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Abstract. Random interlacements at level u is a one parameter family of connected random subsets of Zd , d ≥ 3 (Ann. Math.
171 (2010) 2039–2087). Its complement, the vacant set at level u, exhibits a non-trivial percolation phase transition in u (Comm.
Pure Appl. Math. 62 (2009) 831–858; Ann. Math. 171 (2010) 2039–2087), and the infinite connected component, when it exists, is
almost surely unique (Ann. Appl. Probab. 19 (2009) 454–466).

In this paper we study local percolative properties of the vacant set of random interlacements at level u for all dimensions d ≥ 3
and small intensity parameter u > 0. We give a stretched exponential bound on the probability that a large (hyper)cube contains
two distinct macroscopic components of the vacant set at level u. In particular, this implies that finite connected components of
the vacant set at level u are unlikely to be large. These results are new for d ∈ {3,4}. The case of d ≥ 5 was treated in (Probab.
Theory Related Fields 150 (2011) 529–574) by a method that crucially relies on a certain “sausage decomposition” of the trace of
a high-dimensional bi-infinite random walk. Our approach is independent from that of (Probab. Theory Related Fields 150 (2011)
529–574). It only exploits basic properties of random walks, such as Green function estimates and Markov property, and, as a
result, applies also to the more challenging low-dimensional cases. One of the main ingredients in the proof is a certain conditional
independence property of the random interlacements, which is interesting in its own right.

Résumé. Un entrelac aléatoire au niveau u est une famille à un paramètre de sous-ensembles connexes aléatoires de Z
d , d ≥ 3,

introduit dans (Ann. Math. 171 (2010) 2039–2087). Son complémentaire, l’ensemble vacant au niveau u, possède une transition de
percolation non triviale en u, comme il a été montré dans (Comm. Pure Appl. Math. 62 (2009) 831–858) et (Ann. Math. 171 (2010)
2039–2087). La composante connexe infinie, lorsqu’elle existe, est presque sûrement unique, voir (Ann. Appl. Probab. 19 (2009)
454–466).

Dans ce papier, nous étudions les propriétés percolatives locales de l’ensemble vacant au niveau u en toutes dimensions d ≥ 3
et pour un petit paramètre d’intensité u. Nous donnons une borne exponentielle tendue sur la probabilité qu’un grand (hyper)cube
contienne deux composantes macroscopiques distinctes de l’ensemble vacant au niveau u. Nos résultats impliquent qu’il est peu
probable que les composantes connexes finies de l’ensemble vacant au niveau u soient grandes. Ces résultats ont été prouvés
dans (Probab. Theory Related Fields 150 (2011) 529–574) pour d ≥ 5. Notre approche est différente (de celle de (Probab. Theory
Related Fields 150 (2011) 529–574)) et est valide pour d ≥ 3.

L’un des ingrédients principaux de la preuve est une certaine propriété d’indépendence conditionelle des entrelacs aléatoires,
qui est intéressante en elle-même.
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1. Introduction

Random interlacements Iu at level u > 0 on Z
d , d ≥ 3, is a one parameter family of random connected subsets of Zd ,

introduced by Sznitman [11], which arises as the local limit as N → ∞ of the set of sites visited by a simple random
walk on the discrete torus (Z/NZ)d , d ≥ 3 when it runs up to time �uNd�, see [17]. The law of Iu ⊆ Z

d is uniquely
characterized by the equations:

P
[
Iu ∩ K =∅

]= e−u·cap(K) for any finite K ⊆ Z
d , (1.1)

where cap(K) denotes the discrete capacity of K , defined in (2.6) below. It is proved among other results in [11] that
for any u > 0, Iu is almost surely connected, and its law is invariant and ergodic with respect to the lattice shifts. In
fact, in [11], a more constructive definition of Iu is given, which we recall in Section 2.3. Informally, it states that Iu

is the trace of a certain cloud of bi-infinite random walk trajectories in Z
d , with u measuring the density of this cloud.

The vacant set Vu at level u is the complement of Iu in Z
d . We view Vu as a random graph by drawing an edge

between any two vertices of the vacant set at L1-distance 1 from each other. The vacant set exhibits a non-trivial
structural phase transition in u, i.e., there exists u∗ ∈ (0,∞) such that

(i) for any u > u∗, almost surely, all connected components of Vu are finite, and
(ii) for any u < u∗, almost surely, Vu contains an infinite connected component.

In particular, the finiteness of u∗ for d ≥ 3 and the positivity of u∗ for d ≥ 7 were proved in [11], and the latter
result was extended to all dimensions d ≥ 3 in [10]. It is also known that Vu contains at most one infinite connected
component (see [13]); in particular, for any u < u∗, the infinite connected component is almost surely unique.

In this paper, we are interested in the local structure of the vacant set in the regime of small u. More specifically,
we show that with high probability, the unique infinite connected component of Vu is “visible” in large hypercubic
subsets of Zd (as the unique macroscopic connected component in the restriction of Vu to large hypercubes of Zd ).
Our main result is the following theorem.

Theorem 1.1 (Local uniqueness for Vu). For any d ≥ 3, there exist u1 > 0, c = c(d) > 0 and C = C(d) < ∞ such
that for all 0 ≤ u ≤ u1 and n ≥ 1, we have

P

[
the infinite connected component of Vu

intersects B(0, n)

]
≥ 1 − Ce−nc

(1.2)

and

P

[
any two connected subsets of Vu ∩ B(0, n) with

diameter ≥ n/10 are connected in Vu ∩ B(0,2n)

]
≥ 1 − Ce−nc

. (1.3)

Statement (1.2) has already been known (it easily follows from [12], Theorem 5.1), but we include it here for
completeness. For d ≥ 5, statement (1.3) follows from the stronger statement of [14], Theorem 3.2. Our contribution
to the result of Theorem 1.1 is twofold. Firstly, the result (1.3) is new for d ∈ {3,4}. Secondly, our proof of (1.3) is
conceptually different from that of [14], and applies to all dimensions d ≥ 3. Let us briefly explain the strategy in
the proof of [14] and why it cannot be used in low dimensions. The proof in [14] crucially relies on the fact that if
d ≥ 5, the trace of a bi-infinite random walk contains many bilateral cut-points (see [14], (6.1), (6.26)). This gives
a decomposition of the random walk trace into a chain of relatively small well-separated “sausages.” Heuristically,
a chain of sausages cannot separate two macroscopic connected subsets of a box. Random interlacements at level
u is the trace of a certain Poisson cloud of doubly infinite random walk trajectories in Z

d , and, therefore, can be
viewed as the countable union of doubly infinite chains of “sausages” in Z

d . Thus, in order to show that random
interlacements at level u cannot separate two macroscopic connected subsets of a large box, one needs to show that
locally it generally looks like the trace of only bounded number of random walks. This is achieved in [14] with a
renormalization argument. The sausage decomposition property fails for d ≤ 4 (see, e.g., [7], Theorem 2.6). In fact,
in dimension d = 3, even the trace of a single random walk is a “two-dimensional” object, and, therefore, could in
principle form a large separating surface in a box. This is not the case, as we discuss in Section 6. Our proof of
(1.3) only exploits basic properties of random walks (Green function estimates, Markov property) and works for all
dimensions d ≥ 3.
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The results of Theorem 1.1 are in the spirit of the local uniqueness property of supercritical Bernoulli percolation
(see, e.g., [4], (7.89)). In fact, the analogues of (1.2) and (1.3) for Bernoulli percolation hold through the whole
supercritical phase. We believe that the bounds (1.2) and (1.3) also hold for all u < u∗, but with constants c = c(d,u) >

0 and C = C(d,u) < ∞ depending on u. Our current understanding of the model is not good enough to be able to
rigorously justify this belief.

The main technical challenges in the proof of Theorem 1.1 come from the long-range dependence of the ran-
dom interlacements (see, e.g., [11], Remark 1.6(4)), the lack of the BK inequality (see, e.g., [4], (2.12), and [12],
Remark 1.5(3)) and the absence of finite energy property (see, e.g., [11], Remark 2.2(3)).

As an immediate corollary of Theorem 1.1 we obtain that finite connected components of the vacant set at level u

are unlikely to be large when u is small enough.

Corollary 1.2. For any d ≥ 3, there exist c = c(d) > 0 and C = C(d) < ∞ such that for all u ≤ u1 (defined in
Theorem 1.1), we have

P
[
n ≤ diam

(
Cu(0)

)
< ∞]≤ Ce−nc

(1.4)

and

P
[
n ≤ ∣∣Cu(0)

∣∣< ∞]≤ Ce−nc

, (1.5)

where diam(Cu(0)) and |Cu(0)| denote the diameter and the cardinality of the connected component of the origin in
Vu, respectively.

Again, when d ≥ 5, the result of Corollary 1.2 follows from [14], Theorems 3.5 and 3.6. The analogue of Corol-
lary 1.2 for supercritical Bernoulli percolation is well known, and as Theorem 1.1, it is a property of the whole
supercritical phase of Bernoulli percolation (see, e.g., [2,6] and [4], Chapter 8). Moreover, the analogue of (1.4)
for Bernoulli percolation holds with exponential decay rate (see, [4], (8.20)), and the analogue of (1.5) holds with
stretched exponential decay with the explicit exponent c = (d − 1)/d (see, e.g., [4], (8.66)).

Let us now mention some applications of Theorem 1.1. In [9], Theorem 1.1 is used to study the stability of the
phase transition of the vacant set under a small quenched noise. The setup is the following. For a positive ε, we allow
each vertex of the random interlacement (referred to as occupied) to become vacant, and each vertex of the vacant set
to become occupied with probability ε, independently of the randomness of the interlacement, and independently for
different vertices. In [9], Theorem 5 it is proved that for any u which satisfies (1.2) and (1.3), the perturbed vacant set
at level u still has an infinite connected component if the noise is small enough. In particular, this statement together
with Theorem 1.1 imply that the perturbed vacant set at small level u still has an infinite connected component. The
use of Theorem 1.1 significantly simplifies the original proof of [9], Theorems 3 and 5, given in the first version of [9].

In [3], Theorem 2.3, we use Theorem 1.1 as an ingredient to prove that the graph distance in the unique infinite
connected component of the vacant set at small level u is comparable to the graph distance on Z

d , and establish a
shape theorem for balls with respect to graph distance on the infinite connected component.

We believe that the methods of this paper can be applied in order to further explore the fragmentation of the torus
(Z/NZ)d by the trace of a simple random walk, in a similar fashion to [15], where a strong coupling between the
random walk trace on the torus and random interlacements is used to transfer results of [14] to the torus. We further
discuss this possibility as well as the analogue of Theorem 1.1 for the set of sites avoided by a simple random walk
on Z

d in Section 6.
We will now briefly sketch the main ideas of the proof of Theorem 1.1. A more detailed description of the main

steps of the proof will be given at the beginning of Sections 3, 4, and 5. Before reading those descriptions, we advise
the reader to become familiar with basic definitions and results concerning random interlacements in Sections 2.3
and 2.4.

The proof uses coarse graining (see Section 3) and a conditional independence property for random interlacements
(see Section 4). The need for coarse graining comes from the fact that the complement of the infinite connected
component of the vacant set is almost surely connected, no matter how small the parameter u is. (This is immediate
from the fact that Iu is almost surely connected for any given u, see [11], (2.21).) The reader familiar with Bernoulli
percolation may notice that this would not be the case if the vertices were made vacant independently from each other.
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In this case, the usual Peierls argument would easily give the analogue of Theorem 1.1 for Bernoulli percolation, when
the vacant set has density close to one.

To overcome the problem arising from the connectedness of Iu, we partition Z
d into L∞-boxes (B(x′,R): x′ ∈

(2R + 1) ·Zd), with some R ≥ 0. We use a variant of Sznitman’s decoupling inequalities [12] to show that when R is
large enough, there is a unique infinite connected subset of good boxes which are “sufficiently vacant.” Moreover, the
remaining (bad) boxes form only finite connected subsets of Zd , with stretched exponential decay of the probability
that a connected component of bad boxes is large. Our definition of good boxes also assures that the infinite connected
component of good boxes contains an infinite connected subset of Vu, which intersects every good box of the above
set. For concreteness, in this proof sketch, we call this infinite connected subset of Vu the “fat” set. As a result, we
obtain that with high probability, any nearest-neighbor path of Z

d with large diameter often intersects the infinite
connected component of good boxes, and therefore gets within distance R from the fat set.

However, the possibility of having a long nearest-neighbor path in Vu which avoids the fat set (but unavoidably,
with high probability, gets R-close to it sufficiently often) still remains. We use a conditional independence property
of random interlacements (see Section 4) to show that, roughly speaking, conditionally on the fact that a vacant path
connects to a good box of the infinite connected set of good boxes and also conditioning on the configuration outside
this box, there is still a uniformly positive chance that this vacant path is connected inside the specified good box to the
fat set. The difficulty in the proof of this claim comes from the fact that random interlacements do not posess the so-
called finite energy property (see, e.g., [11], Remark 2.2(3)). In words, the fact that Iu is a connected set implies that
depending on the realization of Iu outside a box, not every configuration can be realized by Iu inside this box. (This
is a big constraint, and, for example, causes some difficulties in the proof of the uniqueness of an infinite connected
component of Vu, see [13].) Our definition of good boxes is chosen specifically to overcome this problem. Coming
back to the proof sketch, since each long path must visit many good boxes in the infinite connected component, we
conclude that with high probability each long path in Vu must be connected to the fat set. This gives us (1.3).

The paper is organized as follows. In Section 2, we define the notation used in the paper, state some basic results
about the simple random walk on Z

d , define random interlacements and recall some of its properties, the most im-
portant of which is Lemma 2.2. It is based on [12], Corollary 3.5, but formulated more generally (using so-called
interlacement local times defined in Section 2.4). Therefore, we give its proof sketch in the Appendix.

