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ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION
WITH APPLICATION TO MORTALITY DATA

BY LINGSONG ZHANG, HAIPENG SHEN1 AND JIANHUA Z. HUANG2

Purdue University, University of North Carolina and Texas A&M University

We develop a robust regularized singular value decomposition
(RobRSVD) method for analyzing two-way functional data. The research
is motivated by the application of modeling human mortality as a smooth
two-way function of age group and year. The RobRSVD is formulated as
a penalized loss minimization problem where a robust loss function is used
to measure the reconstruction error of a low-rank matrix approximation of
the data, and an appropriately defined two-way roughness penalty function
is used to ensure smoothness along each of the two functional domains. By
viewing the minimization problem as two conditional regularized robust re-
gressions, we develop a fast iterative reweighted least squares algorithm to
implement the method. Our implementation naturally incorporates missing
values. Furthermore, our formulation allows rigorous derivation of leave-
one-row/column-out cross-validation and generalized cross-validation cri-
teria, which enable computationally efficient data-driven penalty parameter
selection. The advantages of the new robust method over nonrobust ones are
shown via extensive simulation studies and the mortality rate application.

1. Introduction. This paper develops a robust regularized singular value de-
composition (SVD) method for two-way functional data. One-way functional data
analysis (FDA) focuses on a population of curves or functions and has gained much
attention in the last decade or so, as well documented in Ramsay and Silverman
(2002, 2005) and Ferraty and Vieu (2006). Different from one-way functional data,
two-way functional data are functions in two ways: both index domains I and J of
the data matrix X = (xi,j )i∈I,j∈J are structured with notions of smoothness, that
is, both rows and columns of the data matrix can be viewed as discretizations of
some underlying smooth functions [Huang, Shen and Buja (2009)]. For example,
in our motivating Spanish mortality application (Section 4), the data matrix records
mortality rates for different age groups between ages 0 and 110 (columns) in Spain
from year 1908 to 2007 (rows). It is reasonable to consider the mortality rate as a
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smooth function of both age and time period. Similar two-way functional structure
also exists in many other applications. For example, the network traffic pattern in
Zhang et al. (2007) is a smooth function of time-of-the-day and calendar date; the
call center customer patience in Huang, Shen and Buja (2009) is a smooth function
of customer waiting time and time-of-the-day; and the magnetoencephalography
signal in Tian and Li (2011) is a smooth function of signal recording time and
brain spatial location.

Recently, Huang, Shen and Buja (2009) proposed a regularized singular value
decomposition (RSVD) method for dimension reduction and feature extraction
of two-way functional data. It is based on minimization of a regularized sum
of squared reconstruction errors of a low-rank matrix approximation. Since the
squared-error loss function is used to measure the size of reconstruction errors, the
results of applying the RSVD are sensitive to outliers. Outliers in two-way func-
tional data can appear in various forms, such as outlying cells, columns, rows or
blocks (Section 3). For example, the Spanish mortality data contain two outlying
time periods and, as we will demonstrate in Section 4, they significantly affect the
estimation of the underlying smooth mortality trend across year when applying the
RSVD. One major contribution of the current paper is to develop a robust regular-
ized SVD method that can mitigate outlying effects in two-way functional data
analysis, which, to the best of our knowledge, is the first of its kind.

To give some background on our proposed method for two-way functional
data, we first review several relevant robust functional principal component anal-
ysis (PCA) methods that have been developed for analyzing one-way functional
data. Locantore et al. (1999) proposed a robust PCA approach, which projects
the data onto a sphere or an ellipse around a robust estimate of the center of the
data, and then performs the usual PCA on the covariance matrix of the projected
data. Gervini (2008) extended the approach of Locantore et al. (1999) to func-
tional data, introduced the concepts of functional median and functional spherical
principal components (PC), and established the corresponding robustness proper-
ties of the approach. Hyndman and Shahid Ullah (2007) and Hyndman and Shang
(2009) used a projection pursuit (PP) approach for robust functional PCA; Bali
et al. (2011) recently studied the asymptotic robustness properties of this PP ap-
proach in terms of influence function and breakdown point. On the other hand, Bai
et al. (2008) proposed a supervised SVD technique, which can be combined with
independent component analysis to improve the robustness of analyzing functional
MRI brain images. Gervini (2009) considered irregularly and sparsely sampled
functional data, used basis expansions to model the functional trajectories, and
modeled the functional PC scores and the reconstruction errors using heavy-tailed
distributions such as t or Cauchy to achieve robustness. All this work has focused
on one-way functional data.

