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Abstract. In this paper, we investigate the long time asymptotics of the exponential moment for the following time—space Hamil-
tonian

t t 1
/()_/Om)’(Br—Bs)deh t>0,

where (Bg, s > 0) is a d-dimensional Brownian motion, the kernel y () ‘R4 [0, 00) is a homogeneous function with singularity
at zero; and ¢ € (0, 1) together with the scaling parameter of y satisfies certain conditions. Our work is partially motivated by
the studies of the short-range sample-path intersection, the strong coupling polaron, and the parabolic Anderson models with a
time—space fractional white noise potential.

Résumé. Dans ce papier, nous étudions le comportement en temps long du moment exponentiel du Hamiltonien dépendant du
temps

t t 1
/()/()my(Br—Bs)deh t>0,

ou (Bg,s > 0) est un mouvement brownien de dimension d, le noyau y (-) ‘R4 — [0, c0) est une fonction homogene avec une
singularité en zéro, y € (0, 1) et le parametre de scaling y satisfont certaines conditions. Notre travail est partiellement motivé par
I’étude des intersections a courte portée de trajectoires, le polaron avec couplage fort et le modele parabolique d’ Anderson avec un
potentiel donné par un bruit blanc fractionnaire en espace—temps.

MSC: 60J65; 60K37; 60K40; 60G55; 60F10
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1. Introduction

Given a d-dimensional Brownian motion (By, s > 0) starting at 0, the asymptotics (as + — o00) of the exponential
moment

t t
Eexp{/ / y(Br—Bs)drds} (1.1)
0 JO
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have been well-understood. See Theorem 4.2.1 of [1] for the case y (x) = §p(x) (Dirac delta function) and [4] for the
case Y (x) = |x|~¥. This subject is largely motivated by the investigation on sample-path intersection as the integral in
(1.1) measures the intensity of self-intersection of the Brownian paths when y (-) = §o(-), or of quasi-self-intersection
when y(-) = - |~%. In contrary, the success in the time dependent setting

t t
EeXp{/ / VO(V_S)V(Br_Bs)drdS} (1.2)
0 JoO

is limited. To our best knowledge, the only successful story is the famous work [8] by Donsker and Varadhan on the
asymptotics for polaron together with the follow-up paper [16] by Mansmann in the setting of Dirac polaron. When
d =3, Donsker and Varadhan establish the existence of the limit

e Ir=sl
A(@)_hm —log]Eexp{ //ﬁdrds}
0 B

for any 6 > 0. Further, they point out that

2 2

1

Jim 6~ 2A0) = sup {2/ dedy——/ |Vg(x)|2dx},
geR L JRIxRD X — | 2 Jps

where the class F3 (or JFy, in general) is defined in (2.9) below.
Following this work and for the case d = 1, Mansmann [16] proves that for any 6 > 0, the limit

1 t t
Ao(®) = lim —log]Eexp{H/ / e Ir=slso(B, — Bs)drds}
t—oo t o Jo
exists and

o0 1 o0
Jim 6~ 2 40(8) = sup {2/ gt (x)dx — —/ |g'(x)|2dx}.
geF —00 2 )

To obtain their results Donsker and Varadhan ([8]) adopt the following homogenization procedure

—|r—s| t t—s e " t 00 e’
// drds=2/ |:/ 7dr]ds%2/ |:/ 7dri|ds
0 |B — B | 0 0 |Bs+r - Bs| 0 0 |Bs+r - Bs|

and then link the right hand side to their general theory ([5], [6]) on the large deviations for empirical measures.

In this work we shall study the asymptotic behavior of (1.2) when yy(¢) = |¢f|7%° with 0 < ap < 1. With few
exceptions such as the models of polaron listed above, the general theory ([5], [6]) of Donsker—Varadhan on large
deviations for empirical processes provides no solution (even at heuristic level) to the setting of time—dependence. In
particular, the method of homogenization used by Donsker and Varadhan [8] in their study of polarons is not applicable
to the problems investigated in this paper, simply because

o0
/ F~%y(Bsyr — Bs)dr=00 as.Vs>0
0

under our set-up (1.6) and our assumption (1.7) listed below.

The motivation to our study of the exponential moment of time—space Hamiltonian comes from the polymer
physics. The quantity (1.2) frequently appears as the ground state energy in the model of strongly coupled polarons,
where y (x) = |x|~! or 8g(x), and the quantity yo(r — s) appears as the dumping force which decreases as |r — s|
increases. We refer to the paper [15] for the physicists’ view on this problem. In [11], Section 2.4 the following model

n
Lis;=si)
s = 3

k|%o
Jjk=1 |
J#k
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is proposed for the random polymers of short range interactions, where {S;} is an 1-dimensional simple random walk.
Our investigation for the case y (x) = §p(x) is closely relevant to this model in light of invariance principle.
Another motivation of our study is the recent progress in the parabolic Anderson model
ad+1ywH
al‘u(tax):%Au(tyx)—i_a?axl%‘_}v_axd(tax)u(t?x)a (13)
u,x)=1,

where A = Zflzl % is the Laplacian and W¥ (¢, x) is a fractional Brownian sheet with Hurst parameter H =
(Hp, Hi, ..., Hy) satisfying the assumption

d

1

S<Hj<1 (j=0.1,...d) and 2Hy+ Y Hj>d+]1. (1.4)
j=1

It is proved in [13] that the equation (1.3) has a weak solution u(¢, x) with finite moments of all orders and for any
positive integer p, it holds

P t pt a )
E(u(t,x)”):E(exp[%q Z/O/O|s—r|°‘°]_[|3s"’—3£“|“fdser,
jk=1 i=1

where st = (st’l, cees st’d), j=1,..., p, are independent d-dimensional standard Brownian motions, g = 2 —
2H0, o = 2— ZH,', and

d
cp =] | Hi2H; - 1).
i=0

One of our goals is to achieve precise asymptotics for the integer moments of u (¢, x). We shall focus on the case p =1
until Section 6, where the case p > 2 will be considered. Therefore, this problem is relevant to the main subject of the
present work with the choice of

d
y@=]]I™, x=@1....x) R
j=1

Motivated by these problems, we study the long time asymptotics for the exponential moments

1 t 1
Eexp{@/ / 7;/(Br—Bs)drds}, (1.5)
0 Jo [r—s|*

where «g € (0, 1) and the space function y (x) takes one of the following three forms:
d
V(X):H|Xj|_aja y()=1Ix|"* and y(x)=3d0(x) (1.6)
j=l1
which are referred as, respectively, the first, the second and the third forms of y (-) in our discussion. Throughout the

paper, we make the following assumptions on the parameters appearing in our main theorems:

O<owg,...,0q0 < 1,2010—}—2?:10(,- <2, ify) :]_[f-l:l |x; |~
O<ap<1,0<a<d,200+a <2, if y(x) =|x|7%, (L.7)
d:land0<a0<%, if y(x) =8p(x).

To see the connection among all these three cases, we define o = Zle o; when y(x) = ]_[fl: 1 X179 is of the first
form and & = 1 when y (x) = §p(x) is of the third form throughout the paper. With this notation we see that « plays
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the role of the spatial scaling exponent: y (cx) = |c|~*y (x). It is well-known that under the condition (1.7), the double
time—integral in (1.5) is well defined and its exponential moment given in (1.5) is finite for any 6 > 0 and ¢ > 0. For
this claim we cite Theorem 3.1 and Theorem 3.4, [13] in the setting of the first and the second form with an easy
observation that the function y (x) in the second form is dominated by the one in the first form; and the second half of
Proposition 3.3, [12] or Theorem 6.1 of [13] in the setting of the third form.

Let W12(R9) be the Sobolev space of all functions g on R? such that g, Vg € L2(R?). Denote

Ag = {g(s,x); g(s, ) € Wl‘z(Rd), /d gz(s, x)dx =1
R

1
VO§s§land/ / |ng(s,x)|2dxds<oo}, (1.8)
d
_ )’) 2
E(ap,d,y) = sup g- (s, x)g (r, y)dxdydrds
geAy R4 xR |r_s|a0

1! 2
——/ / |Veg(s,x)| dxds}. (1.9)
2 0 Rd

The finiteness of (g, d, ) and its relationship to other quantities will be established in the Appendix.

Theorem 1.1. Under the assumption (1.7),

t t
lim ¢~ ¢—o—200)/C= “)logEexp{ / / |r—s|_”‘°y(Br—Bs)drds}
0 JO

—o0
= E(ap, d, y)0* ™™ (1.10)

for every 6 > 0. Here we recall that o = 1 in the case when y (x) = §p(x).

Remark 1.2.

