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THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH
WITH GIVEN DEGREE SEQUENCE

BY ADRIEN JOSEPH

Université Pierre et Marie Curie

Consider a critical random multigraph Gn with n vertices constructed
by the configuration model such that its vertex degrees are independent ran-
dom variables with the same distribution ν (criticality means that the second
moment of ν is finite and equals twice its first moment). We specify the scal-
ing limits of the ordered sequence of component sizes of Gn as n tends to
infinity in different cases. When ν has finite third moment, the components
sizes rescaled by n−2/3 converge to the excursion lengths of a Brownian
motion with parabolic drift above past minima, whereas when ν is a power
law distribution with exponent γ ∈ (3,4), the components sizes rescaled
by n−(γ−2)/(γ−1) converge to the excursion lengths of a certain nontrivial
drifted process with independent increments above past minima. We deduce
the asymptotic behavior of the component sizes of a critical random simple
graph when ν has finite third moment.

1. Introduction.

1.1. Overview. The classical random graph model G(n,p) has received a lot
of attention since its introduction by Erdős and Rényi [12], especially because of
the existence of a phase transition. In this model, a graph on n labeled vertices is
constructed randomly by joining any pair of vertices by an edge with probability p,
independently of the other pairs. For large n, the structure of this random graph de-
pends on the value of np: for p ∼ c/n with c < 1, the largest connected component
contains O(lnn) vertices, whereas when p ∼ c/n with c > 1, the largest compo-
nent has �(n) vertices while the second largest component has O(lnn) vertices.
The cases c < 1 and c > 1 are called subcritical and supercritical, respectively.
Much attention has been devoted to the critical case p ∼ 1/n. When p is exactly
equal to 1/n, the largest components of G(n,p) have sizes of order n2/3.

Molloy and Reed [20] showed that a random graph with a given degree se-
quence exhibits a similar phase transition. More precisely, for each n ≥ 1, let
d(n) = (d

(n)
i )1≤i≤n be a nonincreasing sequence of positive integers such that∑n

i=1 d
(n)
i is even. Let G(n,d(n)) be a random simple graph on n labeled ver-

tices with degree sequence d(n), uniformly chosen among all possibilities (tacitly
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assuming that there exists any such graph). We suppose throughout the overview
that there exists a probability distribution (νk)k≥1 such that for each k, #{i :d(n)

i =
k}/n → νk as n → ∞. Let ω(n) = d

(n)
1 be the largest degree in the graph. Under

some further strong conditions on the sequences d(n), Molloy and Reed proved that
if Q = ∑∞

k=1 k(k − 2)νk < 0 and ω(n) ≤ n1/8−ε for some ε > 0, then with proba-
bility tending to 1, the size of the largest component of G(n,d(n)) is O(ω2(n) lnn),
whereas if Q > 0 and ω(n) ≤ n1/4−ε for some ε > 0, then with probability tending
to 1, the size of the largest component is �(n), and if additionally Q is finite, the
size of the second largest component is O(lnn).

More recently, the near-critical behavior of such graphs has been studied. When
Q = 0, the structure of G(n,d(n)) depends on how fast the quantity

αn =
∞∑

k=1

k(k − 2)
#{i :d(n)

i = k}
n

=
n∑

i=1

d
(n)
i (d

(n)
i − 2)

n

converges to 0; see Kang and Seierstad [19]. Requiring a fourth moment condition,
Janson and Luczak [18] proved that if n1/3αn → ∞, then the size of the largest
component of G(n,d(n)) divided by nαn converges in probability to 2μ

β
, while the

size of the second largest component of G(n,d(n)) divided by nαn converges in
probability to 0, where μ = ∑∞

k=1 kνk and β = ∑∞
k=3 k(k − 1)(k − 2)νk ∈ (0,∞).

Furthermore, they noticed that their results can also be applied to some other ran-
dom graph models by conditioning on the vertex degrees, provided that the random
graph conditioned on the degree sequence has a uniform distribution over all pos-
sibilities. This is the case for G(n,p) with np → 1 and n1/3(np − 1) → ∞. Note
that if n1/3(np − 1) = O(1), it is well known that the largest component and the
second largest component both have sizes of the same order n2/3, so that their
results do not hold.

A major difficulty when dealing with the natural random graph G(n,d(n)) is
that, despite its straightforward definition, it cannot be constructed via an easy al-
gorithm. To circumvent that obstacle, it is convenient to work with multigraphs, in
which multiple edges and loops are allowed, using the explicit procedure provided
by the configuration model, which was introduced by Bender and Canfield [4]
and later studied by Bollobás [9] and Wormald [25]. See also Molloy and Reed
[20, 21], Kang and Seierstad [19], Bertoin and Sidoravicius [6], van der Hofstad
[24] and Hatami and Molloy [14]. Specifically, take a set of d

(n)
i half-edges for the

vertex with label i, i ∈ {1, . . . , n}, and combine the half-edges into pairs by a uni-
formly random matching of the set of all half-edges. Observing that every simple
graph G(n,d(n)) may be constructed through the same number, d

(n)
1 ! · · ·d(n)

n !, of
pairing of half-edges, we get that conditional on being a (simple) graph, the multi-
graph obtained by the configuration model has the same distribution as G(n,d(n)).
That is why we shall first deal with multigraphs. We shall then see how to derive
results for simple graphs.
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1.2. The present model. The present work is devoted to studying G(n,d(n))

for a family of degree sequences that are, in a certain sense, “inside the critical
window.” We suppose that we are given a probability distribution ν = (νk)k≥1 with
finite second moment such that ν2 < 1 and

∑∞
k=1 k(k − 2)νk = 0. Let D be a ran-

dom variable with distribution ν. The multigraph Gn consisting of n vertices is
defined by the configuration model as follows. Let D1,D2, . . . ,Dn be n indepen-
dent copies of D. Condition on

∑n
i=1 Di being even. Take a set of Di half-edges

for each vertex, and combine the half-edges into pairs by a uniformly random
matching of the set of all half-edges. We denote by Gn the random multigraph this
construction leads to.

Let Cν
n be the ordered sequence of component sizes of Gn. We aim at specifying

the asymptotics of Cν
n in two different settings. First, we shall study the case when

ν has finite third moment. We shall prove that n−2/3Cν
n then converges in distribu-

tion (with respect to a certain topology that will be detailed below) as n → ∞ to
the ordered sequence of the excursion lengths of a Brownian motion with parabolic
drift; see Theorem 2.1 below for the precise statement. This should be viewed as an
extension of Aldous’s well-known result for the critical behavior of Erdős–Renyi
random graphs; see [1]. Next the case when ν is a power law distribution with ex-
ponent γ ∈ (3,4) will be studied. We shall show that n−(γ−2)/(γ−1)Cν

n converges
in distribution as n → ∞ to the ordered sequence of the excursion lengths of a
certain nontrivial drifted process with independent increments; see Theorem 8.3
below.

