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Abstract. We study a particular type of subcritical Galton–Watson trees, which are called non-generic trees in the physics commu-
nity. In contrast with the critical or supercritical case, it is known that condensation appears in certain large conditioned non-generic
trees, meaning that with high probability there exists a unique vertex with macroscopic degree comparable to the total size of the
tree. Using recent results concerning subexponential distributions, we investigate this phenomenon by studying scaling limits of
such trees and show that the situation is completely different from the critical case. In particular, the height of such trees grows
logarithmically in their size. We also study fluctuations around the condensation vertex.

Résumé. Nous étudions une classe particulière d’arbres de Galton–Watson sous-critiques, appelés arbres non-génériques en phy-
sique. Contrairement au cas critique ou surcritique, il est connu qu’une condensation apparaît dans certains grands arbres non-
génériques conditionnés, c’est-à-dire qu’avec grande probabilité il existe un unique sommet de degré macroscopique comparable
à la taille totale de l’arbre. En utilisant des résultats récents relatifs à des lois sousexponentielles, nous étudions ce phénomène
en étudiant les limites d’échelles de tels arbres et montrons que la situation est complètement différente du cas critique. En par-
ticulier, la hauteur de ces arbres croît logarithmiquement en leur taille. Nous étudions aussi les fluctuations autour du sommet de
condensation.
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Introduction

The behavior of large Galton–Watson trees whose offspring distribution μ = (μi)i≥0 is critical (meaning that the
mean of μ is 1) and has finite variance has drawn a lot of attention. If tn is a Galton–Watson tree with offspring
distribution μ (in short a GWμ tree) conditioned on having total size n, Kesten [22] proved that tn converges locally
in distribution as n → ∞ to the so-called critical Galton–Watson tree conditioned to survive. Aldous [1] studied the
scaled asymptotic behavior of tn by showing that the appropriately rescaled contour function of tn converges to the
Brownian excursion.

These results have been extended in different directions. The “finite second moment” condition on μ has been
relaxed by Duquesne [11], who showed that when μ belongs to the domain of attraction of a stable law of index
θ ∈ (1,2], the appropriately rescaled contour function of tn converges toward the normalized excursion of the θ -stable
height process, which codes the so-called θ -stable tree (see also [24]). In a different direction, several authors have
considered trees conditioned by other quantities than the total size, for example by the height [23,28] or the number
of leaves [25,30].
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Non-critical Galton–Watson trees

Kennedy [21] noticed that, under certain conditions, the study of non-critical offspring distributions reduces to the
study of critical ones. More precisely, if λ > 0 is a fixed parameter such that Zλ = ∑

i≥0 μiλ
i < ∞, set μ

(λ)
i =

μiλ
i/Zλ for i ≥ 0. Then a GWμ tree conditioned on having total size n has the same distribution as a GWμ(λ) tree

conditioned on having total size n. Thus, if one can find λ > 0 such that both Zλ < ∞ and μ(λ) is critical, then
studying a conditioned non-critical Galton–Watson tree boils down to studying a critical one. This explains why the
critical case has been extensively studied in the literature.

Let μ be a probability distribution such that μ0 > 0 and μk > 0 for some k ≥ 2. We are interested in the case
where there exist no λ > 0 such that both Zλ < ∞ and μ(λ) is critical (see [17], Section 8, for a characterization of
such probability distributions). An important example is when μ is subcritical (i.e., of mean strictly less than 1) and
μi ∼ c/iβ as i → ∞ for a fixed parameter β > 2. The study of such GWμ trees conditioned on having a large fixed
size was initiated only recently by Jonsson and Stefánsson [20] who called such trees non-generic trees. They studied
the above-mentioned case where μi ∼ c/iβ as i → ∞, with β > 2, and showed that if tn is a GWμ tree conditioned
on having total size n, then with probability tending to 1 as n → ∞, there exists a unique vertex of tn with maximal
degree, which is asymptotic to (1 −m)n where m < 1 is the mean of μ. This phenomenon is called condensation and
appears in a variety of statistical mechanics models such as the Bose–Einstein condensation for bosons, the zero-range
process [13,19] or the Backgammon model [4] (see Fig. 1).

Jonsson and Stefánsson [20] have also constructed an infinite random tree T̂ (with a unique vertex of infinite
degree) such that tn converges locally in distribution toward T̂ (meaning roughly that the degree of every vertex of
tn converges toward the degree of the corresponding vertex of T̂ ). See Section 2.3 below for the description of T̂ . In
[17], Janson has extended this result to simply generated trees and has in particular given a very precise description
of local properties of Galton–Watson trees conditioned on their size.

In this work, we are interested in the existence of scaling limits for the random trees tn. When scaling limits exist,
one often gets information concerning the global structure of the tree.

Notation and assumptions

Throughout this work θ > 1 will be a fixed parameter. We say that a probability distribution (μj )j≥0 on the nonnega-
tive integers satisfies Assumption (Hθ ) if the following two conditions hold:

(i) μ is subcritical, meaning that 0 <
∑∞

j=0 jμj < 1.
(ii) There exists a measurable function L :R+ → R+ such that L(x) > 0 for x large enough and limx→∞ L(tx)/

L(x) = 1 for all t > 0 (such a function is called slowly varying) and μn = L(n)/n1+θ for every n ≥ 1.

Fig. 1. The first figure shows a large non-generic Galton–Watson tree. The second figure shows a large critical Galton–Watson tree with finite
variance.
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Let |τ | be the total progeny or size of a tree τ . Condition (ii) implies that Pμ(|τ | = n) > 0 for sufficiently large n.
Note that (ii) is more general than the analogous assumption in [17,20], where only the case L(x) → c as x → ∞ was
studied in detail. Throughout this text, θ > 1 is a fixed parameter and μ is a probability distribution on Z+ satisfying
the Assumption (Hθ ). In addition, for every n ≥ 1 such that Pμ(|τ | = n) > 0, tn is a GWμ tree conditioned on having
n vertices (note that tn is well defined for n sufficiently large). The mean of μ will be denoted by m and we set
γ = 1 −m.

We are now ready to state our main results which concern different aspects of non-generic trees. We are first
interested in the condensation phenomenon and derive properties of the maximal degree. We then find the location of
the vertex of maximal degree. Finally we investigate the global behavior of non-generic trees by studying their height.

Condensation

If τ is a (finite) tree, we denote by Δ(τ) the maximal out-degree of a vertex of τ (the out-degree of a vertex is by
definition its number of children). If τ is a finite tree, let u�(τ ) be the smallest vertex (in the lexicographical order, see
Definition 1.3 below) of τ with maximal out-degree. The following result states that, with probability tending to 1 as
n → ∞, there exists a vertex of tn with out-degree roughly γ n and that the deviations around this typical value are of
order roughly O(n1/(2∧θ)), and also that the out-degrees of all the other vertices of tn are of order roughly O(n1/(2∧θ)).
In particular the vertex with maximal out-degree is unique with probability tending to 1 as n → ∞.

Theorem 1. There exists a slowly varying function L such that if Bn = L(n)n1/(2∧θ), the following assertions hold:

(i) We have Δ(tn)
γ n

(P)−→
n→∞ 1.

(ii) Let Dn be the maximal out-degree of vertices of tn except u�(tn). If θ ≥ 2, then Dn/Bn converges in probability
to 0 as n → ∞. If θ ∈ (1,2), then

P

(
Dn

Bn

≤ u

)
−→
n→∞ exp

(
1

	(1 − θ)
u−θ

)
, u ≥ 0,

where 	 is Euler’s Gamma function.
(iii) Let (Yt )t≥0 be a spectrally positive Lévy process with Laplace exponent E[exp(−λYt )] = exp(tλ2∧θ ). Then

Δ(tn) − γ n

Bn

(d)−→
n→∞−Y1.

When μ has finite variance σ 2 ∈ (0,∞), one may take Bn = σ
√

n/2. Theorem 1 has already been proved when
μn ∼ c/n1+θ as n → ∞ (i.e., when L = c + o(1), in which case one may choose L to be a constant function) by
Jonsson and Stefánsson [20] for (i) and Janson [17] for (iii). However, our techniques are different and are based on a
coding of tn by a conditioned random walk combined with recent results of Armendáriz and Loulakis [2] concerning
random walks whose jump distribution is subexponential, which imply that, informally, the tree tn looks like a finite
spine of geometric length decorated with independent GWμ trees, and on top of which are grafted Δ(tn) independent
GWμ trees (see Proposition 2.6 and Corollary 2.7 below for precise statements). The main advantage of this approach
is that it enables us to obtain new results concerning the structure of tn.

Localization of the vertex of maximal degree

We are also interested in the location of the vertex of maximal degree u�(tn). Before stating our results, we need to
introduce some notation. If τ is a tree, let U(τ) be the index in the lexicographical order of the first vertex of tn with
maximal out-degree (when the vertices of τ are ordered starting from index 0). Note that the number of children of
u�(τ ) is Δ(τ). Denote the generation of u�(τ ) by |u�(τ )|.