In Section 3, we define coarse graining, and prove the existence of a “fat” infinite connected subset of Vu, when u

is small enough (see Corollary 3.7).
In Section 4, we prove a conditional independence property of random interlacements (see Lemma 4.4).
In Section 5, we prove Theorem 1.1 using the results of Sections 3 and 4.
Finally, in Section 6, we briefly mention applications of the ideas developed in this paper to the vacant set of a

simple random walk on Z
d and (Z/NZ)d .

2. Notation, model, preliminaries

2.1. Basic notation

We denote by N = {0,1, . . .} the set of natural numbers, by Z the set of integers. We denote by R the set of real
numbers and by R+ the set of non-negative reals. For a ∈ R, we write |a| for the absolute value of a, and �a� for the
integer part of a.

For any d ≥ 1, we denote by x = (x1, . . . , xd) a generic element of Zd , also referred to as vertex of Zd . We denote
by |x| = max1≤i≤d |xi | the sup-norm of x ∈ Z

d and by |x|1 =∑d
i=1 |xi | the L1-norm of x. For K ⊂ Z

d , we denote by
|K| the cardinality of K . We write K ⊂⊂ Z

d when K ⊂ Z
d and |K| < ∞.

We say that x, x′ ∈ Z
d are nearest neighbors (respectively, ∗-neighbors) if |x −x′|1 = 1 (respectively, |x −x′| = 1).

We also denote |x − x′|1 = 1 by x ∼ x′. We say that π = (z1, . . . , zn) is a nearest neighbor path (respectively, ∗-path)
if zi and zi+1 are nearest neighbors (respectively, ∗-neighbors) for all 1 ≤ i ≤ n − 1, and we use the notation |π | = n

(not to be confused with the cardinality of the set {z1, . . . , zn}). We say that V ⊆ Z
d is connected (respectively, ∗-

connected) if any pair x1, x2 ∈ V can be connected by a nearest neighbor path (respectively, ∗-path) with vertices
in V .

For x ∈ Z
d and R ∈ N we denote by B(x,R) = {y ∈ Z

d : |x − y| ≤ R} the closed ball of radius R around x with
respect to the sup-norm. For any set V ⊆ Z

d , we denote by V c = Z
d \ V .
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The interior boundary of K ⊆ Z
d , ∂intK is the set of vertices of K that have some neighbor in Kc .

The exterior boundary of K ⊆ Z
d , ∂extK is the set of vertices of Kc that have some neighbor in K .

Given a probability space (Ω,F ,P) and A ∈F , we denote by 1A the indicator of the event A. If X is an integrable
random variable on (Ω,F ,P), we denote E[X;A] = E[X · 1A].

For −∞ ≤ a < b ≤ +∞, we denote by B([a, b]) the Borel σ -algebra on [a, b].
Our agreement about the constants used in the paper is the following. We denote small positive constants by c and

large finite constants by C. When needed, we emphasize the dependence of a constant on parameters. If the constant
only depends on d , then we sometimes do not mention it at all. The value of a constant may change within the same
formula.

2.2. Simple random walk and potential theory

The space W+ stands for the set of infinite nearest-neighbor trajectories, defined for non-negative times and tending
to infinity:

W+ =
{
w: N→ Z

d,w(n) ∼ w(n + 1), n ∈ N, lim
n→∞

∣∣w(n)
∣∣= ∞

}
. (2.1)

We endow W+ with the σ -algebra W+ generated by the canonical coordinate maps Xn, n ∈ N. For each k ∈ N, we
define the shift map θk :W+ → W+ by θk(w)(·) = w(· + k). For x ∈ Z

d , let Px denote the law of simple random walk
on Z

d with starting point x. Simple random walk on Z
d , d ≥ 3, is transient and the set W+ has full measure under any

Px . From now on we will view Px as a measure on (W+,W+), and we write (X(t): t ∈ N) for a random element of
W+ with distribution Px .

For U ⊆ Z
d and w ∈ W+, we define

HU(w) = inf
{
n ≥ 0: Xn(w) ∈ U

}
, the entrance time in U , (2.2)

H̃U (w) = inf
{
n ≥ 1: Xn(w) ∈ U

}
, the hitting time of U , (2.3)

TU(w) = inf
{
n ≥ 0: Xn(w) /∈ U

}
, the exit time from U . (2.4)

For d ≥ 3, the Green function g :Zd ×Z
d → [0,∞) of the simple random walk X is defined as

g(x, y) =
∞∑
t=0

Px

[
X(t) = y

]
, x, y ∈ Z

d .

Translation invariance yields g(x, y) = g(0, y − x). It follows from [8], Theorem 1.5.4, that for any d ≥ 3, there exist
cg = cg(d) > 0 and Cg = Cg(d) < ∞ such that

cg · (|x − y| + 1
)2−d ≤ g(x, y) ≤ Cg · (|x − y| + 1

)2−d
for x, y ∈ Z

d . (2.5)

The equilibrium measure of K ⊂⊂ Z
d is defined by

eK(x) =
{

Px[H̃K = ∞], x ∈ K ,
0, x /∈ K .

The capacity of K is the total mass of the equilibrium measure of K :

cap(K) =
∑
x

eK(x). (2.6)

Since Z
d is transient (d ≥ 3), for any ∅ �= K ⊂⊂ Z

d , the capacity of K is positive. Therefore, we can define for such
K the normalized equilibrium measure by

ẽK(x) = eK(x)/ cap(K). (2.7)

The following relations for Px[HK < ∞] will be useful: for any K ⊂⊂ Z
d and x ∈ Z

d ,



1170 A. Drewitz, B. Ráth and A. Sapozhnikov

(i) (see, e.g. [11], (1.8))

Px[HK < ∞] =
∑
y∈K

g(x, y)eK(y), (2.8)

(ii) (see [11], (1.9))∑
y∈K

g(x, y)
/

sup
z∈K

∑
y∈K

g(z, y) ≤ Px[HK < ∞] ≤
∑
y∈K

g(x, y)
/

inf
z∈K

∑
y∈K

g(z, y). (2.9)

2.3. Definition of random interlacements

Now we recall the definition of the interlacement point process from [11], Section 1. We consider the space of doubly
infinite nearest-neighbor trajectories W :

W =
{
w: Z → Z

d ,w(n) ∼ w(n + 1), n ∈ Z, lim
n→±∞

∣∣w(n)
∣∣= ∞

}
. (2.10)

We endow W with the σ -algebra W generated by the coordinate maps Xn, n ∈ Z.
Consider the space W ∗ of trajectories in W modulo time shift

W ∗ = W/∼, where w ∼ w′ ⇐⇒ w(·) = w′(· + k) for some k ∈ Z

and denote by π∗ the canonical projection from W to W ∗ which assigns to each w ∈ W the ∼-equivalence class
π∗(w) of w. The map π∗ induces a σ -algebra on W ∗ given by W∗ = {A ⊂ W ∗: (π∗)−1(A) ∈W}.

For K ⊂⊂ Z
d , we denote by WK the set of trajectories in W that enter the set K , and denote by W ∗

K the image of
WK under π∗. Note that WK ∈W and W ∗

K ∈W∗.
For any w∗ ∈ W ∗ and u ∈ R+ we call the pair (w∗, u) a labeled trajectory. The space of point measures on which

one canonically defines random interlacements is given by

Ω =
{
ω =

∑
i≥1

δ(w∗
i ,ui ): w∗

i ∈ W ∗, ui ∈ R+ and ∀K ⊂⊂ Z
d, u ≥ 0: ω

(
W ∗

K × [0, u])< ∞
}
. (2.11)

The space Ω is endowed with the σ -algebra FΩ generated by the evaluation maps of form ω �→ ω(D) for D ∈
W∗ ⊗ B(R+). We recall the definition of the measure QK on (W,W) from [11], (1.24): for any A,B ∈ W+ and
x ∈ Z

d let

QK

[
(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B

]= Px[A|H̃K = ∞] · eK(x) · Px[B]. (2.12)

According to [11], Theorem 1.1, there exists a unique σ -finite measure ν on (W ∗,W∗) which satisfies the identity

ν(E) = QK

[(
π∗)−1

(E)
]

for all K ⊂⊂ Z
d and E ∈W∗ with E ⊆ W ∗

K . (2.13)

The interlacement point process is the Poisson point process on W ∗ × R+ with intensity measure ν(dw∗)du,
defined on the probability space (Ω,FΩ,P). Given ω =∑

i≥1 δ(w∗
i ,ui ) ∈ Ω and u ≥ 0, the random interlacement at

level u is the random subset of Zd defined by

Iu(ω) =
⋃

i≥1,ui<u

range
(
w∗

i

)
, (2.14)

where range(w∗) = {w(n): n ∈ Z} for any w ∈ π−1(w∗). The vacant set at level u is defined as

Vu(ω) = Z
d \ Iu(ω) for ω ∈ Ω,u ≥ 0.

For the sake of consistency, we mention that the law of Iu is uniquely characterized by (1.1), see [11], Proposition 1.5
and Remark 2.2(2).
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2.4. Discrete interlacement local times

In this section we define the interlacement local time field Lu(ω) at level u, which counts the accumulated number of
visits of the interlacement trajectories with label smaller than u to each vertex x ∈ Z

d , see (2.15). We introduce this
notion so that we can control the number of excursions of the interlacement trajectories inside a box in Section 5.

We denote by � a generic element of the product space NZ
d
. For any x ∈ Z

d , denote by Ψx :NZ
d →N the canonical

coordinate function defined by Ψx(�) = �(x). We consider the measurable space (NZ
d
,F�) where F� is the σ -algebra

generated by the functions Ψx , x ∈ Z
d . For �, �′ ∈ N

Z
d
, we say that � ≤ �′ if �(x) ≤ �′(x) for all x ∈ Z

d . We say that
an event A ∈F� is increasing if for any �, �′ ∈N

Z
d

the conditions � ∈ A and � ≤ �′ imply �′ ∈ A.
Given ω =∑i≥1 δ(w∗

i ,ui ) ∈ Ω and u ≥ 0, we define the discrete interlacement local time profile at level u, Lu(ω) =
(Lu

x(ω): x ∈ Z
d) as

Lu
x(ω) =

∑
i≥1,ui<u

∑
n∈Z

1{wi(n)=x}, x ∈ Z
d, (2.15)

where wi is any particular element of π−1(w∗
i ). Note that the function Lu : (Ω,FΩ) → (NZ

d
,F�) is measurable and

that x ∈ Iu(ω) if and only if Lu
x(ω) ≥ 1.

Given a measurable function L : (Ω,FΩ) → (NZ
d
,F�) and an event A ∈ F�, we define

A(L) = {ω ∈ Ω: L(ω) ∈ A
}

and Au = A
(
Lu
)

for u ≥ 0. (2.16)

It follows from (2.15) that for any 0 ≤ u ≤ u′, P[Lu ≤ Lu′ ] = 1. Therefore, for any increasing event A ∈ F� and
u ≤ u′, we have

P
[
Au
]≤ P

[
Au′]

. (2.17)

Finally, we record that for x ∈ Z
d and u ≥ 0,

E
[
Lu

x

]= u. (2.18)

Indeed, by (2.12) and (2.13), E[Lu
x] = E[ω(W ∗{x} × [0, u))] · g(x, x) = cap({x}) · u · g(0,0) = u.

2.5. Cascading events

In this section we adapt some results of [12] to our setting which involves increasing events of NZ
d
. The result of

Lemma 2.2 below is new, but very similar to [12], Corollary 3.5, which is stated for increasing events in {0,1}G×Z,
where G is an infinite, connected, bounded degree weighted graph, satisfying certain regularity conditions (for exam-
ple, G = Z

d−1, with d ≥ 3). We will use Lemma 2.2 in the proof of Lemma 3.6.
We begin with the definition of uniformly cascading events. We adapt [12], Definition 3.1, to our setting which

involves local times.

Definition 2.1. Let λ > 0. We say that a family G = (Gx,L,R)x∈Zd ,L≥1,R≥0 of events on (NZ
d
,F�) cascades uniformly

(in R) with complexity at most λ > 0 if there exists C(λ) < ∞ such that

Gx,L,R is σ(Ψy, y ∈ B(x,10L))-measurable for each x ∈ Z
d , R ≥ 0, and L ≥ 1,

and for each l multiple of 100, x ∈ Z
d , R ≥ 0, L ≥ 1, there exists Λ ⊆ Z

d such that

Λ ⊆ B(x,9lL), (2.19)

|Λ| ≤ C(λ) · lλ, (2.20)

Gx,lL,R ⊆
⋃

x1,x2∈Λ: |x1−x2|≥(l/100)L

Gx1,L,R ∩ Gx2,L,R. (2.21)
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Lemma 2.2. Let G = (Gx,L,R)x∈Zd ,L≥1,R≥0 be a family of increasing events on (NZ
d
,F�) cascading uniformly (in

R) with complexity at most λ > 0.

Let L0 ≥ 1, l0 large enough multiple of 100, and Ln = ln0 L0. (2.22)

Let uL0 = L0
2−d , and recall the notation of (2.16). If

inf
R≥0,L0≥1

sup
x∈Zd

P
[
G

uL0
x,L0,R

]= 0, (2.23)

then there exist l0 > 1, R ≥ 0, L0 ≥ 1 and u > 0 such that

sup
x∈Zd

P
[
Gu

x,Ln,R

]≤ 2−2n

for all n ≥ 0. (2.24)

The proof of Lemma 2.2 is essentially the same as the proof of [12], Corollary 3.5. For completeness, we include
its sketch in the Appendix.