1. If we formally let @ = 0, then this is a deterministic problem. All quantities are easy to compute. In this case it is
easy to verify the result.
2. In [17], Theorem 4.1 the author obtained the following result for the first case by using moment method,

t ot
lim supt_(4_“_2°‘°)/(2_“) logEexp{/ / |r —s|”*y (B, — By)dr ds} < 0.
0 JO

t—00

By integral substitution and by scaling the Brownian motion, one can easily establish the following self-similarity
property:

at at t t
f / Ir — 5|7y (B, — By)drds ia“—“—z‘m)/z/ / Ir — 5|~y (B, — By)drds. (1.11)
0 0 0 JO

With it Theorem 1.1 can be reduced to

Theorem 1.3. For any 6 > 0,

1 t t 1 172
lim —logEexp{6r®/? / f ——y(By — By)drds
1—>oo ¢ 0 Jo |r—s|*

=0V M (ag, d, y), (1.12)
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where

1/2
M(ag,d,y) = sup {(/ / /Rd p )|/r()is|3‘]0) 2(s x)g (r, y)dxdydrds)

geAq

1
—lf / |ng(s,x)|2dxds}. (1.13)
2 0 Rd

Proof of Theorem 1.1 based on Theorem 1.3. The scaling property given in (1.11) implies that

t t 1 1
r—s| y(Br —Bg)drds =" r—s| y(B, — Bs)drds.
Ir — 5|70y (B, — By)drds £ {4200/ Ir — |0y (B, — By)drd
0 Jo 0 0

Then by Gértner—FEllis theorem for non-negative random variable (see, e.g., Corollary 1.2.5 in [1]), (1.12) implies that
for any A > 0,

1 1
lim t_llog]P’{/ / |r—s|_“0y(Br—Bs)drdszkt“/z}
t—00 0 0

o (d—a 1 (#-0)/a
= —sup{vVA0 — M(ao, d, y)0*/ 4=} =——< ) RS
050 4\ 4 M(ap,d,y)

By the Varadhan’s integral lemma (see [1], Theorem 1.1.6)

1 1
lim +~! 1og]Eexp{9t<2“>/2/ / Ir — 5|~y (B, — By)dr ds}
t— 00 O 0

4— 1 (4—a)/a
:sup{k@—g< * ) kz/a}
250 4\ 4 M(a.d,y)

—(4-a)/2-a)
_ 2—a S/ 2—a) (4 — oz) Mg, d, y) 40202/
2 4 bl 9

=&, d, )0 F 9, (1.14)

where the last equality follows from (A.4) in Lemma A.2 of the Appendix.
Finally, let ¢4=2=200)/2 = y2=)/2 and t = 1. Applying scaling property (1.11), we have

1 ,l
t(z_o‘)ﬂ/ f |r —s|7*y (B, — By)drds
0 JO

1(270()/(47(172(10)
- /
0

Theorem 1.1 now follows from (1.14), (1.15) and a (time) variable substitution. O

t(27a)/(4—a72a0)

/ |r —s|”*y (B, — By)drds. (1.15)
0

As pointed out before, the general theory of Donsker—Varadhan large deviations does not apply to our setting
mainly because of time dependency. Our proof of Theorem 1.3 contains the following ingredients. The comparison
of exponential asymptotics between the time—space and space Hamiltonians. The representation (4.3) below of the
Hamiltonian as L?-norm, a time—space Feynman—Kac large deviation principle, and some technology developed in
the area of probability in Banach spaces.

The rest of the paper is organized as following. In Section 2 we establish some asymptotic rough bounds for
our main theorems by some more direct and elementary method. In Section 3, we develop a time—space version of
Feynman—Kac large deviation which may be important for its own sake. The precise upper and lower bounds are
established in Section 4 and Section 5, respectively, based on the Feynman—Kac large deviation given in Section 3.
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As an application of the main result, we obtain an intermittency effect for the parabolic model (1.3) in Section 6.1.
A local version of Theorem 1.3 is given in Section 6.2. Finally, the well-posedness of the variations appearing in our
theorems, and their relations are discussed in the Appendix.

2. Asymptotic bounds by comparison
The goal of this section is to prove:

Proposition 2.1. There is a constant C > 0 such that for any 6 > 0,

t t

litminft_(4_"‘_2°‘°)/(2_°‘) 1ogEexp{9 / / Ir — 5|~y (B, — By)dr ds} > 1), 2.1)
— 00 0 0
t t

lim sup ¢ ~4—@—20)/C=) logEexp{ 0 / / lr —s|™*y (B, — By)dr ds} < o>, (2.2)
t—00 0 JO

Compared to Theorem 1.1, the above bounds are less precise. On the other hand, (2.2) is needed in our way
to establish Theorem 1.3. In addition, (2.1) and (2.2) can be achieved by some simple observation. Therefore, the
proof of them may provide some insight in methodology. Our idea is to compare our setting to the setting of time
independence given in (1.1). To this end we first prove:

Lemma 2.2. Let y (-) be given in (1.6) and assume (1.7) with the exception oy = 0. There is C > 0 such that for each
6 >0,

t t
Jlim G/ logEexp{Q / / v (B, — By)dr ds} =Co*H T, (2.3)

Here we specially mention that o = 1 for the third form of y (-).

Proof. This result is known for the second form ([4]) and the third form ([16]) with the constant C being identified.
Here we give a simpler proof for all three cases.
Our first observation is that (2.3) is equivalent to

1 t t 1/2
lim — 10gEexp{9</ / v (B, — By)dr ds) } =Co¥= vg > 0. (2.4)
=00t 0 Jo
Here and elsewhere in the proof, the constant C can be different from place to place. Indeed, by the scaling fact

at at d t t
/0 /0 y(B,—BS)drds=a(4_“)/2/0 /0 v (B, — By)drds (2.5)

and by a Girtner—Ellis type result for non-negative random variables (see [1], Corollary 1.2.5), both (2.3) and (2.4)
are equivalent to the tail asymptotics

1 pl
lim ¢! log]P’{/ / y (B — By)drds > At“/z} ——C)\¥*, y>o.
—00 0 0
The proof of (2.4) relies on the argument by sub-additivity. First notice that

Y (x) =C(V)/Rd K(y—nK()dy, xeR?, (2.6)
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where C(y) > 0 is a constant and

H?:l |xj|*(l+aj)/2’ if y (x) = H?:l x|,
Ky = 1 e wer, if y () = x|, @.7)
50()6), if '}/(x) :80()().

Consequently, we have the following representation

t t t 2
/ / y(Br—BS)drdszC(y)/ [/ K(Bs—x)ds] dx.
0 JO R4 LJO

Notice that the stochastic process

t 2 172
th{/ |:/ K(Bs—x)ds:| dx} , t>0
R4 LJO

is continuous with probability 1, and by the triangle inequality, Zs4; < Z; + Z; for any s, ¢ > 0, where

P 2 172
Z;:{/ |:/ K(Br—x)dri| dx}
Rd LJs

is equal in law to Z; and is independent of {Z,,;; 0 <u < s}. By [1], Theorem 1.3.5, we have
1
Eexp{6Z;} <oo (0,t>0) and tlim n logEexp{\/C(y)Z,} =(C exists.
—00

Further, 0 < C < oo. The fact that C > 0 follows from the Cauchy—Schwarz inequality

t 2 1/2 t t
{/ |:/ K(Bs—x)dsi| dx} Z/ f(x)|:/ K(Bs—x)ds]dx=/ fx (Bs)ds
R4 LJO R4 0 0

for any measurable function with || f|l2 = 1, where

f1<(x)=/ SOOK(x —y)dy.
Rd

Now we require that f is continuous with compact support. It can be verified that fx (x) is bounded and continuous
in all three cases. By [1], Theorem 4.1.6,

t
tlim ;log]Eexp{\/C(y)/ fK(Bs)ds}
— 00 0

1
= sup {\/C(V)/ fr ()¢ (x)dx — —/ \Vg(x)\zdx}, (2.8)
geFq Rd 2 R4
where
Fy= {geEZ(Rd);/ |g(x)|2dx: 1 and/ |Vg(x)|2dx <oo}. (2.9)
R4 R4

By Fubini theorem,

/fK<x>g2<x)dx=/ f(x)[/ K(y—x)g%y)dy}dx.
R4 R4 R4
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Taking supremum over f,

172
]Lm—logEexp{<//y(B B)drds) }

1
> sup {\/C(V)SHP/ f(X)[/ K(y—x)g (y)dY}dx——/ Ve dX}

geFua

2 \12
=sup{¢0<y)</ [/ K(y—x)g%y)dy] dx) ——/ |Vg<x)|2dx}.
geFy R LJRe 2 Jra

By (2.6),

2
/ [ f K(y—x)g%y)dy} dx=C(y)™! f y(x — y)g(x)g*(y) dx dy
R4 R4 R4 xR

we reach the conclusion that

1 t ot 1/2
lim — logEexp{ (/ / y (B, — Bg)dr ds) }
t—>00 t o Jo

1/2 1
> sup{( /R | Rdy(x—y)g%x)gz(y)dxdy) -3 f Ve )] dx} (2.10)

geFu

and the right hand side is positive.
Summarizing our steps, we have established (2.4) with 0 < C < oo in the case 6 = 1. Replacing r by 64/ #~®)¢ and
by the scaling property (2.5) we have proved (2.4) for all 6 > 0 with the same constant C. ]

As a side remark, we point out that the lower bound (2.10) is sharp in the sense that the correspondent upper bound
holds. That is, the constant C in (2.4) can be represented as

12
C = sup {(f y(x—y)g%x)g%y)dxdy) ——/ |Vg(x>|2dx}. (2.11)
R x R4 2 Jrd

8€Fq
This can be achieved by a simple extention of Theorem 1.3 to the setting of og = 0.

A careful reader may wonder why we do not apply the sub-additivity to Theorem 1.3. Indeed, applying the sub-
additivity to time—space case would establish the existence of the limit on the left-hand side (1.12) with the part “¢*0/2”
being removed. For Theorem 1.3 to be true, of course, the limit value has to be 0. This means that the sub-additivity
does not lead to the correct rate in the time—space case. On the other hand, some ideas used here, such as the kernel
representation in (2.6) and the argument for the lower bound (2.10), will be adopted to the time—space setting.