Similar results have already been obtained for different random graph models.
For example, Turova [23] and Bhamidi, van der Hofstad and van Leeuwaarden
[7, 8] studied special cases of rank-1 inhomogeneous random graphs constructed
as follows. Let F be a distribution function on [0,∞) and w1,w2, . . . ,wn be de-
fined by wi = [1 −F ]−1(i/n). Consider a simple graph on n labeled vertices such
that an edge joins the vertices i and j (i �= j ) with probability 1−exp(−wiwj/ln),
where ln = ∑n

i=1 wi , different edges being independent. Denoting by W a r.v. with
distribution function F , suppose that E[W 2] < ∞. The criticality of the model
occurs when E[W 2] = E[W ]. As in the present work, two different settings have
been considered. In the case E[W 3] < ∞, Turova [23] and Bhamidi, van der Hofs-
tad and van Leeuwaarden [7] separately showed that the ordered sequence of com-
ponent sizes of the inhomogeneous random graph with n vertices once rescaled by
n−2/3 converges in distribution as n → ∞ to the ordered sequence of the excur-
sion lengths of a Brownian motion with parabolic drift, thus extending the results
of Aldous [1]. As for the power law distribution case, Bhamidi, van der Hofs-
tad and van Leeuwaarden [8] proved that if there exist γ ∈ (3,4) and c > 0 such
that 1 − F(x) ∼x→∞ cx1−γ , the ordered sequence of component sizes of the in-
homogeneous random graph with n vertices once rescaled by n−(γ−2)/(γ−1) then
converges in distribution as n → ∞ to hitting times of a thinned Lévy process.
This convergence is related to certain cases of the results obtained by Aldous and
Limic in [2].
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We too shall be interested in random simple graphs. Specifically, let SGn be the
random simple graph consisting of n vertices such that, conditionally on the degree
sequence (D1, . . . ,Dn), it is uniformly distributed over all simple graphs with this
degree sequence. Denoting by D(n) the ordered sequence of (D1, . . . ,Dn), SGn

has the same distribution as G(n,D(n)). The random simple graph SGn may also
be viewed as the multigraph Gn conditioned to be simple. When ν has finite third
moment, we shall be able to prove that the ordered sequence SCν

n of component
sizes of the graph SGn has the same asymptotic behavior as Cν

n; see Theorem 2.2
below. We refer to Britton, Deijfen and Martin-Löf [11] for an understanding of
the link between inhomogeneous random graphs and SGn.

The paper is organized as follows. In Sections 2, 3, 4, 5, 6 and 7, we deal with
the finite third moment case. Apart from Section 7, the main techniques devel-
oped there are used in Section 8, where the power law distribution case is studied.
Section 7, devoted to SCν

n, is specific to the finite third moment case. The main
results will be stated in Section 2. In Section 3, following the ideas of Aldous [1],
we shall observe that the study may be reduced to the understanding of a walk
defined via an algorithmic procedure related to the configuration model. Thanks
to [1], convergence of that walk turns out to be sufficient. Such convergence will
be obtained in Section 5 using standard methodology from stochastic process the-
ory; see, for example, the CLT for continuous-time martingale. A key technique to
obtain martingales is Poissonization. Basically, instead of considering multigraphs
with exactly n vertices, we shall deal with multigraphs with Poisson(n) vertices.
This will be fully explained in Section 4. Our approach also relies on size-biased
ordering. Finally, in Section 6, we shall be interested in the number of cycles in
the multigraph Gn. To conclude, in Section 8, we shall study Cν

n when ν is a power
law distribution with exponent in (3,4). We shall follow the same strategy, except
we shall apply results of Aldous and Limic [2]. The final Appendix puts together
technical lemmas.

2. Formulation of the main results in the finite third moment setting. In
the first sections of the paper, we suppose that ν satisfies

∞∑
k=1

k(k − 2)νk = 0,

∞∑
k=1

k3νk < ∞ and ν2 < 1.(2.1)

The more general power law distribution case will be studied in Section 8.
Let

μ =
∞∑

k=1

kνk and β =
∞∑

k=3

k(k − 1)(k − 2)νk.

Observe that β > 0. Define the Brownian motion with parabolic drift

Wν(t) =
√

β

μ
W(t) − β

2μ2 t2, t ≥ 0,
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where (W(t), t ≥ 0) is a standard Brownian motion. The reflected process indexed
by the nonnegative half-line is

Rν(t) = Wν(t) − min
0≤s≤t

Wν(s), t ≥ 0.

An interval γ = [l(γ ), r(γ )] is an excursion interval of Rν if Rν(l(γ )) =
Rν(r(γ )) = 0 and Rν(t) > 0 on l(γ ) < t < r(γ ). The excursion has length
|γ | = r(γ ) − l(γ ). Aldous observed in [1] that we can a.s. order excursions by
length, that is, the set of excursions of Rν may be written {γj , j ≥ 1} so that the
lengths |γj | are decreasing. In the notation of [1], define l2↘ as the set of infinite se-

quences x = (x1, x2, . . .) with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i x
2
i < ∞, endowed with

the Euclidean metric. Aldous showed in [1], Lemma 25, that E[∑j≥1 |γj |2] < ∞.
In particular (|γj |, j ≥ 1) a.s. belongs to l2↘. On the other hand, we may regard the

finite sequence Cν
n as a random element of l2↘ by appending zero entries.

Our main result describes the component sizes of Gn for large n; it mirrors that
of Aldous [1] for the critical random graph.

THEOREM 2.1. Suppose ν satisfies (2.1). Let Cν
n be the ordered sequence of

component sizes of Gn. Then

n−2/3Cν
n

(d)−→
n→∞

(|γj |, j ≥ 1
)

with respect to the l2↘ topology.

We shall observe that Theorem 2.1 is a direct corollary of a simpler result,
namely Theorem 3.1; see the remark after its statement.

REMARK 2.1. Suppose ν2 = 1, that is, D ≡ 2. Then the components of Gn

are cycles. It is well known that the distribution of cycle lengths is given by the
Ewens’s sampling formula ESF(1/2), and thus the size of the largest component
divided by n converges in distribution to a nondegenerate distribution on [0,1];
see [3], Lemma 5.7. This is also the case for the kth largest component, where k is
a fixed positive integer. That is why the assumption ν2 < 1 made in (2.1) is crucial.

Note that in our setting,

lim inf
n→∞ P(Gn is a simple graph) > 0;(2.2)

see Bollobás [10], Janson [17]. Recall that SGn is the random simple graph such
that, conditioned on the degree sequence (D1, . . . ,Dn), it is uniformly distributed
over all graphs with this degree sequence. But it is also the multigraph Gn con-
ditioned on being simple. That is why authors usually first focus on Gn to then
deduce results for SGn using (2.2); see, for instance, Pittel [22], Janson [16], Jan-
son and Luczak [18]. In the finite third moment setting, we shall be able to set up
this strategy; we shall prove an analogous result of Theorem 2.1:
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THEOREM 2.2. Suppose ν satisfies (2.1). Let SCν
n be the ordered sequence of

component sizes of SGn. Then

n−2/3SCν
n

(d)−→
n→∞

(|γj |, j ≥ 1
)

with respect to the l2↘ topology.

As before, we shall derive Theorem 2.2 from a simpler result stated in Theo-
rem 3.2.

REMARK 2.2. Consider the case when ν is the Poisson distribution with pa-
rameter 1 [observe though that P(D = 0) > 0, so strictly speaking, it is out of
our setting, but our result still holds as vertices with degree 0 play no role]. Then,
for large integers n, SGn is an approximation of the Erdős–Renyi random graph
G(n,1/n). Now, in that case, μ = β = 1, so the process Wν is the Brownian mo-
tion with drift −t at time t , which also describes the asymptotic component sizes
of G(n,1/n); see [1].

3. The depth-first search.

3.1. An algorithmic construction of Gn. We start by describing a convenient
algorithm to construct a multigraph distributed as Gn. Suppose that

∑n
i=1 Di is

even. We partition the set of half-edges into three subsets: the set S of sleeping
half-edges, the set A of active half-edges and the set D of dead half-edges. S ∪A
is the set of living half-edges. Initially, all the half-edges are sleeping.

Pick a sleeping half-edge uniformly at random, and let v1 denote the vertex it is
attached to. Declare all the half-edges attached to v1 active. While A �= ∅, proceed
as follows:

• Let i be the largest integer k such that there exists an active half-edge attached
to vk .