We now introduce some notation to facilitate the discussion of our proposed
robust regularized SVD method for two-way functional data. Sometimes it is rea-
sonable to use the term—functional SVD—instead of regularized SVD to em-
phasize the focus on functional data. We view the element xij of the m × n data
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matrix X as evaluation of an underlying smooth function X(·, ·) on a rectangular
grid of sampling points (yi, zj ), where yi (i = 1, . . . ,m) are from a domain Y
and zj (j = 1, . . . , n) are from a domain Z . According to Huang, Shen and Buja
(2009), the RSVD for two-way functional data can be considered as fitting the
following smooth rank-r approximation model for the two-way functional data:

X(y, z) = U1(y)V1(z) + U2(y)V2(z) + · · · + Ur(y)Vr(z) + ε(y, z),(1)

where Uk(y) and Vk(z) are smooth functions on their respective domains, and
ε(y, z) is a mean zero random noise. Model (1) can be thought of as a trun-
cated version of the singular value decomposition of bivariate functions [Gervini
(2010)], and the orthonormal constraints

∫
Vk(z)Vl(z) dz = δkl , where δ is the Kro-

necker delta, are usually imposed for identifiability. The low-rank approximation
formulation indicates that the proposed SVD method is useful for dimensionality
reduction and feature selection. The smoothness requirement on Uk(y) and Vk(z)

takes into account the underlying continuity of the functional data. It is important
to note that the SVD formulation offers a symmetric treatment of the two domains.
The existing robust functional PCA methods cannot be directly extended to two-
way functional data, because PCA treats the rows and the columns asymmetrically.
We are therefore led to the SVD which offers symmetric treatment.

To give a simple description of our approach, we focus on extracting the
first pair of components in (1), U1(y) and V1(z), whose discretized realizations
are, respectively, denoted as u1 ≡ (U1(y1), . . . ,U1(ym))T and v1 ≡ (V1(z1), . . . ,

V1(zn))
T . Subsequent pairs are extracted sequentially after removing the effects

of the preceding pairs. This sequential approach allows the different pairs of com-
ponents to have differing smoothness. The extracted components should possess
two desirable features—smoothness and robustness against outliers. We propose
to solve the following problem:

(u1,v1) ≡ argmin
u,v

{
ρ

(
X − uvT ) + Pλ(u,v)

}
,(2)

where u and v are m-dimensional and n-dimensional vectors, respectively, ρ(·) is
a robust loss function, Pλ(u,v) is a two-way roughness penalty to ensure smooth-
ness for the u and v, and λ is a vector of penalty parameters.

This formulation is very general, allowing the flexibility in the choice of the
loss function and the penalty function. Although various robust loss functions in
the robust statistics literature [Huber and Ronchetti (2009)] can be used in our
framework, we focus on a typical Huber’s function for its easy implementation
and fast computation. If the nonrobust squared-error loss is used, then the penal-
ized criterion function in (2) reduces to the minimizing criterion for the RSVD
of Huang, Shen and Buja (2009). By using a robust loss function, our framework
essentially robustifies the RSVD method and, therefore, we refer to our approach
as robust regularized SVD, or RobRSVD for short. On the other hand, without the
penalty term, the criterion in (2) offers another way for robust SVD [Ammann
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(1993), Liu et al. (2003)]; hence, RobRSVD can also be interpreted as smoothing
of a robust SVD.

In this paper, we adopt the two-way roughness penalty function introduced in
Huang, Shen and Buja (2009), which has several desirable properties for two-way
regularization. Other choices of penalty functions are possible such as the ones
that shrink the functional components to certain subspaces, for example, spaces
of periodic functions. Our framework also offers one-way robust functional data
analysis as a special case if one only imposes roughness penalty on one of the
functional domains such as the one that corresponds to the row or the column of
the data matrix. One important feature of our method is that it works directly with
the raw observed data; there is no need to pre-smooth the raw data, nor to obtain
a robust estimate of the high-dimensional covariance matrix, which can be com-
putationally challenging for one-way functional data and even more technically
difficult for two-way functional data.

We develop an efficient iterative reweighted least squares (IRLS) algorithm to
solve the minimization problem (2). Our algorithm iteratively updates u and v con-
ditioning on the other, where each updating step can be viewed as a (regularized)
robust regression. This view of (2) as conditional robust regressions suggests that
many robust regression procedures can be used, such as the M-estimator [Huber
and Ronchetti (2009)], the L1 estimator [Croux et al. (2003)], the least median
of squares (LMS) and the least trimmed squares (LTS) estimators [Rousseeuw
(1984)], and the IRLS estimator [Heiberger and Becker (1992)]. We choose the
IRLS estimator in this paper for the following two reasons. First, it enables us
to interpret the conditional regularized robust regressions as regularized weighted
least squares. Based on this interpretation, we can rigorously derive explicit short-
cut formula for leave-one-row/column-out cross-validation and related generalized
cross-validation (GCV) scores; hence, data-driven selection of the penalty param-
eters can be carried out very efficiently. Note that the selection of the penalty pa-
rameters for the row and column is naturally decoupled due to the conditional
regression perspective. Second, the IRLS estimator is used due to its fast compu-
tation and comparable performance when compared against several other robust
regression procedures, as shown by Shen, Zhu and Lee (2007). The alternating
estimation procedure also suggests a natural way to incorporate missing values.

