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In the last two decades many random graph models have been proposed
to extract knowledge from networks. Most of them look for communities
or, more generally, clusters of vertices with homogeneous connection pro-
files. While the first models focused on networks with binary edges only,
extensions now allow to deal with valued networks. Recently, new models
were also introduced in order to characterize connection patterns in networks
through mixed memberships. This work was motivated by the need of analyz-
ing a historical network where a partition of the vertices is given and where
edges are typed. A known partition is seen as a decomposition of a network
into subgraphs that we propose to model using a stochastic model with un-
known latent clusters. Each subgraph has its own mixing vector and sees its
vertices associated to the clusters. The vertices then connect with a probabil-
ity depending on the subgraphs only, while the types of edges are assumed
to be sampled from the latent clusters. A variational Bayes expectation-
maximization algorithm is proposed for inference as well as a model selection
criterion for the estimation of the cluster number. Experiments are carried out
on simulated data to assess the approach. The proposed methodology is then
applied to an ecclesiastical network in Merovingian Gaul. An R code, called
Rambo, implementing the inference algorithm is available from the authors
upon request.

1. Introduction. Since the original work of Moreno (1934) on sociograms,
network data has become ubiquitous in Biology [Albert and Barabási (2002), Milo
et al. (2002), Palla et al. (2005)] and computational social sciences [Snijders and
Nowicki (1997)]. Applications range from the study of gene regulation processes
to that of social interactions. Network analysis was also applied recently to a me-
dieval social network in Villa, Rossi and Truong (2008), where the authors find
a clustering of vertices through kernel methods. Both deterministic and probabilis-
tic methods have been used to seek structure in these networks, depending on prior
knowledge and assumptions on the form of the data. For example, Hofman and
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Wiggins (2008) looked for a partition of the vertices where the clusters exhibit a
transitivity property. The model of Handcock, Raftery and Tantrum (2007), on the
other hand, assumes the relations to be conditioned on the projection of the ver-
tices in a latent social space. Notable among the community discovery methods,
though asymptotically biased [Bickel and Chen (2009)], are those based on the
modularity score given by Girvan and Newman (2002).

Many of the other currently used methods derive from the stochastic block
model (SBM) [Nowicki and Snijders (2001), Wang and Wong (1987)], which is
a probabilistic generalization [Fienberg and Wasserman (1981)] of the method ap-
plied by White, Boorman and Breiger (1976) to Sampson’s famous monastery
data. SBM assumes that each vertex belongs to a hidden cluster and that connec-
tion probabilities between a pair of vertices depend exclusively on their clusters,
as in Frank and Harary (1982). The parameters and clusters are then inferred to
optimize a criterion, usually a lower bound of an integrated log-likelihood. Thus,
Latouche, Birmelé and Ambroise (2011) used an approximation of the marginal
log-likelihood, while Daudin, Picard and Robin (2008) considered a Laplace
approximation of the integrated classification log-likelihood. A nonparametric
Bayesian approach was also introduced by Kemp et al. (2006) to estimate the
number of clusters while clustering the vertices. SBM was extended by the mixed
membership stochastic block model (MMSBM) [Airoldi et al. (2008)], which al-
lows a vertex to belong to different clusters in its relations toward different vertices,
and by the overlapping stochastic block model (OSBM) [Latouche, Birmelé and
Ambroise (2011)], which allows a vertex to belong to no cluster or to several at
the same time. More recent works focused on extending MMSBM to dynamic net-
works [Xing, Fu and Song (2010)] or dealing with nonbinary networks, such as
networks with weighted edges [Soufiani and Airoldi (2012)]. Goldenberg, Zheng
and Fienberg (2010) and Salter-Townshend et al. (2012) provide extensive reviews
of statistical network models.

In this paper we aim at clustering the vertices of networks with typed edges
and for which a partition of the nodes into subgraphs is observed and bears some
importance in their behavior. For example, one may be interested in looking for la-
tent clusters in a worldwide social network describing social interactions between
individuals where different countries, or at a different scale, different regions of
the world, have different connectivity patterns. We might also observe the same
kind of phenomenon between different scientific fields in a citation network. This
kind of network may be modelled using generalized linear models [Fienberg and
Wasserman (1981)] by incorporating the observed partition information as covari-
ates and the clusters serving as random effects or a p1 model [Holland and Lein-
hardt (1981)], where the clusters allow for the estimation of interactions. However,
we consider here a different strategy and propose an extension of the SBM model
which has the advantage of relying on easy to interpret parameters. Indeed, SBM
parameters are not expressed through nonlinear functions like the log or logistic
functions and this allows an easy interpretation for nonstatisticians.
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This point is of crucial interest in this work because we aim at providing histo-
rians with insight into the relationships between ecclesiastics and notable people
in the kingdoms that made up Merovingian Gaul, by analyzing a network charac-
terizing their different kinds of relations. Specifically, the data set focuses on the
relationships between individuals built during the ecclesiastical councils which
took place in Gaul during the 6th century. These councils were convened under the
authority of a bishop to discuss specific questions relating to the Church. Though
consisting mainly of clergymen, laics would also occasionally take part, as repre-
sentatives of the secular power or experts in the questions discussed. These assem-
blies shaped a significant part of that period, and we are interested in discovering
how they reflected the relationships between various groups of individuals. For
this network, extra information on the vertices, namely, a geographical partition,
is available, associating each individual to a specific kingdom. This partition in-
duces a decomposition of the network into subgraphs and we aim at modelling the
connection pattern of each subgraph through latent clusters.