• Consider an active half-edge l attached to vi .
• Kill l, that is, remove it from A, and place it into D.
• Choose uniformly at random a living half-edge r and pair l to it.
• If r is sleeping, let vj+1 denote the vertex it is attached to, where j is the number

of vertices which were found before the discovery of the vertex attached to r .
Then declare all the half-edges attached to vj+1 except r active.

• Kill r .

Iterate until A = ∅. At that step, the first component has been totally explored. If
S �= ∅, proceed similarly with the remaining living vertices until all the half-edges
have been killed. Then consider the multigraph with vertex set {vi,1 ≤ i ≤ n} such
that for all 1 ≤ i, j ≤ n, the vertex vi is joined by k edges to the vertex vj if and
only if k half-edges of vi have been paired to k other half-edges of vj during the
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FIG. 1. A realization of the algorithm constructing G3. The dashed oriented edge of the last pic-
ture contains a cycle half-edge at its origin: v2 has a cycle half-edge. By definition, W3(0) = 0,
W3(1) = 0, W3(2) = −1 and W3(3) = −2.

procedure. It is easily seen this multigraph is distributed as Gn and its vertices have
been ordered via a depth-first search. See Figure 1 above for a simple illustration.

Also note that, by construction, the order in which the components appear in the
depth-first search is size-biased order.

3.2. The depth-first walk. We now explain how the information on the compo-
nent sizes may be encoded in a walk constructed via the depth-first search which,
as we shall see, is related to the process Wν . We first need the notion of cycle
half-edge.

DEFINITION 3.1. A half-edge l is called a cycle half-edge if there exists a
half-edge r such that:

• l was killed before r ;
• l was paired to r ;
• r was active when l was paired to it.

Let us now define the walk associated to the depth-first search which will
encode all the information that we need to study the component sizes. Write
(D̂i, i ∈ {1,2, . . . , n}) the sequence of the degrees of the vertices of Gn ordered
by their appearances in the depth-first search: for every i ∈ {1, . . . , n},

D̂i = degree of vi.
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Define the depth-first walk (Wn(i),0 ≤ i ≤ n) by letting for all i ∈ {0, . . . , n},

Wn(i) =
i∑

j=1

(
D̂j − 2 − 2#{cycle half-edges attached to vj }).(3.1)

Note that since the cycle half-edges attached to vj always appear after vj has been
discovered, the number of them is not measurable with respect to the first j steps
of the process.

Order the components C(n,1),C(n,2), . . . according to the depth-first search.
Let

ζ(n, k) =
k∑

j=1

∣∣C(n, j)
∣∣,

ζ−1(n, i) = min
{
k : ζ(n, k) ≥ i

}
,

so that ζ−1(n, i) is the index of the component containing vi . It is easily seen that

Wn

(
ζ(n, k)

) = −2k and Wn(i) ≥ −2k − 1
(3.2)

for all ζ(n, k) ≤ i < ζ(n, k + 1).

It follows that we can recover component sizes and indices from the walk via

ζ(n, k) = min
{
i :Wn(i) = −2k

}
,∣∣C(n, j)

∣∣ = ζ(n, j) − ζ(n, j − 1),

ζ−1(n, i) = 1 −
⌈

min
j<i

Wn(j)

2

⌉
.

3.3. Weak convergence on every finite interval of the depth-first walk. Let Xn,
n ≥ 1, and X be R-valued Càdlàg processes defined on [0,∞). For every t > 0,
denote by D([0, t]) the space of all R-valued càdlàg functions defined on [0, t]
endowed with the Skorokhod topology. Throughout this work, we say that Xn

converges in distribution to X with respect to the Skorokhod topology on every
finite interval as n → ∞ if for every t > 0 and every bounded, continuous function
f defined on (D([0, t]),R),

E
[
f (Xn)

] −→
n→∞E

[
f (X)

]
(here, we write Xn and X for their restrictions to the interval [0, t]).

Our main result relates the walk to the process Wν :

THEOREM 3.1. Suppose ν satisfies (2.1). Rescale the depth-first walk Wn by
defining for every t ∈ [0, n1/3]

�Wn(t) = n−1/3Wn

(⌊
tn2/3⌋).
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Then

�Wn
(d)−→

n→∞ Wν

with respect to the Skorokhod topology on every finite interval.

To see how Theorem 2.1 follows from Theorem 3.1, we refer to Section 3.4 of
the remarkable paper [1] of Aldous.1 Intuitively, the result should be clear from
property (3.2) of depth-first walk. Component sizes are indeed encoded as lengths
of path segments above past even minima; these converge to lengths of excursions
of Wν above past minima, which are just lengths of excursions of the reflected pro-
cess (Wν(t) − min0≤s≤t W

ν(s), t ≥ 0) above 0. Similarly, Theorem 2.2 is proven
as soon as the following result is shown:

THEOREM 3.2. If ν satisfies (2.1), then the rescaled walk �Wn conditioned
on the event {Gn is simple} converges in distribution to Wν with respect to the
Skorokhod topology on every finite interval as n → ∞.

The next three sections are devoted to the proof of Theorem 3.1. Section 4
will introduce the method. In Section 5, we shall be interested in the depth-first
walk (

∑i
j=1(D̂j − 2),0 ≤ i ≤ n). It is easier to study the latter than the walk

Wn since it ignores cycle half-edges, and its law only depends on the sequence
(D̂j ,1 ≤ j ≤ n), which has the law of the size-biased ordering of n independent
copies of D. Let

s̄n(t) = n−1/3
∑

1≤j≤tn2/3

(D̂j − 2), t ∈ [
0, n1/3].

We shall show that the walk s̄n converges in distribution to Wν as n → ∞. In Sec-
tion 6, we shall see that the difference between the two rescaled depth-first walks
�Wn and s̄n is so small that in the limit, these processes have the same behavior. The
combination of the two remarks yields Theorem 3.1. As for Theorem 3.2, it will
be proved in Section 7.

4. Poissonization. As mentioned above, in this section, we forget the contri-
bution of the cycle half-edges to the depth-first walk Wn (we shall see in Section 6
that there are indeed few cycle half-edges up to time tn2/3 for every fixed t > 0),
and we only focus on the simpler walk (

∑i
j=1(D̂j − 2),0 ≤ i ≤ n).

It is easily seen that the configuration model defining Gn induces a degree-
biased ordering of its vertices: conditionally on the degrees D1, . . . ,Dn, the se-
quence (D̂1, . . . , D̂n) has the law of a size-biased reordering of the real numbers
D1, . . . ,Dn. Conditionally on D1 = d1, . . . ,Dn = dn, a convenient way to order

1Recall that components appeared in size-biased order in the depth-first walk.
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the vertices of Gn in a degree-biased fashion is to assign an exponential clock with
parameter di to the vertex i, i ∈ {1,2, . . . , n}, and to order the vertices according
to the times the clocks they are attached to ring.

4.1. Heuristics. We are able to sample at the same time both the degrees of
the vertices of Gn and their reordering in a size-biased way via a clever Point point
process. The only drawback of this approach is that the total number of vertices of
the obtained multigraph is not exactly n but is a Poisson variable with parameter n

(so that to actually obtain Gn, one has to condition the total number of vertices to
be equal to n). Let us be more precise.

Consider a Poisson point process 

(0)
n on N

∗ = {1,2, . . .} with parameter nν.
The total number of its atoms is a Poisson variable with parameter n, and condi-
tionally on this number, the atoms of 


(0)
n are i.i.d. with distribution ν. Assigning

to each of them an exponential clock with appropriate parameter would order them
in a size-biased fashion.