The remainder of the paper is organized as follows. Section 2 describes techni-
cal details of the RobRSVD method, including formulation, the IRLS algorithm,
penalty parameter selection, treatment of missing values and interpolation of re-
sults in function space. Results of simulation studies are presented in Section 3
to compare the performance of RobRSVD with standard SVD and the regularized
SVD (RSVD) of Huang, Shen and Buja (2009). Section 4 analyzes the motivat-
ing Spanish mortality application and demonstrates the practical advantages of
RobRSVD over the other two methods.
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2. The methodology. We describe the RobRSVD method in this section. Sec-
tion 2.1 gives its formulation, Section 2.2 derives the IRLS algorithm, and Sec-
tions 2.3–2.6 discuss several implementation details.

2.1. Formulation. It is well known that the SVD can be viewed as finding a
sequence of rank-one matrix approximations of a data matrix [Gabriel and Zamir
(1979)]. We adapt this idea to define the RobRSVD as a method for obtaining a
sequence of robust regularized rank-one matrix approximations. Our discussion
focuses on obtaining the first pair of components. Subsequent pairs of components
can be obtained by applying the method sequentially on the residuals from lower-
rank approximations.

The first pair of singular vectors of a data matrix X = (xij )m×n can be obtained
by solving a least squares problem as

(û, v̂) = argmin
(u,v)

∥∥X − uvT
∥∥2
F ,

where u and v are m×1 and n×1 vectors, respectively, and ‖ ·‖F is the Frobenius
norm of a matrix. For two-way functional data, the RSVD of Huang, Shen and Buja
(2009) defines the regularized singular vectors as

(û, v̂) = argmin
(u,v)

{∥∥X − uvT
∥∥2
F + Pλ(u,v)

}
,(3)

where Pλ(u,v) is a regularization penalty and λ is a vector of regularization pa-
rameters. Huang, Shen and Buja (2009) suggested to use the following specific
form of the penalty function:

Pλ(u,v) = λuuT �uu · ‖v‖2 + λvvT �vv · ‖u‖2 + λuuT �uu · λvvT �vv,(4)

where �u and �v are symmetric and nonnegative definite penalty matrices that
apply, respectively, to the left and right singular vectors, and ‖ · ‖ is the Euclidean
norm. The usual roughness penalties used in nonparametric smoothing literature
can be adopted to define the penalty matrices [e.g., Green and Silverman (1994)].
This penalty function enjoys several desirable properties: (i) Invariance under scale
transformations u �→ cu and v �→ v/c for some positive constant c; (ii) Equivari-
ance under rescaling of X and the fit uvT ; (iii) For �u = 0, the penalty specializes
to the one-way penalty of Silverman (1996) for functional PCA. See Huang, Shen
and Buja (2009) for more discussions.

To achieve robustness, we replace the squared-error loss in (3) with a robust
loss function. Let ρ(z) be a nonnegative, symmetric function that is increasing
in |z|. With a slight abuse of notation, we also use ρ(·) to denote the summation
over elementwise applications when the scalar function ρ(·) is applied to a matrix.
A general loss function for rank-one approximation of the matrix X can be written
as

ρ

(
X − uvT

σ

)
=

m∑
i=1

n∑
j=1

ρ

(
xij − uivj

σ

)
,
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where σ is a scale parameter measuring the variability in the approximation errors.
For RobRSVD, we define the first pair of singular vectors as

(û, v̂) = argmin
(u,v)

R(u,v),

where

R(u,v) = ρ

(
X − uvT

σ

)
+ Pλ(u,v)(5)

and Pλ(u,v) is the penalty function defined in (4). The determination of the scale
parameter σ will be discussed later in Section 2.4.

Our implementation uses the following Huber’s function in defining R(u,v):

ρθ(x) =
{

x2, if |x| ≤ θ,

2θ |x| − θ2, if |x| > θ,

where θ is a parameter that controls the robustness level and a smaller value of θ

usually leads to more robust estimation. Our implementation uses θ = 1.345, the
value commonly used in robust regression that produces 95% efficiency for nor-
mal errors [Huber and Ronchetti (2009)]. Our numerical studies suggested that the
RobRSVD is not very sensitive to the choice of θ . Instead of the Huber function,
other robust loss functions can be used as well, for example, the L1 loss which
gives similar estimates. We choose the Huber function due to its easier implemen-
tation and faster computation.

2.2. Iterative reweighted penalized least squares algorithm. Although ρ(·) is
a convex function, R(u,v) is not convex with respect to the pair (u,v) and, thus,
simultaneous optimization of R(u,v) over u and v is complicated. Note that, con-
ditional on either u or v, R(u,v) becomes a convex function of the other variable.
This naturally suggests an iterative reweighted (penalized) least squares (IRLS)
algorithm that alternately updates u and v, assuming that the penalty parameters
λu and λv are fixed values. This section gives the details of the algorithm, while
the choice of penalty parameters will be discussed later in Section 2.3.

For notational simplicity we assume σ = 1, since otherwise σ can be absorbed
into ρ(·). Let ui denote the ith element in u, and vj denote the j th element of v.
Let xj denote the j th column, and x(i) denote the ith row of X. Let Svec(X) =
(x11, x21, . . . , xm1, x12, . . . , xmn)

T be the column vector that is obtained by stack-
ing the columns of X. Furthermore, let ψ(x) = ρ′(x), W(x) = ψ(x)/x, and
W = (wij ), where wij = W(xij − uivj ).