Proof of Proposition 2.1. The lower bound (2.1) follows immediately from the fact that

t et topt
/ / |r —s|7*y (B, — By)drds > t_o‘(’/ / y (B, — By)drds
0 JO 0 JO

4 [(470172050)/(470:) 1(470572010)/(4705)
/()

f y (B, — By)drds
0
and Lemma 2.2 with 7 being replaced by ¢#~*~220)/(3=) where the equality in law comes from the scaling property
(2.5) with @ = ¢~ (Qe0)/(4=a)

As for the upper bound (2.2), the challenge is to reverse the inequality |r — s|~*0 > =% used in the proof of the
lower bound. First we notice that

t pt
/ / |r—s|7“°y(Br—BS)drds=2/'/ |r —s|”*y (B, — B;)drds.
0 JO {O<r<s<t}
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The upper bound (2.2) is then equivalent to
lim sup ¢ ~4—@—20)/ =) logEexp{O / / |r —s|™%y (B, — By)dr ds} < CoHEF, (2.12)
{0<r<s<t}

t—0o0

We decompose the above integral into three parts

t/2 pt
[ N SRS A S
{0<r<s<t} {O<r<s<t/2} {t/2<r<s<t} 0 t/2

Notice the fact that the first, the second terms on the right hand side are mutually independent and identically dis-
tributed. It follows from the Holder inequality that

Eexp{@// |r—s|_°‘0y(B,—Bs)drds}
{0<r<s<t}

2/p
< (]Eexp{@p// |r—s|°‘°y(B,—Bs)drds}>
{0<r<s<t/2}

t pt)2 1/q
X (Eexp{@q/ / |r—s|_“0y(Br—Bs)drds}> ,
t/2J0

where p, g > 1 are conjugate numbers (p~! + ¢!

// |r —s|”*0y (B, — By)drds
{0<r<s<t/2}

d 1 (4—a—2a0)/2
= (_) // Ir —s|” %0y (B, — Bs)drds.
2 {0<r<s<t}

Taking p = 2(4=a=200)/2 then we have

Eexp{@/f |r—s|_°‘°y(Br—Bx)drds}
{0<r<s<t}
2/p
< (]Eexp{@// |r—s|_°‘°y(B,—Bs)drds}>
{O<r<s<t}
t pt)2 1/q
X (Eexp{@q/ / lr —s|”“y (B, — Bs)drds}> .
1/2J0

By the fact that 2/p < 1 under (1.7),

Eexp{@// |r—s|°‘°y(B,—BS)drds}
{0<r<s<t}

t pt)2 A/@)p/(p—2)
< <]Eexp{9q//2/0 |r—s|_°‘°y(B,—Bs)drds}> .
t

In this way, the problem is reduced to the proof of

= 1). By the scaling property (1.11) we have

o pt)2
lim sup s~ —220)/C—e) 1ogEexp{9 / / Ir —s|~%y (B, — By)dr ds} < CH* o, (2.13)
t/2J0

t—0o0
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Denote A =[1/2,3t/4] x [t/4,t/2] and B =[t/2,t] x [0, /2] \ A. By the Holder inequality

t pt)2
Eexp{é/ / lr —s|7*y (B, — Bs)drds}
t/2J0
1/p
§<Eexp{9p/f |r—s|_°‘°y(Br—Bs)drds})
A
1/q
X(Eexp{eq//|r—s|_°‘°y(B,—Bs)drds}> .
B

Taking p = 2#—%=220)/2 by the fact that

// |r —s|7*y (B, — Bs)drds
A

g (12 i
= / |r —s|7*y (B, — B;)drds
/4 Jo

7 (1 d—a=2w0)/2 pt pt/2
= (—) / / |r —s|7*y (B, — By)drds,
2 1/2Jo
we have

t pt)2
Eexp{@/ / lr —s|7%y (B, —Bs)drds}
1/2Jo

<Eexp Gq// |r—s|°‘°y(Br—BS)drds}
B

4 [&10] t pt
<Eexp 9q<;) / / y (B, — By)dr ds}
0 JO
t(47a72a0)/(47u)
J

where the second step follows partially from the fact that |r — s| > ¢/4 on B.
Therefore, the upper bound (2.13) follows from Lemma 2.2 with ¢ being replaced by ¢#—*—2¢0)/(4=) O

t(470(72(x0)/(470()

=Eexp 8q4°‘0/ y (B, — Bs)drds},
0

3. Time-space large deviations via Feynman—Kac formula

We have seen the critical role played by a Feynman—Kac type large deviation (2.8) in the proof of the lower bound
(2.10). We shall see that it is also essential for establishing the precise upper bound. Our goal in this section is to
establish a time—space version of such result.

Let D C R? be an open domain that contains 0. Define the exit time

tp =inf{t > 0; B; ¢ D}. (3.1)

In consistent with F4 defined in (2.9), let F4(D) be the set of the smooth functions g on D with ||l z2(py =1 and
g(3D) =0 and denote for any function f on R?

1
Ap(f)= sup {/ f0)g(x)dx — 5/ Wg(X)}zdx} (3.2)
D D

geFu(D)

and write A(f) = Aga (f).
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Proposition 3.1. Let f (¢, x) be a measurable function defined on [0, 1] x RY. Assume that foreach0<s <1, f(s,-)

is bounded and continuous on R?, and that the family of functions { f (-, x); x € R%} is equicontinuous on [0, 1]. For
any bounded open domain D C RY that contains 0,

t 1
tlirn %logE[exp{/ f(;,Bs> dS};'L’D zt] :/ AD(f(s, -)) ds. 3.3)

In addition,

t 1
lim l1og1Eexp{/ f<5,35> ds} =/ A(f(s,7) ds. (3.4)
t—0oo f 0 t 0

Proof. Let the integer n > 1 be fixed but arbitrary and let 0 = sg < 51 < --- < s, = 1 be the uniform partition of [0, 1].
Set fj(x) = f(sj—1,x) (j=1,...,n)and define f*(s, x) on [0, 1] x RY as f*(s,x) = fj(x) whenevers € [s;_1, 5}).
In addition, put f*(1,x) = f*(17, x). As the first step we establish (3.3) and (3.4) for f*. By the Markov property,

t
E[exp{f f*(;, BS> ds}; p > t]
0
Sp—11t s
— E[exp{[ f*(; BS) ds}E(n, n~l, Bsn_lt); p > sn_lt],
0

t
E(j.t,x) =Ex[eXp{/ fj(Bs)dS};fD zt]
0

where

and the notation “E,” denotes the expectation with respect to the Brownian motion starting at x. Hence,

E[exp{/(;t f*(;,Bs> ds}; D zt]

Sp—11
< sup E(n nlt,x)E[exp{/ f*(f’ BS> ds}; p > sn_lt].
xeD 0 t

Repeating this procedure,

E[exp{/tf*<;, Bs> ds}; p > t] < 1—[ sup E(j,n_lt,x).
0

jzlxeD
Or,
! s
E[exp{f f*(—, BS> ds}; p > t]
0 t
n t/n
<[] supEs [exp{/ fj(Bs)ds}; ™D > t/ni|. (3.5)
j:IxeD 0

With a slight modification, one can show that for any § > 0

ol [l

n

t/n
> inf Ex[exp{/ fj(BS)ds};|ij1;|<8,Ith/n]. 3.6)
0

. [x|<8
j=1
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We now claim that for each j,

1 t
limsup — log sup E, [exp{/ fj(BS)ds}; Tp > ti| <Aip(fj). 3.7
xeD 0

t—0o0

Indeed, define I’D =inf{t > 1; B; ¢ D}. Then for any x € D,

t t
Ex[exp{/ fj(Bs)ds};tDZt] SCEX[GXP{/ fj(Bs)dS};szt]
0 1

t—1
=C/ P(y_X)Ey[eXP{/ f,/(Bs)ds};rth—l}dy,
D 0

where p(x) is the density function of B and the last step follows from the Markov property. By the fact that p(x) is
uniformly bounded on R, and by the inequality (see [2], Lemma 4.1)

t—1
/DEy[exp{/O fj(Bs)dS}QTDEI—l]dy§|D|eXP{(l_1))\D(fj)}

we obtain the following bound
1
sup I, [eXP{/O fj(Bx)ds}§ p = t] < C|Dlexp{(r = DAp(f))} (3.8)
xeD

which leads to (3.7).
Replacing ¢ by #/n in (3.7), by (3.5) we have

1 ! 1
limsup—logE[exp{/ f*(f,Bs> ds};rD zt] <=3 an(f). (3.9)
t—oo I 0 t nj=1
We now claim that
, 1 to(s 1 ¢
limsup — logE exp f*-,Bs)dst < —Zk(fj). (3.10)
t—oo [ 0 t nj:l

First, the factorization bound (3.5) remains true if D is replaced by D; = {x € R?; |x| < £2}. Second, for any 1 <j <
n, by an argument similar to the one used for (3.7) and noticing that Ap, (f;) < A(f;) we have

1 t
lim sup — log sup E, [exp{/ fj(Bs)ds}; D, zt} <A(fi)-
0

t—00 xeD;

Consequently,
. 1 b 1 o
limsup — logE| exp S\ -.Bs)dsy;tp, >t S—ZA(fj).

Third, noticing that in the decomposition,
t
S
Eexp{/ f*(—, Bs> ds}

0 t

! s ! s
=]E|:exp{/ f*(;, Bs> ds}; Tp, > tj| +E|:exp{/ f*(;, BS) ds}; Tp, < t:|
0 0
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the second term is negligible as it yields the bound
exp{Ct}]P’{mglx |Bg| > tz} <exp{Ct}exp{—ct’}
§=

we have (3.10).
Given § > 0, define the §-interior D§ of D as

D{={x € D;|x—y|>éforany y € dD}.

