

osc
B1

v ≤ 1 + osc
B1/8

v(3.19)

and to show that oscB1 v < k. Indeed, suppose u satisfies the hypotheses of the
proposition and

osc
B1/8

u >
(
1 − k−1)

osc
B1

u + α.

Then α < k−1 oscB1 u, and so if we set v := ku/oscB1 u, then we see that v satisfies
(3.18), (3.19) and oscB1 v = k.

Define, for every κ > 0,

Aκ :=
{
x ∈ B1 :∃y ∈ B1, v(x) + κ

2
|x − y|2 = inf

z∈B1

(
v(z) + κ

2
|z − y|2

)}
.

In other words, Aκ is the set of points in B1 at which v can be touched from below
by a paraboloid with Hessian −κI and vertex in B1. To prove the desired estimate
on v, it is enough to show that

|Aκ ∩ B1/6| ≥ 2
3 |B1/6|(3.20)

for some κ > 0 depending only on d , � and μ. Indeed, if we could show this,
then using that −v satisfies the same hypotheses as v and applying (3.20) to both
functions, we find a point x ∈ B1/6 which can be touched from above and below
by parabolas with opening κ . That is, we could conclude that there exist x ∈ B1/6
and y1, y2 ∈ B1 such that, for all z ∈ B1,

v(x) + κ

2
|x − y1|2 − κ

2
|z − y1|2 ≤ v(z) ≤ v(x) − κ

2
|x − y2|2 + κ

2
|z − y2|2.

This implies that |v(x) − v(z)| ≤ 2κ for all z ∈ B1, and thus oscB1 v ≤ 4κ , which
is the desired estimate.

In order to obtain (3.20) for some κ > 0 depending on the appropriate quantities,
we observe first that (3.19) implies that A576 ∩B1/6 �= ∅. Indeed, (1

6 − 1
8)2 = 1/576

and so v can be touched from below in B1/6 by the parabola −576|x − y|2, where
y ∈ �B1/8 is such that v(y) = min�B1/8

v. We then repeatedly apply Lemma 3.6 below
to obtain the desired result for κ = 576 · θn, where n := 	|B1|/η
 and θ, η > 0 are
given in the statement of the lemma. The proof of Proposition 3.1 is now complete,
pending the verification of Lemma 3.6. �

The following lemma contains the measure theoretic information needed to con-
clude the proof of Proposition 3.1. In the classical regularity theory, this step tra-
ditionally relies on the Calderón–Zygmund cube decomposition (as in the proof
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of (4.12) in [7]). Since we did not immediately see how to adapt it, and for the
sake of variety, we instead use an alternative tool: the Besicovitch covering theo-
rem.3 The argument also relies in a crucial way on Lemmas 3.3 and 3.5.

LEMMA 3.6. Let μ, v and Aκ be as in the proof of Proposition 3.1. There
exist constant θ > 1 and η > 0, depending only on d , � and μ, such that if κ ≥ 1,
Aκ ∩ B1/6 �=∅ and |Aκ ∩ B1/6| < 2

3 |B1/6|, then |Aθκ ∩ B1| ≥ |Aκ ∩ B1| + η.

PROOF. Consider the collection B of balls Br(x) ⊆ B1 such that Br/2(x) ⊆
B1 \ Aκ and ∂Br/2(x) ∩ Aκ �=∅. Note that since Aκ ∩ B1/6 �=∅ and Aκ is closed,
every point of B1/6 \Aκ is the center of some ball in B. According to the Besicov-
itch covering theorem, we may select a countable subcollection {Brk (xk)}k∈N ⊆ B
that covers B1/6 \ Aκ and such that each point x ∈ B1 belongs to at most Nd balls.

We say that the ball Brk (xk) is good if

1

|Brk (x)|
ˆ

Brk
(xk)∩{λ<μ}

λ−d(x) dx < min
{
8−dδ1,32−dδ2

}
and set G := {k ∈ N :Brk(xk) is good}, where δ1, δ2 > 0 are as in the proof of
Proposition 3.1. We claim that at least half of the Lebesgue measure of B1/6 \ Aκ

consists of points which belong to good balls, that is,∣∣∣∣ ⋃
k∈G

Brk (xk)

∣∣∣∣ >
1

2
|B1/6 \ Aκ | ≥ 1

6
|B1/6|.(3.21)

Indeed, if (3.21) were false, then
∑

k /∈G |Brk | ≥ 1
2 |B1/6 \ Aκ | ≥ 1

6 |B1/6| and so
ˆ

B1∩{λ<μ}
λ−d(x) dx ≥ 1

Nd

∑
k /∈G

ˆ
Brk

(xk)∩{λ<μ}
λ−d(x) dx

≥ 1

Nd

min
{
8−dδ1,32−dδ2

} ∑
k /∈G

|Brk |

≥ 1

6Nd

min |B1/6|{8−dδ1,32−dδ2
}
,

which contradicts (3.17). Therefore, in light of the Besicovitch covering, it is
enough to show that |Brk/2(xk) ∩ Aθκ | ≥ η|Brk (xk)| for each good ball Brk (xk)

and some constants θ, η > 0 depending only on d , � and μ.

3Luis Silvestre has since pointed out to us that the Calderón–Zygmund decomposition argument
in [7] may indeed be suitably modified to prove Lemma 3.6 and that the best choice is the Vitali
covering theorem, which can be used in a similar yet simpler way than the Besicovitch covering
theorem.
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Fix a good ball Br(x) := Brk (xk) and choose z1 ∈ ∂Br/2(x)∩Aκ . By the defini-
tion of Aκ , we can touch z1 by a paraboloid of Hessian −κI : there exists y1 ∈ B1
such that

v(z1) + κ

2
|z1 − y1|2 = inf

z∈B1

(
v(z) + κ

2
|z − y1|2

)
.(3.22)

We argue that, by making this paraboloid steeper and wiggling the vertex, we may
touch the function v at a positive proportion of points inside of Br(x). A key role
is played by Lemma 3.3, which keeps the touching points near the center and away
from the boundary of Br(x) as well as by Lemma 3.5, which ensures that we can
touch a positive proportion of points by wiggling the vertex of the paraboloid.