Thus, in this paper, we propose a new model, that we call the random subgraph
model (RSM), for the analysis of directed networks with typed edges for which
a partition of the vertices is available. On the one hand, we consider that the prob-
ability of observing an edge between two vertices depends solely on the subgraphs
to which the vertices belong. On the other hand, we assume that each vertex be-
longs to a hidden cluster, with a probability depending on its subgraph. Then, if
a relation is present, its type is drawn from a multinomial distribution whose pa-
rameters depend on the clusters to which the vertices belong. Let us emphasize
that the latter property allows, once the inference is done, to compare the different
subgraphs.

The choice of proposing a probabilistic rather than a deterministic model is
again motivated by the nature of the historical network we consider. Indeed, as
mentioned in Section 4, the data set was built from a collection of data at hand
using sources such as council acts or narrative texts. However, the rarity of the
sources only allowed an incomplete or approximate characterization of the rela-
tions between individuals. Therefore, we rely on the probabilistic framework in
order to deal with the uncertainty on the edges. Moreover, we emphasize that prob-
abilistic methods for network analysis are appealing in general because they have
been shown to be flexible and capable of retrieving complex heterogeneous struc-
tures in networks [see, for instance, Airoldi et al. (2008), Goldenberg, Zheng and
Fienberg (2010)].

The article is organized as follows. The random subgraph model is presented
along with its inference algorithm in Section 2, then tested on simulated data and
compared to other models in Section 3. Our model is then applied to the eccle-
siastical network and the results are analyzed from the historical point of view
in Section 4. Concluding remarks and possible extensions are finally discussed in
Section 5.
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2. The random subgraph model. We consider a directed graph G with N

vertices represented by its N ×N adjacency matrix X along with a known partition
P of the vertices into S classes. Our goal is to cluster the network into K groups
with homogeneous connection profiles, that is, estimating a binary matrix Z such
that Zik = 1 if vertex i belongs to cluster k, 0 otherwise.

Let us now detail the notation. Each edge Xij , describing the relation between
the vertices i and j , is typed, that is, takes its values in a finite set {0, . . . ,C}. Note
that Xij = 0 corresponds to the absence of an edge. We assume that G does not
have any self loop and, therefore, the entries Xii will not be taken into account.
In order to simplify the notation when describing the model, we also consider the
binary matrix A with entries Aij such that Ai,j = 1 ⇐⇒ Xi,j �= 0.

We also emphasize that the observed partition P induces a decomposition of
the graph into subgraphs where each class of vertices corresponds to a specific
subgraph. We introduce the variable si which takes its values in {1, . . . , S} and is
used to indicate in which of the subgraphs vertex i belongs, for i ∈ {1, . . . ,N}.

2.1. The probabilistic model. The data is assumed to be generated in three
steps. First, the presence of an edge from vertex i to vertex j is supposed to follow
a Bernouilli distribution whose parameter depends on the subgraphs si and sj only:

Ai,j ∼ B(γsi ,sj ).

Each vertex i is then associated to a latent cluster with a probability depending
on si . In practice, if we assume for now that the number K of latent clusters is
known, the variable Zi is drawn from a multinomial distribution:

Zi ∼ M(1;αsi ),

where

∀s ∈ 1, . . . , S

K∑
k=1

αsk = 1.

A notable point of the model is that we allow each subgraph to have different mix-
ing proportions αs for the latent clusters. We denote hereafter α = (α1, . . . ,αS).
Finally, if an edge between i and j is present, that is, Aij = 1, its type Xij is
sampled from a multinomial distribution with parameters depending on the latent
clusters. Thus, if i belongs to cluster k and j to cluster l,

Xi,j |ZikZjl = 1, Aij = 1 ∼ M(1,�kl),

where the sum over the C types of each vector �kl = (�kl1, . . . ,�klC) is

∀(k, l) ∈ {1, . . . ,K}2
C∑

c=1

�klc = 1.
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If there is no edge between the two vertices, the entry Xij is simply set to Xij =
Aij = 0.

The model is therefore defined through the joint distribution

p(X,A,Z|α,γ ,�) = p(X,A|Z,γ ,�)p(Z|α)

= p(X|A,Z,�)p(A|γ )p(Z|α),

where

p(X|A,Z,�) =
K∏
k,l

C∏
c=1

(
�c

kl

)∑N
i �=j δ(Xij=c)AijZikZjl

and

p(A|γ ) =
N∏

i �=j

γ
Aij
ri ,rj (1 − γri,rj )

1−Aij .

Finally,

p(Z|α) =
N∏

i=1

K∏
k=1

α
Zik

ri ,k
.

We refer to the Appendix for the detailed calculation of the complete data log-
likelihood associated to the RSM model and summarize the model parameters in
Table 1.

We point out that the choice of separating the role of the known subgraphs and
the latent clusters was motivated by historical assumptions on the creation of rela-
tionships between individuals in Gaul during the 6th century. These assumptions
were at the core of the study of the ecclesiastical network we consider in this pa-
per. An alternative approach would consist in allowing the presence of an edge and

TABLE 1
Summary of the notation used in the paper

Notation Description

X Adjacency matrix. Xij ∈ {0, . . . ,C} indicates the edge type
A Binary matrix. Aij = 1 indicates the presence of an edge
Z Binary matrix. Zik = 1 indicates that i belongs to cluster k

N Number of vertices in the network
K Number of latent clusters
S Number of subgraphs
C Number of edge types
α αsk is the proportion of cluster k in subgraph s

� �klc is the probability of having an edge of type c between vertices of clusters k and l

γ γrs probability of having an edge between vertices of subgraphs r and s
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its type to depend on both the subgraphs and latent clusters. However, this would
dramatically increase the number of model parameters to be estimated. Indeed, for
a network with S = 6, K = 6, and C = 4, it would require K2S2(C + 1) + SK =
6516 parameters while RSM only involves S2 + K2C + SK = 216 parameters.