Take § sufficiently small so that 0 € Dg - For the lower bound, we claim that forany j =1,...,n,

1 t
liminf — log inf Ex[exp{f fj(BS)ds}; |Bs| <6, 1D zt} > Apo (f}). 3.11)
=00 f |x| <6 0 2

Indeed, by the boundedness of f;, for any x € R4,

t
Ex[exp{/ fj(Bs)ds}; |B:| <8,7p > t}
0

t—1

zC‘Ex[eXp{ fj(Bs)dS}§|Bt| <8,rth]
1

= C_I/DPD(y —X)Ey[exp{/(;tz fj(Bs)dS}PB,_z{lBll <8, mp=1lhp=t— 2] dy,
where pp(x) is the density of the measure
u(A)=P{BieA,tp>1}, ACD,
and the last step follows from the Markov property.

It is well-known (see [14], Theorem 11.3) that there is a & > 0 such that pp(x) > ¢ for all x € Dg. In particular,
for any z € Dga’

IP’z{|Bl|<1,TZl}=/ pp(y —2)dy > ces?.
{lyl<é}

Consequently, the integral appearing on the right hand side of the previous estimate is bounded from below by

=2
f pp(y —0)E, [CXP{/ fj(Bs)ds}PB,_z{lBll <8, tp=1}tpg =1 — 2] dy
g 0

DZS

t—2
zcezad/ E),[exp{f fj(BS)ds}; D, zt—z] dy.
DE’E 0

Summarizing our computation, we have
t
IinBEx [exp{/ fj(BS)ds}; |B/| <6,tp > t:|
X< 0

=2
2ce25dcfl/ E, [exp{/ fj(Bs)ds}; D, Zt—2i| dy. 3.12)
DS 0

26
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For any g € F4(DYy),

=2
/ Ey[exp{/ fj(BS)ds};rDzz)[s 2t—2:| dy
DY, 0

t—2
> |1gll32 f gOE, [exp{ /0 fj(Bads}g(B,_»; Tng, zz—z] dy

26

(t—2)A

= |Igllz2(g. e %g),

where A is the linear operator A =2"'A + f ;. Here we point out the relevance of the semi-group {7;; ¢t > 0} of
self-adjoint operators on £2(D§ 5) defined as

t
T,h(x):Ex[exp{/ fj(Bs)ds}h(B,);thazt}, h e £*(D3;)
0

and the relation 7; = e’4 which is a consequence of Feynman—Kac formula. See, e.g., [1], Section 4.1, for detail.
By spectral representation, associated to g there is a probability measure g (dA) on (—00, 00) such that

© 1
/ )»Mg(d/\)Z(g,Ag)Z/ fj(x)gz(x)dx—if |Vg(x)|2dx
o0 D3 D3

and

<g7 e(th)Ag> = /oo e(um“g(dx) > exp{(l — 2)/OQ Aug(dk)},

—0o0

where the second step follows from Jensen’s inequality.
Summarizing the steps from (3.12), we obtain

1 t
liminf - log inf E, [exp{/ fj(Bs)ds}; |Bi| <68, tp > ti|
t—o0 t |x]<§ 0

1
z/ f,-(x)g%x)dx—Ef IVe()|* dx.
D33 D3,

Taking supremum over g € Fy (Dga) leads to (3.11).
Combining (3.6) and (3.11), we get

liminf - log B (2 sk =)= LS
iminf —log E| exp Of 7By JdspiTp 21 _EZ; g, (-
=
Letting § — 0% on the right hand side gives

1 t | —
liminf—logE[exp{/ f*(f, Bs) ds}; 0> ti| > =S an(f)). (.13)
t—oo 0 t n =

As a direct consequence of (3.13), we have

1 ! s 1 ¢
liminf - logE * -, B, )ds} > — A 7
iminf —log exp{/o f (t s) s}_n; p(fj)
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for any bounded open domain D C R?. Letting D 1+ R? on the right hand side yields
liminf > logE (28 )ast = LS 3.14
iminf logEexp) | /7| . Bo ) ds _;,Zi (f))- (3.14)

Combining (3.7) with (3.13), and (3.10) with (3.10),

o1 (s 1<
tgrgo;logE[exp{/o f <;,Bs>ds},mzt}:;;x])(fj) (3.15)
and
1 t s | —
1 o5 1 ,
tlggotlog]Eexp{/O f <[,BS> ds}—n;k(fj). (3.16)

Notice that Ap(f;) =Ap(f(sj—1,-)), and that Ap(f(s,-)) is continuous in 5. Consequently, the average on the
right hand side of (3.15) converges to the integral on the right hand side of (3.3) as n — oo. In addition,

(2 B ' B
f (;, s>—f<;, )

By the equicontinuity assumption the right hand side tends to 0 as n — oo. Consequently, (3.3) follows from (3.15).
Similarly, (3.4) follows from (3.16). O

< max max |f*(s,x) - f(s,x)|.
xeRd 0=<s<1

max
0<s<t

Recall that the class Ay is given in (1.8). More generally, let
Aq(D) = {g € Ag; g(s, ) is supported in D for every 0 < s < 1}. (3.17)

We end this section with the following remark on the right hand sides of (3.3) and (3.4): It is not hard to see that for
any bounded open domain D C R,

1 1 1
/ AD(f(s, -)) ds= sup {/ / f(s,x)gz(s,x)dxds — 1/ / |ng(s,x)|2dxds}. (3.18)
0 gseday o Jp 2Jo Jp
In addition,
1 1 1! 5
/ A(f(s,))ds = sup {/ / f(s,x)gz(s,x)dxds——/ / |Veg(s,x)| dxds}. (3.19)
0 geA o Jre 2Jo Jre

4. Lower bounds

In this section, we establish the lower bound of Theorem 1.3:

1 t t 1 1/2
liminf - log E exp{ 67%/? / / — (B, — By)drds > 044 M(ag, d, y). “.1)
=00t 0 Jo |r—s[%
Similar to (2.6), there is a constant C(cg) > O such that

5|79 = Co(aro) /Hé | — 5|7 F0/ 21 =0Fe0)/2 4y 5 e R. 4.2)
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Together with (2.6), this gives

t t
1
tao/O /0 my(B,—BS)drds

/l /t —QQ
0 JO

y (B, — By)drds
! 14a0)/2 2
:CO(aO)C(y)/ [/ | — 11|70 K(x—Bs)ds} du dx. 4.3)
RxR4 LJo

r—s
t

Let f(u, x) be a bounded, continuous and locally supported function on R x R? with || f]l» = 1. By the Cauchy—
Schwarz inequality we have

' ) 5 2 1/2
(/ [f |u—t_ls}_( o)/ K(x—BS)dsi| dudx)
RxR4 LJO

t
Ef df(u,x)[/ ‘u—t_ls’_(HaO)/zK(x—Bs)ds:| du dx
RxR 0
t
=f U Fo)lu — TP R - Bs)dudx] ds
0 R xR
t (s
Z/ f<_7BS>dS7
0 t
where, one can easily check, that the function
f(s,x) =f fa )l — 5|70+ 02 g (y — x)dudy, (s,x)€[0,1] x R?
RxR

satisfies all restriction given in Proposition 3.1. Hence, by (3.4) in Proposition 3.1 and (3.19) we have

1 fopr 12
liminf — log E exp{ 61%0/2 //7y(Br—BS)drds
=00t 0 Jo lr—s|o

1 B 1 1
> sup {9,/C0(a0)C(y)/(; A&d f(s,x)gz(s,x)dxds— 5/0 /Rd|ng(s,x)|2dxds}.

geAq

Taking supremum over f on the right hand side and noticing that

1 1
/ / f_(s,x)gz(s,x) dx ds :/ fu,y) |:/ / lu — s|7(1+°‘0)/2K(x — y)gz(s,x)dxds] dudy,
0 JRY RxRd 0 JRA

we obtain that

1 t t 1 172
liminf — log E exp{ 67%0/2 / / ——y (B, — By)drds
1—>00 ¢ o Jo |r—s|%

1 2 1/2
> sup {e(co(aow(y) [ / / |u—s|<‘+“0>/2K(x—y)gz(s,xmxds] dudy)
geAy RxR4LJo JRd

1! 2
——/ / |ng(s,x)| dxds}.
2 0 R4
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By (2.6) and (4.2)

1 2
Co(ao)C(J/)/ [/ fRd|u—s|<‘+°‘°>/2K<x—y>g2<s,x>dxds} dudy

/ / / y(x Y) 2(s x)g (r,y)dxdydsdr.
RixRd [r — §]%0

Finally, the lower bound (4.1) follows from Lemma 4.1 below.

Lemma 4.1. For any 6 > 0,

SEuAp { (/ f f 14 (x— ay) ( x) g ( y) X y )
8 d Rd XRd | S | 0 :LS

1 1
- Efo /R |Vyg(s, x)|* dx ds} =Y M (ag, d, y).

Proof. Replace the function g(s, x) in the variation on the left hand side by

§/ 4= g (5, 92/ =) ).

With integration substitution w = #%/ 4~ x and 7z = #?/4~®)y the variation becomes

1 pl —2/(4—a) 1/2
(%
sup {6(/ / / v W —2)) 2(s w)g (r, z)dwdzdsdr)
geAy 0 Jo JrIxRrd |r — s|*0

1 1
_ 594/(4—01)/‘ / |ng(s’ w)|2dwds}
d

172
= sup {94/(4 0‘)(/ / / yw=2) g% (s, w)g>(r, z)dwdzdsdr)
gedy RIxRd |r— s]|%

1 1
— —94/(4*0‘)/ / |ng(s,w)|2dwds}
2 0 R4

=0Y4=9 M(ag, d, y),

where the first equality comes from the scaling y (cx) = ¢~ *y (x) for any ¢ > 0.

