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HOW DO HETEROGENEITIES IN OPERATING ENVIRONMENTS
AFFECT FIELD FAILURE PREDICTIONS AND TEST PLANNING?

BY ZHI-SHENG YE∗,1, YILI HONG†,2 AND YIMENG XIE†,2

Hong Kong Polytechnic University∗ and Virginia Tech†

The main objective of accelerated life tests (ALTs) is to predict fraction
failings of products in the field. However, there are often discrepancies be-
tween the predicted fraction failing from the lab testing data and that from
the field failure data, due to the yet unobserved heterogeneities in usage and
operating conditions. Most previous research on ALT planning and data anal-
ysis ignores the discrepancies, resulting in inferior test plans and biased pre-
dictions. In this paper we model the heterogeneous environments together
with their effects on the product failures as a frailty term to link the lab fail-
ure time distribution and field failure time distribution of a product. We show
that in the presence of the heterogeneous operating conditions, the hazard rate
function of the field failure time distribution exhibits a range of shapes. Sta-
tistical inference procedure for the frailty models is developed when both the
ALT data and the field failure data are available. Based on the frailty mod-
els, optimal ALT plans aimed at predicting the field failure time distribution
are obtained. The developed methods are demonstrated through a real life
example.

1. Introduction.

1.1. Motivation. Most commercial products are sold with warranties. Before
a new product is launched to the market, it is extremely important to accurately
estimate the proportion of field returns within a given warranty period in order to
determine the monetary reserves for covering future warranty claims. The failure
information can be obtained through pre-launch accelerated life tests (ALTs) in a
timely fashion. In an ALT, a number of samples are tested under harsh conditions,
for example, a combination of high voltage, temperature, pressure, use rate, etc.,
which yields information on product reliability within a reasonable time frame.
Failure time data from the test are collected, analyzed and extrapolated to estimate
lifetime characteristics of interest at nominal use conditions based on some stress-
life models. There is a bulk of literature on ALT data analysis and optimal design
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of ALT experiments. See Pascual (2006), Ma and Meeker (2008), Guo and Liao
(2012) and Liu (2012), among others. The use conditions are implicitly assumed
to be homogeneous (same for all customers) in most ALT research, including the
above references.

After the product is sold to customers with a warranty, units that fail within the
warranty period are returned to the manufacturer for repair or replacement, which
are known as warranty claims. These warranty claim data reflect failure behaviors
of the product under actual use conditions. Analysis of these warranty return data
is useful because it validates the results from ALT data analysis, and can be used to
improve the accuracy of parameter estimation from the ALT. See Blischke, Karim
and Murthy (2011) for an overview of this topic.

However, large discrepancies between the results of ALT data analysis and field
failure data analysis are often found. Analysis of field failure data tends to suggest
higher variability in the product’s failure times compared with the result based on
ALT data analysis. Conceivably, this is because products in the field are usually
exposed to heterogeneous usage and operating conditions. A motivating example
is as follows.

Meeker, Escobar and Hong (2009) described an application involving an appli-
ance, which is called Appliance B. Appliance B contains a turbine device which
has two major failure modes: crack failure modes and wear failure modes. Engi-
neering knowledge suggests that it is reasonable to assume that these two failure
modes are independent. For illustration, we only consider the wear failure mode,
accounting for around 80% of the total field failures. Appliance B was sold with
a two-year warranty. Before its entry into the market, an ALT was conducted to
obtain reliability information of the product, in which 10 units were subject to a
wear test. Field failure data were also available during the subsequent warranty
tracking study of 4708 units with 93 wear failures. More details can be found in
Meeker, Escobar and Hong (2009).

According to the analysis in Section 5, the Weibull distribution provides a good
fit to the failure data from ALT, but it does not provide an adequate fit to the field
data. As we will argue, the discrepancy is largely due to the varying operating
conditions in the field. When varying operating conditions are taken into account,
theory suggests the use of other distributions for the field data, such as the Burr-XII
distribution, which do fit well.

1.2. Heterogeneous operating conditions. The operating conditions are dy-
namic in a number of ways. First off, products are used in different geographical
areas because of customer locations. Therefore, the operating environments (e.g.,
temperature, humility, etc.) are heterogeneous for units across the product popula-
tion. Second, different users have different usage behaviors. In a two-dimensional
warranty analysis, it is commonly assumed that the use rate of a customer is con-
stant and it varies across the customer population [Lawless, Crowder and Lee
(2009), Ye et al. (2013)]. Yang (2010) also observed that the field stress level may
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vary over the product population. Moreover, the usage profile can be time depen-
dent. As an example, Nelson (2001) reported a problem where the stress profile,
for example, pressure and temperature, over time for a seal in brake cylinders is
stochastic. The presence of variable operating conditions significantly influences
failures of the product. As suggested from consumer reports in February 1991
[Padmanabhan (1995)], the percentage of washer–dryer machines that ended up
with a warranty claim went up from 14% among those who reported an average of
one to four laundry loads per week to 25% among those who reported an average
in excess of eight loads per week. Furthermore, this pattern was observed across
brands consistently.

In the presence of heterogeneous operating conditions of the product popula-
tion, direct prediction of the proportion of warranty returns from ALT data anal-
ysis can be highly biased. In principle, the failure time distribution of the in-lab
testing units can be linked to that of the field population by taking into account
information about these dynamics in environments. The information includes the
types of significant dynamic environmental factors, the distributions for these fac-
tors as well as the acceleration relationships that relate each factor to the failure
process. Among these environmental factors, information about the use rate may
be the easiest to collect. For example, Meeker, Escobar and Hong (2009) and Yang
(2010) focused on modeling the effects of usage rates. Both studies assumed a con-
stant usage rate for an individual unit and a lognormal distribution for usage rates
across the product population. However, the field failure time distribution in Yang
(2010) does not have closed-form expressions, which makes analysis of field re-
turn data and verification of model assumptions (e.g., the lognormal assumption of
the usage rate distribution) very difficult, and which greatly complicates the ALT
planning for a new vintage of the product under similar environments. Even if the
distribution of the usage rate is available, say, from a customer survey, the mod-
els in these two studies still ignore other influential factors such as heterogeneous
customer locations. In fact, it is almost impossible to directly collect information
(i.e., distributions for each environmental factor and their respective effects on the
failure process) about all heterogeneous environmental factors other than the usage
rate.