3. Coarse graining of Zd

In this section we show that when u is small enough, the infinite connected component of Vu contains a ubiqui-
tous infinite connected subset, which has a well-prescribed structure and useful properties. We do so by partitioning
Z

d into large boxes. We then define a notion of good boxes in Definition 3.3. These boxes are defined to be “suf-
ficiently vacant.” In Lemma 3.6, we show that large ∗-connected components of bad boxes are unlikely, where we
use Lemma 2.2 to deal with the long-range correlations present in the model. We then combine it with the result of
[5], Lemma 2.23, on the connectedness of the exterior ∗-boundary of a ∗-connected finite subset of Zd to obtain in
Corollary 3.7 that there is a unique infinite connected subset of good boxes (denoted by G∞ in Corollary 3.7(2)), and
all the remaining bad components are very small. It then follows from the definition of good boxes that the infinite
connected component of good boxes contains the desired infinite connected subset of Vu (see Corollary 3.7(3)). An
important consequence of Corollary 3.7, which we will use in the proof of Theorem 1.1 (see (5.2) and (5.5)), is that
with high probability, any long nearest-neighbor path in Z

d will get within distance R from the above defined infinite
connected subset of Vu many times.

3.1. Setup and auxiliary results

We consider the hypercubic lattice Z
d with d ≥ 3. For an integer R ≥ 0, let

Z = (2R + 1) ·Zd . (3.1)

We say that x′, y′ ∈ Z are (1) nearest-neighbors in Z, if |x′ − y′|1 = 2R + 1, and (2) ∗-neighbors in Z, if |x′ − y′| =
2R + 1. We denote by B(x′,N) = B(x′, (2R + 1)N) ∩ Z the closed ball of radius N in Z. The interior boundary of
K ⊆ Z, denoted by ∂intK, is the set of vertices of K that have some nearest neighbor in Z \ K. Note that for R �= 0, the
set ∂intK is different from ∂intK, defined in Section 2.1.

With each vertex x′ ∈ Z, we associate the hypercube

Q
(
x′)= B

(
x′,R

)⊂⊂ Z
d . (3.2)

This gives us a partition of Zd into disjoint hypercubes.

Definition 3.1. Let � be the subset of vertices in Q(0) such that at least two of their coordinates have values in the
set {−R,−R + 1,−R + 2,R − 2,R − 1,R}, and let �(x ′) = x′ +�, for all x′ ∈ Z. We call �(x′) the frame of Q(x′).



Vacant set of random interlacements with small intensity 1173

Fig. 1. The frame of Q(x′) in Z
3.

Note that the set � is connected in Z
d , and for any x′

1, x
′
2 ∈ Z nearest-neighbors in Z, the set �(x′

1) ∪ �(x′
2) is

connected in Z
d .

In the case d = 3, the set Q(x′) is the usual cube, and the set �(x′) is just the 2-neighborhood of its edges in the
sup-norm, restricted to the vertices inside Q(x′).

Lemma 3.2. There exists C = C(d) < ∞ such that for all R ≥ 2,

cap(�) ≤ CRd−2/ logR. (3.3)

Proof. The proof easily follows from (2.5), (2.6), (2.8), and (2.9). Let R ≥ 2. Take x ∈ Z
d with |x| = 2R. Note that

for any y ∈ �, R ≤ |x − y| ≤ 3R. We have

cap(�)
(2.6)=

∑
y∈�

e�(y)
(2.5),(2.8)≤ CRd−2 · Px[H� < ∞] (2.9)≤ CRd−2 ·

∑
y∈�

g(x, y)
/

inf
z∈�

∑
y∈�

g(z, y).

By (2.5), we get∑
y∈�

g(x, y) ≤ CR2−d · |�| ≤ CR2−d ·
(

d

2

)
· 62 · (2R + 1)d−2 ≤ C.

It remains to show that infz∈�
∑

y∈� g(z, y) ≥ c · logR. By the definition of �, for any z ∈ � and any integer
1 ≤ k ≤ R, we have∣∣{y ∈ �: |y − z| = k

}∣∣≥ kd−3.

Therefore, uniformly in z ∈ �, we obtain

∑
y∈�

g(z, y) ≥
R∑

k=1

∑
y∈�: |y−z|=k

g(z, y)
(2.5)≥

R∑
k=1

c · k2−d · kd−3 ≥ c · logR.

Putting all the bounds together we get (3.3). �

3.2. Good vertices

Definition 3.3. Let � ∈N
Z

d
. We say that x′ ∈ Z is R-good for � if

(1) �(x) = 0 for all x ∈ �(x′),
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(2)
∑

x∈∂intQ(x′) �(x) ≤ Rd−1.

If x′ is not R-good, then we call it R-bad for �.

Remark 3.4. The choice of Rd−1 on the right-hand side of (2) is quite arbitrary. Any function f = f (R) which grows
faster than linearly would serve our purposes (see the proof of Lemma 3.5). Condition (2) of Definition 3.3 will be
important in Section 5, where we use it to give an upper bound on the number of excursions of the interlacement
trajectories inside ∂intQ(x′).

Note that for any R ≥ 0 and x′ ∈ Z,

the event {x ′ is R-good} is decreasing and σ(Ψy, y ∈ B(x′,R))-measurable. (3.4)

Lemma 3.5. For R ≥ 1, let uR = R2−d . Then

P
[
0 is R-good for LuR

]→ 1, as R → ∞.

Proof. By the definition of R-good vertices, it suffices to prove that

P
[
� ⊆ VuR

]→ 1 and P

[ ∑
x∈∂intQ(0)

LuR
x ≤ Rd−1

]
→ 1, as R → ∞.

The first statement follows from Lemma 3.2. Indeed,

P
[
� ⊆ VuR

]= e−uR ·cap(�)
(3.3)≥ e−c/ logR → 1.

As for the second statement, by the Markov inequality,

P

[ ∑
x∈∂intQ(0)

LuR
x > Rd−1

]
≤ R1−d ·

∑
x∈∂intQ(0)

E
[
LuR

x

]= R1−d · ∣∣∂intQ(0)
∣∣ ·E[LuR

0

] (2.18)≤ C · uR → 0.

This completes the proof of Lemma 3.5. �

For V1,V2 ⊆ Z
d and � ∈ N

Z
d
, we write “V1 ↔ V2 by a ∗-path in Z of R-bad vertices for �”, if there is a sequence

π = (x′
1, . . . , x

′
n) in Z of R-bad vertices for � such that

x′
1 ∈ V1, x′

n ∈ V2, ∀1 ≤ i ≤ n − 1:
∣∣x′

i+1 − x′
i

∣∣= 2R + 1. (3.5)

The next lemma proves that ∗-connected components of R-bad vertices for Lu in Z are small for large enough R and
small enough u. Then a standard relation between nearest-neighbor and ∗-connectivities implies the existence of a
unique infinite connected component of R-good vertices (see Corollary 3.7).

Lemma 3.6. There exist R ≥ 0, u1 > 0, c = c(d) > 0 and C = c(d) < ∞ such that for all u ≤ u1 and N ≥ 1, we have

P

[
0 ↔ ∂intB(0,N) by a ∗-path in Z of R-bad vertices for Lu

]
≤ Ce−Nc

. (3.6)

Proof. First of all, note that the F�-measurable event{
�: 0 ↔ ∂intB(0,N) by a ∗-path in Z of R-bad vertices for �

}
is increasing. Therefore, it suffices to prove that there exist R ≥ 0, u > 0, c > 0 and C < ∞ such that for all N ≥ 1,
(3.6) holds. (Then, by (2.17), the result will hold for all u′ smaller than u.)
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For x ∈ Z
d and integers R ≥ 0, L ≥ 1, consider the events

Gx,L,R =
⎧⎨⎩
{
� ∈N

Z
d
:

B(x,L) ↔ B(x,2L)c

by a ∗-path in Z of R-bad vertices for �

}
, if L ≥ R,

N
Z

d
, if L < R.

(3.7)

In order to prove (3.6), it suffices to show that there exist L0 ≥ 1, l0 > 1, R ≥ 0 and u > 0 such that

P
[
G0,Ln,R

(
Lu
)]≤ 2−2n

for all n ≥ 0, (3.8)

where Ln are defined in (2.22) (see also the notation in (2.16)). This will immediately follow from Lemma 2.2, as
soon as we show that

(Gx,L,R)x∈Zd ,L≥1,R≥0 is a family of increasing events cascading uniformly with complexity at most d , (3.9)

and that the family of events (Gx,L,R)x∈Zd ,L≥1,R≥0 satisfies (2.23).
We begin with the proof of (3.9). The events Gx,L,R are clearly increasing. For L ≥ R, we have � ∈ Gx,L,R if and

only if there exists a ∗-path π ′ = (y′
1, . . . , y

′
n) in Z of R-bad vertices for � satisfying∣∣y′

1 − x
∣∣≤ L, 2L <

∣∣y′
n − x

∣∣, ∀1 ≤ i ≤ n:
∣∣y′

i − x
∣∣≤ 2L + 2R + 1. (3.10)

Treating the cases L ≥ R and L < R separately and using (3.4) and (3.10), one can show that the event Gx,L,R is
σ(Ψy, y ∈ B(x,10L))-measurable. Let l be a multiple of 100, x ∈ Z

d , R ≥ 0, L ≥ 1. Let

Λ = L ·Zd ∩ B(x,3lL).

The set Λ immediately satisfies (2.19) and (2.20) (with λ = d), so we only need to check that Λ satisfies (2.21). By
(3.7), it is enough to consider the non-trivial case L ≥ R.

If � ∈ Gx,lL,R , then there exists a ∗-path π ′ = (y′
1, . . . , y

′
n) in Z of R-bad vertices for � satisfying |y′

1 − x| ≤ lL

and 2lL < |y′
n − x| ≤ 2lL + 2R + 1 ≤ 3lL, so that we can find x1, x2 ∈ Λ such that |y′

1 − x1| ≤ L, |y′
n − x2| ≤ L.

Note that |x1 − x2| ≥ lL − 2L > l
100L. Moreover, the path π ′ connects B(xi,L) to B(xi,2L)c for i ∈ {1,2}. Thus

� ∈ Gx1,L,R ∩ Gx2,L,R , which implies (2.21) and hence (3.9).
It remains to prove that (Gx,L,R)x∈Zd ,L≥1,R≥0 satisfies (2.23). Let us choose L0 = R. By (3.10) and (3.5) we have

Gx,R,R ⊆
⋃

x′∈B(x,R)∩Z

{
� ∈N

Z
d

: x′ is R-bad for �
}
.

Since |B(x,R) ∩ Z| = 1, the condition (2.23) follows from Lemma 3.5. Thus we can apply Lemma 2.2 to infer (3.8),
which completes the proof of Lemma 3.6. �

The following result states that there exists a ubiquitous infinite component of good vertices in Z. It is a conse-
quence of Lemma 3.6 and [5], Lemma 2.23, about the connectedness of the exterior ∗-boundary of a ∗-connected
subset of Zd .

Corollary 3.7. Fix R, u1, c = c(d) > 0, and C = C(d) < ∞ as in Lemma 3.6. For all u ≤ u1, we have

(1) for all n,N ≥ 1,

P

⎡⎢⎢⎣
B(0,N + n) \ B(0,N) contains a set S ⊂ Z such that
S is connected in Z, each x ∈ S is R-good for Lu, and
every ∗-path in Z from B(0,N + 1) to ∂intB(0,N + n)

intersects S

⎤⎥⎥⎦≥ 1 − C · ∣∣B(0,N + 1)
∣∣ · e−nc

, (3.11)
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(2) there exists a unique infinite connected component of R-good vertices for Lu in Z, which we denote by G∞, and
for all n ≥ 1,

P
[
G∞ contains a vertex in B(0, n)

]≥ 1 − C ·
∑
N≥n

e−Nc

, (3.12)

(3) the set
⋃

x′∈G∞ �(x′) is an infinite connected subset of Vu.

Proof. (1) Take n,N ≥ 1. Let

S̃ = B(0,N)

∪ {x ∈ B(0,N + n): x is connected to B(0,N + 1) by a ∗-path in B(0,N + n) of R-bad vertices for Lu
}
,

and consider the exterior ∗-boundary of S̃ in B(0,N + n):

Ŝ = {y ∈ B(0,N + n) \ S̃: y is a ∗-neighbor in Z of some x ∈ S̃
}
.

Note that every vertex in Ŝ is R-good. If S̃ ∩ ∂intB(0,N + n) = ∅, then every ∗-path in Z from B(0,N + 1) to
∂intB(0,N + n) intersects Ŝ . Non-trivially, it was proved in [5], Lemma 2.23 (see also a short proof in [16], Theo-
rem 4), that if S̃ ∩ ∂intB(0,N + n) = ∅, then Ŝ contains a connected component S in Z such that every ∗-path in Z
from B(0,N + 1) to ∂intB(0,N + n) intersects S . By translation invariance of Lu and (3.6), with c = c(d) > 0 and
C = C(d) < ∞ as in Lemma 3.6, and for all n,N ≥ 1, we have

P

[
B(0,N + 1) is connected to ∂intB(0,N + n)

by a ∗-path in Z of R-bad vertices for Lu

]
≤ ∣∣B(0,N + 1)

∣∣ · C · e−nc

.

Together with the above observations, this implies the first statement of Corollary 3.7.
(2) The existence of G∞ as well as (3.12) follow from (3.6) and planar duality (see, e.g., the proof of [9], Theo-

rem 2.1). The uniqueness of G∞ follows from (3.11) and the Borel–Cantelli lemma.
(3) The fact that

⋃
x′∈G∞ �(x′) is an infinite connected subset of Vu follows from (2), Definition 3.1 of �, and

Definition 3.3 of R-good vertices. �

4. Conditional independence for random interlacements

In this section we prove (in Lemma 4.4) that the behavior of the interlacement trajectories with labels at most u inside
a finite set K is independent of their behavior outside of K , given the information about entrance and exit points of
all the excursions into K of all the interlacement trajectories with labels at most u. As part of the proof, we will also
identify the conditional law of the excursions inside and outside K (see (4.11) and (4.12), respectively).

