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Biological structure and function depend on complex regulatory interac-
tions between many genes. A wealth of gene expression data is available from
high-throughput genome-wide measurement technologies, but effective gene
regulatory network inference methods are still needed. Model-based methods
founded on quantitative descriptions of gene regulation are among the most
promising, but many such methods rely on simple, local models or on ad
hoc inference approaches lacking experimental interpretability. We propose
an experimental design and develop an associated statistical method for in-
ferring a gene network by learning a standard quantitative, interpretable, pre-
dictive, biophysics-based ordinary differential equation model of gene reg-
ulation. We fit the model parameters using gene expression measurements
from perturbed steady-states of the system, like those following overexpres-
sion or knockdown experiments. Although the original model is nonlinear,
our design allows us to transform it into a convex optimization problem by
restricting attention to steady-states and using the lasso for parameter selec-
tion. Here, we describe the model and inference algorithm and apply them
to a synthetic six-gene system, demonstrating that the model is detailed and
flexible enough to account for activation and repression as well as synergistic
and self-regulation, and the algorithm can efficiently and accurately recover
the parameters used to generate the data.

Introduction. Complex interactions between many genes give rise to the bio-
logical structure and function that sustain life. The Central Dogma [Crick (1970),
Jacob and Monod (1961)] provides a qualitative description of how these pro-
cesses occur, but precise quantitative modeling is still needed [Rosenfeld (2011),
Tyson, Chen and Novak (2003)]. Research into the detailed mechanisms of gene
expression over the past few decades has shown that expression is regulated by a
complex system of gene interactions. Recently, microarray and sequencing tech-
nologies [DeRisi, Iyer and Brown (1997), Mortazavi et al. (2008), Ren et al.
(2000), Robertson et al. (2007)] have enabled high-throughput genome-wide ex-
pression level measurements. This data enables detailed study of gene networks
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[Bar-Joseph et al. (2003), Holstege et al. (1998), Hu, Killion and Iyer (2007), Lee
et al. (2002), Segal et al. (2003), Tegner et al. (2003), Zhou et al. (2007)]. The goal
is to understand how genes interact to give rise to the biochemical complexity that
allows organisms to live, grow and reproduce.

Gene expression measurements contain information useful for reconstructing
the underlying interaction structure [DeRisi, Iyer and Brown (1997), Holstege
et al. (1998), Hughes et al. (2000)] because gene regulatory systems have a de-
fined ordering [Avery and Wasserman (1992)], forming pathways that connect to
form networks [Alon (2007), De Smet and Marchal (2010)]. Many gene regu-
lation pathways have been discovered over the past few decades [Alberts et al.
(2007), Hartwell et al. (2010)]. At the turn of the century, researchers began apply-
ing statistical tools to genome-wide expression data to understand complex gene
interactions. Eisen et al. showed that genes from the same pathways and with sim-
ilar functions cluster together by expression pattern [Eisen et al. (1998)]. Soon
afterward, module-based network inference methods appeared, which group co-
expressed genes into cellular function modules [Bar-Joseph et al. (2003), Segal
et al. (2003)]. Recently, methods based on descriptive but nonmechanistic mathe-
matical models [Bansal et al. (2007), Faith et al. (2007), Friedman (2004), Gardner
et al. (2003), Tegner et al. (2003)] have gained prominence. These models describe
gene regulation quantitatively and can be used to simulate and predict systems be-
haviors [Dehmer et al. (2011), Palsson (2011)]. However, more work is needed to
develop effective model-based methods for inferring gene network structure from
experimental data.

Existing inference methods typically rely either on heuristic approaches or on
very simple, local models, like linear differential equation models in a neighbor-
hood of a particular steady-state. Statistical corrrelation is a common method of
establishing network connections [Dehmer et al. (2011)] and can be very useful
when hundreds or thousands of genes are monitored under specific, local cellu-
lar conditions (e.g., for grouping genes with similar functions). However, this ap-
proach works poorly when perturbations drive the network far from the original
steady-state. Global nonlinear models are essential to account for complex global
system behaviors, like the transformation of a normal cell into a cancerous cell due
to the amplification of a particular gene.

As a basis for our inference approach, we chose a standard global nonlinear
model: the quantitative, experimentally interpretable biophysics-based ordinary
differential equation (ODE) gene regulation model of Bintu et al. (2005b, 2005a).
Many models of this type have been proposed, and the idea traces back to the
beginning of systems biology in the biophysics field [Ackers, Johnson and Shea
(1982), Shea and Ackers (1985), von Hippel et al. (1974)], but the Bintu model
is widely accepted within the biophysics community [Bintu et al. (2005b)]. The
Bintu model is based on the thermodynamics of RNA transcription, the process at
the core of gene expression regulation [Holstege et al. (1998), Hu, Killion and Iyer
(2007)]. Transcription occurs when RNA polymerase (RNAP) binds the gene pro-
moter; transcription factors (TFs) can modulate the RNAP binding energy to acti-
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vate or repress transcription. RNA transcripts are then translated into protein. Bintu
models the mechanism of transcription in detail, using physically interpretable pa-
rameters. The form of the equations is rich and flexible enough to include the full
range of gene regulatory behavior. Another notable biophysics-based model is that
of the annual DREAM competition, but it has many biochemical assumptions and
model parameters, like the Hill coefficient of transcription factor binding events,
that cannot be estimated using gene expression measurements, so the network re-
construction requires ad hoc inference methods to learn the underlying gene inter-
actions [Marbach et al. (2010), Pinna, Soranzo and de la Fuente (2010), Schaffter,
Marbach and Floreano (2011), Yip et al. (2010)]. Compared to the DREAM model,
the Bintu model has the advantages of simplicity and interpretability, and better
lends itself to principled inference.