2.2. Bayesian framework. We consider a Bayesian framework and introduce
conjugate prior distributions. Thus, since Zi is sampled from a multinomial distri-
bution, we rely on a Dirichlet prior to model the parameters αs :

p(αs) = Dir
(
αs;χ0

s1, . . . , χ
0
sK

) ∀s ∈ {1, . . . , S}.
A similar distribution is used as a prior distribution for the parameters �kl :

p(�kl) = Dir
(
�kl;�0

kl1, . . . ,�
0
klC

) ∀(k, l) ∈ {1, . . . ,K}2.

If no prior information is available, a common choice in the literature consists in
fixing the hyperparameters of the Dirichlet to 1/2, that is, χ0

sk = 1/2,∀(s, k) and
�klc = 1/2,∀(k, l, c). Such a distribution corresponds to a noninformative Jeffreys
prior distribution which is known to be proper [Jeffreys (1946)]. A uniform distri-
bution can also be obtained by setting the hyperparameters to 1.

Finally, since the presence or absence of an edge between a pair of vertices is
drawn from a Bernoulli distribution, we rely on a beta prior for the parameters γrs :

p(γrs) = Beta
(
γrs;a0

rs, b
0
rs

) ∀(r, s) ∈ {1, . . . , S}2.

Again, if no prior information is available, both hyperparameters a0
rs and b0

rs can be
set to 1/2 or 1 to obtain noninformative prior distributions, respectively, a Jeffreys
or a uniform distribution. Figure 1 presents the graphical model associated with
the RSM model.

2.3. Inference with the variational Bayes EM algorithm. Given the ob-
served matrices X and A, we aim at estimating the posterior distribution
p(Z,α,γ ,�|X,A), which in turn will allow us to compute a maximum a pos-
teriori estimate of the clustering structure Z as well as the parameters (α,γ ,�).

FIG. 1. Graphical representation of the RSM model.
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Because this distribution is not tractable, approximate inference procedures are
required. The Markov chain Monte Carlo (MCMC) sampling scheme is a widely
used approach which consists in sampling from tractable conditional distributions.
After a burn-in period, samples are assumed to be drawn from the true posterior
distribution. One of the main advantages of the MCMC algorithm is that it can
characterize the uncertainty in model parameters. Moreover, the convergence of
the Markov chain and therefore the quality of the approximation can be tested.

Unfortunately, the MCMC algorithm has a poor scaling with sample sizes. This
motivated the work of Daudin, Picard and Robin (2008) who proposed a variational
approach for the SBM model which can deal with large networks contrary to the
MCMC method of Nowicki and Snijders (2001). In general, the main drawback
of variational techniques is that, although they can produce a good estimate of the
model parameters or find the mode of the posterior distribution, they usually cannot
uncover the uncertainty in the model parameters and tend to underestimate poste-
rior variances. Furthermore, the quality of the variational approximation cannot be
tested in most cases since the KL divergence between the true and approximate
posterior distribution is not tractable.

However, recent results [Celisse, Daudin and Pierre (2012), Mariadassou and
Matias (2014)] gave some new insights on the form of the true posterior distribu-
tion in the case of the SBM model and showed that the corresponding variational
estimates were consistent. In light of these recent results and because we aim at
proposing an inference procedure capable of handling large networks, we rely in
the following on a variational Bayes EM (VBEM) algorithm.

Thus, given a distribution q(Z,α,γ ,�), the marginal log-likelihood can be
computed in two terms,

logp(X,A) = L(q) + KL
(
q(·)‖p(·|X,A)

)
,

where L is defined as follows:

L(q) = ∑
Z

∫
α,γ ,�

q(Z,α,γ ,�) log
(

p(X,A,Z,α,γ ,�)

q(Z,α,γ ,�)

)
dα dγ d�

and the KL divergence is given by

KL
(
q(·)‖p(·|X)

)
= −∑

Z

∫
α,γ ,�

q(Z,α,γ ,�) log
(

p(Z,α,γ ,�|X,A)

q(Z,α,γ ,�)

)
dα dγ d�.

Finding the best approximation of the posterior distribution p(Z,α,γ ,�|X,A)

in the sense of the KL divergence becomes equivalent to finding q(·) that maxi-
mizes the lower bound L(q) of the integrated log-likelihood. To obtain a tractable
algorithm, we assume that q(·) can be fully factorized, that is,

q(Z,α,γ ,�) =
(

N∏
i=1

q(Zi )

)(
S∏

s=1

q(αs)

S∏
t=1

q(γs,t )

)
K∏
k,l

q(�k,l).
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Algorithm 1 VBEM algorithm for the RSM model (see text for details)
Initialize matrix τ = Z with k-means
Initialize hyperparameters θ0 = {χ0, (a0,b0),�0}
Compute L(q)

while |θnew − θold| ≥ ε do
E step: update τ
M step: update θnew = {χ , (a,b),�}
Compute L

end while

The functional optimization of the lower bound with respect to q(·) is performed
using a VBEM algorithm (see Algorithm 1). All the optimization equations are
given in the Appendix. We emphasize that the functional form of the prior distri-
butions is preserved through the optimization. In particular, q(Z) is given by

q(Z) =
N∏

i=1

q(Zi ) =
N∏

i=1

M(Zi;1,τ i ),

where τik is a variational parameter denoting the probability of node i to belong to
cluster k. The approximate posterior distributions over the other model parameters
(α,γ ,�) depend on parameters that we denote θ = {χ , (a,b),�}, respectively.