We could have done those two operations directly by defining more carefully the
Poisson point process; indeed define 


(1)
n as a Poisson point process on (0,∞) ×

N
∗ with intensity π

(1)
n , where

π(1)
n (dt, k) = nνkke−kt dt.

Sort the atoms of 

(1)
n in increasing order of their t-components:


(1)
n = {(

t
(1)
1 , k

(1)
1

)
, . . . ,

(
t
(1)

N(1) , k
(1)

N(1)

)}
(we drop the dependency on n in the notations of t

(1)
i , k

(1)
i and N(1)). Then{

k
(1)
1 , . . . , k

(1)

N(1)

} (d)= 
(0)
n .

Moreover, since t
(1)
i corresponds to the exponential clock of k

(1)
i , the sequence

(k
(1)
1 , . . . , k

(1)

N(1) ) has the law as the size-biased reordering of the real numbers

k
(1)
1 , . . . , k

(1)

N(1) . Consequently, conditionally on N(1) = m, (k
(1)
1 , . . . , k

(1)
m ) has the

same distribution as the random vector (D̂1, . . . , D̂m).
As mentioned in the introduction of this section, we are interested in the walk

(
∑i

j=1(D̂j − 2),0 ≤ i ≤ n), which may be viewed as a function having dis-
continuities at integer-valued times. We see that we cannot reasonably approxi-
mate this function by (

∑
(s,k)∈


(1)
n

(k − 2)1s≤t , t ≥ 0), which has discontinuities

at t
(1)
1 , . . . , t

(1)

N(1) ; the sequence (t
(1)
1 , t

(1)
2 − t

(1)
1 , . . . , t

(1)

N(1) − t
(1)

N(1)−1
) has no chance

to look like (1, . . . ,1), partly because for every i ∈ {1, . . . ,N(1) − 1}, t
(1)
i − t

(1)
i−1

is stochastically dominated by t
(1)
i+1 − t

(1)
i (with convention t

(1)
0 = 0). We should

thus transform the t-components of the atoms: an atom (t, k) should be replaced
by (φn(t), k), where φn is an concave increasing function, so that conditionally on
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N(1), φn(t
(1)
1 ), φn(t

(1)
2 ) − φn(t

(1)
1 ), . . . , φn(t

(1)

N(1) ) − φn(t
(1)

N(1)−1
) are i.i.d. and close

to 1. We shall show in the next section that there exists such a function φn and
that, conditionally on N(1) ≥ i, φn(t

(1)
i ) − φn(t

(1)
i−1) is an exponential variable with

parameter 1; see Lemma 4.1 below.

4.2. Toward the definition of 
n. It turns out that the function φn is n(1 −L),
where L is the Laplace transform of ν,

L(t) = ∑
k∈N∗

e−ktνk, t ≥ 0.

Indeed, write ψ for the inverse of 1 −L and consider a Poisson point process 
n

on (0, n) ×N
∗ with intensity πn, where

πn(dt, k) = νkke−kψ(t/n)ψ ′(t/n)dt.

Recall that the k-components of the atoms of 
n should be viewed as degrees
whereas the t-components should be seen as time. [Note that 
n could have been
defined as 
n = {(t̃1, k̃1), . . . , (t̃N , k̃N)}, where N is a Poisson variable with pa-
rameter n and (t̃i , k̃i)i≥1 is a sequence of i.i.d. r.v. with distribution πn

n
independent

of N .] Sort the atoms of 
n in increasing order of their t-components,


n = {
(t1, k1), . . . , (tN , kN)

}
(here again, we drop the dependency on n in the notations). Then, by standard
properties of Poisson point processes,(

(t1, k1), . . . , (tN , kN)
) (d)= ((

φn

(
t
(1)
1

)
, k

(1)
1

)
, . . . ,

(
φn

(
t
(1)

N(1)

)
, k

(1)

N(1)

))
,

where φn = n(1 −L) = nψ−1. In particluar {k1, . . . , kN } has the same distribution
as 


(0)
n .

As before, conditionally on N = m, (k1, . . . , km) has the same law as the ran-
dom vector (D̂1, . . . , D̂m). This in particular holds for m = n. Since N is a Poisson
variable with parameter n and, as we shall soon see, we are only interested in what
happens up to time O(n2/3), we shall study the process 
n without the latter con-
ditioning. We thus get a Markovian process. Let us prove that conditionally on
N ≥ i, ti − ti−1 is an exponential variable with parameter 1.

LEMMA 4.1. The point process {t1, . . . , tN } is Poisson point process on (0, n)

with intensity dt .

PROOF. Define p as the projection p : (t, k) �→ t . Then, by standard properties
of Poisson point processes, {t1, . . . , tN } = p(
n) is a Poisson point process on
(0, n) with intensity π

(p)
n characterized by the following:

for every Borel subset A of (0, n), π(p)
n (A) = πn

(
p−1(A)

)
.
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Therefore, for every Borel subset A of (0, n),

π(p)
n (A) =

∫
A

∑
k∈N∗

νkke−kψ(t/n)ψ ′(t/n)dt

=
∫
A

(
ψ−1)′(ψ(t/n)

)
ψ ′(t/n)dt =

∫
A

dt,

which proves the result. �

4.3. Keys points of the section. Let us sum up the points that will be used in
the sequel.

PROPOSITION 4.2. Let n be a positive integer, (ei)i≥1 be a sequence of in-
dependent exponential variables with parameter 1 and (Ui)i≥1 be a sequence
of independent random variables uniformly distributed on (0,1) independent of
(ei)i≥1. Define

N = max

{
i ≥ 0 :

i∑
j=1

ej < n

}
,

ti =
i∑

j=1

ej , i ≥ 1,

ki = ∑
j∈N∗

j1di,j−1<Ui<di,j
, 1 ≤ i ≤ N,


n = {
(t1, k1), . . . , (tN , kN)

}
,

where for every integer i and j such that 1 ≤ i ≤ N and j ≥ 1, di,j =∑j
l=1 νlle

−lψ(ti/n)ψ ′(ti/n). Then:

• 
n is a Poisson point process on (0, n) ×N
∗ with intensity πn, where

πn(dt, k) = νkke−kψ(t/n)ψ ′(t/n)dt.

• For every positive integer m, conditionally on N = m, (k1, . . . , km) has the same
law as the random vector (D̂1, . . . , D̂m).

In the sequel, N , (ti)i≥1, (ki)1≤i≤N and 
n will always refer to those just-
defined quantities.

5. Convergence of the walk s̄n. It should now be natural to introduce the
process (Sn(t))t≥0 defined as the sum of the k-components of the atoms of 
n

minus 2 with t-components less than or equal to t :

Sn(t) = ∑
(s,k)∈
n

(k − 2)1s≤t = ∑
1≤j≤N

(kj − 2)1tj≤t .

We can now state the key result of the present work:
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PROPOSITION 5.1. Rescale Sn by defining �Sn(t) = n−1/3Sn(tn
2/3). Then

�Sn
(d)−→

n→∞ Wν

with respect to the Skorokhod topology on every finite interval.