Using that Br(x) is good and applying (a properly scaled) Lemma 3.3, there ex-
ists β > 1, depending only on d , � and μ, such that the solution w of the Dirichlet
problem ⎧⎪⎨⎪⎩

P+
λ(x),�

(
D2w

) = −1, in Br(x) \ �Br/8(x),

w = 0, on ∂Br(x),

w = βr2, on ∂Br/8(x),

satisfies w > 0 in �Br/2(x) \Br/8(x). Clearly, w ≤ βr2 in Br \Br/8(x) by the max-
imum principle. Observe that the function

ϕ(z) := (d�κ + 2)w − κ

2
|z − y1|2,

satisfies

P+
λ(x),�

(
D2ϕ

) ≤ −2 in Br(x) \ Br/8(x).(3.23)

The comparison principle implies that the map z �→ v(z) − ϕ(z) attains its infi-
mum in Br(x) \ Br/8(x) at some point z = z2 ∈ ∂Br(x) ∪ ∂Br/8(x). Notice, how-
ever, that it is impossible that z2 ∈ ∂Br(x), since (3.22), w ≡ 0 on ∂Br(x) and
w(z1) > 0 imply that

v(z1) − ϕ(z1)

= v(z1) + κ

2
|z1 − y1|2 − (d�κ + 2)w(z1) < inf

z∈B1

(
v(z) + κ

2
|z − y1|2

)

≤ inf
z∈∂Br(x)

(
v(z) + κ

2
|z − y1|2

)
= inf

z∈∂Br(x)

(
v(z) − ϕ(z)

)
.

Hence, z2 ∈ ∂Br/8(x) and so, in particular, ϕ(z2) = −κ
2 |z2 −y1|2 + (d�κ +2)βr2.

Using that w > 0 in Br/2(x) \ Br/8(x), we obtain that

inf
z∈Br/2(x)\Br/8(x)

(
v(z) + κ

2
|z − y1|2

)
≥ inf

z∈Br/2(x)\Br/8(x)

(
v(z) − ϕ(z)

)
= v(z2) − ϕ(z2) = v(z2) + κ

2
|z2 − y1|2 − (d� + 2/κ)κβr2.
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Using this together with (3.22), z1 ∈ ∂Br/2(x) and κ ≥ 1, we obtain

inf
z∈B1

(
v(z) + κ

2
|z − y1|2

)
≥ v(z2) + κ

2
|z2 − y1|2 − (d� + 2)κβr2.(3.24)

It follows that, if we set γ := 16β(d� + 2) + 1, then for every y2 ∈ Br/8(x), the
function

ψ(z) := v(z) + κ

2
|z − y1|2 + γ κ

2
|z − y2|2

satisfies ψ(z2) < minB1\Br/2(x) ψ and, therefore, must attain its infimum over B1
somewhere in Br/2(x).

Consider the function z̄ :Br/8(x) → B1 given by z̄(y) = (y1 + γy)/(1 + γ ) and
observe by completing the square that, for some a ∈ R,

κ

2
|z − y1|2 + γ κ

2
|z − y2|2 = (γ + 1)κ

2

∣∣z − z̄(y2)
∣∣2 + a for all z ∈Rd .

It follows that the map z �→ v(z)+ 1
2(γ + 1)κ|z− z̄(y2)|2 attains its infimum in B1

at some point of Br/2(x). Since γ ≥ 1, and thus γ /(γ + 1) ≥ 1
2 , we deduce that∣∣z̄(Br/8)

∣∣ ≥ 2−d
∣∣Br/8(x)

∣∣.(3.25)

We have succeeded in touching the function v by steepening the paraboloid and
wiggling the vertex. Now an application of Lemma 3.5, using (3.25) and that Br(x)

is a good ball, ensures that we have actually touched a positive proportion of points
in Br(x). We obtain

2−dδ2
∣∣Br/8(x)

∣∣ ≤
ˆ

Br/2(x)∩A(γ+1)κ

λ−d(x) dx

≤ 32−dδ2
∣∣Br(x)

∣∣ + μ−d
∣∣Br/2(x) ∩ A(γ+1)κ

∣∣,
which implies |Br/2(x) ∩ A(γ+1)κ | ≥ μd2−d(1 − 2−d)δ2|Br/8(x)|, as desired. �

4. Homogenization. The proof of homogenization follows the approach
of [10], although we have reorganized the argument for clarity and simplicity as
well as to accommodate the modifications required to handle the nonuniform ellip-
tic case. The strategy relies on an application of the subadditive ergodic theorem
to a certain quantity involving the obstacle problem. The proof has three steps:

(1) Identifying �F : by applying the subadditive ergodic theorem to the Lebesgue
measure of the contact set of a certain obstacle problem, we build the effective
operator �F .

(2) Building approximate correctors: with the help of the effective regularity re-
sults, we compare the solutions of the obstacle problem to the solution of the
Dirichlet problem with zero boundary conditions and show that the latter act
as approximate correctors.