Theorem 2. The following three convergences hold:

(i) For i ≥ 0, P(U(tn) = i) −→
n→∞γ · Pμ(|τ | ≥ i + 1).
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(ii) As n → ∞, |u�(tn)| converges in distribution toward a geometric random variable of parameter 1 −m, i.e.,

P
(∣∣u�(tn)

∣∣ = i
) −→

n→∞(1 −m)mi , i ≥ 0.

See Section 2.3 below for the description of T̂ . Using different methods, a result similar to assertion (i) (as well
as Propositions 2.2 and 2.4 below) has been proved by Durrett [12], Theorem 3.2, in the context of random walks
when tn is a GWμ tree conditioned on having at least n vertices and in addition μ has finite variance. However, the
so-called local conditioning by having a fixed number of vertices is often much more difficult to analyze (see, e.g.,
[11,28]). Note that

∑
i≥1 Pμ(|τ | ≥ i) = Eμ[|τ |] = 1/γ , so that the limit in (i) is a probability distribution. The proof

of (i) combines the coding of tn by a conditioned random walk with the previously mentioned results of Armendáriz
and Loulakis. The proof of the second assertion uses (i) together with the local convergence of tn toward the infinite
random tree T̂ , which has been obtained by Jonsson and Stefánsson [20] in a particular case and then generalized by
Janson [17], and was already mentioned above.

We are also interested in the sizes of the subtrees grafted on u�(tn). If τ is a tree, for 1 ≤ j ≤ Δ(τ), let ξj (τ ) be the
number of descendants of the j th child of u�(τ ) and set Zj (τ) = ξ1(τ ) + ξ2(τ ) + · · · + ξj (τ ). If I is an interval, we
let D(I,R) denote the space of all right-continuous with left limits (càdlàg) functions I →R, endowed with the Sko-
rokhod J1-topology (see [5], Chapter 3, and [15], Chapter VI, for background concerning the Skorokhod topology).
If x ∈ R, let 
x� denote the greatest integer smaller than or equal to x. Recall that (Yt )t≥0 is the spectrally positive
Lévy process with Laplace exponent E[exp(−λYt )] = exp(tλ2∧θ ). Recall the sequence (Bn)n≥1 from Theorem 1.

Theorem 3. The following convergence holds in distribution in D([0,1],R):(
Z
Δ(tn)t�(tn) − Δ(tn)t/γ

Bn

,0 ≤ t ≤ 1

)
(d)−→

n→∞

(
1

γ
Yt ,0 ≤ t ≤ 1

)
.

Note that in the case when μ has finite variance, we have θ ≥ 2 and Y is just a constant times standard Brownian
motion. Let us mention that Theorem 3 is used in [18] to study scaling limits of random planar maps with a unique
large face (see [18], Proposition 3.1) and is also used in [8] to study the shape of large supercritical site-percolation
clusters on random triangulations.

Corollary 1. If θ ≥ 2, max1≤i≤Δ(tn) ξi(tn)/Bn converges in probability toward 0 as n → ∞. If θ < 2, for every u > 0
we have:

P

(
1

Bn

max
1≤i≤Δ(tn)

ξi(tn) ≤ u

)
−→
n→∞ exp

(
1

γ θ	(1 − θ)
u−θ

)
.

The dichotomy between the cases θ < 2 and θ ≥ 2 arises from the fact that Y is continuous if and only if θ ≥ 2.

Height of non-generic trees

One of the main contributions of this work it to understand the growth of the height H(tn) of tn, which is by definition
the maximal generation in tn. We establish the key fact that H(tn) grows logarithmically in n:

Theorem 4. For every sequence (λn)n≥1 of positive real numbers tending to infinity:

P

(∣∣∣∣H(tn) − ln(n)

ln(1/m)

∣∣∣∣ ≤ λn

)
−→
n→∞ 1.

Note that the situation is completely different from the critical case, where H(tn) grows like a power of n. Theo-
rem 4 implies that H(tn)/ ln(n) → ln(1/m) in probability as n → ∞, thus partially answering Problem 20.7 in [17].
Proposition 2.11 below also shows that this convergence holds in all the spaces Lp for p ≥ 1. Theorem 4 can be
intuitively explained by the fact that the height of tn should be close to the maximum of the height of γ n independent
subcritical GWμ trees, which is indeed of order ln(n).
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Since tn grows roughly as ln(n) as n → ∞, it is natural to wonder if one could hope to obtain a scaling limit
after rescaling the distances in tn by ln(n). We show that the answer is negative and that we cannot hope to obtain a
nontrivial scaling limit for tn for the Gromov–Hausdorff topology, in sharp contrast with the critical case (see [11]).
This partially answers a question of Janson [17], Problem 20.11.

Theorem 5. The sequence (ln(n)−1 · tn)n≥1 is not tight for the Gromov–Hausdorff topology, where ln(n)−1 · tn stands
for the metric space obtained from tn by multiplying all distances by ln(n)−1.

The Gromov–Hausdorff topology is the topology on compact metric spaces (up to isometries) defined by the
Gromov–Hausdorff distance, and is often used in the study of scaling limits of different classes of random graphs (see
[7], Chapter 7, for background concerning the Gromov–Hausdorff topology).

However, we establish the convergence of the finite-dimensional marginal distributions of the height function
coding tn. If τ is a tree, for 0 ≤ i ≤ |τ |−1, denote by Hi(τ) the generation of the ith vertex of τ in the lexicographical
order.

Theorem 6. Let k ≥ 1 be an integer and fix 0 < t1 < · · · < tk < 1. Then(
H
nt1�(tn),H
nt2�(tn), . . . ,H
ntk�(tn)

) (d)−→
n→∞(1 + e0 + e1,1 + e0 + e2, . . . ,1 + e0 + ek),

where (ei )i≥0 is a sequence of i.i.d. geometric random variables of parameter 1 −m (i.e., P(e0 = i) = (1 −m)mi for
i ≥ 0).

Informally, the random variable e0 describes the length of the spine, and the random variables (e1, . . . , ek) describe
the height of vertices chosen in a forest of independent subcritical GWμ trees. Note that these finite-dimensional
marginal distributions converge without scaling, even though the height of tn is of order ln(n).

This text is organized as follows. We first recall the definition and basic properties of Galton–Watson trees. In
Section 2, we establish limit theorems for large conditioned non-generic Galton–Watson trees. We conclude by giving
possible extensions and formulating some open problems.

1. Galton–Watson trees

1.1. Basic definitions

We briefly recall the formalism of plane trees (also known in the literature as rooted ordered trees) which can be found
in [27] for example.

Definition 1.1. Let Z+ = {0,1,2, . . .} be the set of all nonnegative integers and let N be the set of all positive integers.
Let also U be the set of all labels defined by:

U =
∞⋃

n=0

(N)n,

where by convention (N)0 = {∅}. An element of U is a sequence u = u1 · · ·uk of positive integers and we set |u| = k,
which represents the “generation” of u. If u = u1 · · ·ui and v = v1 · · ·vj belong to U , we write uv = u1 · · ·uiv1 · · ·vj

for the concatenation of u and v. In particular, we have u∅ = ∅u = u. Finally, a plane tree τ is a finite or infinite
subset of U such that:

(i) ∅ ∈ τ ,
(ii) if v ∈ τ and v = ui for some i ∈N, then u ∈ τ ,

(iii) for every u ∈ τ , there exists ku(τ ) ∈ {0,1,2, . . .} ∪ {∞} (the number of children of u) such that, for every j ∈ N,
uj ∈ τ if and only if 1 ≤ j ≤ ku(τ ).



494 I. Kortchemski

Note that in contrast with [26,27] we allow the possibility ku(τ ) = ∞ in (iii). In the following, by tree we will
always mean plane tree, and we denote the set of all trees by T and the set of all finite trees by Tf . We will often view
each vertex of a tree τ as an individual of a population whose τ is the genealogical tree. The total progeny or size of
τ will be denoted by |τ | = Card(τ ). If τ is a tree and u ∈ τ , we define the shift of τ at u by Tuτ = {v ∈ U ;uv ∈ τ },
which is itself a tree.

Definition 1.2. Let ρ be a probability measure on Z+. The law of the Galton–Watson tree with offspring distribution
ρ is the unique probability measure Pρ on T such that:

(i) Pρ(k∅ = j) = ρ(j) for j ≥ 0,
(ii) for every j ≥ 1 with ρ(j) > 0, conditionally on {k∅ = j}, the subtrees T1τ, . . . , Tj τ are independent and identi-

cally distributed with distribution Pρ .

A random tree whose distribution is Pρ will be called a Galton–Watson tree with offspring distribution ρ, or in short
a GWρ tree.