PROOF. We follow the ideas of Aldous [1]. Let

An(t) =
∫
(0,n)×N∗

πn(ds, k)(k − 2)1s≤t , t ≥ 0,

be the continuous bounded variation process such that

Mn(t) = Sn(t) − An(t), t ≥ 0,

is a martingale. Observe that An is deterministic. Just as we rescaled Sn to form �Sn,
write �An and �Mn for the correspondingly rescaled versions of An and Mn. Propo-
sition 5.1 is shown as soon the following two results are established:

∀t0 > 0 lim
n→∞ sup

t≤t0

∣∣∣∣�An(t) + β

2μ2 t2
∣∣∣∣ = 0

and

�Mn
(d)−→

n→∞

√
β

μ
B

with respect to the Skorokhod topology on every finite interval, where B denotes
a standard Brownian motion. We postpone their proofs to the Appendix; see Lem-
mas A.1 and A.2. The following estimate on L:

L′′(t) = E
[
D2] −E

[
D3]t + o

t→0
(t)(5.1)

is a key ingredient in the proofs. �

We now give a key consequence of Proposition 5.1 concerning the depth-first
walk s̄n.

COROLLARY 5.2. The rescaled depth-first walk s̄n converges in distribution
to Wν with respect to the Skorokhod topology on every finite interval as n → ∞.

PROOF. Denote by S̃n the process

�Sn

(
n−2/3t�un2/3�

)
, u ≥ 0.

Applying Propositions 4.2 and 5.1, S̃n converges in distribution to Wν with respect
to the Skorokhod topology on every finite interval as n → ∞. Now, for every
u ≥ 0,

S̃n(u) = n−1/3
∑

1≤j≤un2/3

(kj − 2).



THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH 2573

Since conditionally on N = n, (k1, . . . , kn) has the same law as the random vector
(D̂1, . . . , D̂n) (see Proposition 4.2), we get that for every u > 0 and every bounded,
continuous function f defined on (D([0, u]),R),

E
[
f (S̃n)|N = n

] = E
[
f (s̄n)

]
(here, we write S̃n and s̄n for their restrictions to the interval [0, u]). We thus just
need to see why

E
[
f (S̃n)|N = n

] −E
[
f (S̃n)

] −→
n→∞ 0.

Now, conditionally on N = n, by Proposition 4.2, the sequence (t1, . . . , t�un2/3�)
has the same distribution as (nV1, nV2, . . . , nV�un2/3�), where 0 < V1 < · · · <

Vn < 1 is the ordered statistics of the family of n i.i.d. variables uniformly
distributed on (0,1). In other words, the distribution of the random vector
(t1, . . . , t�un2/3�) under the event {N = n} is exactly the distribution (without con-
ditioning) of

n

tn+1
(t1, t2, . . . , t�un2/3�)

(moreover, the latter random vector is independent of tn+1). Applying Proposi-
tion 4.2, we thus deduce that the conditional distribution of S̃n under {N = n} is
asymptotically close to the distribution of S̃n. We get the result by applying the
dominated convergence theorem (recall that f is bounded and continuous). �

6. Study of the cycle half-edges. In this section, we turn our attention to the
cycle half-edges. In Section 6.1, we shall prove that there are few cycle half-edges
in Gn; see Lemma 6.1 below. We shall then show in Section 6.2 how to derive
Theorem 3.1 from Corollary 5.2 and Lemma 6.1.

6.1. Upper bound of the number of cycle half-edges. In this section, we prove
the following result:

LEMMA 6.1. Let t > 0 and M > 0. Introduce the event

En(t,M) =
{
max
i≤t

{
s̄n(i) − min

k≤i
s̄n(k)

}
≤ M

}
.

Then we have

lim sup
n→∞

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3, in Gn

}
1En(t,M)

]
< ∞.

PROOF. We first study the number of active half-edges, given they contribute
to the appearance of cycle half-edges.

We claim that when a half-edge of vi is about to be paired (in the algorith-
mic construction of Gn described in Section 3.1), the number #A of active half-
edges is less than or equal to 2 + sn(i) − minj≤i sn(j), where sn denotes the walk
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(
∑

j≤i (D̂j − 2),0 ≤ i ≤ n). To see why this claim is true, first notice that it suf-
fices to prove it only for the first component. Then observe that the claim is true
if vi has just been discovered (this can be shown by induction: this is true for the
first vertex v1 and, when i > 1, the number of active half-edges that the discov-
ery of vi creates is −1 + degree of vi − 1, which is exactly the increment of sn).
On the other hand, if vi had already been discovered before, the number of active
half-edges present when a new half-edge of vi is about to be paired is less than
the number of active half-edges present when the first half-edge of vi was about to
be paired (due to our choice of the depth-first search; we go back to vi only when
the vertices vj , j > i, have all been fully explored). As seen in the first alternative,
that last number is at most 2 + sn(i) − minj≤i sn(j). This completes the proof of
the claim.

Consequently, under the event En(t,M), during the first �tn2/3� steps, #A is
always less than or equal to 2 + Mn1/3.

For every deterministic sequence (x1, . . . , xn) of positive integers such that∑n
i=1 xi is even, conditionally on the event (D̂1, . . . , D̂n) = (x1, . . . , xn), one has

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3}1En(t,M)|D̂1 = x1, . . . , D̂n = xn

]
= E

[
tn2/3∑
i=1

D̂i∑
k=1

1{the kth half-edge of vi is a cycle half-edge}1En(t,M)

∣∣∣∣
D̂1 = x1, . . . , D̂n = xn

]

≤
tn2/3∑
i=1

xi∑
k=1

P
(
the kth half-edge of vi is a cycle half-edge|

D̂1 = x1, . . . , D̂n = xn and En(t,M)
)

≤
tn2/3∑
i=1

xi

Mn1/3 + 2∑n
m=1 xm − ∑tn2/3

m=1 xm

≤
tn2/3∑
i=1

xi

Mn1/3 + 2

n − tn2/3 .

Consequently,

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3, in Gn

}
1En(t,M)

]
≤ Mn1/3 + 2

n − tn2/3 E

[
tn2/3∑
i=1

D̂i

]

≤ Mn1/3 + 2

n − tn2/3 tn2/3
E[D̂1].



THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH 2575

Note that E[D̂1] ≤ ∑∞
k=1 k kνk

μ
. Hence

lim sup
n→∞

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3}1En(t,M)

] ≤ 2Mt,

which completes the proof of Lemma 6.1. �

REMARK 6.1. We can prove that in fact, for every t > 0,

lim sup
n→∞

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3, in Gn

}]
< ∞.

REMARK 6.2. We stress that a consequence of [6], Theorem 1, is that the
expected total number of half-edges present in a component containing a cycle
half-edge is o(n). This also holds for the subcritical regime.

6.2. End of the proof of Theorem 3.1. In this section, we prove Theorem 3.1.
We keep the notation of Section 6.1. Let t > 0. Applying Corollary 5.2 and the
Portmanteau theorem, it suffices to prove that for every bounded, Lipschitz func-
tion f defined on (D([0, t]),R), E[f ( �Wn)]−E[f (s̄n)] tends to 0 as n → ∞. Let f

be such a function. There exists K > 0 such that for every w,w′ ∈ (D([0, t]),R),
|f (w)| ≤ K and |f (w) − f (w′)| ≤ K‖w − w′‖. Let M > 0. One has∣∣E[

f ( �Wn)
] −E

[
f (s̄n)

]∣∣
= E

[∣∣f ( �Wn) − f (s̄n)
∣∣1En(t,M)

] +E
[∣∣f ( �Wn) − f (s̄n)

∣∣(1 − 1En(t,M))
]

≤ E
[
K‖ �Wn − s̄n‖1En(t,M)

] +E
[
2K(1 − 1En(t,M))

]
≤ 2Kn−1/3

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3}1En(t,M)

]
+ 2KP

(
max
i≤t

{
s̄n(i) − min

k≤i
s̄n(k)

}
≥ M

)
.

Lemma 6.1 ensures that

lim
n→∞n−1/3

E
[
#
{
cycle half-edges attached to vi , i ≤ tn2/3}1En(t,M)

] = 0.