(3) Proving convergence: using the approximate correctors, the classical perturbed
test function method allows us to conclude.
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Step one: Identifying �F via the obstacle problem. Following [10], we intro-
duce, for each bounded Lipschitz domain V ∈ L, the obstacle problem (with the
zero function as the obstacle):{

min
{
F

(
D2w,y,ω

)
,w

} = 0, in V ,

w = 0, on ∂V .
(4.1)

Some important properties of (4.1) are reviewed in Appendix. It is well known
that (4.1) has a unique viscosity solution, which we denote by w = w(y,ω;V,F ).
We often write w = w(y,ω;V ) or simply w = w(y,ω) if we do not wish to dis-
play the dependence on F or V .

The set C(V ,ω) := {y ∈ V :w(y,ω;V ) = 0} of points where w touches the
obstacle is called the contact set. We write C(V ,ω;F) if we wish to display the
dependence on F . The Lebesgue measure of this set is an important quantity, and
we denote it by

m(V,ω) := ∣∣C(V ,ω)
∣∣.(4.2)

We check that m satisfies the hypotheses of the subadditive ergodic theorem
(Proposition 2.2). First we observe from the monotonicity of the obstacle prob-
lem [see (A.10)], that for all V,W ∈ L and ω ∈ �,

V ⊆ W implies that C(W,ω) ∩ V ⊆ C(V ,ω).(4.3)

Immediate from (4.3) is the subadditivity of m. That is, for all V,V1, . . . ,

Vk ∈ L such that
⋃k

j=1 Vj ⊆ V , the sets V1, . . . , Vk are pairwise disjoint and

|V \ ⋃k
j=1 Vj | = 0, we have

m(V,ω) ≤
k∑

j=1

m(Vj ,ω).(4.4)

According to (F1), m is stationary, that is,

m(V, τyω) = m(y + V,ω)

for every y ∈ Rd and V ∈ L. We may easily extend m to U0 by defining, for every
A ∈ U0,

m̃(A,ω) := inf
{
m(V,ω) :V ∈ L and A ⊆ V

}
.

This extension agrees with m on L by (4.3) and it is easy to show that the subad-
ditivity and stationarity properties are preserved.

We now obtain the following lemma.

LEMMA 4.1. There exists an event �2 ∈ F of full probability and a determin-
istic constant m̄ ∈R such that, for every ω ∈ �2 and Lipschitz domain V ⊆ Rd ,

lim
t→∞

1

td
m(tV ,ω) = m̄|V |.(4.5)
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PROOF. In light of the remarks preceding the statement, the lemma follows
from the subadditive ergodic theorem (Proposition 2.2). �

For clarity, we write m̄ = m̄(F ) to display the dependence of m̄ in Lemma 4.1
on the nonlinear operator F .

We are now ready to define the effective nonlinearity:

�F(0) := sup
{
α ∈ R : m̄(F − α) > 0

}
.(4.6)

We extend this definition to all symmetric matrices in the obvious way. For each
N ∈ Sd , we denote FN by

FN(M,y,ω) := F(M + N,y,ω)

and then we set, for each M ∈ Sd ,

�F(M) := �FM(0).

To check that �F is well defined and finite, we first observe that, by (A.8)
and (A.12),

inf
y∈V

F (0, y,ω) ≥ 0 implies that C(V ,ω) = V

and

sup
y∈V

F (0, y,ω) < 0 implies that C(V ,ω) =∅.

Using (F3) and the remarks in Section 2, it follows from these that

ess inf
ω∈�

F(M,0,ω) ≤ �F(M) ≤ ess sup
ω∈�

F(M,0,ω).(4.7)

The monotonicity of the obstacle problem implies that α �→ m̄(F − α) is a de-
creasing function, and thus m̄(F − α) > 0 for α < �F(0) and m̄(F − α) = 0 for
α > �F(0).

It is immediate from the comparison principle for the obstacle problem that, if
F1 and F2 are two operators satisfying our hypotheses, then

sup
M∈Sd

ess sup
ω∈�

(
F1(M,0,ω) − F2(M,0,ω)

) ≤ 0 implies �F1 ≤ �F2.(4.8)

It is even more obvious that adding constants commutes with the operation
F �→ �F . From these facts, a number of properties of �F are immediate, the ones
inherited from uniform properties of F . A few of these are summarized in the
following lemma.

LEMMA 4.2. For every M,N ∈ Sd such that M ≤ N , we have

0 ≤ �F(M) − �F(N) ≤ � tr(N − M).(4.9)

Moreover, if M �→ F(M,0,ω) is positively homogeneous of order one, odd or
linear, then �F possesses the same property.
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PROOF. Each of the properties are proved using the comments before the
statement of the proposition. To prove (4.9), we simply observe that, according
to (F1), for all (Y, y,ω) ∈ Sd ×Rd × �,

F(M + Y,y,ω) ≤ F(N + Y,y,ω) + � tr(N − M)(4.10)

and then apply (4.8). It is obvious that �F inherits the properties of positive homo-
geneity and oddness from F , and linearity follows from these. �

Observe that (4.9) asserts that �F is degenerate elliptic. If F were uniformly
elliptic, that is, λ−1 ∈ L∞(�), then it follows from an argument nearly identical
to the one for (4.9) that �F is uniformly elliptic. For more general λ−1 ∈ Ld(�),
the operator �F is uniformly elliptic as well, but the proof is more complicated.
We postpone it until the next subsection, since it is convenient to deduce it as a
consequence of Proposition 4.4, which we prove first.

We next show that, in large domains, the contact set has nearly constant density.

LEMMA 4.3. For every ω ∈ �2 and V,W ∈ L with �W ⊆ V ,

lim
t→∞

|C(tV ,ω) ∩ tW |
|tW | = m̄.(4.11)

PROOF. Let U := V \ W ∈ L and fix ω ∈ �2. Observe that (4.3) gives

lim sup
t→∞

|C(tV ,ω) ∩ tW |
|tW | ≤ lim

t→∞
|C(tW,ω)|

|tW | = m̄(4.12)

and, by the same argument,

lim sup
t→∞

|C(tV ,ω) ∩ tU |
|tU | ≤ m̄.