1.3. Objectives and overview. This paper is an endeavor to answer the ques-
tion of how heterogeneities in operating environments affect predictions of field
failures and planning of ALTs. We treat the unobservable operating factors as
well as their effects on the product failure process as a “frailty,” through which the
lab failure time distribution of a product can be linked to the field failure time
distribution. The “frailty” is an unobservable random variable used to account
for heterogeneities caused by unobservable covariates. In its simplest form, the
frailty is an unobserved random proportionality factor that modifies the baseline
failure rate function of an individual, which is similar to the multiplicative effect
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of a covariate on the failure rate in Cox’s proportional hazard model. In biostatis-
tics, lifetime models with frailties have attracted much attention, for example, see
Hanagal (2011) for a book length treatment on this area. In reliability engineering,
the frailty is often called a random effect and also receives some applications, for
example, see Stefanescu and Turnbull (2006), Lawless and Crowder (2010) and
Ye and Chen (2014), among others. However, one challenge of using frailty is that
the resulting marginal distribution is often mathematically intractable.

This paper develops tractable frailty models that relate ALT failures to warranty
failures. We show that in the presence of the frailty, the hazard rate of a field unit
exhibits various shapes. An appropriate distribution for the frailty can be deter-
mined through joint modeling of both ALT data and warranty return data. Detailed
procedures to analyze the data and to collate the frailty distribution are developed.
The results enable the prediction of field failures for a future product through anal-
ysis of ALT data. We also derive optimal designs of ALT experiments for a new
vintage and show how the heterogeneities affect the optimal ALT design.

The remainder of the paper is organized as follows. Section 2 introduces the
gamma frailty model for linking lab test data and field failure data and investigates
possible shapes of the field failure rate. In Section 3 a procedure for statistical
inference of the frailty model is developed. We also extensively discuss the model
validation through hypothesis testing. Optimal ALT plans under the frailty model
are obtained in Section 4. Section 5 applies the frailty model to the Appliance B
example. Section 6 concludes the paper.

2. Linking lab failures and field failures. Under the stable lab testing con-
ditions, we assume the lifetime X of the product follows a Weibull distribution,
which is one of the most commonly used lifetime distributions. However, exis-
tence of the heterogeneous operating conditions influences lifetime of a field unit.
The basic idea is to introduce into the hazard rate an additional random parameter
Z that accounts for the heterogeneities. The frailty Z links the distribution of X to
that of the field failure time T . In this section, the frailty model is developed and
the hazard rate of T is investigated.

2.1. Failures in lab testing. As suggested by the extreme value theory, the
Weibull distribution is an appropriate lifetime model when the failure is caused
by the weakest flaw/link in a unit. It has been widely used for modeling lifetime
of products and components. The failure time X of a lab testing unit is assumed
to follow a Weibull distribution with the respective cumulative distribution func-
tion (c.d.f.) and probability density function (p.d.f.) given by

FX(x) = 1 − exp
[
−

(
x

α

)β]
, x > 0

and

fX(x) = β

α

(
x

α

)β−1

exp
[
−

(
x

α

)β]
, x > 0,(1)
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where α > 0 is the scale parameter and β > 0 is the shape parameter. The hazard
rate function of X is given by

hX(x) = β

α

(
x

α

)β−1

.(2)

It is well known that the hazard rate function is monotone increasing when β > 1
and monotone decreasing when 0 < β < 1.

2.2. Field failures: A gamma frailty model. When the product is sold to cus-
tomers, the operating conditions are heterogeneous and unobservable. The unob-
servable effects are described by a frailty Z. The frailty Z is constant for a unit
and varies across the product population. Conditional on Z, the lifetime of a field
unit follows the Weibull distribution with a hazard rate function given by

hT (t;Z) = ZhX(t) = Z × β

α

(
t

α

)β−1

.(3)

Because the baseline distribution is Weibull, this frailty model is similar to assum-
ing a random scale parameter α [Meeker and Escobar (1998), page 457]. Previ-
ously, Meeker, Escobar and Hong (2009) and Yang (2010) adopted such method
to accommodate information on the heterogeneities. However, the reason we do
not use a random scale parameter is that it is difficult, if not impossible, to find a
distribution for α such that the resulting field failure time distribution has a closed
form.

The distribution of Z depends on the heterogeneities of the field environments
as well as the effects of the random environments on the product. For example,
when the heterogeneities are caused by the random use rate U , previous research
suggests that the effect of U on product failures can be empirically described by
a power law relation Z = aUb, a, b > 0 are parameters, while the use rate distri-
bution tends to be unimodal and positively skewed. This leads to a unimodal and
positively skewed distribution for aUb. Therefore, distributions like the gamma
[Lawless, Crowder and Lee (2009), Majeske (2007)], lognormal [Lawless, Hu and
Cao (1995), Meeker, Escobar and Hong (2009)] and inverse Gaussian distributions
are appropriate for Z. Occasionally, the uniform distribution is also recommended
[Iskandar, Murthy and Jack (2005)]. The frailty Z includes the random usage rate
and, thus, it is reasonable to assume that it is also unimodal and positively skewed.
To specify a distribution family for the frailty Z, it is of advantage that the resulting
field failure distribution is tractable. This is because when the distribution of Z has
a closed form, we can easily collate the validity of the frailty distribution through
data analysis. We find that the families of gamma, inverse Gaussian and uniform
distributions for the frailty result in tractable distributions for T . In the motivat-
ing example described in Section 1.1, the frailty is found to be well described by
the gamma distribution. Therefore, this paper focuses on the gamma frailty model.
Development of the inverse Gaussian frailty model and the uniform frailty model
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is put in the supplemental material [Ye, Hong and Xie (2013)]. In fact, as sug-
gested by Singpurwalla (2006), the gamma distribution is highly flexible to reflect
p.d.f.s of most shapes and, thus, the gamma frailty model is applicable to similar
problems other than the Appliance B example.