Moreover, applying Corollary 5.2 and the Portmanteau theorem,

lim sup
n→∞

P

(
max
i≤t

{
s̄n(i) − min

k≤i
s̄n(k)

}
≥ M

)
≤ P

(
max
s≤t

{
Wν(s) − min

u≤s
Wν(u)

}
≥ M

)
.

Therefore, for every M > 0,

lim sup
n→∞

∣∣E[
f ( �Wn)

] −E
[
f (s̄n)

]∣∣ ≤ 2KP

(
max
s≤t

{
Wν(s) − min

u≤s
Wν(u)

}
≥ M

)
.

Now, the continuity of Wν implies that

lim
M→∞P

(
max
s≤t

{
Wν(s) − min

u≤s
Wν(u)

}
≥ M

)
= 0.

Hence

lim
n→∞E

[
f ( �Wn)

] −E
[
f (s̄n)

] = 0.

Theorem 3.1 is therefore proved.
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7. Study of the random simple graph SGn. The setting of this section is the
same as before: ν is supposed to satisfy (2.1). We intend to show Theorem 3.2 (re-
call that, as before, Theorem 2.2 follows from Theorem 3.2). The proof is divided
into two steps. First (see Lemma 7.1 below) we shall prove that, with probability
tending to 1, the possible loops and multiple edges in Gn arrive only after the first
�n3/4� vertices have been explored during the depth-first search. We shall then
deduce that the walk �Wn conditioned on the event {Gn is simple} has the same
asymptotic behavior as the walk �Wn; see Section 7.2.

7.1. Time arrival of loops and multiple edges. In this section, we prove the
following result:

LEMMA 7.1. Let T (n) be the minimal index of a vertex of Gn having a loop
or a multiple edge:

T (n) = inf
{
i ∈ {1, . . . , n} : vi has a loop or a multiple edge

}
.

Then

lim
t→∞P

(
T (n) > n3/4) = 1.

Observe that T (n) = ∞ if and only if Gn is simple.

PROOF OF LEMMA 7.1. Obviously, it suffices to show that

lim
n→∞E

[
#
{
loops or multiple edges attached to vi , i ≤ n3/4, in Gn

}] = 0.

Let us establish this assertion. We proceed the same way as in the proof of
Lemma 6.1. For every deterministic sequence (x1, . . . , xn) of positive integers such
that

∑n
i=1 xi is even, conditionally on the event (D̂1, . . . , D̂n) = (x1, . . . , xn), one

has

E
[
#
{
loops or multiple edges attached to vi , i ≤ n3/4}|D̂1 = x1, . . . , D̂n = xn

]
≤

n3/4∑
i=1

xi∑
k=1

P
(
the kth half-edge of vi creates a loop or a multiple edge|

D̂1 = x1, . . . , D̂n = xn

)
.

Now, the kth half-edge of a vertex with degree xi (i ≤ n3/4) creates a loop with
probability at most xi−k

n−n3/4 . It creates a multiple edge with probability at most
k−1

n−n3/4 . Consequently

E
[
#
{
loops or multiple edges attached to vi , i ≤ n3/4}|D̂1 = x1, . . . , D̂n = xn

]
≤

n3/4∑
i=1

xi∑
k=1

xi

n − n3/4
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and

E
[
#
{
loops or multiple edges attached to vi , i ≤ n3/4, in Gn

}]
≤ 1

n − n3/4E

[
n3/4∑
i=1

D̂2
i

]

≤ n3/4

n − n3/4E
[
D̂2

1
]
.

Since ν has finite third moment, this completes the proof. �

7.2. End of the proof of Theorem 3.2. Let t > 0. Let f be a bounded, contin-
uous function defined on (D([0, t]),R). It suffices to prove that

lim
n→∞E

[
f ( �Wn)|T (n) = ∞] = E

[
f
(
Wν)],

where f ( �Wn) denotes the image of the restriction of the walk �Wn to [0, t] by f .
Let us show that result. Observe that the event{

neither loop nor multiple edge is attached to vi , i > n3/4}
is asymptotically independent of the r.v. f ( �Wn)

E
[
f ( �Wn)1neither loop nor multiple edge is attached to vi ,i>n3/4

]
∼

n→∞E
[
f ( �Wn)

]
P
(
neither loop nor multiple edge is attached to vi , i > n3/4).

Deciding whether or not a loop or a multiple edge is created after step n3/4 does
indeed not depend on the first tn2/3 steps.2

Now, by Theorem 3.1,

lim
n→∞E

[
f ( �Wn)

] = E
[
f
(
Wν)].

Moreover,

0 ≤ P(neither loop nor multiple edge is attached to vi , i > n3/4)

P(T (n) = ∞)
− 1

= P(neither loop nor multiple edge is attached to vi , i > n3/4 and T (n) ≤ n3/4)

P(Gn is a simple graph)

≤ P(T (n) ≤ n3/4)

P(Gn is a simple graph)
.

2To make this argument rigorous, consider the Poissonian model introduced in Section 4; indepen-
dence is then straightforward, and the fact that the two models are asymptotically close has already
been seen.
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According to Lemma 7.1 and equation (2.2),

lim
n→∞

P(T (n) ≤ n3/4)

P(Gn is a simple graph)
= 0.

Consequently,

P
(
neither loop nor multiple edge is attached to vi , i > n3/4) ∼

n→∞P
(
T (n) = ∞)

.

We finally obtain

E
[
f ( �Wn)1neither loop nor multiple edge is attached to vi ,i>n3/4

]
∼

n→∞E
[
f
(
Wν)]

P
(
T (n) = ∞)

.

Recalling Lemma 7.1 and equation (2.2) again (just proceed as before), this proves
that

E
[
f ( �Wn)1T (n)=∞

] ∼
n→∞E

[
f
(
Wν)]

P
(
T (n) = ∞)

,

completing the proof of Theorem 3.2.

8. The power law distribution setting. In this section, we do not suppose
the finiteness of the moment of order 3 for distribution ν, and rather we replace
assumption (2.1) by

∞∑
k=1

k(k − 2)νk = 0 and νk ∼
k→∞ ck−γ ,(8.1)

where c > 0 and γ ∈ (3,4). This implies that (5.1) has to be replaced by

L′′(t) = 2μ − c�(4 − γ )

γ − 3
tγ−3 + o

t→0

(
tγ−3).(8.2)

We are interested in the component sizes of the multigraph constructed the same
way as before. To have a good idea of what the order of the component sizes should
be, we adopt the same strategy, using Poisson calculus; see Section 8.1. We shall
then show in Section 8.2 how to deduce the asymptotic behavior of the component
sizes of Gn in our new situation. In Section 8.3 we shall state some open problems.

8.1. The Poissonian argument. Taking the same notation as in Section 5, we
here consider the process (Sn(t))t≥0 defined by

Sn(t) = ∑
(s,k)∈
n

(k − 2)1s≤t .

Recall that 
n is a Poisson point process on (0, n) ×N
∗ with intensity πn, where

πn(dt, k) = νkke−kψ(t/n)ψ ′(t/n)dt . We intend to prove the following result:
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THEOREM 8.1. Rescale Sn by defining �Sn(t) = n−1/(γ−1)Sn(tn
(γ−2)/(γ−1)).

Then

�Sn
(d)−→

n→∞ Xν + Aν

with respect to the Skorokhod topology on every finite interval, where

Aν
t = − c�(4 − γ )

(γ − 3)(γ − 2)μγ−2 tγ−2, t ≥ 0,

and Xν is the unique process with independent increments such that for every t ≥ 0
and u ∈R,

E
[
exp

(
iuXν

t

)] = exp
(∫ t

0
ds

∫ ∞
0

dx
(
eiux − 1 − iux

) c

μ

1

xγ−1 e−xs/μ

)
.