2.4. Initialization. The VBEM algorithm, though useful in approximating
posterior distributions of graphical models, is only guaranteed to converge to a lo-
cal optimum [Bilmes (1998)]. Strategies to tackle this issue include simulated
annealing and the use of multiple initializations [Biernacki, Celeux and Govaert
(2003)]. In this work, we choose the latter option. In order to have a better chance
of reaching a global optimum, VBEM is run for several initializations of a k-means
like algorithm with the following distance d(i, j) between the vertices i and j :

d(i, j) =
N∑

h=1

δ(Xih �= Xjh)AihAjh +
N∑

h=1

δ(Xhi �= Xhj )AhiAhj .(1)

The first term looks at all possible edges from i and j toward a third vertex h.
If both i and j are connected to h, that is, AihAjh = 1, the edge types Xih and
Xjh are compared. By symmetry, the second term looks at all possible edges from
a vertex h to both i as well as j , and compare their types. Thus, the distance
computes the number of discordances in the way both i and j connect to other
vertices or vertices connect to them. The algorithm starts by sampling the cluster
centers among all the vertices of the network. It then iterates a two-step procedure
until convergence of the cluster centers. In the first step, the vertices are classified
into the cluster with the closest center. Each cluster center is then associated to a
vertex minimizing its distance with all the vertices of the corresponding cluster.
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2.5. Choice of K . So far, the number K of latent clusters has been assumed
to be known. Given K , we showed in Section 2.3 how an approximation of the
posterior distribution over the latent structure and model parameters could be ob-
tained. We now address the problem of estimating the number of clusters directly
from the data. Given a set of values of K , we aim at selecting K∗ for which the
marginal log-likelihood logp(X|K) is maximized. However, because this inte-
grated log-likelihood involves a marginalization over all the model parameters and
latent variables, it is not tractable. Therefore, we propose to replace the marginal
log-likelihood with its variational approximation, as in Bishop (2006), Latouche,
Birmelé and Ambroise (2009), Latouche, Birmelé and Ambroise (2012). Thus, for
each value of K considered, the VBEM algorithm is applied. We recall that the
maximization of the lower bound induces a minimization of the KL divergence.
After convergence of the algorithm, the lower bound is used as an approximation
of logp(X|K) and K is chosen such that the lower bound is maximized. We prove
in the Appendix that, if computed right after the M step of the variational Bayes
EM, the lower bound has the following expression:

L(q) =
S∑
r,s

log
(

B(ars, brs)

B(a0
rs, b

0
rs)

)
+

S∑
s=1

log
(

C(χ s)

C(χ0
s )

)

+
K∑
k,l

log
(

C(�kl)

C(�0
kl)

)
−

N∑
i=1

K∑
k=1

τik log(τik),

where C(x) =
∏D

d=1 
(xd)


(
∑D

d=1 xd)
if x ∈ R

D , B(a, b) = 
(a)
(b)

(a+b)

,∀(a, b) ∈ R
2, and 
(·)

is the gamma function. See the Appendix for the definition of ars , brs , χs , �kl

and τik .

3. Numerical experiments and comparisons. In this section we first run ex-
periments aimed at proving the validity of our model, focusing on the ability of its
inference procedure to find the right clustering. We then compare its performance
to that of other stochastic models for graph clustering.

3.1. Experimental setup. In order to evaluate the performance of our ap-
proach, we applied it on data generated according to the RSM model. To simplify
the parameterization and facilitate the reproducibility of the experiments, we con-
strained the parameters � and γ to have the following forms:

� =

⎡
⎢⎢⎢⎣

u v · · · v

v u
. . .

...
...

. . .
. . . v

v · · · v u

⎤
⎥⎥⎥⎦ , γ =

⎡
⎢⎢⎢⎣

λ ε · · · ε

ε λ
. . .

...
...

. . .
. . . ε

ε · · · ε λ

⎤
⎥⎥⎥⎦ ,

where λ, ε ∈ [0,1] and u,v ∈ [0,1]K . With such a parameterization, the probabil-
ity λ of an edge within a subgraph is assumed to be common between subgraphs
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FIG. 2. Example of a RSM network for S = 2 subgraphs (indicated by the node forms), C = 3 types
of edges (indicated by the edge colors) and K = 3 clusters to identify (indicated by the node colors).

and the probability ε of a connection between different subgraphs is also assumed
to be the same for all couples of subgraphs. Similarly, the vector u controls the
probability of each edge type between nodes of a same cluster, whereas v defines
the edge type probabilities between nodes of different clusters. We recall that the
prior probabilities of each group within each subgraph are given by the parameter
α = (α1, . . . ,αS).

Figure 2 presents an example of a network generated this way with parameters
S = 2, C = 3, K = 3, α = [ 0.1 0.3 0.6

0.6 0.3 0.1

]
, λ = 0.6, ε = 0.06, u = (0.8,0.1,0.1) and

v = (0.1,0.3,0.6). This RSM network is made of 30 nodes with S = 2 subgraphs
(indicated by the node forms), C = 3 types of edges (indicated by the edge colors)
and K = 3 clusters that have to be identified in practice (indicated by the node
colors).