In this paper, we propose an experimental design and associated statistical
method for inferring an unknown gene network by fitting the ODE-based Bintu
gene regulation model. The required data is gene expression measurements at a set
of perturbed steady-states induced by gene knockdown and overexpression [Huang
et al. (2005)]. We show how to design a sequence of experiments to collect the
data and how to use it to fit the parameters of the Bintu model, leading to a set of
ODEs that quantitatively characterize the regulatory network. Although the orig-
inal fitting problem is nonlinear, we can transform it into a convex optimization
problem by restricting our attention to steady-states. We use the lasso [Tibshirani
(1996)] for parameter selection. As a proof of principle, we test the method on
a simulated embryonic stem cell (ESC) transcription network [Chickarmane and
Peterson (2008)] given by a system of ODEs based on the Bintu model. Here, we
demonstrate that the inference algorithm is computationally efficient, accounts for
synergistic regulation and self-regulation, and correctly recovers the parameters
used to generate the data. Furthermore, the method requires only a set of steady-
state gene expression measurements. Experimental researchers in the biological
sciences can use this method to infer gene networks in a much more principled,
detailed manner than earlier approaches allowed.

Dynamical systems model. We model gene expression regulation as a dy-
namical system. Let x ∈ R

n represent RNA concentrations and y ∈ R
n represent

protein concentrations corresponding to a set of n genes. We assume that the pro-
duction rate of the RNA transcript xi of gene i is proportional to the probability
f (y) that RNA polymerase (RNAP) is bound to the promoter. That is, we as-
sume that RNA transcription occurs at a rate τi whenever RNAP is bound to the
promoter. We model the probability that RNAP is bound to the promoter as a non-
linear function f of y, since RNAP binding is regulated by a set of TFs. Further,
we assume that the production rate of protein product yi of gene i is proportional
to the concentration of the RNA transcript xi , and that both the RNA transcript and
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protein products of gene i degrade at fixed rates (λRNA
i , λProtein

i ),

dxi

dt
= τifi(y) − λRNA

i xi,

(1)
dyi

dt
= rixi − λProtein

i yi .

Based on the thermodynamics of RNAP and TF binding, one can deduce the fol-
lowing form for fi [Bintu et al. (2005b, 2005a)]:

fi(y) = bi0 + ∑m
j=1 bij�k∈Sij

yk

1 + ∑m
j=1 cij�k∈Sij

yk

,(2)

where Sij lists the gene products that interact to form a regulatory complex, and
bij , cij are nonnegative coefficients that must satisfy cij ≥ bij ≥ 0. (We assume
that the concentration of each complex is proportional to the product of the con-
centrations of the constituent proteins, and absorb the proportionality constant into
corresponding coefficients bij , cij .) The coefficients bij and cij depend on the
binding energies of regulator complexes to the promoter. bi0 and ci0 correspond
to the case when the promoter is not bound by any regulator (�k∈Si0yk = 1), and
the coefficients are normalized so that ci0 = 1. Details and a derivation are given
in the Appendix.

The form of fi allows us to model the full spectrum of regulatory behavior in
quantitative detail. Terms that appear in the denominator only are repressors, and
the degree of repression depends on the magnitude of the coefficient, while terms
that appear in the numerator and denominator may act as either activators or repres-
sors depending on the relative magnitudes of the coefficients and the current gene
expression levels. Terms may represent either single genes or gene complexes. The
model can even be extended to account for environmental factors that affect gene
regulation, though we will not discuss it further here.

As an example, consider the simple two-gene network shown in Figure 1. Sup-
pose that genes 1 and 2 have RNA concentrations x1, x2, and protein concentra-
tions y1, y2, respectively, and that gene 1 is activated by protein 2 and repressed

FIG. 1. Simple two-gene network example described by equation (3) (with parameters
b11 = c11 = 0.1 for activators; c12 = 10 for repressors; and b10 = 0.01 for constants in the nu-
merator). Gene 1 is activated by the protein product of gene 2 and repressed by its own product (an
example of self-regulation). Gene 2 is repressed by a complex formed by the product of gene 1 and its
own product (synergistic self-regulation). In the diagram, the edge colors indicate activation (green)
or repression (red) and the edge weights indicate coefficient sizes, illustrated above with typical sizes.
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by its own product (protein 1), while gene 2 is repressed by a complex formed by
proteins 1 and 2. The situation corresponds to the following equations:

dx1

dt
= τ1

b10 + b11y2

1 + c11y2 + c12y1
− λRNA

1 x1,
dy1

dt
= r1x1 − λProtein

1 y1,

(3)
dx2

dt
= τ2

b20

1 + c21y1y2
− λRNA

2 x2,
dy2

dt
= r2x2 − λProtein

2 y2.

In the notation above, we have S11 = {2}, S12 = {1}, S21 = {1,2}. The parameters
b10, b11, c11, . . . determine the magnitude of the repression or activation. As this
example shows, the model is flexible enough to capture a wide range of effects,
including self-regulation (i.e., regulation of a gene by its own protein product, most
commonly as repression) and synergistic regulation by protein complexes (two or
more proteins bound together to form a regulatory unit), in quantitative detail.
Furthermore, the model is predictive: if we know or can infer the coefficients in
the model, we can predict the future behavior of the system starting from any initial
condition.

Inference problem. The model given by equations (1) and (2) fully describes
the evolution of RNA and protein levels and provides a comprehensive, quantita-
tive model of gene regulation, provided we know the parameters. Unfortunately,
bij , cij are extremely difficult to measure, as they depend on binding energies of
RNAP and TFs to the gene promoter. The sheer number of measurements re-
quired to characterize all possible TFs (both individual proteins and complexes)
also makes this approach infeasible. Therefore, our goal is to use a systems level
approach to fit the model using RNA expression data. Specifically, we will assume
that τi, λ

RNA
i , λProtein

i are known or can be measured (if these quantities are not
available, we can simply absorb them into the coefficients bij , cij , although more
accurate rate estimates will likely improve the coefficient estimates). Our data will
be measurements of the RNA concentrations x at many different cellular steady-
states (which correspond to steady-states of the dynamical system). The problem
is to infer the values of the coefficients bij , cij .