5. Upper bound

1545

Recall that K (x) is defined in (2.7). By the scaling property (1.11) and the representation in (4.3), the bound (2.2) in

Proposition 2.1 leads to

‘ 2 1/2
hmsup—logIEexp{ (/ |:/ lu—1""s (]+a°)/2K(x—Bs)dsi| dudx) }
t—00 RxR4LJO

<CcoME 0.

5.1

To establish the upper bound for Theorem 1.3, all we need is to tight up the constant C > 0. More precisely, we need

to show that (5.1) holds with

= (Col@)C()) " M(ap, d, y).
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What we did in Section 4 was essentially to bound a L2-norm by the linear functionals from below and then apply
Proposition 3.1 to the linear functionals. The opposite direction of this approach requires some exponential tightness
in L2-space which does not hold directly in our setting, due to non-compactness of the space R x R?. The treatment
is compactification by folding. For this purpose we need to localize the kernels | - |~(17%0)/2 and K (-) and to remove
their singularities at 0.

In the following discussion, let I : R* — [0, 1] be a smooth function satisfying the following properties: I(u) = 1
foru € [0,1],1(u) =0 foru >3 and —1 <!’(u) <0 forall u > 0. Let R > 0 be a large number and write

V() = u|~ITO2(R ).
In connection to (2.7), we write
[Ty 1= A+eD20 (R x;]), when y (x) =TI, i |7,
Kr(x) =1 |x|~@+)/2[(R~1|x]), when y (x) = |x| ¢, (5.2)
So(x), when y (x) = §p(x).
Set
Or(u, x) = |u]~MHO2K (x) — YrW)Kp(x).

We claim that

| P 2 172
lim limsup —logEexp{@(/ |:[ QR(u — s x— Bs)dsi| du dx) } =0. (5.3)
R—>00 1500 [ RxR4LJO

We first consider the case when y (x) = ]_[fl:l |x;|~%. By the triangle inequality we have that

t 2 1/2
([ [/ QR(M—t_lS,X—BS)dS:| dudx)
RxR4 LJO

t 2 12
= <f |:/ ‘l/t—t_ls’_(l-i-ao)/z(l—I(R_lyu_t—1S|))K(x_BS)ds:| dudx)
RxR4LJO

d ' ) 5 2 1/2
—i—Z(/ [/ ‘u—t_1s|_( o)/ Kj(x—BX)ds] dudx)
= RxR4 LJ0
d
=Xo(t, )+ Y _X;(t, R),
j=1
where
Kix)=(1—-I(R"x;))K(x), j=1,....d.
To show (5.3) it suffices to establish that for any 6 > 0
1
lim limsup -~ logEexp{0X;(r, R)} =0, j=0,V1,....d. (5.4)
R—o0 t—500 1

For a fixed o, satisfying 0 < «, < a,

|u|—(1+010)/2(1 _ l(R_l|u|)) < |u|—(1+0to)/21{‘u|2R} < R—(ao—%)/2|u|—(l+a(’))/2'
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Consequently, we have

/ ¢ ) 2\ 172
Xo(t, R) < R_(“O_“O)/2</ |:/ |u —t7 s _(H%)/ZK(x - Bs)ds:| ) .
RxR4 LJO

Applying (5.1) with «g being replaced by «), and 6 being replaced by O R~ (@—)/2,

1 /
lim sup - logEexp{6Xo(t, R)} < CoR™ 0D/ gd/(d-a)
11— 00
where Co = Co(oz(/), af, ..., oq) is independent of R. This leads to (5.4) in the case j =0.
Similarly, for all 1 < j <d we have
1 _ o —o' /
lim sup ; 10gIEexp{9Xj(t, R)} < C]R 2(a; Olj))/(4 o )94/(4701 )’

t—00

where o' = a1 +--- +aj_ —i—a; +aji1+ - +og. Thisleads to (5.4) with j =1, ...,d.
The proofs of (5.3) for the other forms of y () are similar.
By the triangle inequality and Holder inequality,

' 2 12
Eexp{e(/ U ‘u—t_ls‘_(HaO)/zK(x—Bs)ds] dudx) }
RxR4LJO
t 2 1/2y\ 1/p
5(Eexp{p9</ [/ lpR(u—t]s)KR(x—Bs)ds:| dudx> })
RxR4 LJO
. 2 1201 1/a
x(Eexp{qG(/ |:/ QR(u_;—ls,x—BX)ds] dudx) })
RxR4LJ0

for any numbers p, g > 1 with p~! 4+ ¢~! = 1. Applying (5.3) (with 6 being replaced by ¢6) to the right hand side,

and by the fact that p can be arbitrarily close to 1, we reduced the proof of (5.1) to the proof of

1 t 2 1/2
limsup—logIEeXp{@(/ |:/ l/fR(u—t_ls)KR(x—Bx)ds] dudx) }
t—oo I RxR4LJo

< 6% (Co(a0)C (1) " M(ag,d,y) VR>O. (5.5)

To remove the singularity of the functions {g(u) and Kg(x) at O in the case when y (x) = ]_[;izl |x;|~% or when
y(x) = |x|~%, let b > 0 be a small number and we use the following smooth truncations

YR b W) = Yr@)(1 =1 ul)) = lul =21 (R ul) (1= 1(b7 |u])) (5.6)
and
T4 xR (1 = 10 x 1)), when y (x) = [T, x| ~%,
Ko = { X0 R ) (1 — 1 1), when y (x) = |x| . G

We claim that

1 t 2 1/2
lim limsup — logEexp{9</ [/ QR,b(u —t s x — Bs) ds:| du dx) } =0, (5.8)
b—0" oo I RxR4 | Jo

where Qg p(u, x) = Yr)Kr(x) — Yg p(x)Kg p(x).
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We only consider the case when y (x) = ]_[?l:1 |x |~(4¢j)/2 The other one can be dealt with similarly. The proof
of (5.8) is similar to the proof of (5.3) with the observation that for any &; > a; (j =0, ...,d)

Yr(W) — Yrp) < Ju|~ITO21 ) 3y < (3b) G0m00)/2 |y |~ (1H00)/2
and
e |21 (R N 1) < Bb) @) 2 x|~ UHED/2 (j=1,...,d)

and that we can make &; arbitrarily close to «; so (1.7) remains true when «; is replaced by &; forany j =0, ...,d.
In the settings of y(x) = ]_[f:1 |x;|7% and y (x) = |x|~%, therefore, the problem is further reduced from the proof
of (5.5) to

1 t 2 1/2
limsup—log]Eexp{9</ |:/ wR,b(u—tls)KR,b(x—Bs)ds] dudx) }
t—>oo [ RxR4 LJO
<6449 (Co(a0)C (7)) M(ao, d. y) (5.9)

for any fixed large number R > 0 and small number b > 0.
As for the case when y (x) = 8p(x), where Kr = K = 9, by the similar argument, the problem is reduced to

1 ¢ 2 172
limsup — logEexp{Q(/ [/ WR,b(M — t_]s)(?o(x — Bs)ds] du dx) }
t—oo I RxRLJO

<6*3(Coe0)C(80)) "> M(ap, 1, 80) (5.10)

for the same ¥g p.

Unfortunately, the singularity of the Dirac function can not be removed by truncation. A separate treatment is
needed here. Let /2 (x) be a smooth and locally supported probability density on R and write 4. (x) = e lh(e=1x). We
claim that

1 ! 2 1/2
lim lim sup A logEexp{G(/ [f wR,,,(u — [—ls)((So —h)(x — Bs)ds] du dx) } =0. (5.11)
RxRLJO

=0t >0

Indeed, by sub-additivity

t 2 1/2
Eexp{@(f |:[ wR,h(u—t—ls)(So—hs)(x—Bs)dsi| dudx> }
RxRLJO
1 2 1/2y\ ¢
§(Eexp{0(/ [/ 1//R,b(u—t_ls)(So—he)(x—Bx)dsi| dudx) })
RxRLJO

Thus, it suffices to show that

1 2 12
lim limsup]Eexp{H(/ [/ VR (1 — t*]s)(&) —he)(x — Bs)ds] du dx) } =1. (5.12)
RxR LJo

e—>0T r—o00

By the triangle inequality

: 2 1/2
(/ U Yo =17'5) (0 — he)(x = Bs)ds} dm)
RxRLJO
! 2 1/2
< (f [/ |Wrp(u—17"s) — Y p()|do(x — Bs)ds} du dx)
RxRLJO



Exponential asymptotics 1549

1 2 172
+(/ U WRJ?(”_’]S)—lﬁR,b(M)|ha(x—Bs)dsi| dudx)
RxRLJO

1/2 1/2
+</ w,%’,,w)du) (/ [L(l,x)—Lg(l,x)]2dx> ,
R R

where

1 1
L(l,x):/ So(x — Bg)ds and Lg(l,x)zf hg(x—Bs)ds=/ he(x —y)L(t,y)dy
0 0 R

are local time and smoothed local time, respectively.
Notice the fact that

. — 2
tm s Vst 79 Vst =o.