In the sequel, for every integer j ≥ 1, Pρ,j will denote the probability measure on T
j which is the distribution of j

independent GWρ trees. The canonical element of Tj is denoted by f. For f = (τ1, . . . , τj ) ∈ T
j , let |f| = |τ1| + · · · +

|τj | be the total progeny of f.

1.2. Coding Galton–Watson trees

We now explain how trees can be coded by three different functions. These codings are important in the understanding
of large Galton–Watson trees (see Fig. 2).

Definition 1.3. We write u < v for the lexicographical order on the labels U (for example ∅ < 1 < 21 < 22). Let τ be
a finite tree and order the individuals of τ in lexicographical order: ∅ = u(0) < u(1) < · · · < u(|τ | − 1). The height
process H(τ) = (Hn(τ),0 ≤ n ≤ |τ |) is defined, for 0 ≤ n < |τ |, by:

Hn(τ) = ∣∣u(n)
∣∣.

We set H|τ |(τ ) = 0 for technical reasons. The height H(τ ) of τ is by definition max0≤n<|τ | Hn(τ).
Consider a particle that starts from the root and visits continuously all the edges of τ at unit speed, assuming that

every edge has unit length. When the particle leaves a vertex, it moves toward the first non visited child of this vertex if
there is such a child, or returns to the parent of this vertex. Since all the edges are crossed twice, the total time needed
to explore the tree is 2(|τ | − 1). For 0 ≤ t ≤ 2(|τ | − 1), Cτ (t) is defined as the distance to the root of the position of

Fig. 2. A tree τ with its vertices indexed in lexicographical order and its contour function (Cu(τ);0 ≤ u ≤ 2(|τ | − 1)). Here, |τ | = 26.
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Fig. 3. The Lukasiewicz path W(τ ) and the height function H(τ) of τ .

the particle at time t . For technical reasons, we set Cτ (t) = 0 for t ∈ [2(|τ | − 1),2|τ |]. The function C(τ) is called
the contour function of the tree τ . See Fig. 3 for an example, and [11], Section 2, for a rigorous definition.

Finally, the Lukasiewicz path W(τ ) = (Wn(τ ),0 ≤ n ≤ |τ |) of τ is defined by W0(τ ) = 0 and for 0 ≤ n ≤ |τ | − 1:

Wn+1(τ ) =Wn(τ ) + ku(n)(τ ) − 1.

Note that necessarily W|τ |(τ ) = −1 and that U(tn) = min{j ≥ 0;Wj+1(tn) − Wj (tn) = Δ(tn) − 1}, where we
recall that U(tn) is the index in the lexicographical order of the first vertex of tn with maximal out-degree.

The following proposition explains the importance of the Lukasiewicz path. Let ρ be a critical or subcritical prob-
ability distribution on N with ρ(1) < 1.

Proposition 1.4. Let (Wn)n≥0 be a random walk with starting point W0 = 0 and jump distribution ν(k) = ρ(k + 1)

for k ≥ −1. Set ζ = inf{n ≥ 0;Wn = −1}. Then (W0,W1, . . . ,Wζ ) has the same distribution as the Lukasiewicz path
of a GWρ tree. In particular, the total progeny of a GWρ tree has the same law as ζ .

Proof. See [26], Proposition 1.5. �

We next extend the definition of the Lukasiewicz path to a forest. If f = (τi)1≤i≤j is a forest, set n0 = 0 and
np = |τ1| + |τ2| + · · · + |τp| for 1 ≤ p ≤ j . Then, for every 0 ≤ i ≤ p − 1 and 0 ≤ k < |τi+1|, set

Wni+k(f) =Wk(τi+1) − i.

Note that (Wni+k(f) + i;0 ≤ k ≤ |τi+1|) is the Lukasiewicz path of τi+1 and that min{0 ≤ i ≤ nj ;Wi (f) = −k} = nk

for 1 ≤ k ≤ j .
Finally, the following result will be useful.

Proposition 1.5. Let (Wn)n≥0 be the random walk introduced in Proposition 1.4 with ρ = μ. Then

(i) P(∀i ≥ 1,Wi ≤ −1) = γ .
(ii) For every i ≥ 0, P(∀m ≤ i,Wm ≥ 0) = Pμ(|τ | ≥ i + 1).

Proof. By [31], Theorem 1 in Chapter 2, we have P(∀i ≥ 1,Wi ≤ −1) = −E[W1] = 1 −m. The second assertion is
an immediate consequence of Proposition 1.4. �
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1.3. The Vervaat transformation

For x = (x1, . . . , xn) ∈ Z
n and i ∈ Z/nZ, denote by x(i) the ith cyclic shift of x defined by x

(i)
k = xi+k modn for

1 ≤ k ≤ n.

Definition 1.6. Let n ≥ 1 be an integer and let x = (x1, . . . , xn) ∈ Z
n. Set wj = x1 + · · · + xj for 1 ≤ j ≤ n and let

the integer i∗(x) be defined by i∗(x) = inf{j ≥ 1;wj = min1≤i≤n wi}. The Vervaat transform of x, denoted by V(x), is
defined to be x(i∗(x)).

The following fact is well known (see, e.g., [29], Section 5):

Proposition 1.7. Let (Wn,n ≥ 0) be as in Proposition 1.4 and Xk = Wk − Wk−1 for k ≥ 1. Fix an integer n ≥ 1 such
that P(Wn = −1) > 0. The law of V(X1, . . . ,Xn) under P(·|Wn = −1) coincides with the law of (X1, . . . ,Xn) under
P(·|ζ = n).

From Proposition 1.4, it follows that the law of V(X1, . . . ,Xn) under P(·|Wn = −1) coincides with the law of
(W1(tn),W2(tn) − W1(tn), . . . ,Wn(tn) − Wn−1(tn)) where tn is a GWρ tree conditioned on having total progeny
equal to n.

We now introduce the Vervaat transformation in continuous time.

Definition 1.8. Set D0([0,1],R) = {ω ∈ D([0,1],R);ω(0) = 0}. The Vervaat transformation in continuous time,
denoted by V :D0([0,1],R) → D([0,1],R), is defined as follows. For ω ∈ D0([0,1],R), set g1(ω) = inf{t ∈
[0,1];ω(t−) ∧ ω(t) = inf[0,1] ω}. Then define:

V(ω)(t) =
{

ω(g1(ω) + t) − inf[0,1] ω, if g1(ω) + t ≤ 1,
ω(g1(ω) + t − 1) + ω(1) − inf[0,1] ω, if g1(ω) + t ≥ 1.

By combining the Vervaat transformation with limit theorems under the conditional probability distribution
P(·|Wn = −1) and using Proposition 1.4 we will obtain information about conditioned Galton–Watson trees. The
advantage of dealing with P(·|Wn = −1) is to avoid any positivity constraint.

1.4. Slowly varying functions

Recall that a measurable function L :R+ → R+ is said to be slowly varying if L(x) > 0 for x large enough and
limx→∞ L(tx)/L(x) = 1 for all t > 0. Let L :R+ → R+ be a slowly varying function. Without further notice, we will
use the following standard facts:

(i) The convergence limx→∞ L(tx)/L(x) = 1 holds uniformly for t in a compact subset of (0,∞).
(ii) Fix ε > 0. There exists a constant C > 1 such that 1

C
x−ε ≤ L(nx)/L(n) ≤ Cxε for every integer n sufficiently

large and x ≥ 1.

These results are immediate consequences of the so-called representation theorem for slowly varying functions (see,
e.g., [6], Theorem 1.3.1).

2. Limit theorems for conditioned non-generic Galton–Watson trees

In the sequel, (Wn;n ≥ 0) denotes the random walk introduced in Proposition 1.4 with ρ = μ. Note that E[W1] =
−γ < 0. Set X0 = 0 and Xk = Wk − Wk−1 for k ≥ 1. It will be convenient to work with centered random walks, so
we also set Wn = Wn + γ n and Xn = Xn + γ for n ≥ 0 so that Wn = X1 + · · · + Xn. Obviously, Wn = −1 if and
only if Wn = γ n − 1.
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2.1. Invariance principles for conditioned random walks

In this section, our goal is to prove Theorem 1. We first introduce some notation. Denote by T :
⋃

n≥1 R
n → ⋃

n≥1 R
n

the operator that interchanges the last and the (first) maximal component of a finite sequence of real numbers:

T (x1, . . . , xn)k =
{max1≤i≤n xi, if k = n,

xn, if xk > max1≤i<k xi and xk = maxk≤i≤n xi ,
xk, otherwise.