Linear problem at steady-state. The key to solving this problem efficiently
is to restrict our attention to steady-states, as proposed by Choi (2012). This restric-
tion allows us to transform a nonlinear ODE fitting problem into a linear regression
problem. A steady-state of the system is one in which RNA and protein levels are
constant: dxi

dt
= dyi

dt
= 0. Steady-states of the system correspond to cell states with

roughly constant gene expression levels, like embyronic stem cell, skin cell or liver
cell. In contrast, an embryonic stem cell in the process of differentiating is not in
steady-state. Perturbed steady-states are particularly interesting. After a perturba-
tion like gene knockdown, a cell’s gene expression levels are in flux for some time
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while they adjust to the change. Eventually, if it is still viable, the cell may set-
tle to a new steady-state [Huang et al. (2005)]. These perturbed steady-states are
especially helpful for understanding gene regulation.

In our model, the steady-state conditions dxi

dt
= dyi

dt
= 0 mean that

0 = τifi(y) − λRNA
i xi, 0 = rixi − λProtein

i yi �⇒ yi = rixi

λProtein
i

.

Defining f̃i(z) = fi(
ri

λProtein
i

z) yields

0 = τi f̃i(x) − λRNA
i xi .

Absorbing the constants into the coefficients bij , cij (so that b̃ij = bij�k∈Sij

rk
λProtein

k

,

c̃ij = cij�k∈Sij

rk
λProtein

k

), we obtain the final equation

τi

bi0 + ∑
j bij�k∈Sij

xk

1 + ∑
j cij�k∈Sij

xk

− γixi = 0

or

τi

(
bi0 + ∑

j

bij�k∈Sij
xk

)
− γixi

(
1 + ∑

j

cij�k∈Sij
xk

)
= 0

(by multiplying both sides by the denominator). The last equation is linear in the
coefficients bij , cij ! In order to solve for bij , cij , we will need to collect many
different expression measurements x at both naturally occurring and perturbed
steady-states. Each steady-state measurement will lead to a different linear equa-
tion. These equations can be arranged into a linear system that we can solve for
the coefficients.

Problem formulation. Our problem is to find bij , cij such that

0 = τi

(
bi0 + ∑

j

bij�k∈Sij
x

(m)
k

)

− γixi

(
1 + ∑

j

cij�k∈Sij
x

(m)
k

)
∀m = 1, . . . ,M,

given RNA expression data x(m) at many different steady-state points m =
1, . . . ,M and known translation and degradation rates τi, λ

RNA
i , λProtein

i . (The ex-
perimental means of collecting the necessary steady-state expression data will be
discussed in the next section.) We solve a separate problem for each gene i, since
the coefficients bij , cij in the differential equation dxi/dt = · · · for gene i are in-
dependent of the coefficients in the differential equations for other genes. Since
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we cannot know ahead of time which potential regulatory terms �k∈Sij
xk are actu-

ally involved, we include all possible terms up to second-order and look for sparse
bij , cij , intepreting cij = 0 to mean that term �k∈Sij

xk is not a regulator of gene i.
Consider gene 2 in the two-gene example. Suppose we have expression mea-

surements for a naturally occurring steady-state (x0
1 , x0

2), and a perturbed steady-
state following gene 1-knockout (0, x1

2). We obtain two linear equations in the
coefficients b20, c21:

τb20 − λ2x
0
2
(
1 + c21x

0
1x0

2
) = 0

(
steady-state

(
x0

1 , x0
2
))

,

τb20 − λ2x
1
2 = 0

(
steady-state

(
0, x1

2
))

.

If we knew a priori that complex x1x2 was the only regulator of gene 2, these two

equations would allow us to solve for the coefficients (b20 = λ2x
1
2

τ
, c21 = x0

2−x1
2

(x0
2 )2 ).

Typically we do not know the regulators beforehand, however, and we need to use
the data to identify them. That is, we include all possible terms (up to second-
order) in the equations:

τ
(
b20 + b21x

(m)
1 x

(m)
2 + b22x

(m)
1 + b23x

(m)
2

)

− λ2x
(m)
2

(
1 + c21x

(m)
1 x

(m)
2 + c22x

(m)
1 + c22x

(m)
2

)
= 0

and estimate sparse coefficients bij , cij using several steady-state measurements

(x
(m)
1 , x

(m)
2 ). (We should find that the recovered coefficients b21, b22, b23, c22, c23

are very close to zero, since the corresponding terms do not appear in the true
equation.)

Temporarily suppressing the superscript m denoting the observation, we can
compactly express the general system above by defining zi as the vector with
entries zi(j) = �k∈Sij

xk [with the convention that zi(0) = 1, zi(j) = xj for
j = 1, . . . , n], which yields

0 = τib
T
i zi − γizi(i)c

T
i zi

for each observation (m = 1, . . . ,M). If we form a matrix Gi by concatenating the
row vectors z

(1)
i , . . . , z

(M)
i and let Di be a diagonal matrix with entries z

(m)
i (i),m =

1, . . . ,M , we can express this as

[ τiGi −γiDiGi ]
[
bi

ci

]
= 0

with the constraints 0 ≤ bi ≤ ci, ci(0) = 1. Stating the problem in this form eluci-
dates the required number of steady-state measurements, M . If the linear system
above were dense and had no constraints on the coefficients bij , cij , and the steady-
state expression vectors were (numerically) linearly independent, then we would
require M = 2Tn,k , where Tn,k is the number of the terms in the rational-form
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polynomial of degree k in n genes (k = 2 if we include up to second-order regula-
tory interactions). Tn,k is equal to the number of subsets of {1,2, . . . , n} with k or
fewer elements since each term represents an interaction between j distinct genes
(0 ≤ j ≤ k), hence, Tn,k = ∑k

j=0
(n
j

) ≤ nk for k ≤ n (Tn,2 ≤ n2, e.g.). However, the
constraints reduce the dimension of the solution space [ci(0) = 1 reduces it by 1,
while 0 ≤ bi ≤ ci reduces it by up to n], and our algorithm also uses �1-regression
to search for sparse solutions, which may allow us to reconstruct the coeffcients
from far fewer measurements than 2Tn,k .