In this section, we consider the gamma distribution with a threshold parameter
in order to demonstrate the fact that the hazard rate function of T exhibits various
shapes. The three-parameter gamma distribution with a threshold parameter γ has
a p.d.f. given by

ϕ(z) = μk(z − γ )k−1

�(k)
exp

[−μ(z − γ )
]
, z > γ.(4)

When the frailty follows a distribution specified by (4), it can be shown by
marginalizing Z out of (3) that the c.d.f. and p.d.f. of T are, respectively, given
by

FT (t) = 1 − [
(t/α)β/μ + 1

]−k exp
[−γ (t/α)β

]
,

fT (t) = β

α

(
t

α

)β−1[
(t/α)β

μ
+ 1

]−k{
γ + k

[(
t

α

)β

+ μ

]−1}
(5)

× exp
[
−γ

(
t

α

)β]
.

It is interesting to note that when γ = 0, model (5) reduces to the Burr-XII dis-
tribution. The Burr-XII distribution has been used in reliability analysis by a few
researchers, for example, see Shao (2004), Soliman (2005), Zimmer, Keats and
Wang (1998) and Wang and Cheng (2010), to name a few. However, the Burr-XII
distribution is much less popular than the lognormal distribution. Nevertheless,
this distribution has several advantages over the lognormal distribution. Similar to
the lognormal distribution, the Burr-XII distribution also has a unimodal hazard
rate. But compared with the lognormal distribution, the Burr-XII distribution is
more flexible in analysis of survival data. For example, parameters of the Burr-
XII distribution can be determined through a simple probability plotting proce-
dure [Zimmer, Keats and Wang (1998)]. In addition, it has greater mathematical
tractability when dealing with censored data which are very common in lifetime
data analysis. The contribution of a right-censored observation to the likelihood
is equal to the value of the survival function at the time of censoring, which can
be evaluated explicitly for the Burr-XII distribution, but not for the log-normal
distribution.

When γ = 0, the mean and variance of the frailty variable Z are k/μ and k/μ2,
respectively. If we fix k/μ at a constant and let μ → ∞, then the distribution of Z

will degenerate to a single point, and the Burr-XII distribution will also degenerate
to a Weibull distribution. This is legitimate because under such circumstance, there
is no variation in the frailty. The log-logistic distribution, a common distribution
used in lifetime data analysis, is also a special case of model (5), when γ = 0 and
k = 1.
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2.3. Hazard rate for units in the field. In reliability assessment, the shape of
the hazard rate reflects the early failure and aging behavior of the product. There-
fore, it is important to know the shape with a view to scheduling preventive main-
tenance and detecting possible early failure modes. The hazard rate function of Z

can be readily obtained by dividing the p.d.f. by the survival function, that is,
1 − FT (t), which gives

hT (t) = γβ

α

(
t

α

)β−1

+ kβtβ−1

tβ + μαβ
.(6)

The hazard rate of this distribution exhibits various shapes, as can be checked
through the first order derivative of (6) with respect to t . By and large, the hazard
rate could have four possible shapes, as summarized below.

Case 1. β ≤ 1.
The hazard rate hT (t) is decreasing in t . Specifically, when β < 1, hT (t) de-

creases from ∞ to 0. When β = 1, hT (t) decreases from γ + k/μ to γ . This is
because a mixture of distributions with decreasing hazard rates has a nonincreasing
hazard rate.

Case 2. γ > 0, β > 1, β2 − β < k
4γμ

.
The hazard rate hT (t) exhibits an N-shape.
Case 3. γ > 0, β > 1, β2 − β > k

4γμ
.

The hazard rate hT (t) is increasing.
Case 4. γ = 0 and β > 1.
The hazard rate hT (t) has an upside-down bathtub shape.

Some typical curves of the hazard rate are depicted in Figure 1. It is interesting
to see that when β > 1, the hazard rate under lab conditions is increasing, but the

FIG. 1. Illustrations of some shapes of the hazard function in (6): (a) γ = 0, α = 1, k = 1; and
(b) γ = 1, α = 1, k = 1.
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hazard rate of a field unit can be either increasing, unimodal or N-shape. When
the hazard rate of T is unimodal or N-shape, the initial hazard rate can be very
high, as can be seen from the dash dotted lines in Figure 1. In practice, when a
manufacturer observes a high hazard rate at the early stage, he may suspect that it
is the infant mortality caused by defects. The analysis in this section reveals that
early failures can also be caused by units operated under harsh environments (i.e.,
large realizations of Z). These units are more likely to fail and, hence, more “frail”
than other field units.

3. Statistical inference. Information about the distribution of the frailty can
be obtained through a joint analysis of lab data and field data. In the previous
section we adopt the three-parameter gamma distribution with a threshold parame-
ter γ for the frailty Z to set forth the fact that the field hazard rate can have various
shapes in the presence of heterogeneous operating conditions. In reality, the frailty
Z often ranges from zero to infinity. Thus, this section focuses on the case when
the frailty follows a regular two-parameter gamma distribution (i.e., γ = 0), under
which the field failure time T follows the Burr-XII distribution.

Suppose that n units are tested in the lab and xi is the observed failure time or
censoring time for the ith unit. Further, let δi be the censoring indicator, where
δi = 0 when the unit is right censored and 1 otherwise. Therefore, for the ith lab
unit, we observe (xi, δi). Similarly, suppose we observe the failure times of N

field units (tj , δ̃j ), j = 1,2, . . . ,N , where the field-data censoring indicator δ̃j = 0
when the j th unit is right censored and 1 if it fails and is returned as a warranty
claim.

3.1. Estimation and hypothesis tests. Given the lab testing data and the war-
ranty return data for the same product, we develop a procedure to analyze the data
by capitalizing on the model in Section 2. In this procedure, we need to first collate
the Weibull distribution (1) for the ALT data, and then check if the warranty return
data conform to the Burr-XII distribution with c.d.f.