Therefore,

lim inf
t→∞

|C(tV ,ω) ∩ tW |
|tW | = lim inf

t→∞
|C(tV ,ω) ∩ tV | − |C(tV ,ω) ∩ tU |

|tW |
(4.13)

≥
( |V |

|W | − |U |
|W |

)
m̄ = m̄.

Combining (4.12) and (4.13) yields (4.11). �

Step two: Building approximate correctors. The next step in the proof of The-
orem 1 is to show that, in the macroscopic limit, the obstacle problem controls the
solution of the Dirichlet problem{

F
(
D2v, y,ω

) = 0, in V ,

v = 0, on ∂V .
(4.14)

As before, V ∈ L is a bounded Lipschitz domain and we write v = v(y,ω;V,F ).
The following proposition is the focus of this subsection.
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PROPOSITION 4.4. There exists an event �3 ∈ F of full probability such that,
for every ω ∈ �3, M ∈ Sd and V ∈ L,

lim
t→∞

1

t2 sup
y∈tV

∣∣v(
y,ω; tV ,FM − �F(M)

)∣∣ = 0.(4.15)

Before we give its proof, we remark that Proposition 4.4 is a special case of
Theorem 1. We can see this by fixing U ∈ L, defining

vε(x,ω) := ε2v

(
x

ε
,ω; 1

ε
U,F − �F(0)

)
and then checking that vε(·,ω) is the unique solution of the boundary-value prob-
lem ⎧⎨⎩F

(
D2vε,

x

ε
,ω

)
= �F(0), in U ,

vε = 0, on ∂U .
(4.16)

The conclusion of Proposition 4.4 then asserts that

vε → 0 uniformly in U as ε → 0,(4.17)

which is consistent with Theorem 1 since the zero function v ≡ 0 is obviously the
unique solution { �F (

D2v
) = �F(0), in U ,

v = 0, on ∂U .
(4.18)

As we show in the next subsection, Proposition 4.4 actually implies Theorem 1.
This is because, for large R > 0, the function ξ(y) := v(y,ω;BR,FM − �F(M)) is
an “approximate corrector” in BR in the sense that it satisfies the equation

F
(
M + D2ξ, y,ω

) = �F(M) in BR(4.19)

and is “strictly subquadratic at infinity” [i.e., satisfies (4.15)]. This is precisely
what is needed to implement the perturbed test function method.

PROOF OF PROPOSITION 4.4. According to the ergodic theorem, there exists
an event �4 ∈ F of full probability such that, for every ω ∈ �4, V ∈ L and rational
q ∈Q with q > 0,

lim
t→∞

 
tV

λ−d(y,ω)dy = E
[
λ−d]

(4.20)

and

lim
t→∞

 
tV

λ−d(y,ω)χ{λ<q}(y) dy = E
[
λ−d1{λ<q}

]
.(4.21)
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Note that, according to the ABP inequality (Proposition 3.2, properly scaled), for
every ω ∈ �4,

lim
α→0

lim sup
t→∞

1

t2 sup
y∈tV

1

R2

∣∣v(y,ω; tV ,F ) − v(y,ω; tV ,F + α)
∣∣ = 0.(4.22)

We now define �3 := �2 ∩ �4, where �2 is given in the statement of Lemma 4.1.
We first show that, for all ω ∈ �3, V ∈ L and M ∈ Sd

lim inf
t→∞

1

t2 inf
y∈tV

v
(
y,ω; tV ,FM − �F(M)

) ≥ 0.(4.23)

We may assume that M = 0 by replacing F with F−M and that �F(0) = 0 by replac-
ing F by F − �F(0). By (4.22), we may also suppose that m̄(F ) = 0 by considering
F − α for α > 0 and then sending α → 0. Set

K := ess sup
ω∈�

(
F(0,0,ω)

)
+ = ess sup

ω∈�

sup
y∈Rd

(
F(0, y,ω)

)
+.

According to (4.15) and (A.11), for every t > 0, the function u := w(·,ω; tV ,F )−
v(·,ω; tV ,F ) satisfies

P−
λ(y,ω),�

(
D2u

) ≤ KχC(tV ,ω) in tV

and u = 0 on ∂(tV ). Using that w ≥ 0, the ABP inequality (Proposition 3.2, prop-
erly scaled) and (4.5), we obtain

lim sup
t→∞

1

t2 sup
y∈tV

−v(y,ωtV,F )

≤ lim sup
t→∞

1

t2 sup
y∈tV

u(y)(4.24)

≤ CK lim sup
t→∞

( 
tV

λ−d(y,ω)χC(tV ,ω)(y) dy

)1/d

.

To estimate the integral on the right, we observe that, for each k ∈ N,ˆ
tV

λ−d(y,ω)χC(tV ,ω)(y) dy ≤
(
kd

∣∣m(tV,ω)
∣∣ + ˆ

tV

λ−d(y,ω)χ{λ<1/k}(y) dy

)
.

Divide this by |tV | and pass to the limit t → ∞ using (4.21) to obtain

lim sup
t→∞

 
tV

λ−d(y,ω)χC(tV ,ω)(y) dy ≤ kdm̄(F ) +E
[
λ−d1{λ<1/k}

]
.(4.25)

Since m̄(F ) = 0, we may send k → ∞ and combine the resulting expression
with (4.24) to obtain (4.23).