Experimental approach. The set of steady-state gene expression measure-
ments needed to fit the model can be generated via a systematic sequence of gene
perturbation experiments. Figure 2 summarizes the overall approach to finding the
regulatory interactions among a set of genes comprising a (roughly) self-contained

FIG. 2. Experimental approach for gene network inference. (1) Design and perform perturbation
experiments targeting each gene (or possibly pair of genes) in the network: these may include over-
expression, knockdowns or knockouts. (2) Following each perturbation, allow the system to settle
to a new steady-state. (3) Measure expression levels of all genes at each induced steady-state, and
collect results in a data matrix. (4) Use steady-state expression data as input to inference algorithm.
(5) Construct regulatory network from inference algorithm output.
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network of interest. First, molecular perturbations targeting each gene, or possibly
pair of genes, in the network would be designed and applied one at a time. Follow-
ing each perturbation, the cells would be allowed to settle down to a new steady-
state, at which point the gene expression levels would be measured. The collection
of gene expression measurements from different steady-states would be input to
the inference algorithm described in the next section, which outputs a dynami-
cal systems model of the gene network capable of predicting the behavior of the
network following other perturbations. Perturbation data not used in the inference
algorithm could be used to validate the recovered model.

The key experimental steps in this procedure, gene perturbations and gene ex-
pression measurements, are established technologies. Gene perturbations, includ-
ing overexpression, knockdown and knockout, are routinely used in biological
studies to investigate gene function. These experiments can be performed for many
laboratory organisms and cell lines both in vitro and in vivo [Alberts et al. (2007)].
Overexpression experiments amplify a gene’s expression level, usually by intro-
ducing an extra copy of the gene. Knockdown experiments typically use RNAi
technology: the cell is transfected with a short DNA sequence, driven by a (possi-
bly inducible) promoter element, that produces siRNA or shRNA that specifically
binds the RNA transcripts of the gene of interest and triggers degradation. Mor-
pholinos can also be used for gene knockdown. Gene knockout can be achieved
by removing all or part of a gene to permanently disrupt transcription [Alberts
et al. (2007)]. Overexpression [Rodriguez et al. (2007)], knockdown [Foygel et al.
(2008), Rodriguez et al. (2007)] and knockout [Lengner et al. (2011)] experiments
have all been performed for the Oct4 gene, which helps maintain the stem cell
steady-state. In some cases, much of the work is already done: for example, the
Saccharomyces Genome Deletion Project has a nearly complete library of deletion
mutants [Winzeler (1999)].

Techniques for gene expression measurement are also well-established. Gene
expression is usually measured at the transcript level: the RNA transcripts are ex-
tracted and reverse-transcribed into cDNA, which can be quantified with either
RT-qPCR, microarray or sequencing technologies [Alberts et al. (2007), Mortazavi
et al. (2008)]. Housekeeping gene expression measurements are used as controls
to determine the expression levels of the genes of interest. The gene perturbations
and subsequent expression measurements required to collect data for our inference
algorithm may be time-consuming due to the large number of perturbations, but all
the experimental techniques are quite standard and resources like deletion libraries
can be extremely helpful.

Algorithm. We need to solve the linear system

[ τiGi −γiDiGi ]
[
bi

ci

]
= 0
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for bi, ci , subject to the constraints 0 ≤ bi ≤ ci , ci(0) = 1. To account for mea-
surement noise and encourage sparsity in bi, ci (since we know that each gene has
only a few regulators), we will minimize the �2-norm error with �1 regularization
[Tibshirani (1996)], which leads to the convex optimization problem

minimize
∥∥∥∥[ τiGi −γiDiGi ]

[
bi

ci

]∥∥∥∥
2
+ λ

(‖bi‖1 + ‖ci‖1
)

(4)
subject to 0 ≤ bi ≤ ci, ci(0) = 1,

where λ is a parameter controlling sparsity that we can choose using cross-
validation. Since the problem is convex, it can be solved very efficiently even for
large values of n and m.

Nonidentifiability. Our model’s ability to capture self-regulation is very pow-
erful, but it also leads to a particular form of nonidentifiability. For certain forms of
the equation, given only steady-state measurements, it can be impossible to deter-
mine whether self-regulation is either completely absent or present in every term.
Specifically, any valid equation of the form

dxi

dt
= bi0 + ∑N

j=1 bij�k∈Sij
xk

1 + ∑N
j=1 cij�k∈Sij

xk

− γixi, bi0 < 1,(5)

is indistinguishable at steady-state from any member of the following family of
valid equations indexed by the constant w:

dxi

dt
= (wbi0 + γi)xi + ∑N

j=1 wbij�k∈Sij
xixk

1 + wxi + ∑N
j=1 wcij�k∈Sij

xixk

− γixi, w ≥ γ

1 − bi0
.(6)

We will refer to these as the “simple” and “higher-order” forms of the equation,
respectively. The short proof of their equivalence is given in section S1 of the
supplementary article [Meister et al. (2013)]. The condition w ≥ γ

1−bi0
guarantees

that w > 0 and 0 ≤ wbi0 + γi ≤ w (since 0 ≤ bi0 < 1) and 0 ≤ wbij ≤ wcij (since
0 ≤ bij ≤ cij ).