We begin by introducing notation and recalling some properties of the interlacement point measures, which we will
use to identify the above mentioned laws of excursions. We then properly define the excursions (in Section 4.2) and
the σ -algebras of events generated by excursions inside, outside, and on the boundary of K (in Section 4.3). Finally,
(in Section 4.4) we state and prove the conditional independence of the σ -algebras.

4.1. More preliminaries about interlacements

Recall the notation and the definition of the interlacement point process from Section 2.3. Let ω =∑
i≥0 δ(w∗

i ,ui ) be

an interlacement point process on W ∗ ×R+. For K ⊂⊂ Z
d and u > 0, let

ωK,u =
∑
i≥0

δ(w∗
i ,ui )1{w∗

i ∈W ∗
K,ui≤u} and ω − ωK,u =

∑
i≥0

δ(w∗
i ,ui )1{w∗

i /∈W ∗
K }∪{ui>u} (4.1)

be the restrictions of ω to the set of pairs (w∗
i , ui) with, respectively, w∗

i intersecting K and ui ≤ u, and either w∗
i

not intersecting K or ui > u. By the definition of ω, the point measures ωK,u and ω − ωK,u are independent Poisson



Vacant set of random interlacements with small intensity 1177

point processes. By (2.11), each ωK,u is a finite point measure. For each K ⊂⊂ Z
d and u > 0, ωK,u is a Poisson point

process on W ∗
K ×R+ with intensity measure

1W ∗
K×[0,u] · ν(dw∗)du,

where the measure ν is defined in (2.13). In particular, the total mass of ωK,u has Poisson distribution with parameter
u · cap(K) (this follows from (2.12) and (2.13)), and all the ui ’s in the definition of ωK,u are almost surely different.
Therefore, ωK,u admits the following representation:

ωK,u =
NK,u∑
i=1

δ(w∗
i ,ui ), (4.2)

where NK,u has Poisson distribution with parameter u · cap(K), and given NK,u, (a) (u1, . . . , uNK,u
) and (w∗

1, . . . ,

w∗
NK,u) are independent, (b) u1 < · · · < uNK,u

are obtained by relabeling independent uniform random variables on
[0, u], (c) w∗

i are independent and each distributed according to 1W ∗
K

· ν(dw∗)/ cap(K).
For each w∗

i in (4.2),

let Xi be the unique trajectory from (π∗)−1(w∗
i ) ⊂ W parametrized in such a way that Xi(0) ∈ K

and Xi(t) /∈ K for all t < 0.
(4.3)

(Here we abuse notation and denote by Xi (bi-infinite) trajectories rather than canonical coordinate maps in W or W+,
see below (2.1).) By (2.12) and (2.13), given NK,u and (ui : 1 ≤ i ≤ NK,u), the random trajectories (Xi : 1 ≤ i ≤ NK,u)

are independent and for all A,B ∈W+ (see below (2.1)), x ∈ Z
d ,

P
[(

Xi(−t): t ≥ 0
) ∈ A,Xi(0) = x,

(
Xi(t): t ≥ 0

) ∈ B)
]= P K

x [A] · ẽK(x) · Px[B], (4.4)

where P K
x is the law of simple random walk started at x and conditioned on H̃K = ∞, and ẽK is defined in (2.7).

4.2. Interlacement excursions

Definition 4.1. For w ∈ W , let R1(w) = inf{n ∈ Z: w(n) ∈ K} be the first entrance time of w to K . If R1(w) < ∞,
let D1(w) = inf{n > R1(w): w(n) /∈ K} be the first exit time from K . Similarly, for k ≥ 2, if Rk−1(w) < ∞, let

Dk−1(w) = inf
{
n > Rk−1(w): w(n) /∈ K

}
and Rk(w) = inf

{
n > Dk−1(w): w(n) ∈ K

}
.

For w with R1(w) < ∞, let

M(w) = max
{
k ≥ 1: Rk(w) < ∞}

.

By (2.10), M(w) < ∞ for any w ∈ W .
Abusing notation, we extend the above definitions of Rk , Dk and M to trajectories w+ ∈ W+ in a natural way,

namely, defining R1(w+) = HK(w+) (see (2.2)), and all the other variables with the same formulas as above.

Given (Xi : 1 ≤ i ≤ NK,u) as in (4.3), for each 1 ≤ i ≤ NK,u, let

Mi = M(Xi)

be the number of times trajectory Xi revisits K , and for each 1 ≤ j ≤ Mi , let

Ai,j = Rj(Xi) and Bi,j = Dj(Xi) − 1

be the times when j th excursion of Xi inside K begins and ends. Note that Xi(t) ∈ K if and only if Ai,j ≤ t ≤ Bi,j

for some 1 ≤ j ≤ Mi . For 1 ≤ i ≤ NK,u and 1 ≤ j ≤ Mi , let

T in
i,j = Bi,j − Ai,j , Xin

i,j (t) = Xi(Ai,j + t) for 0 ≤ t ≤ T in
i,j ,
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and for 1 ≤ i ≤ NK,u, 1 ≤ j ≤ Mi − 1, let

T out
i,j = Ai,j+1 − Bi,j , Xout

i,j (t) = Xi(Bi,j + t) for 0 ≤ t ≤ T out
i,j .

Note that (Xin
i,j : 1 ≤ j ≤ Mi) correspond to the pieces of Xi inside K , and (Xout

i,j : 1 ≤ j ≤ Mi − 1) correspond to the
finite pieces of Xi outside K (except for their start and end points). Finally, let

X−
i (t) = Xi(−t) and X+

i (t) = Xi(t + Bi,Mi
) for t ≥ 0,

be the (infinite) pieces of trajectory Xi up to the first enter in K and from the last visit to K , respectively.

4.3. Interior, exterior, and boundary σ -algebras

Let F in
K,u be the σ -algebra generated by the random variables

NK,u, (ui : 1 ≤ i ≤ NK,u), (Mi : 1 ≤ i ≤ NK,u),
(
Xin

i,j : 1 ≤ i ≤ NK,u,1 ≤ j ≤ Mi

)
,

i.e., F in
K,u is generated by the excursions of the interlacement trajectories with labels at most u inside K .

Let Fout
K,u be the σ -algebra generated by

ω − ωK,u, NK,u, (ui : 1 ≤ i ≤ NK,u), (Mi : 1 ≤ i ≤ NK,u),(
X−

i : 1 ≤ i ≤ NK,u

)
,

(
Xout

i,j : 1 ≤ i ≤ NK,u,1 ≤ j ≤ Mi − 1
)
,

(
X+

i : 1 ≤ i ≤ NK,u

)
i.e., Fout

K,u is generated by the excursions of the interlacement trajectories with labels at most u outside K and ω−ωK,u

(see (4.1)).
Let FAB

K,u be the σ -algebra generated by

NK,u, (ui : 1 ≤ i ≤ NK,u), (Mi : 1 ≤ i ≤ NK,u),((
Xi(Ai,j ),Xi(Bi,j )

)
: 1 ≤ i ≤ NK,u,1 ≤ j ≤ Mi

)
,

i.e., FAB
K,u is generated by the entrance and exit points of the interlacement trajectories with labels at most u to K .

The following properties are immediate from the definitions.

Claim 4.2. For any K ⊂⊂ Z
d ,

(1) FAB
K,u ⊂F in

K,u and FAB
K,u ⊂Fout

K,u,

(2) σ(F in
K,u,Fout

K,u) =FΩ (see below (2.11)),

(3) (Lu
x : x ∈ K) is F in

K,u-measurable, and (Lu
x : x ∈ Z

d \K) is Fout
K,u-measurable (recall the definition of Lu in (2.15)).

4.4. Conditional independence

In this section we prove the main result of Section 4, which states that the σ -algebras F in
K,u (generated by the ex-

cursions of the interlacement trajectories inside K) and Fout
K,u (generated by the excursions outside K and ω − ωK,u

(see (4.1))) are conditionally independent, given FAB
K,u (generated by the entrance and exit points of the interlacement

trajectories to K). In the proof of (1.3), we will only use Lemma 4.4(a) and (4.11) (see the proofs of Lemmas 5.11
and 5.13, respectively). We begin with a definition.

Definition 4.3. For integers n ≥ 1, 1 ≤ i ≤ n, Ui ∈ B([0, u]), Ai ,Bi ∈ W+, integers mi ≥ 1, 1 ≤ j ≤ mi , xi,j , yi,j ∈
∂intK , finite nearest-neighbor trajectories τ in

i,j from xi,j to yi,j in K , and for 1 ≤ j ′ ≤ mi − 1, finite nearest-neighbor
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trajectories τ out
i,j ′ from yi,j ′ to xi,j ′+1 outside K except for the start and end points, consider the events

EAB
K,u =

{
NK,u = n,ui ∈ Ui ,Mi = mi,Xi(Ai,j ) = xi,j ,Xi(Bi,j ) = yi,j ,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi

}
∈ FAB

K,u, (4.5)

E in
K,u =

{
NK,u = n,ui ∈ Ui ,Mi = mi,Xi(Ai,j ) = xi,j ,Xi(Bi,j ) = yi,j ,

Xin
i,j = τ in

i,j , for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi

}
∈ F in

K,u, (4.6)

Eout
K,u =

⎧⎨⎩
NK,u = n,ui ∈ Ui ,Mi = mi,Xi(Ai,j ) = xi,j ,Xi(Bi,j ) = yi,j ,

Xout
i,j ′ = τ out

i,j ′ ,X
−
i ∈Ai ,X

+
i ∈ Bi ,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi , 1 ≤ j ′ ≤ mi − 1

⎫⎬⎭ ∈Fout
K,u. (4.7)

Note that

the σ -algebras F in
K,u and FAB

K,u are respectively generated by events of form (4.6) and (4.5), and Fout
K,u

is generated by the events Eout
K,u ∩ {ω − ωK,u ∈ E}, with E ∈ FΩ (see below (2.11)).

(4.8)

Lemma 4.4. For any K ⊂⊂ Z
d , u > 0,

(a) F in
K,u and Fout

K,u are conditionally independent, given FAB
K,u, and

(b) for any choice of the parameters in Definition 4.3, we have

P
[
E in

K,u ∩ Eout
K,u

]= P
[
EAB

K,u

] · P[E in
K,u|EAB

K,u

] · P[Eout
K,u|EAB

K,u

]
, (4.9)

and

P
[
EAB

K,u

]= P[NK,u = n] · P[ui ∈ Ui : 1 ≤ i ≤ n]

·
n∏

i=1

ẽK(xi,1) · Pxi,1

[
M(X) = mi,X(Rj ) = xi,j ,X(Dj − 1) = yi,j

for all 1 ≤ j ≤ mi

]
, (4.10)

P
[
E in

K,u|EAB
K,u

]=
n∏

i=1

mi∏
j=1

Pxi,j
[(X(t): 0 ≤ t ≤ TK − 1) = τ in

i,j ]
Pxi,j

[X(TK − 1) = yi,j ] , (4.11)

P
[
Eout

K,u|EAB
K,u

]=
n∏

i=1

P K
xi,1

[Ai] · P K
yi,mi

[Bi] ·
mi−1∏
j ′=1

Pyi,j ′ [(X(t): 0 ≤ t ≤ H̃K) = τ out
i,j ′ , H̃K < ∞]

Pyi,j ′ [X(H̃K) = xi,j ′+1, H̃K < ∞] , (4.12)

where TK and H̃K are defined in (2.4) and (2.3), respectively.

Proof. Statement (a) immediately follows from (4.9), the fact that point processes ωK,u and ω−ωK,u are independent,
the inclusion E in

K,u,Eout
K,u ⊆ EAB

K,u, and (4.8).
To prove (b), we first observe that the expressions in (4.10), (4.11), and (4.12) indeed give rise to probability

distributions.
We rewrite the left-hand side of (4.9) using the definition (4.2) of ωK,u and (4.4) as

P
[
E in

K,u ∩ Eout
K,u

] = P[NK,u = n] · P[ui ∈ Ui : 1 ≤ i ≤ n] ·
n∏

i=1

P K
xi,1

[Ai] · ẽK(xi,1)

·
n∏

i=1

Pxi,1

⎡⎣ M(X) = mi,X(Rj ) = xi,j ,X(Dj − 1) = yi,j ,

(X(t): Rj ≤ t ≤ Dj − 1) = τ in
i,j , (X(t): Dj ′ − 1 ≤ t ≤ Rj ′+1) = τ out

i,j ′,
(X(t + Dmi

− 1): t ≥ 0) ∈ Bi for all 1 ≤ j ≤ mi , 1 ≤ j ′ ≤ mi − 1

⎤⎦ .

Note that this equality immediately implies (4.10) by taking all Ai and Bi equal to W+ and summing over all possible
paths τ in

i,j and τ out
i,j ′ .