Now we consider optimization of R(u,v) over v given u. Taking the derivative
of R(u,v) in (5) with respect to vj , we have

∂R

∂vj

=
m∑

i=1

wij (xij − uivj )(−ui) + ∂Pλ(u,v)

∂vj

,(6)
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where

∂Pλ(u,v)

∂v
= 2

{
uT (I + λu
u)u(I + λv
v) − uT u

}
v.

The root of ∂R/∂vj = 0 then gives us the optimizer with respect to vj .
Let

Y = Svec(X) =

⎛⎜⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎝
u 0 · · · 0
0 u · · · 0
...

...
. . . 0

0 0 · · · u

⎞⎟⎟⎟⎠ ,

W = diag{Svec(W)}, and 
v|u = uT (I +λu
u)u(I +λv
v)−(uT u)I . The equa-
tions ∂R/∂vj = 0 lead to

U T W U v + 2
v|uv = U T W Y.

Solving for v, we obtain

v̂ = (
U T W U + 2
v|u

)−1U T W Y,(7)

which is the updating formula for v given u. It is easy to see that this v̂ minimizes
the following penalized weighted sum of squares:

R̃(u,v) = (Y − U v)T W (Y − U v) + vT 
v|uv.(8)

The equation for the fitted value of Y is

Ŷ = U v̂ = U
(

U T W U + 2
v|u
)−1U T W Y.

Equivalently, we denote Ŷ = H Y with the hat matrix H defined as

H = U
(

U T W U + 2
v|u
)−1U T W .

Similarly, let

Y ∗ = Svec
(
XT ) =

⎛⎜⎜⎜⎝
x(1)

x(2)

...

x(m)

⎞⎟⎟⎟⎠ , V =

⎛⎜⎜⎜⎝
v 0 · · · 0
0 v · · · 0
...

...
. . . 0

0 0 · · · v

⎞⎟⎟⎟⎠ ,

W ∗ = diag{Svec(WT )}, and 
u|v = vT (I +λv
v)v(I +λu
u)− (vT v)I . Setting
∂R/∂ui = 0, we have

V T W ∗V u + 2
u|vu = V T W ∗Y ∗.

Solving for u gives the following updating formula for u given v:

û = (
V T W ∗V + 2
u|v

)−1V T W ∗Y ∗.(9)
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This û also solves a penalized weighted least squares problem and the correspond-
ing hat matrix is H∗ = V(V T W ∗V + 2
u|v)−1V T W ∗.

The IRLS algorithm takes the results from the SVD as the initial values, and
alternately applies (7) and (9) until convergence. The convergence of the algorithm
is guaranteed because each iteration step reduces the objective function, which has
a lower bound. For identifiability, at the end of each iteration step, we normalize
both û and v̂ to have unit L2 norm. Upon convergence, the normalizing constant
obtained in the last iteration step will be the estimate for the corresponding singular
value.

Note that the weighting matrix W needs to be updated at each iteration. The
matrix computation in (7) and (9) can be efficiently implemented using the block
diagonal structure of the matrices. Let w(j) be the j th column of W, and w(i) be
the ith row of W. It can be shown that

U T W U = diag
{∑

j

uT diag(wj )u
}
,

V T W ∗V = diag
{∑

i

vT diag
(
w(i))v}

,

(10)

U T W Y = diag
{∑

j

uT diag(wj )xj

}
,

V T W ∗Y ∗ = diag
{∑

i

vT diag
(
w(i))x(i)

}
.

These identities help significantly simplify the matrix computation. Moreover,
sparse matrix algorithms can be applied for efficient computation since both 
u|v
and 
v|u are banded matrices.

2.3. Penalty parameter selection. Following Huang, Shen and Buja (2009),
we nest penalty parameter selection inside the alternating algorithm that optimizes
u for fixed v, and v for fixed u. Let v̂∗ = (U T W U )−1U T W Y denote the unreg-
ularized update of v, that is, the update of v corresponding to λv = 0. The GCV
criterion for selecting λv conditional on λu is

GCV(λv|λu) = ‖̂v − v̂∗‖2/n

(1 − tr(H)/n)2 .

Let û∗ = (V T W ∗V)−1V T W ∗Y ∗ denote the unregularized update of u. The GCV
criteria for selecting λu conditional on λv is

GCV(λu|λv) = ‖û − û∗‖2/m

(1 − tr(H∗)/m)2 .
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These GCV formulas can be derived as a modification of appropriately defined
leave-one-row/column-out cross-validation criteria. Details of the derivation are
given in Section 1 of the online supplemental article [Zhang, Shen and Huang
(2013)]. We minimize the GCV criterion to select the optimal penalty parameters,
which is done by using grid search in our implementation. Penalty parameter se-
lection using the GCV formulas has much less computational complexity than di-
rectly using cross-validation. In our numerical experiments it usually took seconds
for one entire iteration of the algorithm including penalty parameter selection.