G(t) = 1 − [
(t/λ)β + 1

]−k
, t > 0.(7)

It is noted from (1) and (7) that when the gamma frailty model holds, the Weibull
shape parameter in (1) should be equal to β in the Burr-XII distribution (7), and
λ = αμ1/β . Given λ, α is a power function of μ. With field data only, we can
only estimate λ, which results in identifiability issues for α and μ. This happens
in bio and medical statistics [Hanagal (2011)]. In our problem, however, α can be
estimated from ALT data, after which μ is uniquely determined. Therefore, our
problem is free of the identifiability issue. In addition, the equality of β provides
us a means to collate the correctness of the gamma frailty model. Details of the
procedure are as follows.
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Step 1. Fit the lab test data using the Weibull model with c.d.f. given by (1). To
underscore the fact that the shape parameter β is estimated from the lab data, we
replace it with βL in the following presentation. The maximum likelihood (ML) es-
timate of (α,βL), denoted as (α̂, β̂L), is obtained by maximizing the log-likelihood
function (up to a constant)

lL(α,βL|Lab Data) =
n∑

i=1

[
δi(lnβL + βL lnxi − β lnαL) − (xi/α)βL

]
.(8)

Assess goodness of fit of the Weibull model. If the Weibull distribution provides a
good fit to the lab data, then proceed to step 2.

Step 2. Fit the field return data with the Burr-XII distribution. Here, β in (7) is
replaced with βW to stress the fact that this parameter is estimated from field data.
The ML estimate of (λ,βW , k), denoted as (λ̂, β̂W , k̂), is obtained by maximizing
the log-likelihood function (up to a constant)

lW (λ,βW , k|Field Data)

=
N∑

j=1

δ̃j

{
ln(kβW) + βW ln(tj /λ) − ln

[
(tj /λ)βW + 1

]}
(9)

−
N∑

j=1

k ln
[
(tj /λ)βW + 1

]
.

Assess the goodness of fit of the Burr-XII distribution. If it provides a good fit,
proceed to step 3.

Step 3. Test the hypothesis H0 :k = 1 versus the alternative hypothesis k �= 1.
If we accept the null hypothesis, the frailty follows an exponential distribution and
the field failure time follows a log-logistic distribution, so we can fit the field data
with the log-logistic distribution. If the hypothesis is rejected, stick to the Burr-XII
distribution.

Step 4. Test the hypothesis H0 :βL = βW versus the alternative hypothesis
βL �= βW . If the null hypothesis is accepted, then there are statistical evidences
that the frailty follows a gamma/exponential distribution, and then we can proceed
to step 5.

Step 5. Estimate the parameters in the gamma frailty model (5) by combining
the lab test data and field return data. The ensemble log-likelihood function is

l(α,β,λ, k|All Data) = lL(α,β|Lab Data) + lW (λ,β, k|Field Data).(10)

To test the hypothesis in step 3, we can use either the likelihood ratio test or
the score test. These two tests are expected to be accurate, as the size of field
return data is often large. However, these two tests may not be accurate enough
when testing the hypothesis in step 4, insofar as the lab test data are often limited.
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When both the ALT data and the field return data are complete or Type II cen-
sored, the following theorem shows that β̂L/β̂W is a “pivotal statistic”—that is, its
distribution is independent of the unknown parameters α,λ and β . This ratio and
its distribution will therefore be helpful in testing the hypothesis that βL = βW in
step 4.

THEOREM 1. Suppose the lab failure times follow a Weibull distribution given
by (1), while the field failure times conform to a Burr-XII distribution given in (7).
Consider the hypothesis H0 :βL = βW ≡ β versus the alternative hypothesis βL �=
βW and assume the parameter k in (7) is known. When both the lab test data and
field failure data are complete or Type II censored, β̂L/β̂W is a pivotal statistic
independent of (α,λ,β).

Proof of this theorem is in the Appendix. The proof is based on the fact that
β̂L/β and β̂W /β are pivotal statistics under the Type II censored (or complete)
lab data and field data, respectively. The constant k assumption is meaningful for
the log-logistic distribution where k = 1. When k �= 1 and k is estimated from field
data, we can treat k̂ as the true value of k. This approximation should work well be-
cause the field data are often abundant and, thus, the estimation error of k is small.
Theorem 1 is not restricted by the problem of limited ALT data and, hence, it is ex-
pected to perform better for testing the hypothesis of βL = βW compared with the
likelihood ratio test. In a real-life application, we would recommend conducting
both tests. When the results of both tests tally, there is sufficient evidence to accept
or reject the hypothesis. When the results differ, we shall stick to the test based
on Theorem 1. The distribution of β̂L/β̂W can be obtained through simulation as
follows.

ALGORITHM 1.

1. Generate n samples from Weibull(1, 1) and N samples from BXII(1,1, k).
For Type II censoring, the number of events will be the same as the number of
events in the data sets. For Type I censoring, the expected number of events will
be the same as the number of events in the data sets.

2. Estimate β̂∗
L and β̂∗

W from these two data sets separately.
3. Repeat the above two steps B times to get β̂∗i

L /β̂∗i
W , i = 1,2, . . . ,B .

4. Use the B samples to estimate the empirical c.d.f. and sample quantiles of
β̂L/β̂W .

In Algorithm 1, one can use k̂ as the value of k in the simulation. The perfor-
mance of this substitution will be evaluated through simulation. During the lab test,
both Types I and II censoring are common. For warranty return data, Type I cen-
soring or progressive Type I censoring are more common due to staggered entries
and warranty limits. Under this scenario, β̂L/β̂W is an approximate pivotal.
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THEOREM 2. Suppose the lab test data follow a Weibull distribution given
by (1), while the field failure data conform to a Burr-XII distribution given in (7).
Consider the hypothesis H0 :βL = βW ≡ β versus the alternative hypothesis βL �=
βW and assume the parameter k in (7) is known. When the lab test data and/or field
failure data are Type I censored, then β̂L/β̂W is an approximate pivotal statistic.