We can distinguish between these two alternative forms by measuring the
derivative of the concentration away from steady-state and comparing it to the
derivative predicted by each form of the equation. This requires only a few extra
thoughtfully-selected measurements. The details are in section S2 of the supple-
ment.

Simulated six-gene subnetwork in mouse ESC. To demonstrate the infer-
ence approach, we apply our method to a synthetic six-gene system based on the
Oct4, Sox2, Nanog, Cdx2, Gcnf, Gata6 subnetwork in a mouse embryonic stem
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cell (ESC). Chickarmane and Peterson (2008) developed this system based on a
synthesis of knowledge about ESC gene regulation accumulated over the past two
decades [Chickarmane and Peterson (2008)]. The network structure is shown in
Figure 4(a), and the detailed model is given by the following system of ODEs in
the six genes:

d[O]
dt

= (
0.001 + [A] + 0.005[O][S] + 0.025[O][S][N ])

/
(
1 + [A] + 0.001[O] + 0.005[O][S]
+ 0.025[O][S][N ] + 10[O][C] + 10[Gc])

− 0.1[O],
d[S]
dt

= 0.001 + 0.005[O][S] + 0.025[O][S][N ]
1 + 0.001[O] + 0.005[O][S] + 0.025[O][S][N ]
− 0.1[S],(7)

d[N ]
dt

= 0.001 + 0.1[O][S] + 0.1[O][S][N ]
1 + 0.001[O] + 0.1[O][S] + 0.1[O][S][N ] + 10[O][G]
− 0.1[N ],

d[C]
dt

= 0.001 + 2[C]
1 + 2[C] + 5[O][C] − 0.1[C],

d[Gc]
dt

= 0.001 + 0.1[C] + 0.1[G]
1 + 0.1[C] + 0.1[G] − 0.1[Gc],

d[G]
dt

= 0.1 + [O] + 0.00025[G]
1 + [O] + 0.00025[G] + 15[N ] − 0.1[G].

This model has many of the same qualitative characteristics as the biological
mouse ESC network [Chickarmane and Peterson (2008)]. In particular, the system
can support four different steady-states: embryonic stem cell (ESC), differentiated
stem cell (DSC), endoderm and trophectoderm, and can switch from one to another
when certain genes’ expression levels are changed. In the Oct4 equation, A repre-
sents an external activating factor whose concentration [A] depends on the culture
condition. Each of the four steady-states has a corresponding value of [A]: 10 for
ESC and DSC, 25 for endoderm, and 1 for trophectoderm. For the remainder of
this paper, we will regard [A] as known. The explicit system of ODEs (7) allows us
to generate data to fit our model and also to quantitatively compare our recovered
solution to the ground truth. The qualitative similarity of this synthetic network
to a real biological network gives us confidence that our results in this numerical
experiment are likely to translate well to real biological networks.

We observe that the Cdx2, Gcnf and Gata6 equations have alternative forms
(provided we ignore the very small constant term in the d[C]

dt
equation and [G]
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term in the d[G]
dt

). With the minimum possible value of w, the alternative forms are
as follows:

d[C]
dt

= 0.95

1 + 2.5[O] (w = 2),

d[Gc]
dt

= 0.1001[Gc] + 0.01[C][Gc] + 0.01[Gc][G]
1 + 0.1[Gc] + 0.01[C][Gc] + 0.01[Gc][G]
− 0.1[Gc] (w = 0.1),(8)

d[G]
dt

= 0.111[G] + 0.111[O][G]
1 + 0.111[G] + 0.111[O][G] + 1.67[N ][G]
− 0.1[G] (w = 0.111).

To resolve the specific form, we will apply our method twice, once allowing self-
regulation and again disallowing it. Then we will compare the two recovered forms
of each equation and the quality of the fits to determine whether nonidentifiability
exists in each case. If so, we will break the tie by examining derivatives.

To fit the model, we collect data on the expression levels of all six genes at
many different steady-states. First we measure the expression levels at all four
wildtype steady-states: SC, DSC, endoderm and trophectoderm. We also induce
additional perturbed steady-states by simulating knockdowns and overexpression
of each gene, based on physical gene perturbation experiments [Rodriguez et al.
(2007), Zafarana et al. (2009)]. For a knockdown, we hold a gene at one-fifth of its
steady-state expression level; for overexpression we hold a gene at twice its steady-
state level. In each case we wait for the system to settle to a new steady-state, then
measure the expression levels. Figure 3 shows the expression trajectories during
Oct4 knockdown from the ESC steady-state as an example.

The details of the simulation are given in section S3 of the supplement. We
begin by testing the algorithm on noiseless data. We solve the optimization prob-
lem (4) once, then we solve it again with additional constraints prohibiting self-
regulation. In each case we use cross-validation to select the sparsity parameter
λ (Figure S1). The quality of the fit is comparable for the latter three equations
whether we restrict self-regulation or not, while for the first three equations re-
stricting self-regulation has a significant negative impact on the fit (Table S1), in-
dicating that the first three equations are unambiguous while the last three have
two possible forms. To resolve the nonidentifiability in the latter three equations,
we measure the derivatives of Cdx3, Gcnf and Gata6 immediately after some ad-
ditional informative perturbations: Oct4, Cdx2 and Nanog knockouts, respectively
(Figure S2). The test reveals that Gcnf and Gata6 have the simple form, while
Cdx2 has a higher-order form. In this example, the original coefficients are recov-
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FIG. 3. Gene expression trajectories during an Oct4 knockdown from SC steady-state. The expres-
sion of Oct4 is artificially reduced to 20% of its SC steady-state expression level and held there,
causing the expression levels of the targets of Oct4 to change in response, which in turn impact their
targets. The system eventually reaches a new steady-state different from SC. We measure the vec-
tor of expression levels at the new steady-state and use it as data in the inference algorithm. Since
Oct4 is knocked down, this induced steady-state does not provide useful information about the Oct4
equation, but it is useful for understanding the role of Oct4 and other genes in the equations of the
remaining five genes.