By Jensen’s inequality

/L?(Lx)dxs/[/ hs<x—y)L2<1,y)dy}dx
R R R
=/U hg(x—y)dX}Lz(l,y)dy=/ L2(1, ) dy.
R R R

With the continuity of the Brownian local time, and the exponential integrability of the self-intersection local time
(see, e.g., [1], Chapter 4), (5.12) holds. So does (5.11).
By (5.11), the proof of (5.10) is reduced to the proof of

1 t 2 172
lim sup —logEexp{9</ |:/ WR,b(M — fls)hg(x — Bs)ds] du dx) }
1—»oo 1 RxRLJO

<6*3(Co(a0)C(80)) " M (@, 1, 80) (5.13)

for fixed R, b and ¢. In the remaining part of this section, we prove (5.9) for the first, second forms of y (-), and (5.13)
for the third form of y (-).
Let M > 2R be fixed but arbitrary. For the first and second forms of y(-), we have

2

t
/ U YRy —17's) KR p(x — Bs)ds] du dx
RxR4 LJO

t 2
=ZZ/ |:/ wR’b(Mk—i—u—tls)KR,b(Mz+x—Bs)ds:| du dx
[0,M]d+l 0

kel ZEZd

t 2
< YR Mk+u—1t"'s Krp(Mz+x—B )ds:| du dx
/[‘0)M]d+l |:Z Z_/; ( ) s

keZ ZEZd

t 2
:f [/ U (u—17"s) Ky (x — Bs)ds] du dx,
[O,M]‘Hl 0

where

@)=Y Yrp*kM+u) and Ky(x)= Y Kpp(Mz+x). (5.14)
keZ 774
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_ With K 5 being replaced by £, the above bound remains true for the third form of y (-). The notations K M and
Y are also adopted to this case.
For any fixed ¢ > 0, the following process

t
e (u, x) :f Um(u—t71)Kp(x — By)ds,  (u,x) € [0, M]9H!
0

can be considered as a process with values in the Hilbert space £2([0, M]9*!) (the norm on this Hilbert space will be
denoted by | - ||). We claim that there is a fixed compact set K C £2([0, M9ty such that for anyt>0,t"'n(-,) e K
a.s.

By the locality of ¥ p, Km,p and he and thg fact M > 2R, JM and K um are actually the periodic extensions of ¥g j
and Kg p (or hg), respectively. In particular, ¥ and Ky are bounded, smooth functions with bounded derivatives.
Consequently, there is a constant C > 0, such that

t7 ey =€ and TG o+ w) — e F oo, wa) | < Clwi wi) = (2, wo)|

for all r and (v, wy), (v2, wp) € [0, M]d'H. Thus, our claim follows from the classic fact ([9], 8.21, Theorem IV) that
the set

={fe (10, M) IIfll < Cand | f(-+vi,-+wp) — F+ v, - +wd)

< C|(1, w1) = (v2, wo)| for (v1, ), (v2, w2) € [0, M1}

is pre-compact in 112([0, M ]d+1), with the choice K as the closure of A.
Let § > 0 be fixed. For any g € K by the Hahn—Banach theorem ([18], p. 108, Corollary 2) and by the fact that
bounded and continuous functions are dense in £2([0, M]¢t!), there is a bounded and continuous function f e

L2([0, M1ty such that || f|| = 1 and that ||g|| < & + (f, g). By the finite-cover theorem, one can pick fi,..., fm
from these functions such that || g|| < § + maxi<;<x (fi, g) for any g € K. In particular,

Eexp{6/n:} ‘”’ZEexp (firm)}- (5.15)

Let 1 <i <m be fixed. Notice that

! t
(f,-,n,):/ |:/ f,-(u,x)lZM(u—tIS)EM(X—BS)dudx] ds:/ ﬁ(E,BS> ds,
0 [0, M]d+1 0 t

where
ﬁ(s,x>=f[0 o T =Ry =0y, (5.3) € [0,1]x B
Md+!

satisfies all assumptions made in Proposition 3.1. Hence, by (3.4) combined with (3.19),

1 1
lim llogIEexp{é’(fi,rh)} = sup {/ f_,-(s,x)gz(s,x)dxds — 1/ / |ng(s,x)|2dxds}. (5.16)
oo ¢ 0 Jrd 2Jo Jre

= geAq(D)

Notice that

1 1
[/ﬁ(s,x)g2<s,x>dxds=f ﬁ(m)[/ / IZM(u—s)l?my—x)g%m)dxds}dudy
0 JRd [0, M]d+1 0 JRd

: 2 1/2
= (/ |:/ / JM(M—s)I?M(y—x)gZ(s,x)dxds} dudy) .
o.M+ LJo JRA
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The quadratic integral inside (- - -)!/2 on the right hand side is equal to

1 1
/ / / g2 (r, x1)g%(s, x2) dr ds dxj x>
0 JOo JRIxRI

M
X [/ 1/fM(M—S)I/fM(M—r)du} [/ KM(y_xl)KM(y_x2)d)’:|~
0 [0,M]4

We now claim that

M
/ Y — )Yy —r)du= /R YR —$)YURpu —r)du. (5.17)
0
Notice that
Yro(GM +u —1r)YprpkM +u—s5)=0, uelk,s,rel0,1], and j, k € Z with j # k.

Consequently,

V(e — )P —r) =Y YrpkM+u—s)YppkM+u—r), uecR,rsel0,1]
keZ

which leads to (5.17).
Noticing that the right-hand side of (5.17) is no greater than

/ lu — S|—(1+0t0)/2|u _ r|—(1+060)/2 du = CO(“O)_1|" — 5|7,
R

we have

1
/ / fi(s,x)g2 (s, x) dx ds
0 R4

1
—1 _ ~ ~
(o) [ [ s Rt = 0 Rl — 30 n)g s dn deady
[o,mM14Jo Jo JRIxRA

! ~ 2 1/2
= (/[0 y A[/(; /Rd |u —S|_(l+a0)/2KM(y —X)gz(s,x)dx ds] du dy) . (5.18)
M

Then by Lemma A.3, we have proved that for each i = 1, 2, ..., m, the variation on the right hand side of (5.16) is
no greater than

_ 1/2
sup{ (Colan)C(»)) 1/2(/' / / re Z) (s, x)g>(r, y)dxdy)
geAy RdxRd |1 — s|%

1 1
——/ / |ng(s,x)|2dxds}
2 0 R4

= 6%/ (Co(a0)C () M(ap. d, ),

where the equality follows from Lemma 4.1.
By (5.15), therefore,

lim sup — logEexp{ennfn} <05+ 6%~ (Coan)C (1)) T Mo, d, ).

t—00

Finally, (5.9) and (5.13) follow from the fact that § can be arbitrarily small.
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6. Some related results

6.1. Intermittency of a parabolic Anderson model

Recall the parabolic Anderson model (1.3)

(t, x)u(t, x),

ad+1 H
du(t,x)=LAut,x)+ %
u,x)=1.

The p-moment of the solution is given by

P t ot .
E(u(t,x)p)=E<exp|:C7H Z/f|s—r|‘“°y(Br’—Bf)dser, 6.1)
k=170 o

where we recall ¢; =2 —2H;, i =0,1,...,d and y(x) = ]_[f=1 |x;|~% is of the first form. We have the following
precise asymptotics for the moments of the solution u(z, x).

Theorem 6.1. Let E(xg, d, y) be the quantity defined by (1.9). Then
o \ 22—
lim ¢~ ¢—2200)/C-) logEu? (¢, x) = pli=0/C—a) <—H> E(ag,d, y).

t—00 2

Proof. Notice that

P t pt )
Z / / |s—r|*°‘0)/(Brj—Bf)dsdr
jzio Jo

p t . 2
- Co(oco)C(tx)/ Zf lu— = 's| 7O K (x — BI)ds | dudx.
RxR4 =1 0

By scaling, an argument similar to the proof of Theorem 1.1 based on Theorem 1.3 given in Section 1, it suffices to
show

2 1/2
1 P _ ;
lim —logEexp| 6 Co(ao)C(a)/ Z/ |u —t_1s| (1+a0)/2K(x —st)ds du dic
100t RxR? | 57 J0

= po* =D M (g, d, y).

Unlike before, the upper bound is easier to obtain. Observing that

oo . 2 1/2
(Co(ozo)C(a)/ [Z/ |u—t1s|(]+a0)/2K(x—st)ds:| dudx)
RxR¢ | S Jo
' , 2
<c0(a0)C(a)/ U ‘u—t_ls|_(1+a0)/2K(x—st)ds:| dudx)
RxR4 LJO

t pt . ) 172
<z°‘0/ f ls —r|7*y (B! — B} )ds dr)
0 Jo

1/2

P
=2
j=1

p
j=1
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and the fact that B/, j=1,...,d are independent, and using Theorem 1.3, we get
2 1/2
1 S 1 —(4ag)/2 '
hmsup logEexp| 6 Co(ozo)C(a)/ Z/ ’u -t s 0 K(x — Bs]) ds | dudx
t—00 ; 0
j=1

< oY I M (ag, d, y).

The lower bound can be established as in Section 4. More precisely, assume f(u, x) to be a bounded, continuous
and locally supported function on R x R with || f|l2 = 1. Then from the Cauchy—Schwarz inequality, we see

2 172
</ d|: /’u —(He0)/2 g ( —Bs])dsj| dudx)
RxR

P t .
2/ f(u,x)[Z/ |u—tls|(1+a0)/2K(x—B&/)ds:| du dx
RxR4 = 0
p r .
:Z/ f(t_ls,BS])ds,
=170

where

f(s,x) =f FGu, u—s|~IFO2K (y — x)dudy, (s,x) €0, 1] x RY.
RxR4

By the independence of the Brownian motions B 1 ... BP, wehave
' p
E 6/C J)ds{ = v F(e!
exp{ 0(c0)C () Z/ ls, B! ds} (Eexp{@ Co(ozo)C(oa)f f( s,BS)ds}) )
0

Applying (3.4) in Proposition 3.1

2 172
1 e - :
liminf—logIEexp|:9<Co(ao)C(ot)/ |:Z/ |u_[—ls’ (1+a0)/2K(x—BS])ds:| dudx) :|
1= f RxR?| 5770
1 _ 1 1 )
> p sup {Wco(aow(y)/ [ ieogs a3 [ ] 9600 dxds}.
0 JRre 2Jo Jre

geAy

Taking supremum over f on right-hand side leads to the desired lower bound.