In order to illustrate, on various situations, that RSM is a relevant model and that
its corresponding inference procedure provides an accurate estimation of the true
clustering structure, we rely in the following paragraphs on three types of graphs,
described in Table 2. The three scenarios considered correspond to different sit-
uations ranging from an almost classical setup to a more specific one. The first
scenario considers networks with no subgraphs (S = 1) and with a preponderant
proportion of edges of type 1 (u1 = 0.8) and 3 (u3 = 0.8). The second scenario
still considers networks with no subgraphs (S = 1) but with balanced proportions
of edge types. Finally, the third scenario considers networks with several subgraphs
(S = 3) and balanced proportions for edge types. Therefore, the latter case should
be the more complex situation to fit.
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TABLE 2
Parameter values for the three types of graphs used in the experiments

Parameters Scenario 1 Scenario 2 Scenario 3

N 100 100 100
S 1 1 3
C 3 3 3
K 3 3 3

α (0.3, 0.3, 0.4) (0.3, 0.3, 0.4)

⎡
⎣ 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

⎤
⎦

u (0.8, 0.1, 0.1) (0.5, 0.45, 0.05) (0.5, 0.45, 0.05)
v (0.1, 0.1, 0.8) (0.1, 0.45, 0.45) (0.1, 0.45, 0.45)
λ 0.2 0.2 0.2
ε 0.06 0.06 0.1

The VBEM algorithm with multiple initializations, presented in Section 2, is
used in the following experiments. For a given value of K , the result with the
best value for L(q) is chosen among the multiple initializations. Then, a cluster-
ing partition is deduced from the posterior probabilities τik using the maximum
a posteriori (MAP) rule, that is, a node is assigned to the group with the highest
posterior probability.

Since our approach aims to search the unobserved clustering partition of the
nodes, we chose here to evaluate the results of our VBEM algorithm by comparing
the resulting partition with the actual one (the simulated partition). In the cluster-
ing community, the adjusted Rand index (ARI) [Rand (1971)] serves as a widely
accepted criterion for the difficult task of clustering evaluation. The ARI looks at
all pairs of nodes and checks whether they are classified in the same group or not
in both partitions. As a result, an ARI value close to 1 means that the partitions
are similar and, in our case, that the VBEM algorithm succeeds to recover the
simulated partition.

3.2. Choice of K and inference results. In this first simulation study we aim
at evaluating the ability of the lower bound L(q) to serve as a criterion for se-
lecting the appropriate number K of clusters. To this end, the VBEM algorithm
for the RSM model was first run on a graph simulated according to scenario 1 for
several values of K . The highest criterion values among the different initializa-
tions obtained for each value of K are presented in Figure 3. The figure indicates
that K = 3 seems to be the appropriate number of groups for the studied network,
which is the actual number of group.

We then replicated this experiment over 50 networks, still simulated according
to scenario 1, for both verifying the consistency of L(q) and studying the clustering
ability of our approach. Figure 4 shows the repartition of the criterion values (left
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FIG. 3. Criterion values L(q) vs. number K of groups for a graph simulated according to sce-
nario 1.

panel) as well as the associated ARI values (righ panel). These results confirm that
the lower bound L(q) is a valid criterion for selecting the number of groups. One
can also observe that the partition resulting from our VBEM algorithm has, for the
selected number of groups, a good adequation with the actual partition of the data.

3.3. Comparison with the stochastic block model. Our second set of experi-
ments compares the performance of RSM to that of other models on data drawn
according to its generative process. We were interested in the comparison with the
following models:

• binary SBM (presence): We fit a binary SBM using the R package mixer
[Ambroise et al. (2010)] on a collapsed version of the data to conform this spe-
cific model. The collapsed data were obtained by considering only the presence

FIG. 4. Repartition of the criterion (left panel) and ARI (right panel) over 50 networks generated
with the parameters of the first scenario.
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of the edges and not the type of the edges, that is, X̃ij = 0 if Xij = 0 and X̃ij = 1
otherwise.

• binary SBM (type 1, 2 or 3): We fit a binary SBM, still using the mixer package,
on the networks defined by taking only the edges of one type. For instance,
the collapsed network for type c = 1,2,3 was obtained by considering only the
presence of type c edges, that is, X̃ij = 1 if Xij = c and X̃ij = 0 otherwise.

• typed SBM: We consider here a SBM with discrete edges. Although SBM was
originally proposed in Nowicki and Snijders (2001) with discrete edges, existing
softwares only propose to fit a SBM on binary networks. We therefore had to
implement a version of the SBM which supports typed edges. Note that, in this
case, the types of edges are in {0, . . . ,C}, where 0 corresponds to the absence
of a relation.

• RSM: We run the VBEM algorithm, that we proposed in Section 2 for the in-
ference of the RSM model, with the available subgraph partition and with 5
random initializations for each run.

Table 3 presents the average ARI values and standard deviations on 50 simulated
graphs for each scenario and with binary SBM, typed SBM and RSM. We point
out that the inference is done with the actual number of clusters and this for each
method. One can observe that, for the first scenario, the binary SBM based on
the link presences and the type 2 SBM always fails, whereas type 1, type 3 and
typed SBM work pretty well. Those behaviors can be explained by the nature of
scenario 1, which is a rather easy situation with no subgraphs and a predominant
presence of type 1 and type 2 links. However, we can remark that it seems easier
in this case to fit a binary SBM on type 1 or type 2 edges than to fit a typed SBM.
This is due to the high discriminative power of type 1 and type 2 edges in this
specific scenario. Let us also remark that RSM works perfectly here even though
the network does not contain any subgraphs.