Since μ satisfies Assumption (Hθ ), we have P(W 1 ∈ (x, x + 1]) ∼ L(x)/x1+θ as x → ∞. Then, by [10], Theo-
rem 9.1, we have:

P
(
Wn ∈ (x, x + 1]) ∼

n→∞n · P(
W 1 ∈ (x, x + 1]), (1)

uniformly in x ≥ εn for every fixed ε > 0. In other words, the distribution of W 1 is (0,1]-subexponential, so that we
can apply a recent result of Armendáriz and Loulakis [2] concerning conditioned random walks with subexponential
jump distribution. In our particular case, this result can be stated as follows:

Theorem 2.1 (Armendáriz and Loulakis, Theorem 1 in [2]). For n ≥ 1 and x > 0, let μn,x be the probability
measure on R

n which is the distribution of (X1, . . . ,Xn) under the conditional probability distribution P(·|Wn ∈
(x, x + 1]).

Then for every ε > 0, we have:

lim
n→∞ sup

x≥εn
sup

A∈B(Rn−1)

∣∣μn,x ◦ T −1[A ×R] − μ⊗(n−1)[A]∣∣ = 0.

As explained in [2], this means that under P(·|Wn ∈ (x, x +1]), asymptotically one gets n−1 independent random
variables after forgetting the largest jump.

The proof of Theorem 1 is based on the following invariance principle concerning a conditioned random walk with
negative drift, which is a simple consequence of Theorem 2.1.

Proposition 2.2. Let R be a uniformly distributed random variable on [0,1]. Then the following convergence holds
in D([0,1],R):(

W
nt�
n

,0 ≤ t ≤ 1
∣∣∣Wn = −1

)
(d)−→

n→∞(−γ t + γ1R≤t ,0 ≤ t ≤ 1). (2)

Proof. By the definition of W , it is sufficient to check that the following convergence holds in D([0,1],R):(
W 
nt�

n
,0 ≤ t ≤ 1

∣∣∣Wn = γ n − 1

)
(d)−→

n→∞(γ1R≤t ,0 ≤ t ≤ 1), (3)

where R is a uniformly distributed random variable on [0,1]. Denote by Vn the coordinate of the first maximal
component of (X1, . . . ,Xn). Set W̃0 = 0 and for 1 ≤ i ≤ n − 1 set:

W̃i =
{

X1 + X2 + · · · + Xi, if i < Vn,
X1 + X2 + · · · + XVn−1 + XVn+1 + · · · + Xi+1, otherwise.

By Theorem 2.1, for every ε > 0:

lim
n→∞

∣∣∣∣P(
∀t ∈ [0,1],

∣∣∣∣W̃
(n−1)t�
n − 1

∣∣∣∣ ≤ ε

∣∣∣Wn = γ n − 1

)
− P

(
∀t ∈ [0,1],

∣∣∣∣W 
(n−1)t�
n − 1

∣∣∣∣ ≤ ε

)∣∣∣∣ = 0. (4)
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Next, by the functional strong law of large numbers,

P

(
∀t ∈ [0,1],

∣∣∣∣W 
(n−1)t�
n − 1

∣∣∣∣ ≤ ε

)
−→
n→∞ 1. (5)

Combining (5) with (4), we get the following convergence in D([0,1],R):(
W̃
(n−1)t�

n − 1
;0 ≤ t ≤ 1

∣∣∣Wn = γ n − 1

)
(P)−→

n→∞ 0, (6)

where 0 stands for the constant function equal to 0 on [0,1]. In addition, note that on the event {Wn = γ n − 1}, we
have XVn = γ n − 1 − W̃
n−1�. The following joint convergence in distribution thus holds in D([0,1],R) ×R:((

W̃
(n−1)t�
n − 1

;0 ≤ t ≤ 1

)
,
XVn

n

∣∣∣Wn = γ n − 1

)
(P)−→

n→∞(0, γ ). (7)

Standard properties of the Skorokhod topology then show that the following convergence holds in D([0,1],R):(
W 
nt�

n
− XVn

n
1{t≥Vn/n};0 ≤ t ≤ 1

∣∣∣Wn = γ n − 1

)
(P)−→

n→∞ 0. (8)

Next, note that the convergence (7) implies that under P(·|Wn = γ n − 1), (X1, . . . ,Xn) has a unique maximal com-
ponent with probability tending to one as n → ∞. Since the distribution of (X1, . . . ,Xn) under P(·|Wn = γ n − 1)

is cyclically exchangeable, one easily gets that the law of Vn/n under P(·|Wn = γ n − 1) converges to the uniform
distribution on [0,1]. Also from (7) we know that XVn/n under P(·|Wn = γ n − 1) converges in probability to γ . It
follows that(

XVn

n
1{Vn/n≤t},0 ≤ t ≤ 1

∣∣∣Wn = γ n − 1

)
(d)−→

n→∞(γ1R≤t ,0 ≤ t ≤ 1), (9)

where R is uniformly distributed over [0,1]. Since (8) holds in probability, we can combine (8) and (9) to get (3).
This completes the proof. �

Before proving Theorem 1, we need to introduce some notation. For x = (x1, . . . , xn) ∈ Z
n, set M(x) =

max1≤i≤n xi . Recall the notation V(x) for the Vervaat transform of x. Note that M(x) =M(V(x)). Let F :R → R be
a bounded continuous function. Recall that Δ(tn) denotes the maximal out-degree of a vertex of tn. Since the maximal
jump of W(tn) is equal to Δ(tn) − 1, it follows from the remark following Proposition 1.7 that:

E
[
F

(
Δ(tn)

)] = E
[
F

(
M

(
V(X1,X2, . . . ,Xn)

) + 1
)|Wn = −1

]
= E

[
F

(
M(X1,X2, . . . ,Xn) + 1

)|Wn = −1
]
. (10)

Recall that since μ satisfies Assumption (Hθ ), W 1 belongs to the domain of attraction of a spectrally positive
strictly stable law of index 2 ∧ θ . Hence there exists a slowly varying function L such that Wn/(L(n)n1/(2∧θ)) con-
verges in distribution toward Y1. We set Bn = L(n)n1/(2∧θ) and prove that Theorem 1 holds with this choice of Bn.
The function L is not unique, but if L̃ is another slowly function with the same property we have L(n)/L̃(n) → 1
as n → ∞. So our results do not depend on the choice of L. Note that when μ has finite variance σ 2, one may take
Bn = σ

√
n/2, and when L = c + o(1) one may choose L to be a constant function.

We are now ready to prove Theorem 1.

Proof of Theorem 1. If Z ∈ D([0,1],R), denote by Δ(Z) = sup0<s<1(Zs − Zs−) the largest jump of Z. Since
Δ :D([0,1],R) → R is continuous, from Proposition 2.2 we get that, under the conditioned probability measure
P(·|Wn = −1), M(X1,X2, . . . ,Xn)/n converges in probability toward γ as n → ∞. Assertion (i) immediately fol-
lows from (10).
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For the second assertion, keeping the notation of the proof of Proposition 2.2, we get by Theorem 2.1 that for every
bounded continuous function F :D([0,1],R) →R

lim
n→∞

∣∣∣∣E[
F

(
W̃
(n−1)t�

Bn

;0 ≤ t ≤ 1

)∣∣∣Wn = γ n − 1

]
−E

[
F(Yt ,0 ≤ t ≤ 1)

]∣∣∣∣ = 0.

Since the jumps of (W̃
(n−1)t�;0 ≤ t ≤ 1) have the same distribution as the out-degrees, minus one, of all the vertices
of tn, except u�(tn), and by continuity of the map Z �→ Δ(Z) on D([0,1],R), it follows that

Dn

Bn

(d)−→
n→∞Δ(Yt ,0 ≤ t ≤ 1).

If θ ≥ 2, Y is continuous and Δ(Yt ,0 ≤ t ≤ 1) = 0. If θ < 2, the result easily follows from the fact that the Lévy
measure of Y is ν(dx) = 1{x>0} dx/(	(−θ)x1+θ ).

For (iii), if Vn is as in the proof of Proposition 2.2, note that we have

M(X1,X2, . . . ,Xn) = XVn = γ n − 1 −
∑
i �=Vn

Xi = γ n − 1 − W̃n−1

on the event {Wn = γ n − 1}. As noted in [2], formula (2.7), it follows from (6) that(M(X1,X2, . . . ,Xn) − γ n

Bn

∣∣∣Wn = γ n − 1

)
(d)−→

n→∞−Y1.

Since M(X1,X2, . . . ,Xn) =M(X1,X2, . . . ,Xn) + γ , we thus get that(M(X1,X2, . . . ,Xn) + 1 − γ n

Bn

∣∣∣Wn = −1

)
(d)−→

n→∞−Y1.

Assertion (iii) then immediately follows from (10). This completes the proof. �

Remark 2.3. The preceding proof shows that assertion (i) in Theorem 1 remain true when μ is subcritical and both (1)
and Theorem 2.1 hold. These conditions are more general than those of Assumption (Hθ ): see, e.g., [10], Section 9, for
examples of probability distributions that do not satisfy Assumption (Hθ ) but such that (1) holds. Note that assertion
(ii) in Theorem 1 relies on the fact that μ belongs to the domain of attraction of a stable law. Note also that there exist
subcritical probability distributions such that none of the assertions of Theorem 1 hold (see [17], Example 19.37, for
an example).