Under Type I censoring, the distribution of β̂W/βW depends on the unknown
fraction failing at the censoring time [e.g., Jeng and Meeker (2001)]. Thus, it is
an approximate pivotal. The approximation improves as the sample size increases.
Because the sample size of field return data is often large, the performance of the
approximation of β̂W/βW is typically satisfactory. On the other hand, according to
the type of lab test data, we have the following two discussions:

• When the lab test data is Type II censoring, then β̂L/β is an exact pivotal. Thus,
β̂L/β̂W = (β̂L/β)/(β̂W/β) is an approximate pivotal because β̂W/βW is an ap-
proximate pivotal.

• When the lab test data is Type I censoring, then β̂L/β is an approximate pivotal.
Thus, β̂L/β̂W = (β̂L/β)/(β̂W/β) is also an approximate pivotal.

Algorithm 1 can still be used to do the test and the performance will be evaluated
by simulations in the next subsection.

3.2. Simulation study. In this section we conduct simulation studies to show
the performance of the statistics proposed in Theorems 1 and 2. In particular, we
consider three scenarios:

• Scenario I: Type II censoring for lab data and Type II censoring for field data.
• Scenario II: Type II censoring for lab data and Type I censoring for field data.
• Scenario III: Type I censoring for lab data and Type I censoring for field data.

We assume that the ALT uses 10 testing units whose lifetime follows a Weibull
distribution. For Scenarios I and II of the simulation, the test is run until 8 of
the units fail (i.e., Type II censoring). For Scenario III, the expected number of
failures is 8 out of 10 testing units in the ALT (the censoring time is 733 in the
simulation). For the field data, N units of the same product are sold to customers
and the environmental frailty follows Gamma(k,μ). For the Type II censoring
setting (Scenario I), we stop the follow-up when 0.1N failures have been observed.
For the Type I setting (Scenarios II and III), the failure times are censored at τ .
The censoring time τ is so chosen that the expected proportion of field failures is
10%. In the simulation, we use α = 534, k = 1,μ = 19 and τ = 878. We examine
N = 2000,5000 and β = 1.5,2.0.

Under each combination of (β,N), we replicate the simulation 2000 times. In
each replication, we compute the likelihood ratio statistic and the statistic in The-
orem 1. The hypothesis is rejected or accepted according to the α̃ level. The esti-
mated Type I error is obtained as the proportion of incorrect rejections. To obtain
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TABLE 1
Estimated Type I error of the test procedure in Theorem 1 and the likelihood ratio test procedure,

under three different scenarios. The nominal Type I errors are α̃ = 0.1,0.05,0.01

α̃ = 0.1 α̃ = 0.05 α̃ = 0.01

Scenarios β N Thm LR Thm LR Thm LR

Scenario I 1.5 2000 0.108 0.142 0.057 0.072 0.010 0.016
1.5 5000 0.100 0.149 0.058 0.078 0.008 0.024

2.0 2000 0.098 0.134 0.047 0.078 0.012 0.014
2.0 5000 0.101 0.138 0.052 0.071 0.012 0.020

Scenario II 1.5 2000 0.108 0.128 0.056 0.077 0.014 0.016
1.5 5000 0.092 0.136 0.048 0.080 0.010 0.018

2.0 2000 0.110 0.135 0.056 0.075 0.014 0.018
2.0 5000 0.110 0.146 0.058 0.082 0.014 0.022

Scenario III 1.5 2000 0.101 0.117 0.044 0.062 0.004 0.012
1.5 5000 0.099 0.126 0.050 0.062 0.004 0.014

2.0 2000 0.100 0.116 0.048 0.060 0.008 0.012
2.0 5000 0.094 0.118 0.040 0.060 0.008 0.012

the distribution of the pivotal, we use B = 5000 in each run. In the simulation,
we use normal approximation to simulate β̂∗i

W and use the distribution of β̂∗i
W /β̂W

to approximate the distribution of β̂W/βW . In particular, β̂∗i
W is simulated from

N (β̂W ,σ 2
β̂W

), where σ 2
β̂W

is the large sample approximate variance estimate of

β̂W .
Table 1 shows the estimated Type I errors of the test procedure in Theorem 1

and the likelihood ratio test procedure, under three different scenarios. The nomi-
nal Type I errors that are considered in the simulation are α̃ = 0.1,0.05 and 0.01.
Under all scenarios, the estimated Type I errors of the testing procedure in Theo-
rem 1 are closer to the nominal ones compared with the likelihood ratio statistic. In
addition, the magnitude of N tends to have little effect on the Type I errors of the
likelihood ratio statistic. This is best explained by our conjecture that the bias/error
of the likelihood ratio statistic is attributed to the small lab testing samples. Over-
all, we can see that the performance of the approximate pivotal is satisfactory.

4. Optimal accelerated life tests. Over the course of product evaluation and
customer feedback, the manufacturer will generate a number of design changes
and come up with a new vintage. ALTs can again be used to evaluate reliability
of this new vintage by making use of the frailty information obtained from joint
analysis of lab data and field data of previous generations. The ALTs need to be
conducted within stringent cost and time constraints, and the testing samples need
to be used efficiently. In addition, the heterogeneous field conditions should be
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taken into account when estimating life characteristics of interest. It is expected
that the operating conditions and the effects of the environments on the new gen-
eration be approximately the same. This implies that the new vintage will have the
same frailty Z with the old generation. Based on this fact, optimal ALT plans can
be developed.

For the new generation of interest, suppose its lifetime X under the stable lab
testing conditions follows a Weibull distribution specified by (1). Let S0 be the
nominal design stress (say, the same as the old generation) and SH be the highest
allowable test stress that has been pre-specified. For convenience, the stress is re-
parameterized as ξ = (S − SH )/(S0 − SH ). It is noted that under the nominal
stress S0, ξ = 1. When X follows a Weibull distribution, Y = lnX conforms to
a smallest extreme value distribution with the location parameter η = lnα and
the scale parameter σ = 1/β . Following the convention of ALT design for the
Weibull distribution [e.g., Meeker and Escobar (1998), Chapter 17], we work with
the extreme value distribution whose Fisher information matrix has a closed form,
and assume that the scale parameter σ is a constant independent of the stress while
the location parameter η depends on the stress through a linear stress-life model

η(ξ) = υ0 + υ1ξ.