Regarding scenario 2, which considers a situation where there is still no sub-
graphs but with more balanced proportions of the different edge types, one can

TABLE 3
Average ARI values and standard deviations for binary SBM, typed SBM and RSM according to the

three simulation scenarios. The results are averaged on 25 simulated graphs for each scenario

Method Scenario 1 Scenario 2 Scenario 3

Binary SBM (presence) 0.001 ± 0.012 0.001 ± 0.013 0.239 ± 0.061
Binary SBM (type 1) 0.976 ± 0.071 0.494 ± 0.233 −0.372 ± 0.262
Binary SBM (type 2) 0.001 ± 0.006 −0.003 ± 0.006 0.179 ± 0.097
Binary SBM (type 3) 0.959 ± 0.121 0.519 ± 0.219 0.367 ± 0.244

Typed SBM 0.694 ± 0.232 0.472 ± 0.339 0.360 ± 0.162

RSM 1.000 ± 0.000 0.981 ± 0.056 0.939 ± 0.097
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first notice that binary SBM and type 2 SBM fail once again. The type 1 and
type 3 SBM have now a behavior closer to the one of typed SBM, whereas RSM
gives very accurate results once again. Finally, scenario 3 considers a RSM-type
network, that is, with several subgraphs, and all SBM-based algorithms are signif-
icantly outperformed by RSM, which succeeds in exploiting both the information
carried by different edge types and by the different subgraphs. To summarize, the
RSM model and its associated VBEM algorithm turn out to be effective on situa-
tions ranging from classical setups without subgraphs to complex scenarios with
subgraphs and typed edges.

4. Ecclesiastical network. This section now focuses on applying the RSM
model to the ecclesiastical network, that we briefly described in the Introduction
and that initially motivated this work, and on analyzing its results from the histor-
ical point of view.

Please note that the ecclesiastical network along with a file giving the kingdoms
of all vertices in the network and an R code implementing the variational inference
approach for the RSM model are provided as supplementary materials in Jernite
et al. (2013).

4.1. Description of the data. The relational data considered in this section
were mainly built from written acts of ecclesiastical councils that took place in
Merovingian Gaul during the 6th century. A council is an ecclesiastical meeting,
usually called by a bishop, where issues regarding the Church or the faith are ad-
dressed. However, since 511, kings could also call for a council to discuss some po-
litical, judiciary or legal issues, and that laics (kings, dukes or counts, e.g.) would
attend. During the 6th century, 46 councils took place in Gaul. Although there were
mostly local or regional councils, attended by individuals from a specific ecclesi-
astical province, there were some national councils convened under the authority
of a king.

The composition of these councils is known thanks to the acts written at the end
of the meeting, and which were signed by all attending members. In addition to
the council acts, we used narrative texts (among which is the famous Ten History
Books by Gregory of Tours), hagiographies or letters which also describe these
councils. The network, that took over 18 months to build from these historical
sources, contains N = 1331 individuals who held one or several offices in Gaul
between the years 480 and 614, and who we know to have been related or to have
met during their lifetime.

The council acts and the other historical sources allowed also to qualify the
type of the relationship between the individuals involved in the network. However,
the scarcity of the sources only allowed for an approximate characterization of
these relationships. As a consequence, C = 4 relation types were qualified and the
relationships can be either positive, negative, variable or neutral (when the type
was unknown). For instance, a positive relationship may describe an agreement
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between two clergymen on a question of faith, whereas a negative one may be
a disagreement on such a question. Variable relationships usually correspond to
relationships which change over time.

Using the different sources, it was also possible to obtain additional information
on the individuals. In particular, the geographical positions of the offices hold by
the clergymen or the laics allowed us to split the network into S = 6 subgraphs.
Those 6 subgraphs correspond to the geographical partition of the Gaul at this
period (the kingdoms of Neustria, Austrasia and Burgondy, and the provinces of
Aquitaine and Provence), completed with an additional subgraph for individuals
for whom the information was not available. We also recorded the social positions
of the individuals in order to be able to interpret afterward the clusters found by
our method. These social positions can be, for instance, ecclesiastical positions
(bishops, deacon, archdeacon, abbot, priest, . . .) or titles of nobility (king, queen,
duke, earl, . . .).

To summarize, the network is made of N = 1331 individuals split into S = 6
subgraphs and whose relationships can be of C = 4 difference types. Figures
5 and 6 show some parts of the whole adjacency matrix associated to the net-
work where the dot colors indicate the type or relationships. The whole adjacency
matrix is provided in a zoomable pdf file as supplementary material [Jernite et al.
(2013)]. We expect the statistical analysis with RSM of this network to help us
understand how the behavior of an individual can be modeled through their be-
longing to a group. The use of a probabilistic approach, instead of a deterministic
one, makes particular sense here since at least a part of the historical sources are
subject to caution due to their nature and age. In History, this kind of approach
is more common to modernists or contemporarists than to medievists who rarely

FIG. 5. Adjacency matrix for the kingdom of Neustria (left block) and the province of Provence
(right block). The dot colors indicate the type or relationships: red = “negative,” green = “variable,”
black = “neutral” and blue = “positive.” Zoom on the paper electronic version for details.
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FIG. 6. Adjacency matrix for the kingdoms of Austrasia (left block) and Burgundy (right
block). The dot colors indicate the type or relationships: red = “negative,” green = “variable,”
black = “neutral” and blue = “positive.” Zoom on the paper electronic version for details.

have access to this kind of data. Let us finally notice that a “source effect” is ex-
pected due to the possible overrepresentation in our sources of some places (Neus-
tria by Gregory of Tours or Austrasia by Fredegar) or some individuals (in letters
or hagiographies).

4.2. Results. The VBEM algorithm that we proposed to infer the RSM model
was run on the network defined by these relations, where the subgraphs are the
provinces in which the individuals lived (Aquitaine, Austrasia, Burgondy, Neus-
tria, Provence or Unknown). The use of the lower bound L(q) allowed us to find 6
clusters.