By applying the Vervaat transformation in continuous time to the convergence of Proposition 2.2, standard proper-
ties of the Skorokhod topology imply the following invariance principle for the Lukasiewicz path coding tn (we leave
details to the reader since we will not need this result later). See Fig. 4 for a simulation.

Proposition 2.4. The following assertions hold.

(i) We have:

sup
0≤i≤U(tn)

Wi (tn)

n

(P)−→
n→∞ 0.

(ii) The following convergence holds in distribution in D([0,1],R):(W
nt�∨(U(tn)+1)(tn)

n
,0 ≤ t ≤ 1

)
(d)−→

n→∞
(
γ (1 − t),0 ≤ t ≤ 1

)
.

Property (i) shows that (W
nt�(tn)/n,0 ≤ t ≤ 1) does not converge in distribution in D([0,1],R) toward (γ (1 −
t),0 ≤ t ≤ 1) and this explains why we look at the Lukasiewicz path only after time U(tn) in (ii).
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Fig. 4. A simulation of a Lukasiewicz path of a large non-generic tree.

Fig. 5. The modified Lukasiewicz path W̃(τ ) of the tree τ appearing in Fig. 2. Here n = 26, Δ(τ) = 4, I (τ ) = 16 and U(τ) = 9.

2.2. Description of the Lukasiewicz path after removing the vertex of maximal degree

Recall that U(τ) is the index in the lexicographical order of the first vertex of τ with maximal out-degree. We first
define a modified version W̃(τ ) of the Lukasiewicz path as follows. Set n = |τ |, and for 1 ≤ i ≤ n − U(τ) − 1, set
X̃i (τ ) =WU(τ)+i+1(τ )−WU(τ)+i (τ ) and for n−U(τ) ≤ i ≤ n−1 set X̃i (τ ) =Wi+1−(n−U(τ))(τ )−Wi−(n−U(τ))(τ ).

In other words, X̃1(τ ), . . . , X̃n−1(τ ) are the increments of W(tn), shifted cyclically to start just after the maximum
jump (which is not included). Then set W̃i (τ ) = X̃1(τ ) + X̃2(τ ) + · · · + X̃i (τ ) for 0 ≤ i ≤ n − 1 (see Fig. 5 for an
example). Note that Δ(τ) = −W̃n−1(τ ). Finally, set

I (τ ) = min
{
i ∈ {0,1, . . . , n − 1};W̃i (τ ) = min

0≤j≤n−1
W̃j (τ )

}
.
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We now introduce some notation. For every 1 ≤ i ≤ Δ(τ), let Ti (τ ) be the tree of descendants of the ith child
of u�(τ ). Set also Fi,j (τ ) = (Ti (τ ), . . . ,Tj (τ )). Finally, for 1 ≤ k ≤ Δ(τ), let ζ̃k(τ ) = inf{i ≥ 0;W̃i (τ ) = −k}. The
following result explains the reason why we introduce W̃(τ ).

Proposition 2.5. The following assertions hold.

(i) We have U(τ) = n − 1 − I (τ ).
(ii) For 1 ≤ k ≤ Δ(τ), (W̃0,W̃1, . . . ,W̃ζ̃k(τ )) is the Lukasiewicz path of the forest F1,k(τ ).

(iii) The vectors (W0(τ ),W1(τ ), . . . ,WU(τ)(τ )) and(
W̃I (τ )(τ ) − W̃I (τ )(τ ),W̃I (τ )+1(τ ) − W̃I (τ )(τ ), . . . ,W̃n−1(τ ) − W̃I (τ )(τ )

)
are equal.

This should be clear from the relation between W and W̃ (see Fig. 5), and a formal proof would not be enlightning.
We now prove that the random variables X̃i (tn) are asymptotically independent.

Proposition 2.6. We have:

sup
A∈B(Rn−1)

∣∣P((
X̃1(tn), . . . , X̃n−1

) ∈ A
) − P

(
(X1, . . . ,Xn−1) ∈ A

)∣∣ −→
n→∞ 0.

Proof. We keep the notation introduced in the proof of Proposition 2.2. By Proposition 1.7 and by the definition of
W̃(tn), we have

(
X̃i (tn);0 ≤ i ≤ n − 1

) (d)= (XVn+1,XVn+2, . . . ,Xn,X1, . . . ,XVn−1) under P(·|Wn = −1).

On the event that (X1, . . . ,Xn) has a unique maximal component, we have

(XVn+1,XVn+2, . . . ,Xn,X1, . . . ,XVn−1)
(d)=(X1,X2, . . . ,XVn−1,XVn+1, . . . ,Xn).

Indeed, since the distribution of (X1, . . . ,Xn) under P(·|Wn = −1) is cyclically exchangeable, Vn is uniformly dis-
tributed on the latter event. But we have already seen that under P(·|Wn = −1), (X1, . . . ,Xn) has a unique maximal
component with probability tending to one as n → ∞. The conclusion follows from Theorem 2.1. �

The following corollary will be useful.

Corollary 2.7. Fix η ∈ (0,1). We have

sup
A∈B(T


γ ηn�
f )

∣∣P((
T1(tn), . . . ,T
γ ηn�(tn)

) ∈ A
) − P

⊗
γ ηn�
μ (A)

∣∣ −→
n→∞ 0.

This means that, as n → ∞, the random variables T1(tn), . . . ,T
γ ηn�(tn) are asymptotically independent GWμ

trees.

Proof. Since inf{i ≥ 0,Wi = −
γ ηn�}/n converges in probability towards η as n → ∞, Proposition 2.6 entails that
ζ̃
γ ηn�(tn)/n → η in probability as n → ∞. This implies that for every ε ∈ (0,1 − η), with probability tending to 1

as n → ∞, T1(tn), . . . ,T
γ ηn�(tn) only depends on X̃1(tn), . . . , X̃
γ (η+ε)n�(tn). The conclusion immediately follows
from Proposition 2.6. �



502 I. Kortchemski

2.3. Location of the vertex with maximal out-degree

The main tool for studying the modified Lukasiewicz path W̃ is a time-reversal procedure which we now describe. For
a sequence (ai)i≥0 and for every integer n ≥ 1, we let (a

(n)
i )0≤i≤n−1 be the sequence defined by a

(n)
i = an−1 −an−1−i .

Proof of Theorem 2(i). For every tree τ , writing W̃ instead of W̃(τ ) to simplify notation, note that by Proposi-
tion 2.5(i) we have

U(τ) = max
{

0 ≤ k ≤ n − 1;W̃(n)
k = sup

0≤j≤n−1
W̃(n)

j

}
.

It follows from Proposition 2.5(i) and Proposition 2.6 that, for every i ≥ 0,

P
(
U(tn) = i

) − P

(
i = max

{
0 ≤ k ≤ n − 1;W(n)

k = sup
0≤j≤n−1

W
(n)
j

})
−→
n→∞ 0.

Since (W
(n)
i )0≤i≤n−1 and (Wi)0≤i≤n−1 have the same distribution, we have

max
{

0 ≤ k ≤ n − 1;W(n)
k = sup

0≤j≤n−1
W

(n)
j

}
(d)= max

{
0 ≤ k ≤ n − 1;Wk = sup

0≤j≤n−1
Wj

}
.

In addition, W has a negative drift and tends almost surely to −∞, hence

P

(
i = max

{
0 ≤ k ≤ n − 1;Wk = sup

0≤j≤n−1
Wj

})
−→
n→∞P

(
i = max

{
k ≥ 0;Wk = sup

j≥0
Wj

})
.

A simple argument based once again on time-reversal shows that the probability appearing in the right-hand side of
the previous expression is equal to

P(∀m ≤ i,Wm ≥ 0) · P(∀j ≥ 1,Wj ≤ −1).

Assertion (i) in Theorem 2 then follows from Proposition 1.5. �

Remark 2.8. One similarly shows that

n − 1 − ζ̃Δ(tn)(tn)
(d)−→

n→∞ sup{i ≥ 0;Wi = 0}. (11)

Indeed, since Δ(tn) = −W̃n−1(tn), we have n − 1 − ζ̃Δ(tn)(tn) = max{0 ≤ i ≤ n − 1;W̃ (n)
i = 0}, and (11) follows by

the same arguments as those in the proof of Theorem 2(i).

To prove the other assertions of Theorem 2, we will need the size-biased distribution associated with μ, which is
the distribution of the random variable ζ ∗ such that:

P
(
ζ ∗ = k

) := kμk

m
, k = 0,1, . . . .