Usually, the optimal test plans use only two test stresses with the higher stress
being the highest allowable stress SH . Therefore, an ALT plan is specified by the
lower stress level ξL and the proportion of units π for this stress. The combination
(ξL,π) is called a test plan. The purpose of the ALT design is to find out the op-
timal test plan (ξ∗

L,π∗) in order to optimize a certain index of interest. When we
are interested in life characteristics under the nominal conditions (i.e., characteris-
tics based on X) and ignore the heterogeneous field operating conditions, optimal
constant-stress ALTs for the extreme value distribution have been well studied,
for example, see Nelson and Meeker (1978) for the optimal Type I censoring plan
and Escobar and Meeker (1986) for the Type II censoring case. In the presence
of the heterogeneities, however, the criteria of ALT planning should be based on
field failure times T and, thus, the existing plans are no longer optimal. Optimal
plans that take the frailty Z into account will be developed in this section. De-
note I(ξL,π) as the Fisher information matrix for (υ0, υ1, σ ) under the test plan
(ξL,π). The matrix I(ξL,π) has been derived by Nelson and Meeker (1978) un-
der the Type I censoring scheme and by Escobar and Meeker (1986) with Type II
censoring. Therefore, use will be directly made of these existing results.

4.1. Minimization of the asymptotic variance of the p-quantile. Consider the
common criterion of ALT planning that minimizes the asymptotic variance of the
ML estimator t̂p of the p quantile of field failure time T . Based on (5) with γ = 0,
the p-quantile of T is given by

tp = α
[
μ(1 − p)−1/k − μ

]1/β = exp(υ0 + υ1)
[
μ(1 − p)−1/k − μ

]σ
.(11)
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The asymptotic variance of the ML estimator t̂p is AV(t̂p) = (∇tp)′I(ξL,π)∇tp ,
where ∇tp is the first derivative of tp with respect to (υ0, υ1, σ ). The expression
of ∇tp is quite involved. Alternatively, it is not difficult to show that minimization
of AV(t̂p) amounts to minimization of the asymptotic variance of ln t̂p , which is
equivalent to minimizing the asymptotic variance of t̂p/tp . The asymptotic vari-
ance of ln t̂p is AV(ln t̂p) = (∇ ln tp)′I(ξL,π)∇ ln tp , where ∇ ln tp is the gradient
of ln tp with respect to (υ0, υ1, σ ) as

∇ ln tp(1) = ∂ ln tp

∂υ0
= 1,

∇ ln tp(2) = ∂ ln tp

∂υ1
= 1,(12)

∇ ln tp(3) = ∂ ln tp

∂σ
= ln

[
μ(1 − p)−1/k − μ

]
.

Optimal test plans can be obtained by minimizing AV(ln t̂p) under some con-
straints, for example, time constraint, budget constraint or sample size constraint.

4.2. Minimization of the asymptotic variance of the failure probability. The
p-quantile criterion considered above is often used to determine a suitable war-
ranty period for a new product [Ye, Tang and Xie (2011)]. For a product with a
given warranty period τ , what the manufacturer is most concerned with is the pro-
portion of field returns within τ . Therefore, another rational planning criterion is
to minimize the asymptotic variance of p̂τ , the ML estimate of the probability of
warranty failures. This probability is given by

pτ = 1 − [
(τ/α)β/μ + 1

]−k = 1 −
[ [τ exp(−υ0 − υ1)]1/σ

μ
+ 1

]−k

.(13)

The first derivative of p with respect to (υ0, υ1, σ ) can be obtained as

∇pτ (1) = ∂p

∂υ0
= −k�1/σ

μσ

(
�1/σ

μ
+ 1

)−k−1

,

∇pτ (2) = ∂p

∂υ1
= −k�1/σ

μσ

(
�1/σ

μ
+ 1

)−k−1

,(14)

∇pτ (3) = ∂p

∂σ
= −k�1/σ

μσ 2

(
�1/σ

μ
+ 1

)−k−1

ln�,

where � = τ exp[−(υ0 + υ1)]. Based on the delta method, the asymptotic vari-
ance is AV(p̂τ ) = (∇pτ )

′I(ξL,π)∇pτ . Optimal test plans can be determined by
minimizing this asymptotic variance subject to possible constraints on available
resources.
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TABLE 2
Ordered failure time data observed from the ALT test

99 141 163 300 350 523 602 687

5. Illustrative example.

5.1. Weibull fit to lab test data. 10 units of Appliance B were subject to a lab
test. The experiment ended at t = 687 units of time, upon which 8 failures were
observed and 2 were censored. In order to demonstrate Theorem 1, we assume that
the experiment ended when the 8th failure is observed. After this modification, the
data are Type II censored. The observed failure times of the 8 failed samples are
presented in Table 2.

We use the Weibull model to fit the ALT data, and the ML estimates (standard
errors) of the two parameters are α̂ = 529.4 (121.0) and β̂L = 1.55 (0.470), re-
spectively. In order to visualize the goodness of fit, we also fit the data using the
Kaplan–Meier method. The estimated c.d.f.s by means of the Weibull model and
the Kaplan–Meier method are depicted in Figure 2. As can be seen from this figure,
the estimated Weibull c.d.f. passes through the empirical c.d.f. and falls well within
the 95% simultaneous confidence band (SCB). Therefore, the Weibull model is
considered as an appropriate model for the product under nominal conditions.