2.4. Estimation of σ . We have fixed the scale parameter σ in our develop-
ment so far. In practice, σ can be estimated from the data using residuals from a
preliminary rank-one approximation of X. Specifically, consider the residual ma-
trix R = (rij ) = X− û̂vT , where û̂vT is a rank-one matrix. The normalized Median
Absolute Deviation (MAD), defined as

σ̂ = 1

0.675
Medij

(|rij |, rij 
= 0
)
,(11)

provides an estimate of σ [Maronna, Martin and Yohai (2006)]. In (11), the û
and v̂ can be obtained using the SVD or by minimizing a robust loss function in
rank-one approximation. We found that using the SVD works very well and there
is no need to resort to a computationally more complicated robust loss function.
The RobRSVD procedure can also be applied iteratively, where residuals from
previous application are used to estimate the scale parameter, but our experience
suggests that such iteration is usually not necessary. Hence, standard SVD is used
to estimate the scale parameter for our numerical studies.

2.5. Missing values. In some situations, the data set may contain missing val-
ues, such as the mortality data set analyzed in this paper or sparse functional data
as discussed in Yao, Müller and Wang (2005). The IRLS algorithm can still be
applied with some slight modification on the updating equations (7) and (9). One
approach is to redefine Y , U , W , Y ∗, V and W ∗ by removing the rows/columns
of these matrices that contain the missing entries. However, this approach is com-
putationally inefficient, since the calculation of U T W U and V T W ∗V cannot be
simplified as in (10).

Below we develop a more efficient algorithm to deal with missing entries. We
propose to iteratively impute the missing values and then apply the IRLS algo-
rithm. Each missing entry Xij is replaced by ûi v̂j , where ûi and v̂j are obtained
from the previous iteration. The initial round of imputation can use either the row-
wise mean of the nonmissing entries in the same row or the column-wise mean
of the nonmissing entries in the same column. Our experience suggests that both
initialization methods lead to the same results at convergence. Our proposed impu-
tation approach can be thought as an application of the MM algorithm [Hunter and
Lange (2004)], which has nice convergence properties; see Section 2 of the online



ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION 1549

supplemental article for details [Zhang, Shen and Huang (2013)]. Similar iterative
imputation approaches have been used in the literature; see, for example, Beckers
and Rixen (2003), Martinez et al. (2009) and Lee, Huang and Hu (2010).

2.6. Function space view. So far our formulation of RobRSVD is in finite di-
mensions, although the use of regularization penalties implicitly assumes that there
are underlying smooth functions. We now use the Reproducing Kernel Hilbert
Space (RKHS) theory to extend our formulation to function spaces. We refer to
a standard reference such as Wahba (1990) for the necessary background.

We assume X = (X(yi, zj ))i=1,...,n;j=1,...,m contains the evaluations of a real-
ization of a random field X(y, z) at (yi, zj ), where yi and zj are distinct sampling
points in the respective domains Y and Z . Seeking a rank-one or product approx-
imation X(y, z) � U(y)V (z) in function spaces, we assume that U(y) and V (z)

are members of RKHSs Hu and Hv defined, respectively, on the domains Y and Z .
The RKHSs carry reproducing kernels Ku(y1, y2) and Kv(z1, z2), inner products
〈U1,U2〉u and 〈V1,V2〉v , as well as norms ‖U‖u and ‖V ‖v , respectively. For ar-
bitrary u = (u1, . . . , un)

T ∈ R
n there is a unique U ∈ Hu interpolating u, that is,

satisfying ui = U(yi) (i = 1, . . . , n) and having minimum norm ‖U‖u among all
interpolants. Moreover, this function is of the form U(y) = ∑

i=1,...,n ciKu(yi, y),
and ‖U‖2

u = uT �uu, where �u = K−1
u and Ku = (Ku(yi′, yi′′))i′,i′′=1,...,n. The

same argument yields V (z) = ∑
j=1,...,m djKv(zj , z) for given v ∈ R

m, and �v =
K−1

v . The function space version of the criterion R(u,v) (5) is (with some abuse
of notation)

R(U,V ) = ρ

(
X − uvT

σ

)
+ λu‖U‖2

u‖v‖2

(12)
+ λv‖u‖2‖V ‖2

v + λu‖U‖2
u · λv‖V ‖2

v,

where u = (U(y1), . . . ,U(yn))
T and v = (V (z1), . . . , V (zm))T .

The representer theorem argument [Kimeldorf and Wahba (1971)] shows that
minimization of R(U,V ) in the RKHSs can be reduced to minimization of R(u,v)

in the finite-dimensional space. Specifically, if ũ and ṽ are minimizers of R(u,v),
and Ũ and Ṽ are their unique interpolants in RKHSs Hu and Hv , then Ũ and Ṽ

are the minimizers of R(U,V ). This result suggests that our methodological dis-
cussions in finite-dimensional space are without loss of generality. An important
application of this result, however, is that it allows us to extend the output vectors
ũ and ṽ to their function space counterparts Ũ and Ṽ through the RKHS interpo-
lation.