The following result concerning the local convergence of tn as n → ∞ will be useful. We refer the reader to [17],
Section 6, for definitions and background concerning local convergence of trees (note that we need to consider trees
that are not locally finite, so that this is slightly different from the usual setting).

Let T̂ be the infinite random tree constructed as follows. Start with a spine composed of a random number S of
vertices, where S is defined by:

P(S = i) = (1 −m)mi−1, i = 1,2, . . . . (12)



Limit theorems for conditioned non-generic Galton–Watson trees 503

Fig. 6. An illustration of T̂ . Here, the spine is composed of the vertices ∅,1,13,13,131,1312.

Then attach further branches as follows (see also Fig. 6). At the top of the spine, attach an infinite number of branches,
each branch being a GWμ tree. At all the other vertices of the spine, a random number of branches distributed as ζ ∗ −1
is attached to either to the left or to the right of the spine, each branch being a GWμ tree. At a vertex of the spine where
k new branches are attached, the number of new branches attached to the left of the spine is uniformly distributed on
{0, . . . , k}. Moreover all random choices are independent.

Theorem 2.9 (Jonsson and Stefánsson [20], Janson [17]). The trees tn converges locally in distribution toward T̂
as n → ∞.

Proof of Theorem 2(ii) and (iii). By Skorokhod’s representation theorem (see, e.g., [5], Theorem 6.7) we can suppose
that the convergence tn → T̂ as n → ∞ holds almost surely for the local topology. Let u� ∈ T̂ be the vertex of the
spine with largest generation. By (12), we have for i ≥ 0:

P
(|u�| = i

) = (1 −m)mi . (13)

Recall the notation U(tn) for the index of u�(tn). Let ε > 0. By assertion (i) of Theorem 2, which was proved at
the beginning of this section, we can fix an integer K such that, for every n, P(U(tn) ≤ K) > 1 − ε. From the local
convergence of tn to T̂ (and the properties of local convergence, see in particular Lemma 6.3 in [17]) we can easily
verify that

P
({

u�(tn) �= u�

} ∩ {
U(tn) ≤ K

}) −→
n→∞ 0.

We conclude that P(u�(tn) �= u�) → 0 as n → ∞. Assertion (ii) of Theorem 2 now follows from (13). �

Note that assertion (i) in Theorem 2 was needed to prove assertion (ii). Indeed, the local convergence of tn toward
T̂ would not have been sufficient to get that P(u�(tn) �= u�) → 0.

2.4. Subtrees branching off the vertex with maximum out-degree

Before proving Theorem 3, we gather a few useful ingredients. It is well known that the mean number of vertices
of a GWμ tree at generation n is mn. As a consequence, we have Eμ[|τ |] = 1 + m + m2 + · · · = 1/(1 − m) = 1/γ .
Moreover, for n ≥ 1, by Kemperman’s formula (see, e.g., [29], Section 5):

Pμ

(|τ | = n
) = 1

n
P(Wn = −1) = 1

n
P(Wn = γ n − 1) ∼

n→∞
L(n)

(γ n)1+θ
, (14)

where we have used (1) for the last estimate. It follows that the total progeny of a GWμ tree belongs to the domain of
attraction of a spectrally positive strictly stable law of index 2 ∧ θ . Hence we can find a slowly varying function L′
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such that the law of (ζ(f) − n/γ )/(L′(n)n1/(2∧θ)) under Pμ,n converges as n → ∞ to the law of Y1, where we recall
that Pμ,j is the law of a forest of j independent GWμ trees. We set B ′

n = L′(n)n1/(2∧θ).
Let (Zi )i≥0 be the random walk which starts at 0 and whose jump distribution has the same law as the total

progeny of a GWμ tree. Note that P(Zj = k) = Pμ,j (ζ(f) = k). Hence the distribution of Z1 belongs to the domain
of attraction of a spectrally positive strictly stable law of index 2 ∧ θ . In particular, the following convergence holds
in distribution in the space D([0,1],R):(Z
nt� − nt/γ

B ′
n

,0 ≤ t ≤ 1

)
(d)−→

n→∞(Yt ,0 ≤ t ≤ 1). (15)

Finally, the following technical result establishes a useful link between Bn and B ′
n.

Lemma 2.10. We have B ′
n/Bn → 1/γ 1+1/(2∧θ) as n → ∞.

The proof of Lemma 2.10 is postponed to the end of this section.
We are now ready to prove Theorem 3.

Proof of Theorem 3. We shall show that for every fixed η ∈ (0,1):(
Z
Δ(tn)t�(tn) − Δ(tn)t/γ

Bn

,0 ≤ t ≤ η

)
(d)−→

n→∞

(
1

γ
Yt ,0 ≤ t ≤ η

)
. (16)

Since Δ(tn)/(γ n) → 1 in probability as n → ∞ (Theorem 1(i)), recalling Lemma 2.10, the desired result will fol-
low from a time-reversal argument since the vectors (ξ1(tn), ξ2(tn), . . . , ξΔ(tn)(tn)) and (ξΔ(tn)(tn), ξΔ(tn)−1(tn), . . . ,

ξ1(tn)) have the same distribution. Tightness follows from the time-reversal argument and also continuity at t = 1.
Since Δ(tn)/(γ n) → 1 in probability as n → ∞, by [25], Lemma 5.7, it is sufficient to establish that(

Z
γ nt�(tn) − nt

Bn

,0 ≤ t ≤ η

)
(d)−→

n→∞

(
1

γ
Yt ,0 ≤ t ≤ η

)
. (17)

To this end, note that B ′
γ n�/Bn → 1/γ as n → ∞ and that (Z1(tn),Z2(tn), . . . ,Z
γ nη�(tn)) are asymptotically inde-

pendent by Corollary 2.7. The conclusion immediately follows from (15) applied with 
γ n� instead of n. �

We conclude this section by proving Lemma 2.10.

Proof of Lemma 2.10. Let σ 2 be the variance of μ. Note that σ 2 = ∞ if θ ∈ (1,2), σ 2 < ∞ if θ > 2 and that we can
have either σ 2 = ∞ or σ 2 < ∞ for θ = 2. When σ 2 = ∞, the desired result follows from classical results expressing
Bn in terms of μ. Indeed, in the case θ < 2, we may choose Bn and B ′

n such that (see, e.g., [25], Theorem 1.10):

B ′
n

Bn

= inf{x ≥ 0;Pμ(|τ | ≥ x) ≤ 1/n}
inf{x ≥ 0;μ([x,∞)) ≤ 1/n} .

Property (ii) in Assumption (Hθ ) and (14) entail that Pμ(|τ | ≥ x)/μ([x,∞)) → 1/γ 1+θ as x → ∞. The result easily
follows. The case when σ 2 = ∞ and θ = 2 is treated by using similar arguments. We leave details to the reader.

We now concentrate on the case σ 2 < ∞. Note that necessarily θ ≥ 2. Let σ ′2 be the variance of |τ | under Pμ

(from (14) this variance is finite when σ 2 < ∞). We shall show that σ ′ = σ/γ 3/2. The desired result will then follow
since we may take Bn = σ

√
n/2 and B ′

n = σ ′√n/2 by the classical central limit theorem. In order to calculate σ ′2, we
introduce the Galton–Watson process (Zi )i≥0 with offspring distribution μ such that Z0 = 1. Recall that E[Zi] = mi .
Then note that:

σ ′2 = Eμ

[|τ |2] −Eμ

[|τ |]2 = E

[( ∞∑
i=0

Zi

)2]
− 1

γ 2
.
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Since (Zi/m
i )i≥0 is a martingale with respect to the filtration generated by (Zi )i≥0, we have E[ZiZj ] = mj−i

E[Z2
i ].

Also using the well-known fact that for i ≥ 1 the variance of Zi is σ 2mi−1(mi −1)/(m−1) (see, e.g., [3], Section 1.2),
write:

E

[( ∞∑
i=0

Zi

)2]
=

∞∑
i=0

E
[
Z2

i

] + 2
∑

0≤i<j

mj−i
E

[
Z2

i

] =
∞∑
i=0

E
[
Z2

i

](
1 + 2m

1 −m

)

=
(

1 +
∞∑
i=1

(
σ 2mi−1(mi − 1)

m− 1
+m2i

))(
1 + 2m

1 −m

)

= σ 2

γ 3
+ 1

γ 2
.

This entails σ ′ = σ/γ 3/2 and the conclusion follows. �

Proof of Corollary 1. Recall that Δ(Z) = sup0<s<1(Zs − Zs−) denotes the largest jump of Z ∈ D([0,1],R). It
follows from the continuity of Z → Δ(Z) and Theorem 3 that:

1

Bn

max
1≤i≤Δ(tn)

ξi(tn)
(d)−→

n→∞
1

γ
sup

s∈(0,1]
(Ys − Ys−).