5.2. Burr-XII fit to the field failure data. We first use the Weibull distribution
to fit the field return data. The maximum log-likelihood value is −977.2. The esti-

FIG. 2. Weibull probability plot showing the Weibull fit to the lab data and the 95% nonparametric
SCB.
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FIG. 3. Weibull probability plot showing the ML estimates of the Weibull, log-logistic and Burr-XII
fits to the field data and the 95% nonparametric SCB.

mated Weibull c.d.f. as well as the empirical c.d.f. using the Kaplan–Meier method
is shown in Figure 3. As can be seen from this figure, the Weibull distribution
cannot capture the curvature of the nonparametric estimates in the lower tail. We
suspect that the inconsistency between failures in the lab and in the field is caused
by heterogeneous operating conditions. Therefore, the gamma frailty model is in-
voked to solve the problem.

We apply (5) to fit the data and use the likelihood ratio statistic to test the thresh-
old parameter γ = 0. The test reveals no evidence to reject the hypothesis. There-
fore, we set γ = 0 in the following analysis. We apply the Burr-XII distribution
to fit the data, and the maximum log-likelihood value is −973.8. The estimated
values of the parameters are λ̂ = 298.6 (83.9), β̂W = 2.66 (0.452) and k̂ = 0.0223
(0.0109), respectively. We use the Akaike information criterion (AIC) to compare
the Burr-XII model and the Weibull model for the field data. The AIC is specified
by AIC = −2l + 2m, where l is the maximum log-likelihood value of a model
and m is the number of parameters in the model. The respective AIC values for
the Weibull and the Burr-XII distributions are 1958.4 and 1953.5. The Burr-XII
distribution has a smaller AIC value, indicating a better fit. As can be seen from
Figure 3, the Burr-XII distribution captures the curvature of the nonparametric
estimates in the lower tail very well, indicating a better fit than the Weibull distri-
bution.

We also fit the data by using the log-logistic distribution, leading to a maximum
likelihood value of −977.0. This value is very similar to that of the Weibull model.
Overall, the analysis suggests that the Burr-XII distribution is more appropriate for
the field data than the Weibull model.
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FIG. 4. Weibull probability plot showing the ML estimates of Weibull fit to lab data and Burr-XII
fit to the field data with a common β .

5.3. The gamma frailty model. As can be seen from the above analysis, β̂L is
quite close to β̂W . We apply the statistic developed in Theorem 1 to quantitatively
check the correctness of the gamma frailty model by testing H0 :βL = βW . It is
easy to see that β̂L/β̂W = 0.585. By making use of Algorithm 1, the p-value is
0.217. We then apply the likelihood ratio test. The likelihood ratio statistic is 1.356
with a p-value of 0.244. Both tests suggest that there is no reason to reject this
hypothesis. Therefore, we can believe that the discrepancies between the lab test
data and the field data can be explained by the frailty model, and the gamma frailty
model is appropriate for the problem.

At the last step, we estimate the parameters in (5) by combining both the
ALT data and the field failure data. The ensemble of the likelihood function con-
sists of the Weibull likelihood contributed from the lab data and the Burr-XII
likelihood contributed from the field data. Maximization of this function yields
the ML estimates of the four parameters (standard errors) as α̂ = 545.15 (84.7),
β̂ = 2.28 (0.32), λ̂ = 385.05 (136.5) and k̂ = 0.0341 (0.019). Using the invari-
ance property of the MLE, the estimated scale parameter for the gamma frailty is
μ̂ = (λ̂/α̂)β̂ = 0.452 with a standard error 0.23. The estimated c.d.f.s for the lab
failure time distribution and the field failure time distribution can be updated based
on these parameter estimates, as shown in Figure 4.

5.4. Optimal ALT plans. In order to improve product reliability and cater to
market changes, the manufacturer may make a number of changes to the product
and come up with a new generation. The new generation, if sold to the market,
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FIG. 5. Contours of the asymptotic standard deviation for the two-stress optimum ALT plan.

would be operated under the same environments as the old ones and the environ-
ments will have the same effect on the product failures. Therefore, we assume the
frailty Z follows the same gamma distribution Gamma(k,μ) with μ = 0.452 and
k = 0.0341. Suppose that the manufacturer is interested in knowing the 5% quan-
tile of the field lifetime of the new generation, and a maximum test time of 50
is allowed for the ALT. During the test, all units are run simultaneously. Assume
that the lifetime of the new vintage follows a Weibull distribution under the nom-
inal use condition, and the planning values of the ALT are υ0 = 3, υ1 = 3.4 and
β = 2.28. Based on the above settings, optimal test plans can be obtained by nu-
merically optimizing the asymptotic variance given in Section 4.1. For example, if
the objective is to minimize the asymptotic standard deviation, that is, the square
root of the variance, of ln t̂p , then the optimal test plan is (ε∗, π∗) = (0.338,0.649)

and the associated minimal standard deviation is 3.23. Figure 5(a) shows the con-
tour of the asymptotic standard deviation with respect to ε and π . This test plan
also minimizes the asymptotic standard deviation of t̂p , as can be seen from Fig-
ure 5(b). If we ignore the heterogeneous field environments, the optimal test plan
will be (ε,π) = (0.419,0.766), which is quite different from (ε∗, π∗).

6. Conclusions. This study has explained the discrepancies between in-lab
failures and field failures through the frailty model. The frailty term of each field
unit represents the unobserved operating conditions and their complicated effects
on the product failures. In the presence of heterogeneous operating conditions, we
showed that the field failure rate can exhibit a variety of shapes, and some units
may fail very early due to severe working conditions rather than defects. ALTs
should take these heterogeneities into account. Previous research assumed homo-
geneous operating conditions, which will inevitably underestimate the variation of
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the field failures and, in turn, underestimate the proportion of field returns. In addi-
tion, test plans derived under the homogeneity assumption may be quite different
from the true optimum due to ignorance of the heterogeneity. We overcame these
deficiencies and derived the optimal plans by considering the frailty. A procedure
was developed to obtain the frailty information and to collate the validity of the
gamma distribution for the frailty. Instead of using the likelihood ratio statistic to
test the equality of βL and βW , we suggested the use of the statistic β̂L/β̂W . This
statistic is pivotal under complete or Type II censored data. Under Type I cen-
soring, this statistic is approximately a pivotal quantity and its good performance
is demonstrated through a simulation study. In the supplement, we further devel-
oped the inverse Gaussian frailty models and the uniform frailty models. These
two models yield tractable field failure distributions and supplement the class of
frailty models for linking lab failures and field failures. We also proposed an en-
semble inference procedure in consideration of all the gamma, inverse Gaussian
and uniform frailty models in the supplement [Ye, Hong and Xie (2013)].