In the nonparametric smoothing literature, an integrated squared second deriva-
tive penalty is commonly used. Applying this penalty to our setting means us-
ing ‖U‖2

u = ∫ {U ′′(y)}2 dy and ‖V ‖2
v = ∫ {U ′′(z)}2 dz in (12). The corresponding

RKHSs Hu and Hv are Sobolev spaces of functions with reproducing kernels de-
fined in Chapter 1 of Wahba (1990). On the other hand, for this special kind of
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penalty, we do not need the machinery of RKHS for connecting finite-dimensional
and functional spaces. We can resort to the standard results of natural cubic splines
[see Chapter 1 of Green and Silverman (1994)]. There are closed-form expressions
of the penalty matrices in terms of the evaluation points and interpolation formulas
available; see Section 5 of Huang, Shen and Buja (2008).

3. Simulation studies. Three simulation studies were conducted to compare
the performance of RobRSVD against the standard SVD and the RSVD of Huang,
Shen and Buja (2009). The underlying true signal matrix was generated to be ei-
ther rank one, or rank one with missing values, or rank two. A detailed analysis of
the rank-one signal matrix is reported in Section 3.1. To save space, we only sum-
marize the findings for the other two settings in Sections 3.2 and 3.3, and present
details of the studies in Section 3 of the online supplemental document [Zhang,
Shen and Huang (2013)].

3.1. Rank-one signal matrix. We consider the following rank-one two-way
functional model:

X(y, z) = s0u0(y)v0(z) + ε(y, z),(13)

where s0 = 773 is a scalar, and the two functions are u0(y) = (log 10/9)10y and
v0(z) = (1 + 1/π)−1 sin(2πz) with y ∈ [0,1], z ∈ [0,1]. Note that (13) is slightly
different from the general two-way functional model (1) in that the two functions
are now normalized:

∫ 1
0 u2

0(y) dy = 1 and
∫ 1

0 v2
0(z) dz = 1, which makes it neces-

sary to have the scalar s0. To simulate the functional data matrix, we consider 100
equal-spaced grids in either direction. The true two-way signal surface without any
noise is plotted in panel (a) of Figure 1.

As a benchmark scenario, we consider the situation where the data have no
outliers. In addition, we study four different scenarios that outliers can occur in
two-way functional data: (1) random outlying cells, (2) outlying rows, (3) outly-
ing blocks, and (4) diagonal outlying cells. Under each setting, the outliers are
introduced as discussed below. Besides the outliers, independent Gaussian noises
ε(y, z) with mean 0 and variance σ 2 are added to the simulated data. We consider
different variances: σ 2 = 0.2,0.5,0.8,1. For each simulation setting, 100 simula-
tion replications are performed. The surface plot of one random replication (with
σ 2 = 1) is plotted in Figure 1 for each of the four outlying scenarios, respectively.

We now describe how the outliers are introduced for each simulation setting.
Let X0 = s0u0vT

0 denote the signal matrix (i.e., without any noise), where u0 (or
v0) denotes the vector that contains the observed values of the function u0(y) [or
v0(z)] at the 100 equally-spaced grid points within [0,1]:

1. Outlying cells: Under this setting, we randomly select 100 cells in the data
and replace their entries with outlying values. In particular, the values in the se-
lected cells are randomly simulated from the uniform distribution with support
[C1,2C1] with C1 = max(X0).
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FIG. 1. Rank-one simulation: The surface plots. (a) No noise and no outliers, (b) no outliers with
noise, (c) random outlying cells, (d) outlying rows, (e) outlying blocks, and (f) diagonal outlying
cells.

2. Outlying rows: We randomly select five rows, and replace them by five new
rows defined below. For each of the five randomly selected rows, we obtain the
outlying curve by multiplying the corresponding s0u0(y) with a different function
v1(z) = C(1 + sin(4πz)) with C being the normalizing constant. Note that the
curve shapes of the outlying rows are different from the shape of the other rows.

3. Outlying block: We randomly select a continuous square block of cells at
a randomly selected location, with the block size fixed as 10 × 10. Within the
block, we shift the cells upward by adding a random amount, which is uniformly
distributed on [2C1,3C1].

4. Diagonal outliers: We replace the diagonal entries of the matrix with val-
ues uniformly distributed between [C1,2C1]. This setting mimics the cohort ef-
fects observed in the Spanish mortality data (Section 4).

The three methods, SVD, RSVD and RobRSVD, were applied to the 100 sim-
ulated data sets under each setting, and the best rank-one approximations were
obtained to get the estimates for u0 and v0. The penalty parameters of the RSVD
and RobRSVD were selected using the GCV method.

To compare various methods, we calculated the L2 distance between the esti-
mates and the truth for each simulated data. Figures 2 and 3 present the boxplots
of the 100 distances for the three methods for u0 and v0, respectively, for each of
the four noise levels and each of the outlier scenarios.

In summary, both figures clearly show that:
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FIG. 2. Rank-one simulation: Boxplots of the L2 distance between û0 and u0.