PROOF. As before, let

An(t) =
∫
(0,n)×N∗

πn(ds, k)(k − 2)1s≤t , t ≥ 0

be the deterministic continuous bounded variation function such that

Mn(t) = Sn(t) − An(t), t ≥ 0

is a martingale. Just as we rescaled Sn to form �Sn in Theorem 8.1, write �An and
�Mn for the correspondingly rescaled versions of An and Mn. Note that (5.1) was
the only ingredient of the proof of Lemma A.1. Since in our setting equation (8.2)
holds, we can perform the same elementary calculations and then find that for
every t > 0,

lim
n→∞ sup

s≤t

∣∣�An(s) − Aν
s

∣∣ = 0.

To complete the proof of Theorem 8.1, it thus suffices to show that

�Mn
(d)−→

n→∞Xν

with respect to the Skorokhod topology on every finite interval. We postpone the
proof of that result to the Appendix; see Lemmas B.1 and B.2. �

8.2. The main result. Repeating exactly what we did in Section 6, we deduce
from Theorem 8.1 the following key result. As before, the walk defined via (3.1)
is denoted by Wn.

COROLLARY 8.2. Rescale the depth-first walk Wn by defining for every t ∈
[0, n1/(γ−1)],

�Wn(t) = n−1/(γ−1)Wn

(⌊
tn(γ−2)/(γ−1)⌋).
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Then

�Wn
(d)−→

n→∞ Xν + Aν

with respect to the Skorokhod topology on every finite interval.

We now give an analogous result of Theorem 2.1 in the present setting. Let Rν

be the reflected process defined by

Rν
t = Xν

t + Aν
t − inf

0≤s≤t

{
Xν

s + Aν
s

}
, t ≥ 0.

We define excursion intervals and excursion lengths of Rν as in Section 2.

THEOREM 8.3. Suppose ν satisfies (8.1). Then a.s. the set of excursions of Rν

may be written {γj , j ≥ 1} so that the lengths |γj | are decreasing and∑
j≥1

|γj |2 < ∞,

and letting Cν
n be the ordered sequence of component sizes of Gn,

n−(γ−2)/(γ−1)Cν
n

(d)−→
n→∞

(|γj |, j ≥ 1
)

with respect to the l2↘ topology.

Contrary to the finite third moment case, Theorem 8.3 cannot been seen as a
straightforward consequence of Corollary 8.2; the analogy of Section 3.4 of [1]
does not exist here. The following lemma (which uses Corollary 8.2) will nonethe-
less enable us to get Theorem 8.3. We refer to Section 3 for the definitions of
ζ(n, k) and C(n, k).

LEMMA 8.4. For every positive integer n, let �(n) be the point process

�(n) = {(
n−(γ−2)/(γ−1)ζ(n, k − 1), n−(γ−2)/(γ−1)C(n, k)

)
:k ≥ 1

}
,

and let �(∞) be the point process

�(∞) = {(
l(γ ), |γ |) :γ is an excursion of Rν}.

Then �(n) converges vaguely in distribution to �(∞) as n → ∞.3 Moreover, �(∞)

satisfies the following three points:

(1) sup {s : (s, y) ∈ �(∞) for some y} = ∞ a.s.;
(2) if (s, y) ∈ �(∞), then

∑
(s′,y′)∈�(∞) : s′<s y′ = s a.s.;

(3) max {y : (s, y) ∈ �(∞) for some s > s0} p→ 0 as s0 → ∞.

3Vague convergence of counting measures on [0,∞) × (0,∞) is considered here.
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PROOF. Observe that the component sizes of the multigraph Gn, in the order
of appearance in depth-first walk, are size-biased ordered. Following the proof
of [2], Proposition 17, Lemma 8.4 thus derives from Corollary 8.2 and forthcoming
Lemma B.3 stated in the Appendix. �

PROOF OF THEOREM 8.3. Applying [2], Proposition 17 (see also [1], Propo-
sition 15 and Lemma 25), Lemma 8.4 ensures that a.s. the set of excursions of Rν

can be written {γj , j ≥ 1} so that the lengths |γj | are decreasing and∑
j≥1

|γj |2 < ∞.

By [2], Proposition 17, another consequence of Lemma 8.4 is that

n−(γ−2)/(γ−1)Cν
n

(d)−→
n→∞

(|γj |, j ≥ 1
)

with respect to the l2↘ topology. �

8.3. Open questions. The argument used to prove Lemma 7.1 does not work
in our present setting. Observe though that (2.2) still holds here. That is why we
believe that the following result is true:

CONJECTURE 8.5. Suppose ν satisfies (8.1). Let SCν
n be the ordered se-

quence of component sizes of SGn and (|γj |, j ≥ 1) be the ordered sequence of
the excursion lengths of Rν . Then

n−(γ−2)/(γ−1)SCν
n

(d)−→
n→∞

(|γj |, j ≥ 1
)

with respect to the l2↘ topology.

As before, Conjecture 8.5 would be proven as soon as the following result is
shown:

CONJECTURE 8.6. If ν satisfies (8.1), then the rescaled walk �Wn conditioned
on the event {Gn is simple} converges in distribution to Xν + Aν with respect to
the Skorokhod topology on every finite interval as n → ∞.

APPENDIX A: THE FINITE THIRD MOMENT SETTING

In this section, we complete the proof of Proposition 5.1 by showing two tech-
nical results.

LEMMA A.1. For every t0 > 0,

lim
n→∞ sup

t≤t0

∣∣∣∣�An(t) + β

2μ2 t2
∣∣∣∣ = 0.
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PROOF. By definition,

An(t) =
∫ t

0

∑
k∈N∗

(
k2 − 2k

)
e−kψ(s/n)ψ ′(s/n)νk ds

=
∫ t

0

(
an(s) − 2

)
ds,

where

an(s) = L′′(ψ(s/n))

−L′(ψ(s/n))
.

Since E[D2] = 2E[D], an(s) tends to 2 as n → ∞. Moreover, it is easily seen by
approximating ψ(s/n) by s

μn
that an(s) − 2 is approximatively − β

μ2
s
n

. Let us be
more precise. Recalling (5.1), in the neighborhood of t = 0,

L′′(t) = 2μ − (β + 4μ)t + o(t) and L′(t) = −μ + 2μt + o(t).

Therefore

L′′(t) + 2L′(t)
−L′(t)

= −β

μ
t + o(t),

that is, there exists a function ε(1)(·) tending to 0 at 0 such that

L′′(t)
−L′(t)

− 2 = −β

μ
t + tε(1)(t).

Now, ψ(t) = t
μ

+ o(t) so that there exists a function ε(2)(·) tending to 0 at 0 such
that

ψ(t) = t

μ
+ tε(2)(t).