If θ ≥ 2, Y is continuous and the first assumption of Corollary 1 follows. If θ < 2, the result easily follows from the
fact that the Lévy measure of Y is ν(dx) = 1{x>0} dx/(	(−θ)x1+θ ). �

2.5. Height of large conditioned non-generic trees

We now prove Theorem 4. If f = (τ1, . . . , τk) is a forest, its height H(f) is by definition max(H(τ1), . . . ,H(τk)).
Recall that for 1 ≤ i ≤ Δ(τ), let Ti (τ ) is the tree of descendants of the ith child of u�(τ ) and that Fi,j (τ ) =
(Ti (τ ), . . . ,Tj (τ )).

Proof of Theorem 4. If τ is a tree, let H�(τ ) = 1 + H(F1,Δ(τ)(τ )) be the height of the subtree of descendants of
u�(τ ) in τ . By Theorem 2(ii), the generation of u�(tn) converges in distribution. It is thus sufficient to establish that,
if (λn)n≥1 of positive real numbers tending to infinity:

P

(∣∣∣∣H�(tn) − ln(n)

ln(1/m)

∣∣∣∣ ≤ λn

)
−→
n→∞ 1. (18)

To simplify notation, set H(n)
i,j = H(Fi,j (tn)) and pn = ln(n)/ ln(1/m) − λn. Let us first prove the lower bound, i.e.,

P(H�(tn) ≤ pn) → 0 as n → ∞. It is plain that P(H�(tn) ≤ pn) ≤ P(H(n)
1,
γ n/2� ≤ pn). In addition, by Corollary 2.7,

P
(
H(n)

1,
γ n/2� ≤ pn

) − Pμ,
γ n/2�
(
H(f) ≤ pn

) −→
n→∞ 0.

But

Pμ,
γ n/2�
(
H(f) ≤ pn

) = (
1 − Pμ

(
H(τ ) > pn

))
γ n/2�
.

Since μ satisfies Assumption (Hθ ), we have
∑

i≥1 i ln(i)μi < ∞. It follows from [14], Theorem 2, that there exists a
constant c > 0 such that:

Pμ

(
H(τ ) > k

) ∼
k→∞ c ·mk. (19)

Hence Pμ(H(τ ) > pn)) ∼ c · 1/(n ·mλn) as n → ∞. Consequently Pμ,
γ n/2�(H(f) ≤ pn) tends to 0 as n → ∞, and
the proof of the lower bound is complete.
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Now set qn = ln(n)/ ln(1/m) + λn. The proof of the fact that P(H�(tn) ≥ qn) → 0 as n → ∞ is similar and we
only sketch the argument. Write:

P
(
H�(tn) ≥ qn

) ≤ Pμ

(
H(n)

1,
Δ(tn)/2� ≥ qn

) + Pμ

(
H(n)


Δ(tn)/2�+1,Δ(tn)
≥ qn

)
.

Since H(n)
Δ(tn)+1,Δ(tn) has the same distribution as H(n)

1,Δ(tn)−
Δ(tn)/2�, it suffices to show that the first term of the last

sum tends to 0 as n → ∞. By Theorem 1(i), we have Δ(tn)/2 ≤ 
2γ n/3� with probability tending to 1 as n → ∞. It
is thus sufficient to establish that Pμ(H(n)

1,
2γ n/3� ≥ qn) → 0 as n → ∞. By arguments similar to those of the proof of
the lower bound, it is enough to check that

Pμ,
2γ n/3�
(
H(f) ≥ qn

) −→
n→∞ 0.

This follows from (19), the fact that Pμ,
2γ n/3�(H(f) ≥ qn) = 1 − (1 − Pμ(H(τ ) ≥ qn))

2γ n/3� combined with the

asymptotic behavior Pμ(H(τ ) ≥ qn) ∼ c ·mλn/n as n → ∞. This completes the proof of the upper bound and estab-
lishes (18). �

Theorem 4 implies that H(tn)/ ln(n) → ln(1/m) in probability as n → ∞. We next show that this convergences
holds in L

p for every p ≥ 1.

Proposition 2.11. For every p ≥ 1, we have

E
[
H(tn)

p
] ∼

n→∞
ln(n)p

ln(1/m)p
.

Proof. The following proof is due to an anonymous referee. It is sufficient to show there exists K > 0 such that

E
[
H(tn)

p1{H(tn)>K ln(n)}
] −→

n→∞ 0.

By (14), we have P(|τ | = n) ≥ n−2−θ for n sufficiently large, and in addition by (19) we have P(H(τ ) > K ln(n)) ≤
2c · n−K ln(1/m) for n sufficiently large. Hence, bounding the height of H(tn) by n, we get

E
[
H(tn)

p1{H(tn)>K ln(n)}
] ≤ np · P(

H(tn) > K ln(n)
)

≤ np · P(
H(τ ) > K ln(n)

)
/P

(|τ | = n
)

≤ 2c · np+2+θ−K ln(1/m).

It thus suffices to chose K > (p + 2 + θ)/ ln(1/m). This completes the proof. �

2.6. Scaling limits of non-generic trees

We turn to the proof of Theorem 5.

Proof of Theorem 5. Fix η ∈ (0,1/ ln(1/m)). We shall show that, with probability tending to one as n → ∞, at least
ln(n) trees among the 
γ n/2� trees T1(tn), . . . ,T
γ n/2�(tn) have height at least η ln(n). This will indeed show that,
with probability tending to one as n → ∞, the number of balls of radius less than η needed to cover ln(n)−1 · tn tends
to infinity. By standard properties of the Gromov–Hausdorff topology (see [7], Proposition 7.4.12) this implies that
the sequence of random metric spaces (ln(n)−1 · tn)n≥1 is not tight.

If f = (τ1, . . . , τj ) is a forest, let En(f) be the event defined by

En(f) = {
at most ln(n) trees among τ1, . . . , τj have height at least η ln(n)

}
.
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It is thus sufficient to prove that P(En(T1(tn), . . . ,T
γ n/2�(tn))) converges toward 0 as n → ∞. As previously, by
Corollary 2.7, it is sufficient to establish that

Pμ,
γ n/2�
(
En(f)

) −→
n→∞ 0. (20)

Now denote by Nn the number of trees among a forest of 
γ n/2� independent GWμ trees of height at least η ln(n).
Using (19) and setting η′ = η ln(1/m), we get that for a certain constant C > 0, Nn dominates a binomial random
variable Bin(
γ n/2�,Cnη′

), which easily implies that P(Nn ≤ ln(n)) → 0 as n → ∞. This shows (20) and completes
the proof. �

Note that Theorem 5 implies that there is no nontrivial scaling limit for the contour function coding tn, since conver-
gence of scaled contour functions imply convergence in the Gromov–Hausdorff topology (see, e.g., [26], Lemma 2.3).

2.7. Finite dimensional marginals of the height function

We first extend the definition of the height function to a forest. If f = (τi)1≤i≤j is a forest, set n0 = 0 and np =
|τ1| + |τ2| + · · · + |τp| for 1 ≤ p ≤ j . Then, for every 0 ≤ i ≤ p − 1 and 0 ≤ k ≤ |τi+1|, set

Hni+k(f) = Hk(τi+1).

Note that the excursions of H(f) above 0 are the (Hni+k(f);0 ≤ k ≤ |τi+1|). The Lukasiewicz path W(f) and height
function H(f) satisfy the following relation (see, e.g., [26], Proposition 1.7, for a proof): For every 0 ≤ n ≤ |f|,

Hn(f) = Card
({

k ∈ {0,1, . . . , n − 1};Wk(f) = inf
k≤j≤n

Wj (f)
})

. (21)

Recall that (Wn)n≥0 stands for the random walk introduced in Proposition 1.4 with ρ = μ and that Xk = Wk −Wk−1
for k ≥ 1. For every n ≥ 0, set

Hn = Card
({

0 ≤ k ≤ n − 1;Wk = inf
k≤j≤n

Wj

})
, Jn = n − min

{
0 ≤ i ≤ n;Wi = min

0≤j≤n
Wj

}
.

Finally, for k ≥ 0, set

Mk = Card
({

1 ≤ i ≤ k;Wi = max
0≤j≤i

Wj

})
, T = sup

{
i ≥ 0,Wi = sup

j≥0
Wj

}
.

Since W drifts almost surely to −∞, T is almost surely finite, and MT is distributed according to a geometric random
variable of parameter P(∀i ≥ 1,Wi ≤ −1) = γ , by Proposition 1.5(i).

The following result, which is an unconditioned version of Theorem 6, will be useful.

Lemma 2.12. For every 0 < s < 1, the following convergence holds in distribution:

(H
ns�,Hn,Jn)
(d)−→

n→∞(e1,MT ,T ), (22)

where e1 is geometric random variable of parameter γ , independent of (Xn)n≥1.