By Theorem 6.1, it is easy to verify that when p < ¢,

[Eu? (t, x)]'/P
m ———————— =
r—o0 [Eud (t, x)]1/4

This is a sufficient condition for the model (1.3) to preserve intermittency, which means, roughly speaking,that when
the time ¢ is large, the total mass u(z, x) will be mainly concentrated on a small number of remote islands. Refer to

[10] and the references therein for more details about intermittency.
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6.2. A local version of Theorem 1.3

For possible future application, we post a local version of Theorem 1.3. For any 0 < b < R < oo, recall that ¥ 5 (1)
and Kg p(x) are the truncated kernels defined in (5.6) and (5.7), respectively. Here we allow b =0 or R =oco in a
natural way. For example,

Yro@) = ul" T2 (R ul) and Koo o(x) = K (x).

Let D C RY be an open and bounded domain with 0 € D and recall that the exit time tp = inf{t > 0; B; ¢ D} and that
the class A4 (D) is defined by (3.17). For any 6 > 0, define

Mioc(ap,d, v,0, Ro, R, by, b, D)

1 2 172
= sup {9(/ |:/ / wRO,bo(u—s)KR,b(y—x)g2(s,x)dxdsi| dudy)
geAy(D) RxRILJo JD

1
_%/ /|Vg(s,x)}2dxds}. (6.2)
0 JD

Theorem 6.2. Under the assumption (1.7), for any 6 >0,0<by < Ry <00,0<b< R <00

1 ! 2 1/2
lim — log]E|:exp{9</ |:/ Y Ro.bo (4 — t*]s)KR,b(x - Bs)ds} du dx) }; ™ > ti|
=00t RxR4 LJ0o

ZMIOC(a09d7 J/797R05R’b05 b5 D) ve >0- (6.3)

Proof. The argument is essentially the same as the one used for Theorem 1.3 with the following exceptions: First, we
replace (3.4) and (3.19) by (3.3) and (3.18), respectively. In particular, the establishment of the lower bound is now
straightforward. Second, folding for the upper bound is no longer needed. Take the first and second forms of y (-) for
example. On the event {rp > t}

t 2
/ [/ l/fRO’bO(u — t_ls)KR,;,(x — Bx)dsi| du dx
RxR4 LJO

' 2
:/ [/ 1//R0’b0(u—tls)KR’b(x—Bs)ds:| du dx,
(=3R0.3Rg+1)xDg LJO

where Dpg is (3R)-neighborhood of D. As a crucial fact, the process

1 t
?/o wRo,bo('—flS)KR,b(-—Bs)ds, t>0

takes values in a fixed compact set K C £2([—3R0, 3Ry + 1] x Dpg) for each t > 0 when 0 < by < Ry < oo and
0 < b < R < 0. In other cases, the proper truncations proposed in Section 5 reduce the problem to this setting.  [J

Appendix

Lemma A.1. Under the assumption (1.7), there is a constant C > 0 such that

V(X 2 ! 2 o/2
/ / f f (s,x)f (r,y)dxdydrdst(/ f |V £ (s, 2)| dx> (A.])
RYxRY | Sl"l0 0 JrRd

forall f e Ay.
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Proof. Recall the inequality

/Rd Ré y(x = 2@ () dedy < C||f||37a||Vf||§, fe Wl*z(Rd)

for which we cite (5.30), (5.18) and Lemma 5.7 in [3] for the first, second and third forms of y (-), respectively.

For two possibly different functions f, g € W!2(R?), by the representation (2.6)

/ y(x — ) fAx)g*(y)dxdy
R4 x R4

-cm/ U K(z—x)fz(mdx}[/wK(z—y)g%y)dy]dz
2 1/2 2 172
scm{/ U K(z—x)fz(x)dx] dz} {/ U K(z—y)g%y)dy} dz}
R4 R4 R4 R4

1/2 1/2
= { / Yy — A Ay de dy} { / y(x — g2 (x)g*(y) dx dy}
R4 x R4 R4 xR

(4—a)/2 a/2 (4—a)/2 a/2

=Ifl; VAL lgll IVell

In particular,

a/4 a/4
/ y (=) 25,20 £ y) dxdy < c(/ |vxf<s,x>|2dx) (/ |vxf<r,x>}2dx)
R4 xR4 R4 R4

holds for all f € A; with the same constant C > 0.
Hence,

/ / / y(x f (s, x)f (r,y)dxdydrds
R xRd |r — £]*0
5 a/4 ) a/4
SC/ / |r—s|—ao</d|vxf(s,x)| dx) (/d|fo(r,x)| dx) drds
(4—a)/4 a/2
(/ / Ir — —4ag/(4— 0l)drds> </ f |V f(s, x)| dxds) ,

where the last step follows from Holder inequality. Thus, the conclusion follows from the fact that 4cg(4 — )~

under (1.7).
Let k («g, d, y) be the best constant in (A.1).

Lemma A.2. Under the assumption (1.7),

4—qfa\YE _
Mo, d,y)=— <§> K (o, d, y)* 4=,

2 _
E(ag,d,y) = Taa“/@*"”x(ao, d, )2,

4 — (4—a)/(2—a)
E(ao, d, J/)_ 5 201/(2 a)< Z ) M(()lo,d,]/)(4_a)/(2_a)_

1555

-1
O

(A.2)
(A.3)

(A4)
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Proof. Clearly, (A.4) is a consequence of (A.2) and (A.3). By definition

1 a4 1
M(eo.d,y) < sup {K(ao,d,w”z(/ / |vxf(s,x>|2dx> —1/ / |fo(s,x>|2dx}
geAy 0 R4 2 0 R4

1
< SUP{K(Oéo, d,y)!/2pe% — —AQ}
A>0 2

a/(d—a)
4 - o (2> k(g d, )24

Similarly,
1 2 —
Eo.d,y) < sup{x(ao, d, A" — —Az} = 2/ (g, d, ) 2D
A>0 2 2

On the other hand, given 0 < ¢ < k(ag, dy), let f € Ay satisfy

/ / / vl = f (s, x)f (r,y)dxdydrds
RIxRd |7 — £]%0

/2
>(K(a0,d,y)—8)</0 Ad|fo(s,x)|2dx> .

Forany B > 0, gg(s,x) = B2 f (s, Bx) is in Ag. Hence,

M(ao.d, y)

1/2
</ / /Rded |r_t|o)t]0) 2(S X)gﬁ(” y)dxdydrds> ——/ / |Vigp(s. x)| dx
’ ) 12 g )
e/ </ / /d ) z|aof (s, %) f (r,y)dxdydrds> —7/ fdyvxf(s,xﬂ dx,
R4 xR 0 Jr

where the last step follows from integration substitution. Maximizing the right hand side by picking optimal S,

b—a/la a/(4—a) 1 —a/(4—a)
M(ao,d,y) > 1 (5) (/ /d]fo(s,x)Ide>

y(x — 2/(4—a)
(/ / / f (s, x)f (r, y)dxdydrds)
Rd xRd | — 1]*0

4—qg a/(4—a) 2 /(4
A () it

Letting ¢ — 07 leads to

4—0[ o O[/(4 @) 2/(4
Mo, d,y) = — (5) K (g, d, y)> ),

In a similar way, we can prove that

E@od.y) = =2 SO (@, d, )M,
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Lemma A.3. Let K M (+) be defined as in the proof of Theorem 1.3 in Section 5. We have

1 2 1/2
limsup sup {(/ /[/ / lu —s|~1F0 2K (y —x)gz(s,x)dxds:| du dy>
M—o00 geAy [o,mM14 JRLJO JR4

1
_l/ / |Vg(s,x)|2dxd3}
2 0 R4

< (Cola0)C()) " M(a, d, y).

Proof. We shall prove the lemma in the settings of the first and second forms of y (), and it can be proved in the same
spirit for the third form of y (-).
Noticing that K ;(-) is supported on [-2R, 2R]?, for any y € [0, M]¢

/ Ru(y — 02 x)dx = / Krp(y — 07 2(s. x)dx
Rd Rd

_ / Kro(y — 03205, x) dx,
[—2R,M+2R]

where

Fs, 0= | g, Mz+x).

zeZ4
Clearly, g(s, x) is periodic in x in the sense that
g(s,zM +x)=g(s,x), z¢€ 7%, x e RY.

In addition,

/ Bexnde=1 and [VEe.0) < Y [Ve + M)|" forseo.1].
(0.1

ze74
Let g € Ay. By Lemma 3.4 in [7], for each s € [0, 1], there is an a(s) € R4 such that

gz(s,x +a(s)) dx < %

/[O,M]d \[VM,M—V/M}?

Notice that there is a finite partition of [-2R, M + 2R]d \[0, M ]d such that each part under this partition can be shifted
by zM (z € Z¢) unit to become a part of [0, M1\ [R, M — R1* C [0, M]? \ [VM, M —/M¢.Let F C [-2R, M +
2R} \ [0, M1¢ be a member of the partition and z € Z4 be such that F + zM C [0, M]¢ \[VM,M — M. By
periodicity

2d

g2 (s, x + dx=/ g2 (s, x +a(s))dx < —.
-/;g (sx a(s)) F+ZMg (sx a(s)) <m

Therefore, there is a constant C > 0 independent of g such that

gz(s,x —I—a(s)) dx < C\;ZMd).