1. For the benchmark no-outlier cases, RobRSVD and RSVD perform compa-
rably, and both are better than SVD due to smoothing regularization; this suggests
that our RobRSVD does not lose much when the data contain no outliers.

2. For all the outlying settings, RobRSVD improves significantly over RSVD
and SVD, which supports the robustness of RobRSVD against various kinds of
outliers in two-way functional data. RobRSVD has the smallest median L2 dis-
tance and variability across all the settings and the different noise levels.

We also calculated the estimated singular values ŝ0 and compared them with
the true singular value s0 = 773. For each method and each noise level, Figure 4
presents the boxplot of the 100 absolute differences between ŝ0 and s0. The com-
parison shows that RobRSVD performs similarly with SVD and RSVD for cases
with no outliers, while much better when there are outliers.

To get some ideas about individual estimation performance, Figure 5 compares
the estimates obtained from the particular data sets shown in Figure 1, by plotting
the differences between the estimated curves and the true curve [either u0(·) or
v0(·)]. As one can see, the RobRSVD method is again the clear winner. We also
observe that the smoothing step in RSVD can mitigate the outlying effects to some
extent in certain cases, but still cannot fully remove those effects. The additional
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FIG. 3. Rank-one simulation: Boxplots of the L2 distance between v̂0 and v0.

incorporation of robust loss function in RobRSVD further improves the robustness
of RSVD.

3.2. Rank-one signal matrix with missing values. Our motivating Spanish
mortality data contain both outliers and missing values, which motivates us to
investigate the performance of RobRSVD when there are missing values. For each
simulated data set considered in Section 3.1, we randomly selected and deleted
100 cells from it to form a new data set with missing values. We used the impu-
tation method described in Section 2.5 to estimate u and v for SVD, RSVD and
RobRSVD.

The simulation results are reported in the online supplement. The comparison
presented in Figures 1 and 2 there clearly shows that the RobRSVD remains to be
the winner across all the settings considered.

3.3. Rank-two signal matrix. We also studied the situation where the true sig-
nal matrix is rank two, using a setting similar to what has been studied by Huang,
Shen and Buja (2009). Similar to Section 3.1, we considered five simulation sce-
narios: no outliers, outlying cells, outlying rows, outlying block, and diagonal out-
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FIG. 4. Rank-one simulation: Boxplots of |̂s0 − s0|.

liers. Detailed descriptions can be found in the online supplement, with compara-
tive results presented in Figures 3–5 there.

We used two measures to gauge the performance of estimating the rank-2 sig-
nal matrix. The first measure is ‖X̂0 − X0‖F , the Frobenius norm of the difference
between the estimated best rank-two matrix X̂0 and the true signal matrix X0. The
second measure the largest principal angle [Golub and Van Loan (1996)] between
the true subspace and the subspace spanned by the corresponding singular vector
estimates. Specifically, let U = span(U∗

1 ,U∗
2 ) denote the linear subspace spanned

by U∗
1 (y) and U∗

2 (y) evaluated at the grid points and Û be the corresponding es-
timate of this subspace. The principal angle between U and Û can be computed
as cos−1(ρ) × 180/π , where ρ is the minimum eigenvalue of the matrix QT

Û
QU

where QÛ and QU are orthogonal basis matrices obtained by the QR decompo-
sition of the matrices Û and U, respectively. RobRSVD performed the best in all
cases with outliers under both distance measures, while RSVD and RobRSVD
usually performed similarly and were better than SVD in cases without outliers.

4. The Spanish mortality data. In this section we analyze the Spanish mor-
tality data using various methods to illustrate the benefits of our proposed Ro-
bRSVD method. The Spanish mortality data are available in the Human Mortality
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FIG. 5. Rank-one simulation: Comparison of individual estimates obtained from the data plotted
in Figure 1. The differences between the estimates and the truth are plotted. The RobRSVD method
shows the most robust performance.

Database [HMD (2011)]. This mortality data set was collected such that each row
represents a year between 1908 and 2007, each column represents an age group
from 0 to 110, and each cell records the mortality rate for a particular age group
during that year. The data are naturally two-way functional, since each column
vector is a time series of mortality rate of a given age group, and each row vector
is a mortality curve of different age groups at a specific year.

Zhang et al. (2007) developed several visualization tools for exploring two-way
functional data, which were used to analyze a subset of the Spanish mortality data.
As a result, they identified a couple of interesting outlying time periods (i.e., rows
in the data matrix):

• the 1918 Spanish flu pandemic, and
• the 1936–1939 Spanish Civil War,

both of which experienced the death of millions of Spanish people (in an unusual
age distribution). In both cases, the mortality rate increased well above what the
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normal yearly trend would have predicted, and the authors noted that the outlying
years affected the estimation of the first few leading SVD components, which is
consistent with our findings reported below.

One can view the mortality rate data as some normal mortality trend, a function
of age group and year, contaminated with additive noises, including measurement
errors and potential outliers. Hence, a good estimation method should be able to
recover the underlying normal mortality varying pattern across age and year, with
minimal effects of the noises including the outliers.