Proof. Set Wn
i = Wn−
ns�+i − Wn−
ns� for i ≥ 0, and Mn

k = Card({1 ≤ i ≤ k;Wn
i = max0≤j≤i W

n
j }). Set also

Tn = max
{
i ∈ {0,1, . . . , n},Wi = sup

0≤j≤n

Wj

}
.

Notice that (Wn
i , i ≥ 0) has the same distribution as (Wi, i ≥ 0). Using the fact that (Wi,0 ≤ i ≤ n) and (Wn −

Wn−i ,0 ≤ i ≤ n) have the same distribution, we get that

(H
ns�,Hn,Jn)
(d)=(

Mn
ns�,Mn,Tn

)
.
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Let F1 :Z → R+, F2 :Z2 → R+ be bounded functions and fix ε > 0. Choose N0 > 0 such that P(T > N0) < ε. For
n ≥ N0, note that Mn = MN0 and Tn = TN0 on the event T ≤ N0. Hence for n ≥ N0:∣∣E[

F1
(
Mn
ns�

)
F2(Mn,Tn)

] −E
[
F1

(
Mn
ns�

)
F2(MN0 , TN0)

]∣∣ ≤ Cε,

where C > 0 is a constant depending only on F1, F2 (and which may change from line to line). Next, using the fact
that Mn
ns� is independent of (MN0, TN0) for n > N0/(1 − s), we get that for n > N0/(1 − s),∣∣E[

F1
(
Mn
ns�

)
F2(Mn,Tn)

] −E
[
F1

(
Mn
ns�

)]
E

[
F2(MN0 , TN0)

]∣∣ ≤ Cε.

The conclusion immediately follows since Mn
ns� has the same distribution as M
ns� and since (Mn,Tn) converges in
distribution toward (MT ,T ) as n → ∞. �

Remark 2.13. It is straightforward to adapt the proof of Lemma 2.12 to get that for every 0 < t1 < t2 < · · · < tk < 1
and b > 0, the following convergence holds in distribution:

(H
nt1−b�,H
nt2−b�, . . . ,H
ntk−b�,Hn−1, Jn−1)
(d)−→

n→∞(e1, e2, . . . , ek,MT ,T ),

where (ei )1≤i≤k are i.i.d. geometric random variables of parameter γ , independent of (MT ,T ).

Recall that for 1 ≤ i ≤ j ≤ Δ(τ), Ti (τ ) is the tree of descendants of the ith child of u�(τ ), that Fi,j (τ ) =
(Ti (τ ), . . . ,Tj (τ )) and that ζ̃k(τ ) = inf{i ≥ 0;W̃i (τ ) = −k} for 1 ≤ k ≤ Δ(τ). We are now ready to prove Theo-
rem 6.

Proof of Theorem 6. To simplify, we establish Theorem 6 for k = 2, the general case being similar. To this end, we
fix 0 < s < t < 1 and shall show that(

H
ns�(tn),H
nt�(tn)
) (d)−→

n→∞(1 + e0 + e1,1 + e0 + e2). (23)

We first express H
ns�(tn) in terms of the modified Lukasiewicz path W̃ which was defined in Section 2.2. To this end
we need to introduce some notation. For every tree τ and 0 ≤ p ≤ |τ | − 1, set

H̃p(τ ) = Card
({

k ∈ {0,1, . . . , p − 1}; W̃k(τ ) = inf
k≤j≤p

W̃j (τ )
})

.

Note that by Proposition 2.5(ii), (H̃1(tn), . . . , H̃ζ̃Δ(tn)(tn)(tn)) is the height function of the forest F1,Δ(tn)(tn). For every

n ≥ 1 and r ∈ (0,1) such that U(tn) < 
nr� < ζ̃Δ(tn)(tn), we have H
nr�(tn) = 1 + H
nr�−U(tn)−1(F1,Δ(tn)(tn)) +
|u�(τ )|. Hence, using Proposition 2.5(ii) and (21):

H
nr�(tn) = 1 + H̃
nr�−U(tn)−1(tn) + H̃n−1(tn).

Since U(tn) and ζ̃Δ(tn)(tn) converge in distribution (by respectively Theorem 2 and Remark 2.8), we have

U(tn) < 
ns� < 
nt� < ζ̃Δ(tn)(tn) with probability tending to 1 as n → ∞. By combining Proposition 2.5(i) and
Proposition 2.6, we get that:

sup
A∈B(R2)

∣∣P((
H
ns�(tn),H
nt�(tn)

) ∈ A
) − P

(
(1 + H
ns−Jn−1−1� + Hn−1,1 + H
nt−Jn−1−1� + Hn−1) ∈ A

)∣∣
converges to 0 as n → ∞. But by Remark 2.13, we have

(1 + H
ns−Jn−1−1� + Hn−1,1 + H
nt−Jn−1−1� + Hn−1)
(d)−→

n→∞(1 + e1 + MT ,1 + e2 + MT )

with MT independent of e1, e2. Since MT is distributed according to a geometric random variable of parameter
γ = 1 −m, the conclusion immediately follows. �



Limit theorems for conditioned non-generic Galton–Watson trees 509

3. Extensions and comments

We conclude by proposing possible extensions and stating a few open questions.

Other types of conditioning

Throughout this text, we have only considered the case of Galton–Watson trees conditioned on having a fixed total
progeny. It is natural to consider different types of conditioning. For instance, for n ≥ 1, let thn be a random tree
distributed according to Pμ(·|H(τ ) ≥ n). In [17], Section 22, Janson has in particular proved that when μ is critical
or subcritical, as n → ∞, thn converges locally to Kesten’s Galton–Watson tree conditioned to survice T ∗, which a
random infinite tree different from T̂ . It would be interesting to know whether the theorems of the present work apply
in this case.

Another type of conditioning involving the number of leaves has been introduced in [9,25,30]. If τ is a tree, denote
by λ(τ) the number of leaves of τ (i.e., the number of individuals with no child). For n ≥ 1 such that Pμ(λ(τ) = n) > 0,
let tln be a random tree distributed according to Pμ(·|λ(τ) = n). Do results similar to those we have obtained hold when
tn is replaced by tln? We expect the answer to be positive, since a GWμ tree with n leaves is very close to a GWμ

with total progeny n/μ0 (see [25] for details), and we believe that the techniques of the present work can be adapted
to solve this problem.

Concentration of H(tn) around ln(n)/ ln(1/m)

By Theorem 4, the sequence of random variable (H(tn) − ln(n)/ln(1/m))n≥1 is tight. It is therefore natural to ask the
following question, due to Nicolas Broutin. Does there exist a random variable H such that:

H(tn) − ln(n)

ln(1/m)

(d)−→
n→∞H ?

We expect the answer to be negative. Let us give a heuristic argument to support this prediction. In the proof of
Theorem 4, we have seen that the height of H(tn) is close to the height of 
γ n� independent GWμ trees and the
height of each of these trees satisfies the estimate (19). However, if (Qi)i≥1 is an i.i.d. sequence of random variables
such that P(Q1 ≥ k) = c ·mk , then it is known (see, e.g., [16], Example 4.3) that the random variables

max(Q1,Q2, . . . ,Qn) − ln(n)

ln(1/m)

do not converge in distribution.

Other types of trees

Janson [17] gives a very general limit theorem concerning the local asymptotic behavior of simply generated trees
conditioned on having a fixed large number of vertices. Let us briefly recall the definition of simply generated trees.
Fix a sequence w = (wk)k≥0 of nonnegative real numbers such that w0 > 0 and such that there exists k > 1 with
wk > 0 (w is called a weight sequence). Let Tf ⊂ T be the set of all finite plane trees and, for every n ≥ 1, let Tn be
the set of all plane trees with n vertices. For every τ ∈ Tf , define the weight w(τ) of τ by:

w(τ) =
∏
u∈τ

wku(τ).

Then for n ≥ 1 set

Zn =
∑
τ∈Tn

w(τ).
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For every n ≥ 1 such that Zn �= 0, let Tn be a random tree taking values in Tn such that for every τ ∈ Tn:

P(Tn = τ) = w(τ)

Zn

.

The random tree Tn is said to be finitely generated. Galton–Watson trees conditioned on their total progeny are
particular instances of simply generated trees. Conversely, if Tn is as above, there exists an offspring distribution μ

such that Tn has the same distribution as a GWμ tree conditioned on having n vertices if, and only if, the radius of
convergence of

∑
wiz

i is positive (see [17], Section 8).
It would thus be interesting to find out if the theorems obtained in the present work for Galton–Watson trees can

be extended to the setting of simply generated trees whose associated radius of convergence is 0. In the latter case,
Janson [17] proved that Tn converges locally as n → ∞ toward a deterministic tree consisting of a root vertex with an
infinite number of leaves attached to it. We thus expect that the asymptotic properties derived in the present work will
take a different form in this case. We hope to investigate this in future work.
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