To give some insight into the nature of the found clusters, Figure 7 presents the
repartition of the different social positions in the clusters. In view of these results,
some historical comments can be done. First, clusters 1 and 3 appear to be made
of the people who would attend local assemblies, provincial or diocesan councils.
The council of Arles, which took place in 554, would have had the same kind of
composition as cluster 3, while that of Auxerre, in 585, could well represent clus-
ter 1. Second, clusters 4 and 5 are more characteristic of aristocratic assemblies,
such as the council of Orange in 529. Third, clusters 2 and 6 have the same com-
positions as councils concerned with more political issues (those usually convened
by a king). Such a council took place in Orleans in 511. Let us, however, notice
that cluster 2 is composed of very few individuals, which might hurt the relevance
of its interpretation. Also, we might be able to further our understanding of the
composition of these clusters by taking into account the similarity of certain social
positions (such as “duke” and “earl”).
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FIG. 7. Repartition of the different social positions in the found clusters (restricted to the 10 most
frequent positions).

The relations between the different clusters, described by the parameter � and
shown in Figure 8, inform us further. Although the limitations expressed above
about the roughness of the relation types still apply, they nevertheless provide us
with interesting elements to confirm the coherence of the proposed model. First, it
is natural that we should find “neutral” relations at the local level, between clusters
1, 3 and 6. Indeed, local assemblies were the less documented ones in our sources.
On the other hand, the links between high level individuals are better known, be-
cause councils used to settle conflicts between aristocrats, which explains the pres-
ence of “negative” and “variable” relations. Finally, the positive relations between
cluster 3, 5 and 6 could represent the personal friendships documented by a col-
lection of letters between bishops.

After having described the political background represented by each of the clus-
ters, we can compare the organization of the different regions. Figure 9 presents
the cluster repartition (parameter α) in the different provinces. One can observe
that the clergy and noblemen of the different regions were concerned with very
different issues: Provence and Burgundy were more concerned with local ques-
tions (clusters 1 and 3), and less with political ones (clusters 2 and 6). The clusters



394 Y. JERNITE ET AL.

FIG. 8. Relations between the 6 found clusters (parameter �) for each relation type: negative,
variable, neutral and positive. For visualization purposes, the relation weights have been normalized
according to relation types.

concerned both with local (clusters 1 and 3) and high level (cluster 6) questions
are represented in Aquitaine. Conversely, all levels of power are represented in
Neustria. This could be the result of a “source effect,” as mentioned above. Let
us also notice that the council structures seem similar in Austrasia and Aquitaine:
sovereigns (kings and queens) are involved in the Church and frequently convene
councils in order to discuss political questions.

Some of these observations are confirmed by the estimate of parameter γ ,
which is given in a log scale by Figure 10. First, it shows a greater frequency
of relations between Aquitaine and Neustria, which comes both from a ge-
ographical and political proximity (Aquitaine is absorbed into Clovis’ king-
dom in 507, then divided and absorbed by Neustria in 511). One can also
see there another example of “source” effect, as our main source, Gregory of
Tours, was bishop in Neustria and raised in Aquitaine (next to his uncle, the
bishop of Clermont), which gave him a good knowledge of both provinces.
More enlightening is the relative disconnection of Burgondy and Provence, es-
pecially in regard to the provinces of Austrasia and Neustria, both heavily con-
nected.
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FIG. 9. Repartition of the 6 found clusters in the different Provinces (parameter α).

4.3. Conclusion from the historical point of view. A first analysis of the re-
sults of the RSM model confirms two well-known general facts. Indeed, our re-

FIG. 10. Estimated values for the parameter γ (in log scale).
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sults confirm the preponderance of local assemblies in 6th century Gaul and the
“source effect.” Nevertheless, further analysis of the found clusters and their re-
lations yields a better understanding of the period. In particular, the composition
of the found clusters reflect different archetypes of councils and different levels of
political concerns. Our results have also highlighted that the types of concerns of
each province are closely related to the frequency of their communications with
others.

Two limitations to these results remain, however. First, we are limited by the
scarcity of the historical documentation. It would be interesting to see whether
the use of more precise types of relations (ecclesiastical or secular, through which
media, . . .) could improve the results. Second, it would also be interesting for the
model to take into account temporal evolutions of the relations and clusters. In-
deed, one aspect of the data which is currently not addressed by the results of
RSM is its temporality. Nevertheless, this lack seems to have a limited impact here
since all clusters exhibit the same distribution of individuals over time, reflecting
the higher concentration of information in years 550 to 600 (when numerous con-
flicts were settled by councils: Paris 577, Chalon 579, Berny 580, Lyon 581, . . .).
The repartition of the different kinds of powers then seems to change little over
time on this short period.

5. Conclusion and further work. In this work we proposed a new stochastic
graph model, the random subgraph model, to deal with networks where a vertex
behavior is influenced by an observed partition variable. We derived a variational
Bayes EM algorithm to infer the model parameters from data and applied it to an
ecclesiastical network from Merovingian Gaul. The results of the fitted RSM en-
lightened us on the different levels of power present at this time in Gaul, and on
the different power structures of different regions. Let us highlight that the RSM
model allows in addition the comparison of subgraphs through the model param-
eters, in particular, the cluster proportions. We also would like to mention that
networks with typed edges and subgraphs can be encountered in many application
fields (such as biology, economics, archeology, . . .) and the RSM model should be
useful in these contexts as well.

One aspect, however, that RSM does not currently address is the temporality of
the data. Since this aspect can be found in many of the data sets we wish to apply
the RSM model to, we believe that a natural continuation of this work would be a
dynamic extension of the RSM model. Moreover, we plan to introduce a Chinese
restaurant process on the latent cluster structure in order to automatically esti-
mate the number of clusters while clustering the vertices. Finally, we would like
to consider the problem of visualizing such networks with typed edges and known
subgraphs.