To complete the proof, we show that, for every ω ∈ �3,

lim sup
t→∞

1

t2 sup
y∈tV

v
(
y,ω; tV ,FM − �F(M)

) ≤ 0.(4.26)
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As above, we may suppose that M = 0 and �F(0) = 0. We may also assume that
m̄(F ) > 0, by considering F + α for α > 0 and then sending α → 0, using (4.22).
Since v ≤ w, it suffices for (4.26) to show that

lim sup
t→∞

1

t2 sup
y∈tV

w(y,ω; tV ,F ) = 0.(4.27)

Furthermore, by the monotonicity of the obstacle problem it suffices to show that

lim sup
t→∞

1

t2 sup
y∈tBR

w(y,ω; tB2R,F ) = 0,(4.28)

where R > 1 is large enough that V ⊆ BR . Fix r > 0 and observe that,
by Lemma 4.3 and an easy covering argument using m̄(F ) > 0, there exists
T > 0 sufficiently large such that, for every t ≥ T and x ∈ BR , the function
w(·,ω; tB2R,F ) vanishes at some point of B(tx, tr). We therefore have, for every
t ≥ T and x ∈ BR ,

1

t2

∣∣w(tx,ω; tB2R;F)
∣∣ ≤ osc

B(tx,tr)

1

t2 w(·,ω; tB2R;F).(4.29)

We prove (4.28) by showing that the lim-sup of the right-hand side of (4.29), as
t → ∞, is o(1) as r → 0. For this, we rely on Proposition 3.1.

Notice that (A.11), (4.20) and the ABP inequality (Proposition 3.2) yield, for
t > 0 sufficiently large, the bound

1

t2 sup
tB2R

∣∣w(·,ω; tB2R,F )
∣∣ ≤ CKR2,(4.30)

where C depends only on d , � and E[λ−d ]. Select μ > 0 such that

E
[
λ−d1{λ<μ}

]
< 4−dδ,

where δ > 0, δ ∈ Q is as in Proposition 3.1. By (4.21), and making T > 0 larger, if
necessary, we have that for all t ≥ T , r < r ′ < R and x ∈ BR , 

Btr′ (tx)

λ−d(y,ω)χ{λ<μ} dy < δ.(4.31)

To see this, consider a finite covering {Bs(xi)} of BR by balls of radius s = 2−kR

for some k ∈ N. According to (4.21), for sufficiently large t , the average of
λ−d(y,ω)χ{λ<μ} in each of the balls B2s(xi) will be less than 4−dδ. But every
ball Br ′(x), with s/2 ≤ r ′ ≤ s and x ∈ BR , is contained in one of the balls B2s(xi).
Since 4r ′ ≥ s, this yields 

Btr′ (tx)

λ−d(y,ω)χ{λ<μ} dy ≤ 4d

 
B2s (xi )

λ−d(y,ω)χ{λ<μ} dy < δ.
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Repeating this covering argument for k = 0,1,2, . . . , 	log2(R/r)
 and making
T > 0 larger, if necessary, we obtain (4.31) for every t ≥ T , r ≤ r ′ ≤ R and
x ∈ BR .

Iterating Proposition 3.1, using (4.30), (4.31) as well as (A.9) and (A.11), we
obtain, for every x ∈ BR and t ≥ T ,

osc
B(tx,tr)

1

t2 w(·,ω; tB2R;F) ≤ Crγ(4.32)

for some constants γ > 0 and C > 0 which may depend on d , �, E[λ−d ], μ,
K and R, but do not depend on r or T . Combining this with (4.29) and sending
t → ∞ and then r → 0, we obtain (4.27), and thus the proposition. �

We conclude the second part by showing that �F is uniformly elliptic and giving
an estimate of its ellipticity. The proof is based on Lemma 3.5 and Proposition 4.4.

PROPOSITION 4.5. There exists c > 0, depending only on d and �, such that
�F is uniformly elliptic with constants λ0 := cE[λ−d ]−1 and �, that is, for all
M,N ∈ Sd ,

P−
λ0,�

(M − N) ≤ �F(M) − �F(N) ≤ P+
λ0,�

(M − N).(4.33)

PROOF. Select M,N ∈ Sd such that M ≥ N . Fix ω ∈ �3 and define, for each
ε > 0,

Vε(x) := ε2v

(
x

ε
,ω; 1

ε
B1,FM − �F(M)

)
− ε2v

(
x

ε
,ω; 1

ε
B1,FN − �F(N)

)
+ 1

2
x · (M − N)x.

It is easy to check that V satisfies the inequality

P+
λ(x/ε,ω),�

(
D2Vε

) ≥ �F(M) − �F(N) in B1.(4.34)

According to Proposition 4.4,

Vε(x) → 1
2x · (M − N)x as ε → 0 uniformly in B1.(4.35)

Suppose that M −N has a largest eigenvalue a > 0 with corresponding normal-
ized eigenvector ξ ∈ Rd , |ξ | = 1 so that

aξ ⊗ ξ ≤ M − N ≤ aI.(4.36)

Fix β > 0 and, for each y ∈ Rd , denote by z̄(y) ∈ Rd the (unique) point at which
the map x �→ �(x,y) := 1

2x · (M − N)x + β|x − y|2 attains its (strict) global
minimum on Rd . Note that

z̄(y) = (M − N + 2βI)−12βy.
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In particular, |z̄(y)| ≤ |y| and∣∣ξ · z̄(y)
∣∣ = (a + 2β)−1∣∣ξ · (2βy)

∣∣ ≤ 2β

2β + a
|y|.

Applying (4.35), we deduce that, for sufficiently small ε > 0 and every y ∈ B1/3,
the infimum in B1 of the map x �→ Vε(x) + β|x − y|2 is attained in B1/2 and any
point z at which the minimum is attained satisfies

|z · ξ | ≤ 2β

2β + a

1

3
<

β

a
.(4.37)

Let A := {x ∈ B1/2 : |x · ξ | < β/a} and note that |A| ≤ β/a. In the case that
�F(M) − �F(N) ≥ −2β , we may apply Lemma 3.5, using (4.20), to obtain

c ≤ |B1/2| ≤ C lim sup
ε→0

ˆ
A

λ

(
x

ε
,ω

)−d

dx = C|A|E[
λ−d] ≤ C

β

a
E

[
λ−d]

.