1180 A. Drewitz, B. Ráth and A. Sapozhnikov

Consecutive applications of the Markov property for simple random walk imply that the above expression equals

P[NK,u = n] · P[ui ∈ Ui : 1 ≤ i ≤ n] ·
n∏

i=1

P K
xi,1

[Ai] · ẽK(xi,1)

·
n∏

i=1

mi∏
j=1

Pxi,j

[
X(t) = τ in

i,j (t): 0 ≤ t ≤ ∣∣τ in
i,j

∣∣− 1
]

·
n∏

i=1

mi−1∏
j ′=1

Pyi,j ′
[
X(t) = τ out

i,j ′(t): 0 ≤ t ≤ ∣∣τ out
i,j ′
∣∣− 1

]

·
n∏

i=1

Pyi,mi
[Bi , H̃K = ∞]. (4.13)

We will now rearrange the terms in (4.13) to obtain (4.9), (4.11), and (4.12). We begin with a few observations. Note
that

Pyi,j ′
[
X(t) = τ out

i,j ′(t),0 ≤ t ≤ ∣∣τ out
i,j ′
∣∣− 1

]= Pyi,j ′
[(

X(t): 0 ≤ t ≤ H̃K

)= τ out
i,j ′
]
, (4.14)

and

Pyi,mi
[Bi , H̃K = ∞] = eK(yi,mi

) · P K
yi,mi

[Bi]. (4.15)

Also note that by the Markov property at time |τ in
i,j | − 1, we have

Pxi,j

[
X(t) = τ in

i,j (t),0 ≤ t ≤ ∣∣τ in
i,j

∣∣− 1
]

= Pxi,j
[X(t) = τ in

i,j (t),0 ≤ t ≤ |τ in
i,j | − 1,X(|τ in

i,j |) /∈ K]
Pyi,j

[X(1) /∈ K]

= Pxi,j
[(X(t): 0 ≤ t ≤ TK − 1) = τ in

i,j ]
Pyi,j

[X(1) /∈ K] . (4.16)

We now plug in the expressions (4.14), (4.15), and (4.16) into (4.13) to get that P[E in
K,u ∩ Eout

K,u] equals

P[NK,u = n] · P[ui ∈ Ui : 1 ≤ i ≤ n] ·
n∏

i=1

P K
xi,1

[Ai] · ẽK(xi,1) · eK(yi,mi
) · P K

yi,mi
[Bi]

·
n∏

i=1

mi∏
j=1

Pxi,j
[(X(t): 0 ≤ t ≤ TK − 1) = τ in

i,j ]
Pyi,j

[X(1) /∈ K] ·
mi−1∏
j ′=1

Pyi,j ′
[(

X(t): 0 ≤ t ≤ H̃K

)= τ out
i,j ′
]
. (4.17)

By taking Ai = Bi = W+ in (4.17) and summing over all τ in
i,j and τ out

i,j ′ , we obtain that

P
[
EAB

K,u

] = P[NK,u = n] · P[ui ∈ Ui : 1 ≤ i ≤ n]

·
n∏

i=1

ẽK(xi,1) · eK(yi,mi
) ·

mi∏
j=1

Pxi,j
[X(TK − 1) = yi,j ]
Pyi,j

[X(1) /∈ K] ·
mi−1∏
j ′=1

Pyi,j ′
[
X(H̃K) = xi,j ′+1

]
. (4.18)

The expression (4.11) follows from (4.17) by taking all Ai = Bi = W+ in (4.17), summing over all τ out
i,j ′ , and dividing

by (4.18). Similarly, the expression (4.12) follows from (4.17) by summing (4.17) over all τ in
i,j and dividing by (4.18).
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Finally, to obtain (4.9), we observe that the product of the right-hand sides of (4.11), (4.12), and (4.18) equals (4.17).
The proof of Lemma 4.4 is complete. �

5. Proof of Theorem 1.1

Statement (1.2) of Theorem 1.1 follows from Corollary 3.7(2) and (3). Statement (1.3) is proved in Section 5.3. We
will deduce it there from Claim 5.2 and Lemma 5.4, which we state in Section 5.1.

We begin with a general overview of the proof of (1.3). As we already know from Corollary 3.7, we can choose R

and u such that Vu contains an infinite connected subset
⋃

x′∈G∞ �(x′), where G∞ is the unique infinite connected
component of R-good vertices in Z for Lu. The goal is to show that if a vertex of Zd is in a large connected component
of Vu, then, with high probability, it must be (locally) connected to

⋃
x′∈G∞ �(x′). This is realized in Lemma 5.4.

The crucial observation is that by Corollary 3.7, with high probability, any long nearest-neighbor path in Z
d will often

intersect
⋃

x′∈G∞ B(x′,R) (see (5.2) and (5.5)).
The proof of Lemma 5.4 proceeds by exploring the connected component of a vertex in Vu, and showing that

every visit to a new box of
⋃

x′∈G∞ B(x′,R) gives a fresh, uniformly positive chance for the (already explored) vacant
set to merge with

⋃
x′∈G∞ �(x′) (see Lemmas 5.5 and 5.10). The key observation in proving that the history of this

exploration does not have a negative effect on the success probability of the next merger comes from Lemma 4.4: if we
consider a box of radius R, the events which depend on the behavior of the interlacement trajectories outside this box
are conditionally independent of what they do inside the box, given the collection of entrance and exit points of the
excursions inside the box. As we already pointed out earlier, some care is still needed, since random interlacements do
not posess the finite energy property. Our definition of good vertices (more precisely, property (1) of Definition 3.3)
allows to overcome this difficulty (see the proof of Lemma 5.10). In order to get a uniform lower bound in (5.31)
of Lemma 5.10, we use the fact that the number of excursions of the interlacement trajectories inside good boxes
(corresponding to good vertices) is bounded (see property (2) of Definition 3.3).

We now proceed with the proof of (1.3).

From now on we fix R and u1 that satisfy (3.6), and consider u ≤ u1. (5.1)

Since R is now fixed, we will call R-good/R-bad vertices (see Definition 3.3) simply good/bad.

5.1. Large cluster in Vu is likely to be ubiquitous

The main result of this section is Lemma 5.4. We begin with definitions and preliminary observations. Recall the
definitions of the coarse grained lattice Z from (3.1) and the ball B(x′,N) in Z from below (3.1).

For N ≥ 1, let

kN = �√N� and KN,k = N + kN · k for 0 ≤ k ≤ kN .

Now we define an event that a large hypercube B(0,2N) in Z contains a (large) connected component of good
vertices in Z which contains separating shells in each of kN concentric annuli B(0,KN,k)\B(0,KN,k−1), 1 ≤ k ≤ kN .

Definition 5.1. For N ≥ 1, let HN be the event that

1. B(0,N) is connected to ∂intB(0,2N) by a nearest-neighbor path of good vertices for Lu in Z,
2. for all 1 ≤ k ≤ kN , B(0,KN,k) \ B(0,KN,k−1) contains a set Sk ⊂ Z (which we call a shell in B(0,KN,k) around

B(0,KN,k−1)) such that

(a) Sk is connected in Z,
(b) each x ∈ Sk is good for Lu, and
(c) every ∗-path in Z from B(0,KN,k−1) to ∂intB(0,KN,k) intersects Sk .

Claim 5.2. It follows from Corollary 3.7 that for R and u ≤ u1 as in (5.1), there exist constants c = c(d) > 0 and
C = C(d) < ∞ (possibly different from the ones in Lemma 3.6) such that

P[HN ] ≥ 1 − Ce−Nc

. (5.2)
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Fig. 2. The event HN . In each of the kN concentric annuli B(0,KN,k) \ B(0,KN,k−1), 1 ≤ k ≤ kN , there exists a connected component Sk in Z
of good vertices (which we call a shell) separating B(0,KN,k−1) from ∂intB(0,KN,k), and all the Sk are (disjoint) parts of the same connected
component of good vertices in B(0,2N).

Note that if HN occurs, then for each 1 ≤ k ≤ kN ,

Sk can be defined as the unique connected component of good vertices in B(0,KN,k) \ B(0,KN,k−1)

such that every ∗-path in Z from B(0,KN,k−1) to ∂intB(0,KN,k) intersects Sk .
(5.3)

We will use this definition of Sk here. If HN does not occur, we set Sk = ∅ for all k. Note that by Definition 5.1 the
sets Sk are disjoint subsets of Z, and for each 1 ≤ k ≤ kN ,

S1, . . . ,Sk are in the same connected component of good vertices in B(0,KN,k). (5.4)

In terms of connectivities in Z
d , the key property of Sk can be stated as follows: if the event HN occurs, then for

each 1 ≤ k ≤ kN ,

every nearest-neighbor path in Z
d from B(0, (2R + 1)KN,k−1) to ∂intB(0, (2R + 1)KN,k) intersects

the set
⋃

x′∈Sk
B(x′,R).

(5.5)

By (5.3), (5.4), Definition 3.1 and Definition 3.3, if HN occurs, then for each 1 ≤ k ≤ kN ,

the sets
⋃

x′
1∈S1

�(x′
1), . . . ,

⋃
x′
k∈Sk

�(x′
k) are in the same connected component of Vu ∩ B(0,

(2R + 1)KN,k + R), which we denote by Ck .
(5.6)

If HN does not occur, we define Ck =∅. By (5.6),

Ck ⊆ Ck+1 for all 1 ≤ k ≤ kN − 1. (5.7)

As we will see in Section 5.3, in order to prove (1.3), it suffices to show that, with high probability, CkN
is the only

connected component of Vu ∩ B(0, (2R + 1) · 2N +R) that intersects B(0, (2R + 1) ·N) and ∂intB(0, (2R + 1) · 2N).
To prove the latter statement, we need a more general definition.

Definition 5.3. For z ∈ B(0, (2R + 1) · N) and 1 ≤ k ≤ kN , let Az,k be the event that

1. HN occurs,
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2. z is connected to ∂intB(0, (2R + 1) · KN,k) by a nearest-neighbor path in Vu,
3. z /∈ Ck ,

and let Az,0 =HN .

The main result of this section is the following lemma.

Lemma 5.4. For R and u as in (5.1), there exists γ = γ (d,R) > 0 such that

P[Az,kN
] ≤ (1 − γ )kN for all N ≥ 1 and z ∈ B

(
0, (2R + 1) · N). (5.8)

Proof. Fix z ∈ B(0, (2R + 1) · N). Without loss of generality we may assume that P[Az,kN
] �= 0. By (5.7), we have

the inclusion

Az,k ⊆Az,k−1 for all 1 ≤ k ≤ kN . (5.9)

Using (5.9), we obtain

P[Az,kN
] = P[HN ] ·

kN∏
k=1

P[Az,k|Az,k−1].

To complete the proof of (5.8) it suffices to show that for all z ∈ B(0, (2R + 1) · N), 1 ≤ k ≤ kN and some γ =
γ (d,R) > 0,

P[Az,k|Az,k−1] ≤ 1 − γ. (5.10)

This follows from the more general Lemma 5.5 below. Before we state the lemma, we need some notation.
Define the random variable ΣG,N :Ω → {0,1}B(0,2N) which keeps track of good and bad vertices in B(0,2N) as

ΣG,N = (1{x′ is good for Lu}: x′ ∈ B(0,2N)
)
. (5.11)

Note that

HN ∈ σ(ΣG,N ) for all N , (5.12)

and, in particular,

for all 1 ≤ k ≤ kN , the set Sk is measurable with respect to σ(ΣG,N ). (5.13)

For 1 ≤ k ≤ kN , if HN occurs,

let Dk be the (unique) connected component of Zd \⋃x′∈Sk
B(x′,R) which contains the origin, (5.14)

and let Dk = B(0, (2R + 1) · KN,k − R) otherwise. By (5.13),

Dk is measurable with respect to σ(ΣG,N ), for all 1 ≤ k ≤ kN . (5.15)

By (5.5),

B
(
0, (2R + 1) · KN,k−1 + R

)⊆Dk ⊆ B
(
0, (2R + 1) · KN,k − R

)
. (5.16)

Define the random variables Σk :Ω → {0,1}B(0,(2R+1)·KN,k−R) which keep track of the interlacement configuration
inside Dk as

Σk = (1{x∈Iu∩Dk}: x ∈ B
(
0, (2R + 1) · KN,k − R

))
, 1 ≤ k ≤ kN . (5.17)

The following lemma implies (5.10), as we show in (5.20).
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Fig. 3. The inner and outer boxes are B(0, (2R + 1) · KN,k−1 + R) and B(0, (2R + 1) · KN,k + R), respectively. The set Dk ⊆ Z
d is the unique

connected component of Zd \⋃x′∈Sk
B(x′,R), which contains the origin.

Lemma 5.5. There exists γ = γ (d,R) > 0 such that for all z ∈ B(0, (2R + 1) · N) and 1 ≤ k ≤ kN ,

1HN
· P[Az,k|ΣG,N ,Σk] ≤ 1 − γ, P-a.s. (5.18)

We postpone the proof of Lemma 5.5 until Section 5.2, and now complete the proof of Lemma 5.4 by showing how
Lemma 5.5 implies (5.10).

By (5.6), Definition 5.3, (5.12), (5.15), and (5.16), we have

Az,k−1 ∈ σ(ΣG,N ,Σk) for each 1 ≤ k ≤ kN . (5.19)

Therefore, for each 1 ≤ k ≤ kN ,

P[Az,k] (5.9),(5.19)= E
[
1Az,k−1 · P[Az,k|ΣG,N ,Σk]

] (5.18)≤ (1 − γ ) · P[Az,k−1]. (5.20)

This implies (5.10) and completes the proof of Lemma 5.4 subject to Lemma 5.5, which will be proved in Sec-
tion 5.2. �

5.2. Proof of Lemma 5.5

In this section we prove Lemma 5.5. Recall the definitions of the configuration ΣG,N of good and bad vertices of
B(0,2N) (see (5.11)), the event HN (see Definition 5.1) guaranteeing the presence of kN = �√N� connected shells
Sk , 1 ≤ k ≤ kN of good boxes (see (5.3)), the domain Dk ⊆ Z

d surrounded by
⋃

x′∈Sk
B(x′,R) (see (5.14)), and the

configuration Σk of occupied/vacant vertices of Dk (see (5.17)).
The occurrence of event Az,k guarantees the existence of a vacant path in Dk from z to ∂intDk with certain restric-

tions on the location of the end point of this path on ∂intDk . These properties are reflected in the following definition.