FIG. 4. Recovery of a synthetic gene regulatory network based on the biological ESC network us-
ing our inference algorithm. The diagrams represent sytems of ODEs that quantitatively model the
gene interactions. Edge color indicates activation (green) or repression (red), and edge weights cor-
respond to coefficient magnitudes. The arrows point from regulator to target, and self-loops indicate
self-regulation. The yellow star represents the third-order complex OSN. (In addition to all possible
first- and second-order terms, we allow this special third-order term with a free coefficient.) The left
figure represents the original system of ODEs used to generate the data. The center figure shows
the network recovered using our inference algorithm on noiseless data, and the right figure shows
the recovery with 1% noise added. Both recovered networks reflect coefficient thresholding at 0.1%
(noiseless case) or 1% (noisy case) of the largest recovered coefficent in each gene equation (with the
exception of the noiseless-case Oct4 equation, thresholded at 0.01% to show the successful recovery
of weak edges). The algorithm performs almost perfectly in the noiseless case, except for a false pos-
itive repressor on Gata6 and two very weak activation edges missing. In the noisy case, the algorithm
recovers all of the strong edges, but misses some of the weaker ones and returns a few small false
positives at our chosen thresholding level. Overall, the method captures the major network structure
even in the noisy case.
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ered almost exactly:

d[O]
dt

= (
0.001 + [A] + (

0.005[O][S] + 0.025[O][S][N]))

/
(
1 + [A] + (

0.001[O] + 0.005[O][S] + 0.025[O][S][N])
+ 10[O][C] + 10[Gc])

− 0.1[O],
d[S]
dt

= 0.001 + 0.005[O][S] + 0.025[O][S][N]
1 + 0.005[O][S] + 0.025[O][S][N] − 0.1[S],(9)

d[N]
dt

= 0.1[O][S] + 0.1[O][S][N]
1 + 0.1[O][S] + 0.1[O][S][N] + 10[O][G] − 0.1[N],

d[C]
dt

= 2[C]
1 + 2[C] + 5[O][C] − 0.1[C],

d[Gc]
dt

= 0.001 + 0.1[C] + 0.1[G]
1 + 0.1[C] + 0.1[G] − 0.1[Gc],

d[G]
dt

= 0.1 + [O]
1 + [O] + 0.03[N][Gc] + 15[N] − 0.1[G].

Next we add zero-mean Gaussian noise to each measurement, with standard devi-
ation 1% of the measurement magnitude. We use the same steady-states as in the
noiseless case, plus overexpression-knockdown of each pair of genes starting from
ESC and DSC. Using a similar approach (detailed in section S3 of the supplement),
we recover:

d[O]
dt

= [A]
1 + [A] + 9.9[Gc] + 9.9[O][C] − 0.1[O],

d[S]
dt

= 0.001[O][S] + 0.0005[S][N] + 0.025[O][S][N]
1 + 0.001[O][S] + 0.0005[S][N] + 0.025[O][S][N] − 0.1[S],

d[N]
dt

= 0.09[O][S][N]
1 + 0.1[G][Gc] + 0.09[O][S][N] + 9.1[O][G] − 0.1[N],

(10)
d[C]
dt

= 2[C]
1 + 2[C] + 5[O][C] − 0.1[C],

d[Gc]
dt

= 0.1[C] + 0.1[G]
1 + 0.1[C] + 0.1[G] − 0.1[Gc],

d[G]
dt

= 0.1 + 0.9[O]
1 + 0.9[O] + 14.2[N] − 0.1[G].

In order to produce clean equations and network diagrams, we choose appropriate
thresholds for each equation below which we zero the coefficients. (In practice,
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FIG. 5. ROC curves for recovered networks from noiseless (left) and noisy (right) data showing the
trade-off between true positive rate (TPR) and false positive rate (FPR) for edge recovery. The ROC
curves show the TPR and FPR that result from a range of coefficient threshold choices above which
we consider an edge to have been recovered. For the equation dxi/dt = · · · and threshold t , TPR
is defined as the proportion of true edges j with crecovered

ij > t and FPR as the proportion of false

edges with crecovered
ij > t . For equations with two possible forms, we compare the simple forms of

the true and recovered equations. Each gene equation has a different ROC curve as indicated by the
legend. The dotted black line is the expected ROC curve for the “random guessing” algorithm, while
the (0,1) point corresponds to a perfect algorithm (in fact, our algorithm performs perfectly for the
Gcnf equation).

choosing thresholds is a judgment call based on the expected number of regula-
tors, the noise level of the data and the level of detail appropriate for the appli-
cation.) We set the thresholds at 0.1% (noiseless case) or 1% (noisy case) of the
largest coefficient recovered for each equation. For example, the largest recov-
ered coefficient in the d[G]/dt equation is roughly 15 in either case, so we zero
the coefficients that fall below 0.015 (noiseless case) or 0.15 (noisy case). The
recovered systems of equations shown above reflect these choices. In the noise-
less case, relaxing the threshold on the Oct4 equation to 0.01% leads to the re-
covery of more correct terms, listed in parentheses. For completeness, we also
provide receiver operating characteristic (ROC) curves in Figure 5 to show the
trade-off between true positives and false positives at other thresholds. The net-
work diagrams in Figure 4(b), (c) include an edge if the corresponding coefficient
is above the threshold, with weights reflecting the size of the coefficients. These
diagrams show that the recovery is nearly perfect in the noiseless case: using
the gentler threshold for the Oct4 equation, we recover all the true edges ex-
cept for three very weak ones, and return just one small false positive repressor
in the Gata6 equation. In the noisy case, we recover all the large coefficients cor-
rectly, although there are a few small false positives and we miss several of the
weakest edges. Overall, the method is able to capture the major network struc-
ture.
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Discussion. Our experiment on the synthetic ESC system demonstrates that
our algorithm can be used to infer a complex dynamical systems model of gene
regulation and that the method can tolerate low levels of noise. Term selection from
among all possible single gene and gene-complex regulators (up to second-degree
interactions, plus the third-degree interaction OSN) was successful. The inferred
equations are easy to interpret in terms of gene networks, and the detailed quanti-
tative information allows for prediction of future expression trajectories from any
starting point.