This is impossible if a ≥ CβE[λ−d ]. Here, C > 0 depends only on d and �.
We conclude that a/β ≥ C̃ := CE[λ−d ] implies that �F(M) − �F(N) < −2β .

Define λ0 := 2/dC̃ and deduce that, for all M ≥ N ,

�F(M) − �F(N) ≤ −2a/C̃ = −λ0ad = P+
λ0,�

(aI) ≤ P+
λ0,�

(M − N).

Recalling (4.9), we also have, for every M ≥ N ,

�F(M) − �F(N) ≥ −� tr(N − M) = P−
λ0,�

(M − N).

We have verified (4.33) for all M,N ∈ Sd with M ≥ N .
To remove the latter restriction, fix any M,N ∈ Sd and write

�F(M) − �F(N) = �F(M) − �F (
M − (N − M)−

)
+ �F (

M − (N − M)−
) − �F (

M − (N − M)− + (N − M)+
)

and observe by what we have shown above that

�F(M) − �F(N) ≤P+
λ0,�

(
(N − M)−

) −P−
λ0,�

(
(N − M)+

) = P+
λ0,�

(M − N).

This yields the second inequality of (4.33) and arguing again after interchanging
M and N yields the first inequality. �

Step three: Concluding by the perturbed test function method. By adapting the
classical perturbed test function method, first introduced in the context of periodic
homogenization by Evans [17], we now complete the proof of Theorem 1. The
test functions are perturbed by the approximate correctors constructed in Propo-
sition 4.4. The argument we present here is similar in spirit to the one given in
Section 4 of [10], although a bit less complicated.
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PROOF OF THEOREM 1. Fix a bounded Lipschitz domain U ∈ L, g ∈ C(∂U)

and an environment ω0 ∈ �3, where the event �3 ∈ F is given in the statement of
Proposition 4.4.

We first argue that, for every x ∈ U ,

ũ(x) := lim sup
ε→0

uε(x,ω0) ≤ u(x).(4.38)

To show (4.38), we begin by checking that ũ(x) ≤ g on ∂U . By approximation,
we may assume that g ≡ 0 and that U is smooth (and in particular has the exterior
ball condition). By dilation, we may also assume that F(0, ·,ω) ≤ 1 and that U ⊆
BR/2(0). Given y ∈ ∂U , we may select Br(x) ⊆ Rd \U such that �Br(x)∩ �U = {y}.
Given h > 0, we apply Lemma 3.3 with the modification in Remark 3.4. Using
ω0 ∈ �3, we may select β > 0 and r ′ ∈ (r,R − r) such that the solution ϕε ∈
C(�BR \ Br) of ⎧⎪⎨⎪⎩

P−
λ(x/ε,ω0),�

(
D2ϕε

) = 1, in BR \ Br ,

ϕε = β, on ∂BR,

ϕε = 0, on ∂Br ,

satisfies lim supε→0 ϕε ≤ h in V ∩ Br ′(x). Since U ⊆ BR(x) and uε ≤ 0 on ∂U ,
the comparison principle implies that uε ≤ ϕε . It follows that

lim sup
ε→0

sup
V ∩Br′−r (y)

uε(·,ω0) ≤ h.

Since h > 0 was arbitrary, we conclude that ũ ≤ g on ∂U .
By the comparison principle, to prove (4.38) it suffices to check that the function

ũ(x) := lim supε→0 uε(x,ω0) satisfies, in the viscosity sense,

F
(
D2ũ

) ≤ 0 in U.(4.39)

To verify (4.39), we select a smooth test function φ ∈ C2(U) and a point x0 ∈ U

such that

x �→ (ũ − φ)(x) has a strict local maximum at x = x0.

We must show that �F(D2φ(x0)) ≤ 0. Set M := D2φ(x0) and suppose on the con-
trary that θ := �F(M) > 0.

Since the local maximum of ũ − φ at x0 is strict, there exists r0 > 0 such that
Br0(x0) ⊆ U and, for every 0 < r ≤ r0,

(ũ − φ)(x0) > sup
∂Br (x0)

(ũ − φ).(4.40)

We next introduce the perturbed test function

φε(x) := φ(x) + ε2v

(
x

ε
,ω0; 1

ε
Br0(x0),FM − �F(M)

)
.
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We claim that, in some neighborhood of x0, φε is a strict supersolution of the
oscillatory equation at microscopic scale ε. More precisely, we will argue that, for
some suitably small 0 < s < r0 to be selected below (and which may depend on φ),

F

(
D2φε,

x

ε
,ω0

)
≥ 1

2
θ in Bs(x0).(4.41)

To check (4.41), we select a smooth test function ψ ∈ C2(Bs(x0)) and a point
x1 ∈ Bs(x0) such that

x �→ (
φε − ψ

)
(x) has a local minimum at x = x1.

Using the definition of φε and rescaling, we have

y �→ v

(
y,ω0; 1

ε
Br0(x0),FM − �F(M)

)
− 1

ε2

(
ψ(εy) − φ(εy)

)
has a local minimum at y = x1

ε
.

Using the equation for v, we obtain

F

(
M + D2ψ(x1) − D2φ(x1),

x1

ε
,ω0

)
− �F(M) ≥ 0.