Definition 5.6. For z ∈ B(0, (2R + 1) · N), and 1 ≤ k ≤ kN , let Ãz,k be the event that (a) HN occurs, and (b) there
exists a nearest-neighbor path πk in Dk from z to a vertex xk ∈ ∂intDk \ ∂ext

⋃
x′∈Sk

�(x′) such that every vertex x

along this path (including xk) satisfies Σk(x) = 0 (i.e. x ∈ Vu, cf. (5.17)). If there are several such paths, we pick one
in a predetermined, non-random fashion.
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Fig. 4. If the event Ãz,k occurs, there exists a vacant path πk from z to xk ∈ ∂intDk in Dk such that xk /∈ ∂ext
⋃

x′∈Sk
�(x′). There exists a unique

x′
k

∈ Sk such that xk ∈ ∂extQ(x′
k
) (and xk /∈ ∂ext�(x′

k
)). The cube Q(x′

k
) is denoted by Qk . The unique neighbor of xk in ∂intQk is denoted by x̃k .

The properties of Ãz,k that are useful to us are the following:

Ãz,k (and hence πk and xk) is measurable with respect to σ(ΣG,N ,Σk), (5.21)

and, by Definition 5.3,

Az,k ⊆ Ãz,k. (5.22)

Indeed, (5.21) is immediate from Definition 5.6. To see that (5.22) holds, note that if Az,k occurs, then by (5.16) z is
connected to ∂intDk by a nearest-neighbor path of vertices x with Σk(x) = 0. However, by (5.6),

⋃
x′∈Sk

�(x′) ⊆ Ck

and, by Definition 5.3, z /∈ Ck , therefore any such path must avoid ∂ext
⋃

x′∈Sk
�(x′). This implies (5.22).

By the definition of Ãz,k , xk ∈ ∂intDk \ ∂ext
⋃

x′∈Sk
�(x′). Therefore, there exists a unique

x′
k ∈ Sk such that xk belongs to the exterior boundary of Qk = Q(x′

k) (see (3.2)) and is not adjacent
to any of the vertices in �(x′

k).
(5.23)

Also there exists a (unique) x̃k ∈ Q(x′
k) \ �(x′

k) such that xk ∼ x̃k . Moreover, since x̃k /∈ �(x′
k),

xk is the only nearest-neighbor of x̃k which is outside Q(x′
k). (5.24)

The key step in the proof of Lemma 5.5 is Lemma 5.10, in which we show that given the configurations ΣG,N of
good and bad vertices of B(0,2N) and Σk of occupied/vacant vertices of Dk satisfying the event Ãz,k , and given
the σ -algebra generated by the interlacement excursions outside Q(x′

k), with uniformly positive probability there is a
realization of the interlacement excursions inside Q(x′

k) such that x′
k is good, and xk is connected to �(x′

k) in Vu ∩
(Q(x′

k) ∪ {xk}). Once this is done, Lemma 5.5 immediately follows, as we show after the statement of Lemma 5.10.
To state Lemma 5.10, we need some notation.

Definition 5.7. Let K ⊂⊂ Z
d . In the notation of Section 4.2, let Xin

K be the (random) vector

Xin
K = (Xin

i,j : 1 ≤ i ≤ NK,u,1 ≤ j ≤ Mi

)
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of the excursions inside K of the interlacement trajectories from the support of ωK,u (numbered in order of increase
of their labels), and XAB

K the vector

XAB
K = ((Xi(Ai,j ),Xi(Bi,j )

)
: 1 ≤ i ≤ NK,u,1 ≤ j ≤ Mi

)
of start and end points of all these excursions. Note that

Xin
K is measurable with respect to F in

K,u, and XAB
K with respect to FAB

K,u, (5.25)

with F in
K,u and FAB

K,u defined in Section 4.3.

Definition 5.8. For x′ ∈ Z, let T in
x′ = T in

x′ (XAB
Q(x′)) be the set of all vectors

τ in = (τ in
i,j : 1 ≤ i ≤ NQ(x′),u,1 ≤ j ≤ Mi

)
of finite nearest-neighbor trajectories from Xi(Ai,j ) to Xi(Bi,j ) inside Q(x′) such that

(a) all the τ in
i,j avoid �(x′), and

(b) the total number of visits to ∂intQ(x′) of all the τ in
i,j is at most Rd−1.

Note that

T in
x′ is measurable with respect to FAB

Q(x′),u (5.26)

(see Section 4.3), and by Definition 3.3, for any x ′ ∈ Z,{
Xin

Q(x′) ∈ T in
x′
}= {x′ is good for Lu

}
. (5.27)

Claim 5.9. Recall the definition of x′
k and Qk from (5.23).

(1) If Ãz,k occurs, then for all 1 ≤ i ≤ NQk,u, 1 ≤ j ≤ Mi , and for any element (Xi(Ai,j ),Xi(Bi,j )) of XAB
Qk

, we have

Xi(Ai,j ),Xi(Bi,j ) ∈ ∂intQk \ (�(x′
k

)∪ {̃xk}
)
. (5.28)

Indeed, if Ãz,k occurs, then x′
k is good for Lu and, by Definition 5.6, xk ∈ Vu. Together with (5.24), this implies

(5.28).
(2) If Ãz,k occurs, then

Xin
Qk

∈ T in
x′
k
. (5.29)

Indeed, (5.29) follows from (5.27) and the fact that the vertex x′
k is good for Lu when Ãz,k occurs.

Lemma 5.5 follows from the next lemma. Recall Definition 5.3 of the event Az,k , the definition of x′
k and Qk from

(5.23), and the notion of the σ -algebra Fout
K,u generated by the interlacement excursions outside of K ⊂⊂ Z

d and
ω − ωK,u from Section 4.3.

Lemma 5.10. There exists γ = γ (d,R) > 0 such that for any z ∈ B(0, (2R+1) ·N) and 1 ≤ k ≤ kN , P-almost surely,
for each realization of ΣG,N , Σk , and XAB

Qk
satisfying Ãz,k , there exists

ρin = ρin(ΣG,N ,Σk,X
AB
Qk

) ∈ T in
x′
k

(5.30)

such that for all x′ ∈ Z,

1Ãz,k∩{x′
k=x′} · P[Xin

Qk
= ρin|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]≥ 1Ãz,k∩{x′

k=x′} · γ (5.31)
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and

Ãz,k ∩ {Xin
Qk

= ρin}⊆ Ãz,k \Az,k. (5.32)

Before we prove Lemma 5.10, we use it to finish the proof of Lemma 5.5. We have

1HN
· P[Az,k|ΣG,N ,Σk] (5.21),(5.22)= 1Ãz,k

· P[Az,k|ΣG,N ,Σk]
(5.32)≤ 1Ãz,k

· P[Xin
Qk

�= ρin|ΣG,N ,Σk

]
(5.31)≤ 1Ãz,k

· (1 − γ ).

This finishes the proof of Lemma 5.5, subject to Lemma 5.10.
It remains to prove Lemma 5.10. We begin with some preliminary results. Recall the notion of the σ -algebras F in

K,u,

Fout
K,u, and FAB

K,u from Section 4.3.

Lemma 5.11. For any x′ ∈ Z and E in ∈ F in
Q(x′),u, we have, P-almost surely, that

1Ãz,k∩{x′
k=x′} · P[E in|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]

= 1Ãz,k∩{x′
k=x′} · P[E in ∩ {x′ is good for Lu}|FAB

Q(x′),u]
P[{x′ is good for Lu}|FAB

Q(x′),u]
. (5.33)

Remark 5.12. Note that Ãz,k ∩ {x′
k = x′} ⊆ {x′ is good for Lu}. Therefore,

P
[
Ãz,k ∩ {x′

k = x′}∩ {ω: P
[{

x′ is good for Lu
}|FAB

Q(x′),u
]= 0

}]= 0.

Proof of Lemma 5.11. Let z ∈ B(0, (2R + 1) · N). Let

σG,N ∈ {0,1}B(0,2N), σk ∈ {0,1}B(0,(2R+1)·KN,k−R),

∂k ⊆ B
(
0, (2R + 1) · KN,k − R

)
and x′ ∈ B(0,2N)

be such that

{ΣG,N = σG,N ,Σk = σk} ⊆ Ãz,k ∩ {x′
k = x′}∩ {Dk = ∂k}, (5.34)

where Dk is defined in (5.14). Let

K = Q
(
x′).

In order to prove (5.33), it suffices to show that for any events E in ∈F in
K,u and Eout ∈Fout

K,u, we have

P
[
E in ∩ Eout ∩ {ΣG,N = σG,N ,Σk = σk}

]
= E

[
P[E in ∩ {x′ is good for Lu}|FAB

K,u]
P[{x′ is good for Lu}|FAB

K,u]
;Eout ∩ {ΣG,N = σG,N ,Σk = σk}

]
. (5.35)

Let

Σout
G,N

= (1{̃x′ is good for Lu}: x̃′ ∈ B(0,2N) \ {x′})
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be the restriction of ΣG,N to B(0,2N) \ {x′}, and let σ out
G,N

∈ {0,1}B(0,2N)\{x′} be the restriction of σG,N to B(0,2N) \
{x′}. Consider the events

Ẽ in = {x′ is good for Lu
}
,

Ẽout = {Σout
G,N

= σ out
G,N

,
(
1{x∈Iu∩∂k}: x ∈ B

(
0, (2R + 1) · KN,k − R

))= σk

}
.

Note that by Claim 4.2(3) and Definition 3.3, we have

Ẽ in ∈ F in
K,u, (5.36)

by Claim 4.2(3) and the fact that ∂k ∩ K =∅,

Ẽout ∈Fout
K,u, (5.37)

and by (5.34),

{ΣG,N = σG,N ,Σk = σk} = Ẽ in ∩ Ẽout. (5.38)

Using these observations and Lemma 4.4(a), we rewrite the left-hand side of (5.35) as

P
[
E in ∩ Eout ∩ {ΣG,N = σG,N ,Σk = σk}

]
(5.38)= P

[(
E in ∩ Ẽ in)∩ (Eout ∩ Ẽout)]

Lemma 4.4(a),(5.36),(5.37)= E
[
P
[
E in ∩ Ẽ in|FAB

K,u

] · P[Eout ∩ Ẽout|FAB
K,u

]]
= E

[
P[E in ∩ Ẽ in|FAB

K,u]
P[Ẽ in|FAB

K,u]
· P[Ẽ in|FAB

K,u

] · P[Eout ∩ Ẽout|FAB
K,u

]]
Lemma 4.4(a),(5.36),(5.37)= E

[
P[E in ∩ Ẽ in|FAB

K,u]
P[Ẽ in|FAB

K,u]
· P[Ẽ in ∩ Eout ∩ Ẽout|FAB

K,u

]]
(5.38)= E

[
P[E in ∩ Ẽ in|FAB

K,u]
P[Ẽ in|FAB

K,u]
· P[Eout ∩ {ΣG,N = σG,N ,Σk = σk}|FAB

K,u

]]

= E

[
P[E in ∩ Ẽ in|FAB

K,u]
P[Ẽ in|FAB

K,u]
;Eout ∩ {ΣG,N = σG,N ,Σk = σk}

]
.

This is precisely (5.35). The proof of Lemma 5.11 is complete. �

Lemma 5.13. For z ∈ B(0, (2R +1) ·N), x′ ∈ Z, non-negative integers n and (mi : 1 ≤ i ≤ n), vector τ in = (τ in
i,j : 1 ≤

i ≤ n,1 ≤ j ≤ mi) of finite nearest-neighbor trajectories τ in
i,j in Q(x′) from xi,j ∈ ∂intQ(x′) to yi,j ∈ ∂intQ(x′), and

1 ≤ k ≤ kN , we have P-almost surely, that

1Ãz,k∩{x′
k=x′} · P[Xin

Qk
= τ in|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]

≥ 1Ãz,k∩{x′
k=x′}∩{τ in∈T in

x′ } ·
n∏

i=1

mi∏
j=1

(1/2d)
|τ in

i,j |
. (5.39)

Remark 5.14. Note that by (5.29), we have

Ãz,k ∩ {x′
k = x′}∩ {Xin

Qk
= τ in}⊆ {τ in ∈ T in

x′
}
,
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and by (5.26) and Claim 4.2(1),{
τ in ∈ T in

x′
} ∈ FAB

Q(x′),u ⊂Fout
Q(x′),u.

In particular, the right-hand side of (5.39) is measurable with respect to σ(ΣG,N ,Σk,FAB
Q(x′),u).

Proof of Lemma 5.13. By (5.25), {Xin
Q(x′) = τ in} ∈ F in

Q(x′),u. Using Lemma 5.11, we obtain

1Ãz,k∩{x′
k=x′} · P[Xin

Qk
= τ in|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]

= 1Ãz,k∩{x′
k=x′} · P[Xin

Q(x′) = τ in|σ (ΣG,N ,Σk,Fout
Q(x′),u

)]
(5.33)= 1Ãz,k∩{x′

k=x′} · P[Xin
Q(x′) = τ in, x′ is good for Lu|FAB

Q(x′),u]
P[x′ is good for Lu|FAB

Q(x′),u]
(5.27)≥ 1Ãz,k∩{x′

k=x′}∩{τ in∈T in
x′ } · P[Xin

Q(x′) = τ in|FAB
Q(x′),u

]
. (5.40)

Using (4.11), we get

1{τ in∈T in
x′ } · P[Xin

Q(x′) = τ in|FAB
Q(x′),u

]
= 1{τ in∈T in

x′ } ·
n∏

i=1

mi∏
j=1

Pxi,j
[(X(t): 0 ≤ t ≤ TQ(x′) − 1) = τ in

i,j ]
Pxi,j

[X(TQ(x′) − 1) = yi,j ]

≥ 1{τ in∈T in
x′ } ·

n∏
i=1

mi∏
j=1

Pxi,j

[(
X(t): 0 ≤ t ≤ TQ(x′) − 1

)= τ in
i,j

]

= 1{τ in∈T in
x′ } ·

n∏
i=1

mi∏
j=1

Pxi,j

[(
X(t): 0 ≤ t ≤ ∣∣τ in

i,j

∣∣− 1
)= τ in

i,j ,X
(∣∣τ in

i,j

∣∣) /∈ Q
(
x′)]

≥ 1{τ in∈T in
x′ } ·

n∏
i=1

mi∏
j=1

(1/2d)
|τ in

i,j |
.