APPENDIX: VARIATIONAL BAYES

In this final section we detail the computations that lead to the update rules given
in Section 2, and provide an explicit expression of the criterion L(q).
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PROPOSITION A.1. The complete data log-likelihood the RSM model is
given by

logp(X,A,Z,α,γ ,�)

=
N∑

i �=j

C∑
c=1

K∑
k,l

{
δ(Xij = c)ZikZjl log(�klc)

}

+
N∑

i=1

K∑
k=1

Zik log(αri ,k)

+
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i �=j

{
Aij log(γri ,rj ) + (1 − Aij ) log(1 − γri,rj )

}

+
S∑

s=1

logp(αs) +
S∑
r,s

logp(γrs) +
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k,l

logp(�kl).

PROOF.

logp(X,A,Z,α,γ ,�)
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+
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logp(γrs) +
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k,l

logp(�kl).
�

PROPOSITION A.2. The VBEM update step for the distribution q(γrs) is
given by

q(γrs) = Beta(γrs;ars, brs) ∀(r, s) ∈ {1, . . . , S}2,

where

ars = a0
rs + ∑

ri=r,rj=s

(Aij )
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and

brs = b0
rs + ∑

ri=r,rj=s

(1 − Aij ).

PROOF.

logq(γrs)

= EZ,α,γ \rs ,�
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Aij log(γrs) + (1 − Aij ) log(1 − γrs)

}
,

logp(γrs) + κ

= ∑
ri=r,rj=s

{
Aij log(γrs) + (1 − Aij ) log(1 − γrs)

}
,

(
a0
rs − 1

)
log(γrs) + (

b0
rs − 1

)
log(1 − γrs) + κ

=
(
a0
rs − 1 + ∑

ri=r,rj=s

Aij

)
log(γrs)

+
(
b0
rs − 1 + ∑

ri=r,rj=s

(1 − Aij )

)
log(1 − γrs) + κ,

where κ is a constant term. Hence, the functional form of the variational approxi-
mation q(γrs) corresponds to a Beta distribution with updated hyperparameters:

ars = a0
rs + ∑

ri=r,rj=s

(Aij )

and

brs = b0
rs + ∑

ri=r,rj=s

(1 − Aij ).
�

PROPOSITION A.3. The VBEM update step for the distribution q(Zi ) is given
by

q(Zi ) = M(Zi;1,τ i ) ∀i,

where
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.
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PROOF.
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where κ is a constant term. Hence, the functional form of the variational approxi-
mation q(Zi ) corresponds to a multinomial distribution, with updated parameters:
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PROPOSITION A.4. The VBEM update step for the distribution q(αs) is given
by

q(αs) = Dir(αs;χs) ∀s ∈ {1, . . . , S},
where

χsk = χ0
sk +

N∑
i=1

δ(ri = s)τik ∀k ∈ {1, . . . ,K}.

PROOF.
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where κ is a constant term. Hence, the functional form of the variational approx-
imation q(αs) corresponds to a Dirichlet distribution with updated hyperparame-
ters:

χsk = χ0
sk +

N∑
i=1

δ(ri = s)τik ∀k ∈ {1, . . . ,K}.
�

PROPOSITION A.5. The VBEM update step for the distribution q(�kl) is
given by

q(�kl) = Dir(�kl;�kl) ∀(k, l) ∈ {1, . . . ,K}2,

where
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=
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where κ is a constant term. Hence, the functional form of the variational approxi-
mation q(�kl) corresponds to a Dirichlet distribution with updated hyperparame-
ters:
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klc +

N∑
i �=j

δ(Xij = c)τikτjl ∀c ∈ {1, . . . ,C}.
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PROPOSITION A.6. When computed right after the M step, the lower bound
of the marginal log-likelihood is given by
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and
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∏D
d=1 
(xd)


(
∑D

d=1 xd)
, where 
(·) is the gamma function. Moreover,

if (a, b) ∈ R
2, then B(a, b) = 
(a)
(b)


(a+b)
. Finally,

log
(

p(X,A,Z,α,γ ,�)

q(Z,α,γ ,�)

)

=
S∑
r,s

{(
a0
rs − ars + ∑

ri=r,rj=s

Aij

)
log(γrs)

}

+
S∑
r,s

{(
b0
rs − brs + ∑

ri=r,rj=s

(1 − Aij )

)
log(1 − γrs)

}

+
S∑

s=1

K∑
k=1

{(
χ0

sk − χsk +
N∑

i=1

δ(ri = s)Zik

)
log(αsk)

}

+
K∑
k,l

C∑
c=1

{(
�0

klc − �klc +
N∑

i �=j

δ(Xij = c)ZikZjl

)
log(�klc)

}

−
N∑

i=1

K∑
k=1

Zik log(τik) +
S∑
r,s

log
(

B(ars, brs)

B(a0
rs, b

0
rs)

)

+
S∑

s=1

log
(

C(χ s)

C(χ0
s )

)
+

K∑
k,l

log
(

C(�kl)

C(�0
kl)

)
.
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Therefore, if L(q) is computed right after the M step,

L(q) =
S∑
r,s

log
(

B(ars, brs)

B(a0
rs, b

0
rs)

)
+

S∑
s=1

log
(

C(χ s)

C(χ0
s )

)

+
K∑
k,l

log
(

C(�kl)

C(�0
kl)

)
−

N∑
i=1

K∑
k=1

τik log(τik). �

SUPPLEMENTARY MATERIAL

Data and code (DOI: 10.1214/13-AOAS691SUPP; .zip). We provide the orig-
inal ecclesiastical network along with a file giving the kingdoms of all vertices in
the network and an R code implementing the variational inference approach for
the RSM model.
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