Before the formal analysis, we make two comments regarding the data. Follow-
ing Zhang et al. (2007), the data were first transformed through log2(X + 1/2)

where X denotes the original mortality rate. There are missing values for the el-
der people in the data, and we employ the procedure discussed in Section 2.5 to
automatically accommodate the missing values.

Figure 6 provides several functional views of the log-transformed data. Sev-
eral interesting observations can be made from the plots. The mesh surface plot
in panel (a) highlights the high mortality rates among the seniors that are older
than 100. To better depict the mortality trend among people less than 100 years old,
the zoomed surface plot in panel (b) shows the mortality rate pattern up to age 100:
for a given year, the mortality rate generally decreases from infants to teenagers
and adults younger than 60, and begins to increase when the age is over 60, which
is the standard mortality pattern across age; for a given age group, the mortality
rate decreases across the years, which reflects the improvement of life quality and
health care; in addition, the decrease-across-year among younger people is more
significant than for elder people. For the (zoomed) image plots on panels (c)–(d),
we observe the cohort effects discussed by Zhang et al. (2007) showing up as the
diagonal strips and, more importantly, the two outlying time periods appearing as
horizontal strips: the 1918 flu pandemic affects all age groups, while the 1936–
1939 civil war affects only those older than 20. The curve plots in panel (e) show
the mortality rate as a function of age where each curve corresponds to a particu-
lar year, and in panel (f) show the mortality rate as a function of year where each
curve is for a particular age.

To better understand the dominating modes of variation within the data, we use
SVD, RSVD and RobRSVD to find (smooth) low-rank approximations for the data
and compare their results. Let si be the ith singular value for the standard SVD.
The ratio of s2

i over the Fronbenius norm of the data matrix represents the percent-
age of energy explained by the ith component. The percentage can be plotted in
a scree plot as a useful visual aid for deciding the number of significant compo-
nents. For the mortality data, the scree plot based on the SVD shows a clear knee
at rank two, with the first two standard SVD components explaining 93.3% and
5.0% of the total energy, respectively, while the third component accounts for less
than 1.0% of the total energy. Thus, we only look at the first two dominating pairs
of functional components when we compare different methods.



ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION 1557

FIG. 6. Various visualizations of the mortality data (log-scale): (a) the mesh surface plot, (b) the
zoomed surface plot (up to age 100), (c) the image plot, (d) the zoomed image plot (up to age 100),
(e) the curve plot versus age, (f) the curve plot versus year.

Figure 7 compares the first left (regularized) singular vectors (RSVs) (u1) and
the first right RSVs (v1), as well as the best rank-one two-way approximation
from the three methods. Note that the first pair of RSVs explains the major mode
of variation in the data. The green dotted-dash curves show the results of the regu-
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FIG. 7. Comparison of the first pairs of (regularized) singular vectors. The left (regularized) singu-
lar vectors (u1) from SVD and RSVD are obviously affected by the two outlying time periods (1918,
1936–1939).

lar SVD method, the blue dash ones correspond to the RSVD method, and the red
solid curves are for our RobRSVD method. The RobRSVD left component shows
a general smooth increasing trend from 1908 to 2007, while the corresponding
right component resembles the standard smooth age-mortality curve. On the other
hand, the left functional components from SVD and RSVD are rather wiggly and
seriously affected by the two outlying time periods in 1918 and 1936–1939. The
robustness of RobRSVD can also be seen from the image plots of the best rank-one
approximation, the bottom row of Figure 7. For both SVD and RSVD approxima-
tions, the outlying years show up as horizontal strips to reflect the increased mor-
tality rates across a wide range of age groups. Furthermore, the RobRSVD image
plot shows a much smoother trend across age.

The second pair of (regularized) singular vectors is compared in Figure 8. In
general, we observe that the RobRSVD component is smoother and more inter-
pretable than the SVD and RSVD components, which tend to be wiggly and show
effects from the outlying years. Note that the numerical scales of the colorbars for
SVD/RSVD are much larger than those of RobRSVD, which are caused by the out-
liers appearing in the SVD/RSVD components. The second pair of the RobRSVD
component highlights the contrast between people of age 50–100 and people older
than 100 during two different time periods: before 1970, the older group has a
lower mortality rate than the younger group, while after 1970, the comparison is
reversed. This contrast can be clearly seen in the bottom right panel.
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FIG. 8. Comparison of the second pairs of (regularized) singular vectors. Note the contrast in the
RobRSVD image plot around 1970.

Figure 6 of the online supplement shows the 3-dimensional surface plots of
the best rank-two approximations by the three methods, also indicating that the
RobRSVD is least influenced by outlying observations.
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SUPPLEMENTARY MATERIAL

Supplemental notes for “Robust regularized singular value decomposition
with application to mortality data” (DOI: 10.1214/13-AOAS649SUPP; .pdf).
The supplemental notes include deviation of the GCV formula in this paper, an
MM algorithm to handle missing value, two additional simulation examples in
details, and one additional plot for the analysis of the mortality data.
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