APPENDIX

Shapes of the hazard rate function of the gamma frailty model. Taking the
first derivative of (6) with respect to t yields

h′(t) =
[
(2βγμ − 2γμ − k)tβ + μαβ(μγ + k)(β − 1) + (β − 1)γ t2β

αβ

]

(15)

× βtβ−2

(tβ + μαβ)2 .

The second term on the right-hand side of (15) is always larger than 0. So we can
focus on the first term

r(x) = (β − 1)γ α−βx2 + (2βγμ − 2γμ − k)x + μαβ(μγ + k)(β − 1).(16)

Case 1. When β < 1, it is easy to see that r(x) < 0 and, hence, h′(t) < 0.
When β > 1, the minimum of r(x) is achieved at the point(−2γμ(β − 1) + k

2(β − 1)γ α−β
,

4γμβ(β − 1) − k

4(β − 1)γ α−βk−1

)
.

Case 2. When γ > 0, β > 1 and 4γμβ(β − 1) − k < 0, we see from β > 1 that

4γμβ(β − 1) − 2kβ < 0 so 2γμ(β − 1) − k < 0.

This means that
−2γμ(β − 1) + k

2(β − 1)γ α−β
> 0 and

4γμβ(β − 1) − k

4(β − 1)γ α−βk−1 < 0.

By noting that r(0) = μαβ(μγ + k)(β − 1) > 0, we see that when x ≥ 0, r(x)

is positive initially, is followed by a negative period, and then becomes positive
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again. From (10), we see h′(t) also has this positive–negative–positive sign change.
Therefore, h(t) increases initially, is followed by a decreasing period, and then
increases again, that is, h(t) has an N-shape.

Case 3. When γ > 0, β > 1 and 4γμβ(β − 1) − k > 0, r(x) is always greater
than 0, and so is h′(t). Therefore, h(t) is increasing over [0,∞).

Case 4. When γ = 0 and β > 1, r(x) reduces to r(x) = −kx + (β − 1)kμαβ .
This linear function is monotone decreasing with r(0) > 0 and r(∞) < 0. There-
fore, h(t) is increasing at the outset and decreasing afterwards. Hence, h(t) has an
upside-down bathtub shape.

Proof of Theorem 1. Before proceeding to the proof of Theorem 1, two lem-
mas are first presented.

LEMMA 1. For the Burr-XII distribution given by (7), conditional on k,
β̂W/βW is a pivotal statistic under Type II or complete data.

PROOF. Let x = (x1, . . . , xn) be an ordered random sample of size n from
BXII(1,1, k). An ordered random sample t = (t1, . . . , tn) conforming to BXII(βW ,

λ, k) can be obtained by taking ti = λx
1/βW

i . Suppose the sample was censored
after the r th observation. The ML estimates of the parameters in the Burr-XII
distribution can be obtained by deriving the score functions, equating them to zero,
and solving for the solution. Denote the ML estimates based on x and t as (β̂W0, λ̂0)

and (β̂W , λ̂), respectively. Now, we proceed to investigate the relationship between
(β̂W0, λ̂0) and (β̂W , λ̂). The log-likelihood function based on t, up to a constant,
can be written as

L(βW ,λ) = r lnβW +
r∑

i=1

ln(ti/λ)βW − (k + 1)

r∑
i=1

ln
[
(ti/λ)βW + 1

]

− k(n − r) ln
[
(tr/λ)βW + 1

]
.

Therefore, the ML estimator (β̂W , λ̂) satisfies the following equation:

(k + 1)

r∑
i=1

(ti/λ̂)β̂W ln(ti/λ̂)β̂W

(ti/λ̂)β̂W + 1
− r −

r∑
i=1

ln(ti/λ̂)β̂W

+ k(n − r)
(tr/λ̂)β̂W ln(tr/λ̂)β̂W

(tr/λ̂)β̂W + 1
= 0,

(k + 1)

r∑
i=1

(ti/λ̂)β̂W

(ti/λ̂)β̂W + 1
+ k(n − r)

(tr/λ̂)β̂W

(tr/λ̂)β̂W + 1
− r = 0.
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If we substitute ti = λx
1/βW

i into the above two equations, we can obtain

(k + 1)

r∑
i=1

�i ln�i

�i + 1
− r −

r∑
i=1

ln�i + k(n − r)
�r ln�r

�r + 1
= 0,(17)

(k + 1)

r∑
i=1

�i

�i + 1
+ k(n − r)

�r

�r + 1
− r = 0,(18)

where �i = (xi/(λ̂/λ)βW )β̂W /βW . The left-hand sides of the above two equations
are the score functions based on the sample x. Therefore, it is readily seen that
λ̂0 = (λ̂/λ)βW and β̂W0 = β̂W /βW . This means that the distribution of β̂W /βW is
the same as β̂W0 , which does not depend on βW and λ. �

LEMMA 2. For the Weibull distribution specified by (1), β̂L/βL is a pivotal
statistic under Type II or complete data.

PROOF. See Thoman, Bain and Antle (1969). �

PROOF OF THEOREM 1. By using Lemmas 1 and 2 above, we can see that
β̂W /βW

β̂L/βL
is a pivotal statistic. Under the null hypothesis, this pivotal statistic is ex-

actly β̂L/β̂W , which completes the proof. �
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SUPPLEMENTARY MATERIAL

Supplement to “How do heterogeneities in operating environments affect
field failure predictions and test planning?” (DOI: 10.1214/13-AOAS666SUPP;
.pdf). This supplement develops two additional frailty models, that is, the inverse
Gaussian and the uniform frailty models. An ensemble inference procedure in con-
sideration of all the gamma, inverse Gaussian and uniform frailty models is also
provided.
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