Together with (5.40), this implies (5.39) and finishes the proof of Lemma 5.13. �

Proof of Lemma 5.10. Fix z ∈ B(0, (2R + 1) · N), 1 ≤ k ≤ kN , and a realization of ΣG,N , Σk , and XAB
Qk

satisfying

Ãz,k . Our aim is to construct ρin = ρin(ΣG,N ,Σk,X
AB
Qk

) satisfying (5.30), (5.31), and (5.32).
We begin by defining a “tunnel” from x̃k to �(x′

k) inside Qk , which we will later force to be vacant. Recall that
x̃k ∈ ∂intQk \ �(x′

k). By Definition 3.1, precisely one of the coordinates of the vector x̃k − x′
k is −R or R, and the

values of all the remaining coordinates are between −R + 3 and R − 3. Let i be this unique coordinate, and let j be
the first among the remaining (d − 1) coordinates which is not i. For 1 ≤ s ≤ d , let es be the sth unit vector. We define
the subset Tk of Qk to be

{̃xk, x̃k + ei, x̃k + 2ei} ∪ ({̃xk + 2ei + tej : t ≥ 0} ∩ Qk

)
if the value of the ith coordinate of x̃k − x′

k is −R, or

{̃xk, x̃k − ei, x̃k − 2ei} ∪ ({̃xk − 2ei + tej : t ≥ 0} ∩ Qk

)
if the value of the ith coordinate of x̃k − x′

k is R. Note that for R ≥ 4,
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(1) Tk ∩ �(x′
k) �=∅,

(2) Qk \ (∂intQk ∪ �(x′
k) ∪ Tk) is a connected subset of Qk , and

(3) every x ∈ ∂intQk \ (�(x′
k) ∪ {̃xk}) has a neighbor in Qk \ (∂intQk ∪ �(x′

k) ∪ Tk).

In particular, (2) and (3) imply that any two points a, b ∈ ∂intQk \ (�(x′
k)∪ {̃xk}) are connected by a self-avoiding path

in {a, b} ∪ (Qk \ (∂intQk ∪ �(x′
k) ∪ Tk)).

Taking into account (5.28), the above mentioned properties of Tk imply that for each element (Xi(Ai,j ),Xi(Bi,j ))

of XAB
Qk

, there exist self-avoiding paths ρin
i,j which connect Xi(Ai,j ) to Xi(Bi,j ) and are entirely contained in Qk \

(∂intQk ∪�(x′
k)∪Tk) except for their start and end points, Xi(Ai,j ) and Xi(Bi,j ), which are in ∂intQk \ (�(x′

k)∪{̃xk}).
(Note that if Xi(Ai,j ) = Xi(Bi,j ), then ρin

i,j = {Xi(Ai,j )} is the unique self-avoiding path from Xi(Ai,j ) to Xi(Bi,j ).)

We choose one of such collections of self-avoiding paths ρin = ρin(ΣG,N ,Σk,X
AB
Qk

) in a predetermined, non-random
way.

We will now show that ρin satisfies the requirements of Lemma 5.10. First we show (5.30). Recall Definition 5.8
of T in

x′ . By construction, the total number of visits of all the ρin
i,j to ∂intQk is the smallest one among all the possible

collections of paths τ in = (τ in
i,j : 1 ≤ i ≤ NQk,u,1 ≤ j ≤ Mi) inside Qk from Xi(Ai,j ) to Xi(Bi,j ). In particular, it is

almost surely smaller or equal to the total number of visits to ∂intQk by the trajectories in Xin
Qk

, which is at most Rd−1

by (5.29). Thus, ρin satisfies (5.30).
Now we show that ρin satisfies (5.32). If Xin

Qk
= ρin, then Tk ⊂ Vu. In particular, since x̃k is connected to �(x′

k) by
Tk , we obtain that x̃k is connected to �(x′

k) in Vu ∩ Qk . Recall that x̃k ∼ xk and, by Definition 5.6, xk is connected
to z in Vu ∩Dk . Therefore, z is connected to �(x′

k) ⊂ Ck (recall (5.6) and Definition 5.3) in Vu ∩ (Dk ∪ Qk), and the
event Az,k does not occur. In other words, ρin satisfies (5.32).

It remains to show that ρin satisfies (5.31). Remember that the total number of visits of all the ρin
i,j to ∂intQk is at

most Rd−1. In particular, the total number of trajectories ρin
i,j in ρin is at most Rd−1, namely

NQk ,u∑
i=1

Mi ≤ Rd−1. (5.41)

Since each ρin
i,j is a self-avoiding path in Qk ,∣∣ρin

i,j

∣∣≤ |Qk| ≤ (2R + 1)d . (5.42)

Finally, observe that for any x′ ∈ Z and vector τ in ∈ T in
x′ ,

Ãz,k ∩ {x′
k = x′}∩ {ρin = τ in} ∈ σ

(
ΣG,N ,Σk,Fout

Q(x′),u
)
. (5.43)

We get

1Ãz,k∩{x′
k=x′} · P[Xin

Qk
= ρin|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]

(5.26),(5.30),(5.43)=
∑

τ in∈T in
x′

1Ãz,k∩{x′
k=x′}∩{ρin=τ in} · P[Xin

Qk
= τ in|σ (ΣG,N ,Σk,Fout

Q(x′),u
)]

(5.39),(5.30),(5.41),(5.42)≥ 1Ãz,k∩{x′
k=x′} · (1/2d)R

d−1·(2R+1)d .

This proves that ρin satisfies (5.31) with γ = (1/2d)R
d−1·(2R+1)d . The proof of Lemma 5.10 is complete. �

5.3. Proof of (1.3)

In this section we complete the proof of Theorem 1.1 by showing how to deduce (1.3) from (5.2) and (5.8). We begin
with the following lemma.
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Lemma 5.15. For R and u1 as in (5.1), there exist constants c = c(d) > 0 and C = C(d) < ∞ such that for all
u < u1 and N ≥ 1,

P

⎡⎣B(0,2(2R + 1)N) ∩ Vu contains two nearest-neighbor paths
from B(0, (2R + 1)N) to ∂intB(0,2(2R + 1)N) which are

in different connected components of B(0,2(2R + 1)N) ∩ Vu

⎤⎦≤ C · e−Nc

. (5.44)

Proof. Recall Definition 5.1 of HN and Definition 5.3 of Az,k . Note that when HN occurs, the event in (5.44) implies
that Az,kN

occurs for some z ∈ B(0, (2R + 1)N). Therefore, we can bound the probability in (5.44) from above by

P
[
Hc

N

]+ ∑
z∈B(0,(2R+1)N)

P[Az,kN
].

The result now follows from (5.2) and (5.8). �

As an immediate corollary to Lemma 5.15, we obtain that for u1 as in (5.1) there exist constants c = c(d) > 0 and
C = C(d) < ∞ such that for all u ≤ u1 and n ≥ 1,

P

[
B(0,3n) ∩ Vu contains two paths from B(0, n) to ∂intB(0,3n)

which are in different connected components of B(0,3n) ∩ Vu

]
≤ C · e−nc

. (5.45)

We are now ready to prove (1.3). Take u1 as in (5.1) and u ≤ u1. It suffices to consider n ≥ 100. Let k = �n/100�. Note
that if B(0, n) ∩ Vu contains at least 2 different connected components C1 and C2 with diameter ≥ n/10, then there
exist two vertices x1, x2 ∈ B(0, n) (possibly equal) such that Ci ∩ B(xi, k) �=∅ and Ci \ B(xi,7k) �=∅, for i ∈ {1,2}.

For x ∈ B(0, n), let Ax be the event that

(a) B(x, k) is connected to ∂intB(x,7k) in Vu, and
(b) every two nearest-neighbor paths from B(x,2k) to ∂intB(x,6k) in Vu are in the same connected component of

Vu ∩ B(x,6k).

Let A=⋂x∈B(0,n) Ax . By (1.2) and (5.45), we have

P[A] ≥ 1 − C · e−nc

.

However, if the event A occurs, then C1 and C2, defined earlier, cannot exist. Indeed, take a nearest-neighbor path
π = (z1, . . . , zt ) in B(0, n) from x1 to x2. For each 1 ≤ i ≤ t − 1, the occurrence of the events Azi

and Azi+1 implies
that (a) there exist nearest-neighbor paths π1 and π2 in Vu, π1 from B(zi, k) to ∂intB(zi ,7k), and π2 from B(zi+1, k)

to ∂intB(zi+1,7k), and (b) any two such paths are in the same connected component of Vu ∩ B(0,2n). This implies
that C1 and C2 must be connected in Vu ∩ B(0,2n). As a result, we have

P

[
any two connected subsets of Vu ∩ B(0, n) with
diameter ≥ n/10 are connected in Vu ∩ B(0,2n)

]
≥ P[A] ≥ 1 − C · e−nc

.

This implies (1.3). The proof of Theorem 1.1 is completed.

6. Extensions to other models

6.1. Random walk on Z
d

Consider a simple random walk on Z
d , d ≥ 3, started at x ∈ Z

d . The random walk is transient, and the probability that
y ∈ Z

d \ {x} is ever visited by the random walk is comparable to |x − y|2−d .
Let V be the set of vertices which are never visited by the random walk. The approach that we develop in this

paper also applies to the study of the local connectivity properties of V . Similarly to the proof of Theorem 1.1, one
can show that the set V , viewed as a random subgraph of Zd , contains a unique infinite connected component, which
is also locally unique. Namely, the statements (1.2) and (1.3) hold with Vu replaced by V , and the law P of random
interlacements replaced by the law of a simple random walk started from x ∈ Z

d .
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6.2. Random walk on (Z/NZ)d

Consider a simple discrete time random walk on a d-dimensional torus (Z/NZ)d , with d ≥ 3. The vacant set at time
t is the set of vertices which have not been visited by the random walk up to time t . We view the vacant set as a
(random) graph by drawing an edge between any two vertices of the vacant set at L1-distance 1 from each other. The
study of percolative properties of the vacant set was initiated in [1] and recently significantly boosted in [15]. It was
proved in [15], Theorems 1.2 and 1.3, that the vacant set at time �uNd� exhibits different connectivity properties for
small and large u:

(i) if u is large, there exists λ = λ(u) < ∞, such that the largest connected component of the vacant set at time
�uNd� is smaller than (logN)λ asymptotically almost surely, and

(ii) if u > 0 is small, there exists δ = δ(u) > 0, such that the largest connected component of the vacant set at time
�uNd� is larger than δNd asymptotically almost surely,

where “asymptotically almost surely” means “with probability going to 1 as N → ∞.” Moreover, it is proved in [15],
Theorem 1.4, that when d ≥ 5 and u is small enough, with high probability, the vacant set on the torus at time �uNd�
has the following properties:

(a) the largest connected component has an asymptotic density, and
(b) the size of the second largest connected component is at most (logN)κ , for some κ > 0.

The proof of [15], Theorem 1.4, relies on a strong coupling between random interlacements and the random walk trace
(see [15], Theorem 1.1) and the existence of strongly supercritical values of u for d ≥ 5 (see [15], Definition 2.4 and
Remark 2.5). We believe that the ideas used in the proof of Theorem 1.1 can be applied in order to yield an extension
of [15], Theorem 1.4, for all d ≥ 3 and small enough u, despite the fact that Theorem 1.1 does not imply the existence
of strongly supercritical values of u.

Appendix: Decoupling inequalities for interlacement local times

In this appendix we prove Lemma 2.2. The proof is essentially the same as the proof of [12], Corollary 3.5. We sketch
the main ideas here and refer the reader to corresponding formulas in [12] for details.

A.1. Notation from [12], Section 1

For K ⊂⊂ Z
d , we denote by sK :W ∗

K → WK the map which associates with each element w∗ ∈ W ∗
K the unique

element w0 = sK(w∗) ∈ WK such that (a) π∗(w0) = w∗ and (b) w0(0) ∈ K , w0(t) /∈ K for all t < 0. For w ∈ W , we
denote by w+ the element in W+ (see (2.1)) such that w+(n) = w(n), for n ≥ 0.

For a finite measure ρ on Z
d , we denote by Pρ the measure

∑
x∈Zd ρ(x)Px on (W+,W+).

Let ω =∑i≥1 δ(w∗
i ,ui ) be the interlacement point process on W ∗ ×R+ defined on the canonical probability space

(Ω,FΩ,P). For K ⊂⊂ Z
d , and 0 ≤ u′ < u, we define on (Ω,FΩ,P) the Poisson point processes on the space W+

denoted by μK,u and μK,u′,u in the following way:

μK,u′,u =
∑
i≥1

1{w∗
i ∈W ∗

K,u′≤ui<u}δsK(w∗
i )+

(A.1)
μK,u = μK,0,u

With these definitions, we have (analogously to [12], (1.27), (1.28)): for K ⊂⊂ Z
d and 0 ≤ u′ < u,

(i) μK,u′,u and μK,u′ are independent with respective intensity measures (u − u′)PeK
and u′PeK

,
(ii) μK,u = μK,u′ + μK,u′,u.