Since φ ∈ C2, we may make |M − D2φ(x1)| = |D2φ(x0) − D2φ(x1)| as small as
we like by taking s > 0 small enough. Thus, in light of (F2), we may fix s > 0 so
that ∣∣∣∣F(

M + D2ψ(x1) − D2φ(x1),
x1

ε
,ω0

)
− F

(
D2ψ(x1),

x1

ε
,ω0

)∣∣∣∣ ≤ 1

2
θ.

The previous two inset inequalities and θ = �F(M) yield

F

(
D2ψ(x1),

x1

ε
,ω0

)
≥ 1

2
θ.(4.42)

This completes the proof of (4.41).
An application of the comparison principle now yields

uε(x0,ω0) − φε(x0) ≤ sup
Bs(x0)

(
uε(·,ω0) − φε)

(4.43)
= sup

∂Bs(x0)

(
uε(·,ω0) − φε).

Taking the limsup of both sides of (4.43) as ε → 0 and applying Proposition 4.4,
we obtain

ũ(x0) − φ(x0) ≤ sup
∂Bs(x0)

(ũ − φ).

This contradicts (4.40) and completes the proof that �F(M) ≤ 0, and hence
of (4.39), and hence of (4.38).
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It remains to show that, for every x ∈ U ,

lim inf
ε→0

uε(x,ω0) ≥ u(x).

This is obtained by mimicking the argument above with very obvious modifica-
tions. We omit the details. �

5. Breakdown of homogenization and regularity for p < d . In this section,
we show that the condition that the dth moment of λ−1 is finite is sharp for both the
homogenization and regularity results. We remark that the example we construct
shows that the exponent p = d is sharp with respect to the general class of (fully
nonlinear) operators, but not with respect to the subclass of linear operators. One
interpretation of the reason for this difference is that some nonlinear equations
correspond to stochastic optimal control problems, and the controller is under no
obligation to select a stationary control. A variant of our construction leads to a
linear counterexample for all p < 1, which was already discovered in [21] (see
also [5]) using a similar trap model. The range 1 ≤ p < d thus remains open in the
linear case; we believe that p = 1 is the critical exponent.

For each p < d , we construct a stationary-ergodic random environment
(�,F,P, τ ) and stationary random field λ :Rd × � → (0,1] such that

E
[
λ−p]

< +∞,(5.1)

but for which homogenization fails for the equation

P−
λ(x/ε,ω),1

(
D2uε) = 1.(5.2)

To show the breakdown of homogenization, we check that the solution uε of the
Dirichlet problem {

P−
λ(x/,ω),1

(
D2uε

) = 1, in B1,

uε = 0, on ∂B1,
(5.3)

satisfies limε→0 uε(0,ω) = +∞ almost surely. We conclude that there is no “ef-
fective” ABP inequality, in the limit ε → 0, and hence no effective regularity or
effective equation. The random field λ :Rd × � → (0,1] we construct has a finite
range of dependence, so even this strongest possible mixing assumption cannot
save homogenization for a general nonlinear operator without a bounded dth mo-
ment of ellipticity.

The idea underlying the construction of λ is to build spatial “traps” where, from
the probabilistic perspective, the corresponding controlled diffusion process be-
comes stuck for long periods of time, resulting in subdiffusive behavior on large
scales. We fix 0 < α < 1 small, take 0 < λ∗ < 1/2d to be selected below and
choose, for each k ∈ N, a random arrangement Pk(ω) ⊆ Rd of points (also speci-
fied below). We construct the random field λ in such a way that 0 < λ ≤ λ∗ almost
surely and λ(y,ω) ≤ λk := 1/(k1+α log3(2 + k)) in each ball of radius 1 with



2590 S. N. ARMSTRONG AND C. K. SMART

center in Pk(ω). To be more precise, for each k ∈ N we select a (deterministic)
continuous function θk on Rd which is at most λk in B1, takes the value λ∗ in
Rd \ B2 and satisfies λk ≤ θk(y) and θk(y) ≤ λ∗. We then set

λ(y,ω) := inf
k∈N inf

x∈Pk(ω)
θk(y − x).

We may also easily arrange that the family {θk}k∈N is equicontinuous.
We take the point configurations Pk to be independent Poisson point processes

(cf. [13]), with intensities depending on k such that the expected number of points
of Pk ∩ V is equal to a|V |k−1−d , where a > 0 is a parameter independent of k

which we also choose below. Since the series
∑∞

k=1 k−1−d converges, it follows
that the number of points of

⋃∞
k=1 Pk is almost surely locally finite by the Borel–

Cantelli lemma, and this implies that λ(0,ω) > 0 almost surely. In fact, for all
p < d/(1 + α),

E
[
λ−p] ≤ 1 + Ca

∞∑
k=1

λ
−(1+α)p
k k−1−d

= 1 + Ca

∞∑
k=1

k−1−d+(1+α)p log3p(2 + k) < ∞.

The stationarity of the Poisson point processes implies that λ is a stationary func-
tion, and it is clear that λ(·,ω) is uniformly continuous (almost surely in ω) since
the family {θk}k∈N is equicontinuous.

Let us see how we can increase the frequency of “traps” (i.e., regions in which λ

is small) by taking a > 0 large. For each fixed t > 1 + a log t |V |, we see that

P
[
Pk ∩ t (log t)1/dV �= ∅ for some k ≥ t

]
(5.4)

≥ 1 −
∞∏

k=	t


(
1 − atd log t |V |k−1−d) ≥ 1 − exp

(−a log t |V |).
Choose the constant a > 0 large enough that a|B1| > d + 1, so that

P
[
Pk ∩ t (log t)1/dV �=∅ for some k ≥ t

] ≥ 1 − t−(d+1).

By covering Bt2 with Ctd balls of radius 1
6 t (log t)1/d , we deduce that

P
[
for all x ∈ Bt2,dist(x,Pk) < 1

3 t (log t)1/d for some k ≥ t
] ≥ 1 − Ct−1.