/[2R,M+2R]d\[o,M]d

Write E = [—2R, M +2R)¢ \[VM,M —+/ M. Summarizing our computation

C
g (s, x + dx < —,
/;Eg (sx a(s)) N
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where C is a positive generic constant which depends on the dimension d only. We may assume a = 0, that is

/ (s, x)dx < <
E VM

for otherwise we may replace g(s, -) with g(s, a(s) + -).
Define the function ¢ on R by

M2 0<ir<+M,
d(L) = 1, VM <A<M-—M,
MYZ_ M2 M—VM<i<M,
0, otherwise,
and write

P)=¢(x1)--P(xa), x=(x1,...,%7) €R?,

f(s,x) =§(s,x)<p(X)/\//Rd g2(s, )2 (y) dy = 2(s, X)p(x) /v A(s).
Then |¢| <1, |Ve| </d/M and f € A;. Note that
1= f 2%(s.y)dy > A(s)
[0, M4
= / 2. )e* () dy
[0, M1
C
1— | 2%, y)dy>1— —.
> /Eg (s, y)dy > N

—_1__C
LetA=1 T and we have

A<A(s) <1, se[0,1]

1
//|Vf(s,x)|2dxds
0 JR4
1 1 ~ 2 2
=4[ [ IvEs o e axas
0 JRY
1 5 5 1
+/ / |26, )| | Vo)| dxds+2/ f §(s,x)<p(x)(V§,V(p)dxds:|
0 JRd 0 JR4
1 1 - 2
< / / |Vg(s,x)| dxds
AlJo Jio,me
d 1 - 1 - 1/2
+—// |g(s,x)|2dxds+2<// |Vg(s,x)|2|V¢(x)|2dxds> ]
M Jo Jio,me 0 Jio,my
1/1/ - ) d 4/d</d 1 - 2 172
< — Vg(s,x)|"dxds + — + 2,/ — —// Vg(s,x)| dxds
A[ 0 [O,M]‘1| | M M M 0 [O,M]d} |
1 d 1 - ) d d
<—{(1 — Vgl(s, dxds 4+ — — 1,
< { (5 [ 7F o aras s e )

where in the last step we used the fact 2xy < x2 + y?.

(A.5)

(A.6)
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On the other hand, notice that §2(s, x) = A(s) f2(s, x) forall x € [-2R, M + 2R]\E:

. 2 12
( /[ow /R [ /0 /[ - 2R1d|u—s|“*"‘OWKR,b(y—x>§2(s,x>dx} dudy)
5 —2R, M+
1 2 12
< ( /[ow /R [ fo /[ - 2Rld\Em—s|—“+‘>‘0>/21<1e,b<y—x)z?z(s,aodx} dudy)
s —2R,M+
1 2 12
+</O d/ﬂ;[/o /|u—s|—<‘+“0>/2KR,b(y—x)gfz(s,x)dx} dudy) . (A7)
[0,M] E

The first term on the right hand side is no larger than, noticing that A(s) <1,

1 2 1/2
</[0M]J/R[/o /R |u—s|“*"‘°>/2KR,h(y—x)f(xx)dx} dudy)

1 pl 172
5((co<ao)c<y))‘”2 fo /0 fR ) YO o oy <ry>dxdydrds) .

xRd |1 — 5|0

For the second term, assuming that the function Kz 5(-) is uniformly bounded from above by Ny where Ny depends
on (R,b,d).

1 2
/[OM]J/RUO /E|u—s|<‘+“°>/2KR,b<y—x)§2<s,x)dx] du dy

1 1
= C(ap)™! / / / Ir —s|7* drdsdy f Krp(y —x1)8%(s, x1) dx; f Krp(y — x2)8%(r, x2) dxa
[O,M]d 0 0 E E
1 1
SC(ao)q/ / / Ir—SlfaodVdey/ KR,b(y—X1)§2(S,X1)dX1/ NoZ2(r, x2) dxy
[o,m1Jo Jo E [0,M}4
1 1
SNOC(Olo)q/ KR,b(y)dy/ / IV—SlfaOdrdS/ 22(s, x1)dx;
R4 0 0 E

1
< NoCl(arp) ™! fR L Krpdy(1—ag)™! fo [s'7%0 + (1 —5)!7%] / g%(s, x1) dx; ds
E

= —, A.8
NG (A9

where C depends on (R, b, d, op) only and the last second step follows (A.S5).
Combing (A.6), (A.7) and (A.8), we obtain

1 ~ 2 124 p1
</ /[/f |u_S|_(1+a0)/2KM(y—X)gZ(s,x)dde} dudy> __/ / Vg (s, 0| dxds
o.me JrLJo Jra L

12
< ((Cot@nrc)) 1/2/ / / YX D) 200 2 yydedydrds )+ CMVA
R‘IXR‘] r —S|a0

1 d\"! ) 1 \/7 “tra d
—5(1+ M) A/O /Rd‘Vf(s,x)! dxds+§<1+ M) <M+ M)
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1/2
(Co(ao>C<y) ”2(f// i Y y)dxdydrds)
RIxRd I — §]%0
1 z e L [T (4 2
2/0 /Rd|Vf(s,x)| dxds}+CM +2<1+ M) v V)
Therefore,

1 - 2 1/2
sup{(/ /[// |u—s|_(1+“0)/2KM(y—x)gz(s,x)dxds] dudy)
geAy [o,m1 JRLJO JR4

1 1
_5[0 Ad|Vg(s,x)|2dxds}
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where the last step follows Lemma 4.1.
Finally, noticing that A =1 — «/M we have

1 _ 2 1/2
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f€ d X -

1! 2
——/ / |V £(s.x)| dxds}.
2 0 R4

Then the proof concludes. O

References

[1] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. Amer. Math. Soc.,
Providence, RI, 2010. MR2584458


http://www.ams.org/mathscinet-getitem?mr=2584458

[2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]
[10]
(1]
[12]
[13]

[14]
[15]
[16]
[17]

[18]

Exponential asymptotics 1561

X. Chen. Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann.
Probab. 40 (2012) 1436-1482. MR2978130

X. Chen. Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann. Probab. 42 (2014) 576-622. MR3178468

X. Chen and J. Rosen. Large deviations and renormalization for Riesz potentials of stable intersection measures. Stochastic Proc. Appl 120
(2010) 1837-1878. MR2673977

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Wiener integrals for large time. In Functional Integration and Its
Applications (Proc. Internat. Conf. London, 1974) 15-33. Clarendon Press, Oxford, 1975. MR0486395

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl.
Math. 29 (1976) 389—461. MR0428471

M. D. Donsker and S. R. S. Varadhan. Asymptotic for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525-565. MR0397901

M. D. Donsker and S. R. S. Varadhan. Asymptotics for the polaron. Comm. Pure Appl. Math. 36 (1983) 505-528. MR0709647

N. Dunford and J. Schwartz. Linear Operators 1. Wiley, New York, 1988.

J. Gértner and W. Konig. The parabolic Anderson model. In Interacting Stochastic Systems 153—179. Springer, Berlin, 2005. MR2118574
R. van der Hofstad and W. Konig. A survey of one-dimensional random polymers. Stat. Phys. 103 (5/6) (2001) 915-944. MR1851362

Y. Hu and D. Nualart. Stochastic heat equation driven by fractional noise. Probab. Theory Related Fields 143 (2009) 285-328. MR2449130
Y. Hu, D. Nualart and J. Song. Feynman—Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39 (2011) 291-326.
MR2778803

R. Léandre. Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74 (1987) 399-414. MR0904825

E. H. Lieb and L. E. Thomas. Exact ground state energy of the strong coupling polaron. Comm. Math. Phys. 183 (1997) 511-519. MR1462224
U. Mansmann. The free energy of the Dirac polaron, an explicit solution. Stochastics Stochastics Rep. 34 (1991) 93-125. MR1104424

J. Song. Asymptotic behavior of the solution of heat equation driven by fractional white noise. Statist. Probab. Lett. 82 (2012) 614-620.
MR2887479

K. Yosida. Functional Analysis. Springer, Berlin, 1966.


http://www.ams.org/mathscinet-getitem?mr=2978130
http://www.ams.org/mathscinet-getitem?mr=3178468
http://www.ams.org/mathscinet-getitem?mr=2673977
http://www.ams.org/mathscinet-getitem?mr=0486395
http://www.ams.org/mathscinet-getitem?mr=0428471
http://www.ams.org/mathscinet-getitem?mr=0397901
http://www.ams.org/mathscinet-getitem?mr=0709647
http://www.ams.org/mathscinet-getitem?mr=2118574
http://www.ams.org/mathscinet-getitem?mr=1851362
http://www.ams.org/mathscinet-getitem?mr=2449130
http://www.ams.org/mathscinet-getitem?mr=2778803
http://www.ams.org/mathscinet-getitem?mr=0904825
http://www.ams.org/mathscinet-getitem?mr=1462224
http://www.ams.org/mathscinet-getitem?mr=1104424
http://www.ams.org/mathscinet-getitem?mr=2887479

	Introduction
	Asymptotic bounds by comparison
	Time-space large deviations via Feynman-Kac formula
	Lower bounds
	Upper bound
	Some related results
	Intermittency of a parabolic Anderson model
	A local version of Theorem 1.3

	Appendix
	References