The approach is also scalable. Since we have formulated our problem as a con-
vex optimization problem [equation (4)], it can be solved efficiently even for large
systems using prepackaged software. Furthermore, it is trivially parallelizable,
since we need to solve a version of (4) to infer the differential equation coefficients
bij , cij for each gene i. Parallelization is even more helpful for the cross-validation
step, where we need to solve equation (4) for each gene and a sequence of choices
sparsity parameter λ. We tested the scalability by running the algorithm with the
parallelization discussed above on a simulated 100-gene system. The algorithm
ran correctly in a reasonable time frame (a few hours) on a computing cluster.

The high resolution of our model is one of its most valuable features, but it
means that accurate term selection may require much data, especially in the pres-
ence of noise. In our experiment, when we added 1% Gaussian noise, we needed
extra data (knockdown/overexpression pairs) in order to accurately select terms.
When we tried 5% noise, the algorithm consistently selected the large terms in five
of the six equations, but we had to add even more data in order to correctly identify
the major repressor in the Nanog equation. The Nanog equation is subtle in that
Oct4 acts as both an activator in complexes with Sox2 and Nanog and a repressor
in a complex with Gata6, so the algorithm tends to select different Gata6 com-
plexes (or the Gata6 singleton) as the major repressor when the data is insufficient.
In the 5% noise case, we needed additional data on the role of Gata6 (double-
knockdowns and double-overexpression of pairs including Gata6 from ESC and
DSC) in order to select Oct4-Gata6 as the major repressor of Nanog fairly consis-
tently. As discussed earlier, another difficulty is the nonidentifiability that arises
from accounting for self-regulation while restricting data to steady-states. Dis-
tinguishing between the two possible forms of nonidentifiable equations requires
extra derivative data (which can be collected experimentally, although it is more
difficult and time-consuming) and extra steps in the algorithm. The constraints on
the convex optimization problem (4), which arise from thermodynamic considera-
tions, are sufficient to prevent further nonidentifiability, but in certain cases, certain
problems can suffer from near-nonidentifiability of other forms, which may con-
tribute to the challenge of term-selection with noisy or limited data. We ensure
accurate term selection by making sure we include enough diverse, high-quality
steady-state measurements.

We should also note that our model does not account for the intrinsic noise in
gene transcription and translation, although these processes are inherently stochas-
tic, since TF and RNAP binding result from chance collisions between molecules
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in the cell. However, the stochastic version of our rational-form transcription
model is highly complex and there is currently no satisfactory method for its infer-
ence. Studying the deterministic evolution plus additive noise is standard practice
for all but linear models of gene expression, and treatment of the deterministic
model provides insight into the stochastic model. Here we focus on the additive
noise case and leave the study of intrinsic noise for future investigation.

Conclusions. The model we use is based on the detailed thermodynamics of
gene transcription, and quantitatively captures the full spectrum of regulatory phe-
nomena in a detailed, physically interpretable, predictive manner. Since we can for-
mulate the model fitting problem as a convex optimization problem, we can solve
it efficiently and scalably using prepackaged software. �1-regularization allows for
term-selection while maintaining the problem convexity. The experiments required
to collect the necessary steady-state gene expression data are straightforward to
perform, as technologies for knockdowns and overexpression are well-established
and measuring gene expression is relatively simple. The model accounts for acti-
vation and repression by single-protein TFs and synergistic complexes as well as
self-regulation, and describes the magnitude of each type of regulation in quantita-
tive detail. Furthermore, the model can be extended to account for environmental
effects and auxiliary proteins involved in regulation, including enhancers and chro-
matin remodelers. The fitted model can predict the evolution of the system from
any starting point. Given a set of steady-states gene expression measurements, our
algorithm can be used to fit a model which not only predicts further steady-states
of the system, but also fully describes the transitions between them. Finally, beside
the study of gene regulation, our approach will be useful in many other applica-
tion areas where it is necessary to infer a nonlinear dynamical system by suitable
experimentation and statistical analysis.

APPENDIX: THERMODYNAMIC MODEL

In (1), the function fi(y) represents the probability that RNAP binds to the ith
gene promoter. We claim that fi(y) has the form

fi(y) ≡ p
(i)
bound(y) =

∑
j e

−β�εRNAP
ij P e−β�εij �k∈Sij

yk∑
j (1 + e

−β�εRNAP
ij P )e−β�εij �k∈Sij

yk

,

where �εij is the binding energy of the j th complex to the promoter, �εRNAP
ij is

the binding energy of RNAP to the j th promoter-bound complex, and P,xj are
the concentrations of RNAP and gene product j [Bintu et al. (2005a, 2005b)].

Any type of regulator (including no regulator at all) can be represented in this
framework. For no regulator, we take Sij = ∅ with the convention that �k∈∅yk =
1, set �εij = 0, and take �εRNAP

ij as the base binding energy of RNAP to the
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promoter. For a repressor, �εij < 0 and �εRNAP
ij > 0; for an activator, �εij < 0

and �εRNAP
ij < 0.

Setting

bij = e
−β�εRNAP

ij P e−β�εij ,

cij = (
1 + e

−β�εRNAP
ij P

)
e−β�εij ,

we obtain the form given in Section 1:

fi(y) = bij�k∈Sij
yk∑

j cij�k∈Sij
yk

.

Constant terms in the numerator and denominator correspond to the no-regulator
case. Letting ci0 denote the constant appearing in the denominator, our convention
will be to divide all of the coefficients in the numerator and denominator by ci0 so
that the constant 1 appears in the denominator.