Let I denote a finite or countable set. If μ =∑
i∈I δwi

is a point measure on W+, we define (by slightly abusing
the notation of (2.15)) the local time of μ at x ∈ Z

d to be

Lx(μ) =
∑
i∈I

∑
n∈N

1{wi(n)=x}. (A.2)
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Using (2.15), (A.1) and (A.2), we obtain that for any ω ∈ Ω , K ⊆ K ′ ⊂⊂ Z
d , and u ≥ 0,

Lu
x(ω) = Lx(μK ′,u) for x ∈ K . (A.3)

A.2. Decoupling inequalities for the interlacement local times

In this section we extend the results of [12], Section 2, 3, about certain decoupling inequalities for increasing events
in {0,1}G×Z to increasing events in N

Z
d
. The graphs G considered in [12] are infinite, connected, bounded degree

weighted graphs, satisfying certain regularity conditions, and in particular, include the case of Zd−1, with d ≥ 3.
Since our current aim is to prove Lemma 2.2 on Z

d , the notation of [12] become slightly simpler. When G = Z
d−1,

the volume growth exponent of G is α = d − 1, the diffusivity exponent of the random walk on G is β = 2, thus
ν = α − β

2 = d − 2 is the ususal exponent of the Green function on Z
d , cf. (2.5) and [12], (0.2). Moreover, in [12],

(0.3), a special metric d(·, ·) on G × Z is introduced, but in our special case Z
d = G × Z, the results of [12] remain

valid if we replace the distance d(x, x′) by the usual sup-norm distance |x − x′|, cf. the first paragraph of [12],
Section 2.

Remark A.1. The definition (2.15) carries over to the more general setting which involves local times of the interlace-
ment point process on G ×Z (where G satisfies the conditions described in [12], Section 1), and in fact all the results
and proofs of [12], Sections 2, 3, have their analogous, more general counterparts which involve Lu rather than Iu.
To simplify the notation, we only consider the special case of G = Z

d−1 here.

Now we recall some notation from [12], Section 2, which we adapt to our setting.
Our definition of the length scales Ln = ln0 L0 in (2.22) is the same as [12], (2.1).
For n ≥ 0, we denote the dyadic tree of depth n by Tn = ⋃

0≤k≤n{1,2}k and the set of vertices of the tree at
depth k by T(k) = {1,2}k . We call ∅ ∈ T(0) the root of Tn and 1,2 ∈ T(1) the children of the root. Given a mapping
T :Tn → Z

d , we define

xm,T = T (m), C̃m,T = B(xm,T ,10Ln−k) for m ∈ T(k),0 ≤ k ≤ n.

For any 0 ≤ k < n, m ∈ T(k), we say that m1,m2 are the two descendants of m in T(k+1) if they are obtained by
respectively concatenating 1 and 2 to m. We say that T is an admissible embedding if for any 0 ≤ k < n and m ∈ T(k),

C̃m1,T ∪ C̃m2,T ⊆ C̃m,T , |xm1,T − xm2,T | ≥ 1

100
Ln−k.

For any x ∈ Z
d and n ∈ N, we denote by Λx,n the set of admissible embeddings of Tn in Z

d with T (∅) = x, and let
Λn =⋃x∈Zd Λx,n.

Recall the definition of the space (NZ
d
,F�) and the coordinate maps Ψx , x ∈ Z

d from Section 2.4. Given n ≥ 0
and T ∈ Λn, we say that a collection (Bm: m ∈ T(n)) of F�-measurable subsets of NZ

d
is T -adapted if

Bm is σ(Ψx, x ∈ C̃m,T )-measurable for each m ∈ T(n). (A.4)

Recall that given u ≥ 0, the collection of FΩ -measurable events (Bu
m: m ∈ T(n)) is defined by (2.16).

For n ≥ 0 and T ∈ Λn+1, we denote by T1 ∈ Λn the embedding of Tn corresponding to the restriction of T to
the descendants of 1 ∈ T(1) in Tn+1. We define T2 similarly using 2 ∈ T(1). Given a T -adapted collection (Bm: m ∈
T(n+1)), we then define the T1-adapted collection (Bm,1: m ∈ T(n)) and the T2-adapted collection (Bm,2: m ∈ T(n)) in
a natural way.

We can now restate and adapt [12], Theorem 2.1, to fit our setting related to Lu on Z
d .

Theorem A.2. There exist c = c(d) > 0 and c1 = c1(d) > 0 such that for all l0 ≥ c, n ≥ 0, T ∈ Λn+1, any T -adapted
collection (Bm: m ∈ T(n+1)) of increasing events on (NZ

d
,F�), and any 0 < u′ < u satisfying

u ≥ (1 + c1(n + 1)−3/2l
−(d−2)/4
0

)
u′,
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we have

P

[ ⋂
m∈T(n+1)

Bu′
m

]
≤ P

[ ⋂
m1∈T(n)

Bu
m1,1

]
P

[ ⋂
m2∈T(n)

Bu
m2,2

]
+ 2 exp

(
−2u′ 2

(n + 1)3
Ld−2

n l
(d−2)/2
0

)
. (A.5)

Proof. The proof is analogous to that of [12], Theorem 2.1. We only need to mechanically replace events defined in
terms of Iu (see (2.14)) by events defined in terms of Lu (see (2.15)).

When we adapt [12], Theorem 2.1, to suit our purposes, we make the following choices: Zd = G ×Z, G = Z
d−1,

α = d − 1, β = 2, ν = d − 2, we use the sup-norm distance |x − x′| on Z
d (cf. the first paragraph of [12], Section 2),

moreover we choose K = 2 and ν′ = d−2
2 (where the latter parameters appear in the statement of [12], Theorem 2.1).

From [12], (2.11), to [12], (2.59), we do not need to modify the proof at all, but we recall some further notation
before we state the key domination result (A.10).

Given n ≥ 0 and T ∈ Λn+1, we define, as in [12], (2.11) and (2.13),

Ĉi =
⋃

m∈T(n)

C̃m,Ti
for i ∈ {1,2}, and V = Ĉ1 ∪ Ĉ2,

and

Ui = B

(
xi,T ,

Ln+1

1000

)
for i ∈ {1,2}, and U = U1 ∪ U2.

Finally, we take a set W ⊂ Z
d such that V ⊆ W ⊆ U . Recall the notation (2.2) and (2.4). For a trajectory in W+ (see

(2.1)), we define the sequence of successive returns to W and departures from U :

R1 = HW,D1 = TU ◦ θR1 + R1, and by induction
(A.6)

Rk+1 = R1 ◦ θDk
+ Dk,Dk+1 = D1 ◦ θDk

+ Dk for k ≥ 1,

where it is understood that if Rk = ∞ for some k ≥ 1, then Dk = Rk+1 = ∞. Let 0 ≤ u′ < u. Recalling (A.1), we
introduce, similarly to [12], (2.17), the Poisson point processes on W+,

ζ ′
l = 1{Rl<∞=Rl+1}μW,u′ for l ≥ 1,

ζ ∗
l = 1{Rl<∞=Rl+1}μW,u′,u for l ≥ 1.

Both ζ ′
l and ζ ∗

l are supported on the subspace of W+ which consists of trajectories that perform exactly l returns to
W in the sense of (A.6). By the properties of μW,u′ and μW,u′,u,

ζ ′
l , l ≥ 1, and ζ ∗

1 are independent Poisson point processes on W+. (A.7)

Recalling (A.2), we define the local times

L′
l,x = Lx

(
ζ ′
l

)
, L′

l = (L′
l,x : x ∈ V

)
for l ≥ 1,

L∗
1,x = Lx

(
ζ ∗

1

)
, L∗

1 = (L∗
1,x : x ∈ V

)
.

These definitions are counterparts of [12], (2.60) and (2.61). It follows from (A.7) and (A.3) that

the random variables L′
l , l ≥ 1, and L∗

1 are independent, Lu′
x =∑

l≥1 L′
l,x , and Lu

x ≥ L∗
1,x + L′

1,x ,
for all x ∈ V .

(A.8)

This is analogous to [12], (2.62). Moreover, similarly to [12], (2.64), we have that

(L∗
1,x +L′

1,x : x ∈ Ĉ1) and (L∗
1,x +L′

1,x : x ∈ Ĉ2) are independent. (A.9)
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The main ingredients in the proof of [12], Theorem 2.1, are [12], Lemma 2.4 and (2.59). We will only use a weaker
result that immediately follows from [12], Lemma 2.4 and (2.59): for a specific choice of W (see [12], (2.15) and
(2.58)), there exists a coupling (L′

,L∗
) on (Ω,FΩ,P) of

∑
l≥2 L′

l and L∗
1 such that

if l0 ≥ c(d) and u ≥ (1 + c1(n + 1)−3/2l
−(d−2)/4
0 )u′, then P[L′ ≤ L∗] ≥ 1 −

2 exp(−u′ 4
(n+1)3 Ld−2

n l
(d−2)/2
0 ).

(A.10)

Informally, (A.10) states that with high probability, the local times in V of the collection of interlacement trajectories
which have labels less than u′ and reenter W after leaving U are dominated by the local times in V of the collection
of interlacement trajectories with labels between u′ and u that never reenter W after leaving U .

We now prove (A.5) by mimicking [12], (2.68). We recall the notation from (2.16). Let l0, u and u′ satisfy (A.10).
Since the Bm, m ∈ T(n+1), are increasing and T -adapted, cf. (A.4), we see that

P

[ ⋂
m∈T(n+1)

Bu′
m

]
(A.8)= P

[ ⋂
m∈T(n+1)

Bm

( ∞∑
l=1

L′
l

)]
(A.8),(A.10)≤ P

[ ⋂
m∈T(n+1)

Bm

(
L∗

1 +L′
1

)]+ 2 exp

(
−u′ 4

(n + 1)3
Ld−2

n l
(d−2)/2
0

)
(A.8),(A.9)≤ P

[ ⋂
m1∈T(n)

Bu
m1,1

]
P

[ ⋂
m2∈T(n)

Bu
m2,2

]
+ 2 exp

(
−u′ 4

(n + 1)3
Ld−2

n l
(d−2)/2
0

)
.

This is precisely (A.5). �

Now we derive the decoupling inequalities of [12], Theorem 2.6, adapted to our setting which involves local times.
Given c1 and l0 ≥ c as in Theorem A.2, for any u0 > 0 we define (analogously to [12], (2.70))

u−∞ = u0 ·
∞∏

k=0

(
1 + c1

(k + 1)3/2
l
−(d−2)/4
0

)−1

. (A.11)

Note that u−∞ > 0 and u−∞ → u0 as l0 → ∞.

Theorem A.3 (Decoupling inequalities). For any L0 ≥ 1, l0 ≥ c(d), u0 > 0, n ≥ 0, T ∈ Λn, and all T -adapted
collections (Bm: m ∈ T(n)) of increasing events on (NZ

d
,F�), one has

P

[ ⋂
m∈T(n)

B
u−∞
m

]
≤
∏

m∈T(n)

(
P
[
Bu0

m

]+ ε
(
u−∞, l0,L0

))
,

where

ε(u, l0,L0) = f
(
2uLd−2

0 l
(d−2)/2
0

)
, with f (v) = 2 · e−v

1 − e−v
. (A.12)

Proof. The proof of Theorem A.3 is identical to that of [12], Theorem 2.6. We only need to make the particular
choices K = 2, ν = d − 2 and ν′ = d−2

2 , and replace references to [12], Theorem 2.1 by references to Theorem A.2.
We omit the details. �

Recall the definition of uniformly cascading events from Definition 2.1. We now restate [12], Theorem 3.4, adapted
to our setting, which involves local times.
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Lemma A.4. Consider the collection G = (Gx,L,R)x∈Zd ,L≥1,R≥0 of increasing events on (NZ
d
,F�), cascading uni-

formly (in R) with complexity at most λ. Then for any l0 ≥ c(d), L0 ≥ 1, n ≥ 0, u0 > 0 and R ≥ 0, we have

sup
x∈Zd

P
[
G

u−∞
x,Ln,R

]≤ (C(λ)2 · l2λ
0

)2n−1
(

sup
x∈Zd

P
[
G

u0
x,L0,R

]+ ε
(
u−∞, l0,L0

))2n

, (A.13)

where the constant C(λ) was defined in (2.20).

Proof. The proof of Lemma A.4 is identical to that of [12], Theorem 3.4. We only need to make the particular choices
K = 2, ν = d − 2 and ν′ = d−2

2 , and note that the inequality (A.13) holds uniformly in R because the bound of (2.20)
holds uniformly in R. We omit the details. �

A.3. Proof of Lemma 2.2

We are now ready to prove Lemma 2.2, using Lemma A.4. This is similar to the proof of [12], Corollary 3.5.
Let G = (Gx,L,R)x∈Zd ,L≥1,R≥0 be a family of increasing events on (NZ

d
,F�) cascading uniformly in R with

complexity at most λ > 0. Recall the notation from (A.11) and (A.12). We will choose l0 ≥ c(d), L0 ≥ 1, u0 > 0, and
R ≥ 0 so that

C(λ)2 · l2λ
0 ·

(
sup
x∈Zd

P
[
G

u0
x,L0,R

]+ ε
(
u−∞, l0,L0

))≤ 1

2
. (A.14)

Once we do so, (2.24) will immediately follow from Lemma A.4 with l0, L0, and R ≥ 0 as in (A.14) and u = u−∞.
Let u0 = uL0 = L0

2−d . By (A.11) and (A.12), for all large enough l0 ≥ c(d), we have

sup
L0≥1

C(λ)2 · l2λ
0 · ε(u−∞, l0,L0

)≤ 1

4
. (A.15)

We fix l0 satisfying (A.15). Now we use our assumption (2.23) to choose L0 ≥ 1 and R ≥ 0 such that

C(λ)2 · l2λ
0 · sup

x∈Zd

P
[
G

u0
x,L0,R

]≤ 1

4
. (A.16)

The combination of (A.15) and (A.16) gives (A.14) and finishes the proof of Lemma 2.2. �
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