By using Borel–Cantelli along the sequence tj = 2j , it follows that

P
[∃s > 1 s.t. ∀t > s, x ∈ Bt2,∃k ≥ t s.t. dist(x,Pk) < t(log t)1/d] = 1.(5.5)

The previous line says that we will have sufficiently many traps to work with.
We next measure the local effect of one trap.
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LEMMA 5.1. Fix ω ∈ �, and suppose that k ≥ t > 10, dist(0,Pk(ω)) <

t(log t)1/d , R(t) := 10t (log t)1/d and v ∈ C(BR) satisfies{
P−

λ(x,ω),1

(
D2v

) ≥ 1, in BR(t),

v ≥ �, on ∂BR(t),

where � is an affine function. If 0 < λ∗ < 1/2d is chosen small enough (depending
on α), then there exists c, q > 0 depending on d and λ∗, but not on t , such that

v(0) ≥ �(0) + cR(t)2(
log(t)

)q(5.6)

for a constant c > 0 depending only on d and a lower bound for α.

PROOF. We may assume with loss of generality that � = 0. The goal is to find
an explicit subsolution, taking advantage of the trap near the origin and the fact that
the ellipticity is larger than λ−1∗ . Set β := 1 − 2dλ∗ > 0, a = (1 − β)/2 = dλ∗ > 0
and

φ(x) := −(
a + |x|2)β/2

.

The Hessian of φ is given by

D2φ(x) = β
(
a + |x|2)β/2−2

((
(1 − β)|x|2 − a

)x ⊗ x

|x|2 − (
a + |x|2)(

I − x ⊗ x

|x|2
))

.

For μ ≤ λ∗, we find that

P−
μ,1

(
D2φ(x)

) ≤ β
(
a + |x|2)β/2−2(

(β − 1 + a) + (a + 1)μ(d − 1)
) ≤ 0

in Rd \ B1

and, for a constant C > 0 depending only on d ,

P−
μ,1

(
D2φ(x)

) ≤ Cμ
(
a + |x|2)β/2−2 ≤ Cμλβ/2−2∗ in B1.

Now suppose x0 ∈ Pk(ω) such that |x0| < t(log t)1/d . Then for a small con-
stant c > 0 depending only on dimension, the function

ψ(x) := ct1+α(log t)3λ2−β/2∗ φ(x − x0)

satisfies

P+
λ(x,ω),1

(
D2ψ

) ≤ 1 in Rd .

By the comparison principle,

ψ(0) − v(0) ≤ max
∂BR

(ψ − v) = max
∂BR

ψ,
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which yields, for T := t (log t)1/d ,

v(0) ≥ ψ(0) − max
∂BR

ψ

≥ ct1+α(log t)3λ2−β/2∗
(−(

a + T 2)β/2 + (
a + (R − 1)2)β/2)

≥ ct1+α(log t)3λ2−β/2∗ T β (since R > 10T > 100a)

= (
cλ2−β/2∗

)
T 1+α+β(log t)q,

where q := 3 − (1 + α)/2 > 0. By taking λ∗ := α/2d so that α + β + 1 = 2, and
noting that R(t) = 10T , we obtain (5.6). �

The above lemma, after rescaling and in light of (5.5), implies that the differ-
ence of uε and the paraboloid c(log t)q(1 − |x|2), with ε = t−2, cannot achieve its
maximum on B1 except in a boundary strip of ∂B1 of width at most t−1 = √

ε.
This easily gives that uε → +∞ locally uniformly in B1 with at least rate | log ε|q .

APPENDIX: ELEMENTARY PROPERTIES OF THE OBSTACLE PROBLEM

For the convenience of the reader, we briefly review (and sketch the proofs of)
some well-known properties of the obstacle problem{

min
{
F

(
D2w,y

)
,w

} = 0, in V ,

w = 0, on ∂V .
(A.7)

We have dropped the dependence of F on ω since the random environment plays
no role here, and we furthermore assume that F is uniformly elliptic by the remarks
preceding Theorem 1.

First of all, problem (A.7) has a unique solution w ∈ C(�V ), which may be ex-
pressed as the least nonnegative supersolution of F = 0 in V :

w(x;V ) = inf
{
u(x) :u ≥ 0 in V and F

(
D2u,y

) ≥ 0 in V
}
.(A.8)

This from the Perron method and the fact that the obstacle problem has a compar-
ison principle. Immediate from this expression is that w is a global subsolution:

F
(
D2w,y

) ≥ 0 in V(A.9)

as well as the monotonicity property:

V ⊆ W implies that w(·;V ) ≤ w(·;W) on �V .(A.10)

In order to use some regularity theory, we also need the fact that w satisfies

F
(
D2w,y

) ≤ kχ{w=0} in V where k := sup
y∈V

(
F(0, y)

)
+.(A.11)

This is typically handled by considering an approximate equation with a penalty
term (the Levy–Stampacchia penalization method) whose solutions satisfy (A.11)
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and showing that their uniform limit is w. We instead opt for a more natural and
simpler proof by showing that w is also given by the formula

w(x;V ) = sup
{
u(x) :u ≤ 0 on ∂V and F

(
D2u,y

) ≤ kχ{u≤0} in V
}
.(A.12)

It is clear that (A.12) implies (A.11). To check the former, we let ŵ denote the
expression on the right-hand side and observe that, since the zero function belongs
to the admissible class by the definition of k, we have ŵ ≥ 0. The Perron method
implies that ŵ satisfies F(D2ŵ, y) = 0 in {ŵ > 0}. Therefore, ŵ is a solution
of (4.1), and by uniqueness we deduce w = ŵ.
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