Simplified derivation. The derivation we present here follows Bintu et al. and
Garcia et al. [Bintu et al. (2005a, 2005b), Garcia et al. (2011)]. For simplicity, we
will prove the following claim for the simplified case with one regulator y1 (as
well as the possibility of RNAP binding with no regulator):

p
(i)
bound = e−β�εRNAP

i0 p + e−β�εRNAP
i1 pe−β�εi1y1

(1 + e−β�εRNAP
i0 p) + (1 + e

−β�εRNAP
ij p)e−β�εi1y1

.

We will use the following notation: εS
P,i1 is the energy of the state in which

RNAP is specifically bound to the regulator-promoter complex, εS
P,i0 is the energy

of the state in which RNAP is specifically bound to the promoter without the reg-
ulator, εNS

P is the energy when RNAP is bound to a nonspecific binding site, εS
i1 is

the energy when y1 is specifically bound to the promoter, and εNS
i1 is energy when

y1 is bound to a nonspecific binding site. Then

�εRNAP
i0 = �εP,i0 ≡ εS

P,i0 − εNS
P ,

�εRNAP
i1 = �εP,i1 ≡ εS

P,i1 − εNS
P , �εi1 ≡ εS

y1
− εNS

y1
.

Suppose that we have j RNA polymerase molecules and k molecules of gene
product 1 (the regulator). We model the genome as a “reservoir” with n nonspecific
binding sites (to which either RNAP or regulator can bind). One of these sites is
the promoter of gene i. Four different classes of configurations interest us:

1. empty promoter,
2. regulator bound to promoter,
3. regulator and RNAP bound to promoter,
4. RNAP only bound to promoter.
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These correspond to the following partial partition functions, which represent the
“unnormalized probabilities” of each configuration:

1. Z(j, k),
2. Z(j, k − 1)e−βεS

i1 ,

3. Z(j − 1, k − 1)e−βεS
i1e

−βεS
P,i1 ,

4. Z(j − 1, k)e
−βεS

P,i0 ,

where Z(j, k) = n!
j !k!(n−j−k)!e

−βrεNS
i1 e−βεNS

P .
Z(j, k) is equal to the total number of arragements of RNAP and regulator on

the nonspecific binding sites times the Boltzmann factor, which gives the relative
probability e−βε of a particular state in terms of its energy ε.

Since RNAP binds the promoter only in the third and fourth classes of configu-
rations, the probability that RNAP binds the promoter is equal to the unnormalized
probability of the third and fourth configurations divided by the “total probability”
(the sum of the unnormalized probabilities of all classes of configurations). Hence,

pbound = (
Z(j − 1, k)e

−βεS
P,i0 + Z(j − 1, k − 1)e−βεS

i1e
−βεS

P,i1
)

/
(
Z(j, k) + Z(j − 1, k)e

−βεS
P,i0

+ Z(j, k − 1)e−βεS
i1 + Z(j − 1, k − 1)e−βεS

i1e
−βεS

P,i1
)

≈
(

nj−1nk

(j − 1)!k!e
−βkεNS

i1 e−β(j−1)εNS
P e

−βεS
P,i0

+ nj−1nk−1

(j − 1)!(k − 1)!e
−β(k−1)εNS

i1 e−β(j−1)εNS
P e−βεS

i1e
−βεS

P,i1

)

/(
njnk

j !k! e−βkεNS
i1 e−βjεNS

P

+ nj−1nk

(j − 1)!k!e
−βkεNS

i1 e−β(j−1)εNS
P e

−βεS
P,i0 + · · ·

)

=
(

j

n
eβεNS

P e
−βεS

P,i0 + j

n

k

n
eβεNS

i1 eβεNS
P e−βεS

i1e
−βεS

P,i1

)

/(
1 + j

n
eβεNS

P e
−βεS

P,i0 + k

n
eβεNS

i1 e−βεS
i1

+ j

n

k

n
eβεNS

i1 eβεNS
P e−βεS

i1e
−βεS

P,i1

)

= (j/n)e−β�εP,i0 + (j/n)(k/n)e−β�εi1e−β�εP,i1

1 + (j/n)e−β�εP,i0 + (k/n)e−β�εi1 + (j/n)(k/n)e−β�εi1e−β�εP,i1
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= (j/n)e−β�εP,i0 + (j/n)(k/n)e−β�εi1e−β�εP,i1

1 + (j/n)e−β�εP,i0 + (k/n)e−β�εi1(1 + (j/n)e−β�εP,i1)

= pe−β�εRNAP
i0 + py1e

−β�εi1e−β�εRNAP
i1

1 + pe−β�εRNAP
i0 + y1e−β�εi1(1 + pe−β�εRNAP

i1 )
,

where in the second line we used the approximation n!
j !k!(n−j−k)! ≈ njnk

j !k! which

holds for j, k � n, in the third we divided by njnk

j !k! e−βkεNS
i1 e−βεNS

P , in the fourth we

used the identities �εP,i0 = εS
P,i0 − εNS

P , �εP,i1 = εS
P,i1 − εNS

P , �εi1 ≡ εS
i1 − εNS

i1 ,

and in the last we substituted in the definitions j
n

= p, k
n

= y1, �εRNAP
i0 = �εP,i0,

�εRNAP
i1 = �εP,i1.
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SUPPLEMENTARY MATERIAL

Nonidentifiability, tie-breaking and synthetic network study details (DOI:
10.1214/13-AOAS645SUPP; .pdf). We discuss nonidentifiability and tie-breaking
in Sections S1 and S2 by proving the equivalence of two different equation forms
at steady-state and describing methods for determining the true form of an am-
biguous equation. In Section S3 we provide the details of our study of a simulated
six-gene network in mouse ESC, including parameter selection, tie-breaking and
thresholding.
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