We deduce that

an(s) − 2 = −β

μ
ψ

(
s

n

)
+ ψ

(
s

n

)
ε(1)

(
ψ

(
s

n

))

= −β

μ

(
s

μn
+ s

n
ε(2)

(
s

n

))

+
(

s

μn
+ s

n
ε(2)

(
s

n

))
ε(1)

(
s

μn
+ s

n
ε(2)

(
s

n

))

= − β

μ2

s

n
+ s

n

{
−β

μ
ε(2)

(
s

n

)
+ 1

μ
ε(1)

(
s

μn
+ s

n
ε(2)

(
s

n

))

+ ε(2)

(
s

n

)
ε(1)

(
s

μn
+ s

n
ε(2)

(
s

n

))}
.
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Defining

ε : t �→ −β

μ
ε(2)(t) + 1

μ
ε(1)

(
t

μ
+ tε(2)(t)

)
+ ε(2)(t)ε(1)

(
t

μ
+ tε(2)(t)

)
,

we finally get

an(s) − 2 = − β

μ2

s

n
+ s

n
ε

(
s

n

)
with ε(·) tending to 0 at 0. Thus, for every t ∈ [0, t0n

2/3],∣∣∣∣An(t) + β

μ2

t2

2n

∣∣∣∣ ≤ 1

n

∫ t

0
s

∣∣∣∣ε( s

n

)∣∣∣∣ds ≤ 1

n

∫ t0n
2/3

0
s

∣∣∣∣ε( s

n

)∣∣∣∣ds.

As a result, for every η > 0, there exists an integer n0(η) such that for every integer
n ≥ n0(η),

sup
t≤t0n

2/3

∣∣∣∣An(t) + β

2μ2

t2

n

∣∣∣∣ ≤ 1

n

∫ t0n
2/3

0
sη ds = t2

0

2
ηn1/3,

which proves Lemma A.1. �

LEMMA A.2. �Mn
(d)−→

n→∞
√

β
μ
B with respect to the Skorokhod topology on every

finite interval, where B denotes a standard Brownian motion.

PROOF. We want to apply the functional CLT for continuous-time martin-
gales. Since An is continuous, and Sn only jumps at points tj , Mn is a purely
discontinuous martingale, so that [Mn]t = ∑

s≤t �Mn(s)
2 and its predictable pro-

jection

〈Mn〉(t) =
∫
(0,n)×N∗

πn(ds, k)(k − 2)21s≤t , t ≥ 0,

is the continuous, increasing process such that M2
n −〈Mn〉 is a martingale. Observe

that 〈Mn〉 is deterministic. Define 〈 �Mn〉(t) = n−2/3〈Mn〉(tn2/3). Applying [13],
Theorem 7.1.4(b), the following two points imply Lemma A.2:

∀t0 > 0 〈 �Mn〉(t0) −→
n→∞

β

μ
t0(A.1)

and

lim
n→∞E

[
sup
t≤t0

∣∣ �Mn(t) − �Mn(t−)
∣∣2] = 0.(A.2)

Let us establish (A.1). First note that

〈Mn〉(t) =
∫ t

0

∑
k∈N∗

k(k − 2)2e−kψ(s/n)ψ ′(s/n)νk ds

=
∫ t

0
bn(s)ds,
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where

bn(s) = L(3) + 4L′′ + 4L′

L′ ◦ ψ

(
s

n

)
.

Since ψ(t) tends to 0 as t → 0 and

lim
t→0

L(3)(t) + 4L′′(t) + 4L′(t)
L′(t)

= −(β + 4μ) + 8μ − 4μ

−μ
= β

μ
,

there exists a function ε(·) tending to 0 at 0 such that

bn(s) = β

μ
+ ε

(
s

n

)
.

We deduce that ∣∣∣∣〈Mn〉(t0n2/3) − β

μ
t0n

2/3
∣∣∣∣ ≤ ∫ t0n

2/3

0

∣∣∣∣ε( s

n

)∣∣∣∣ds.

Hence, for every η > 0, there exists an integer n1(η) such that for every integer
n ≥ n1(η), ∣∣∣∣〈Mn〉(t0n2/3) − β

μ
t0n

2/3
∣∣∣∣ ≤ ηt0n

2/3,

which proves (A.1).
We next turn our attention to (A.2). Note that Mn(t) − Mn(t−) = Sn(t) −

Sn(t−), so

sup
t≤t0n

2/3

∣∣Mn(t) − Mn(t−)
∣∣2 = sup

{
(k − 2)2 : (s, k) ∈ 
n and s ≤ t0n

2/3}
≤ sup

{
k2 : (s, k) ∈ 
n and s ≤ t0n

2/3}.
Let Ln denote sup{k : (s, k) ∈ 
n and s ≤ t0n

2/3} (we drop the dependency on t0
in the notation). We have

E
[
L2

n

] =
�n1/3�−1∑

k=1

P(Ln ≥ √
k) + ∑

k≥n1/3

P(Ln ≥ √
k) ≤ n1/3 + ∑

k≥n1/3

P(Ln ≥ √
k).

Now, for every m ∈ N,

P(Ln ≥ m) = 1 − P(Ln < m)

= 1 − P
(

n

([
0, t0n

2/3] × {m,m + 1, . . .}) = 0
)

= 1 − exp
(−πn

([
0, t0n

2/3] × {m,m + 1, . . .}))
≤ πn

([
0, t0n

2/3] × {m,m + 1, . . .})



THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH 2585

= ∑
l≥m

νl

∫ t0n
2/3

0
ds le−lψ(s/n)ψ ′(s/n)

= n
∑
l≥m

νl

(
1 − e−lψ(t0n

−1/3))
≤ nψ

(
t0n

−1/3)∑
l≥m

lνl.

As a result,

E
[
L2

n

] ≤ n1/3 + ∑
k≥n1/3

nψ
(
t0n

−1/3) ∑
l≥√

k

lνl

= n1/3 + nψ
(
t0n

−1/3) ∑
l≥n1/6

lνl

l2∑
k=�n1/3�

1.

We deduce that for every integer n,

n−2/3
E

[
sup

t≤t0n
2/3

∣∣Mn(t) − Mn(t−)
∣∣2] ≤ n−1/3 + n1/3ψ

(
t0n

−1/3) ∑
l≥n1/6

l3νl.

Now, n1/3ψ(t0n
−1/3) tends to t0

μ
and since E[D3] is finite,

∑
l≥n1/6 l3νl tends to 0.

Equation (A.2) is therefore proved. �

APPENDIX B: THE POWER LAW DISTRIBUTION SETTING

B.1. End of the proof of Theorem 8.1. This section is organized as follows.
In Lemma B.1 we shall study the martingale �M(1)

n related to the small jumps of �Mn.
Then, in Lemma B.2, we shall be interested in the martingale �M(2)

n which counts
the big jumps. The fact that �Mn = �M(1)

n + �M(2)
n converges to Xν , which is the sum

of the limits of �M(1)
n and �M(2)

n , stems from the independence of �M(1)
n and �M(2)

n

(since they never jump simultaneously). To ease notation, let

a = 1

γ − 1
.

LEMMA B.1. The martingale �M(1)
n defined for every t ≥ 0 by

�M(1)
n (t) = ∑

(s,k)∈
n

1k<na (k − 2)n−a1s≤tn1−a

−
∫
(0,n)×N∗

πn(ds, k)1k<na (k − 2)n−a1s≤tn1−a
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converges in distribution with respect to the Skorokhod topology on every finite
interval as n → ∞ to a process (X

(1)
t )t≥0 with independent increments character-

ized by: for every t ≥ 0 and u ∈R,

E
[
exp

(
iuX

(1)
t

)] = exp
(∫ t

0
ds

∫ 1

0
dx

(
eiux − 1 − iux

) c

μ

1

xγ−1 e−xs/μ

)
.

PROOF. First observe that the process X(1) may be defined as the limit for the
metric induced by the norm

‖Y‖ = E
[
sup

{
Y 2

s : 0 ≤ s ≤ t
}]1/2

of the Cauchy family

t �→ ∑
s≤t

1�s>ε�s −
∫ t

0
ds

∫ 1

ε
dx x

c

μ

1

xγ−1 e−xs/μ

as ε tends to 0, � being a Poisson point process with intensity 1x∈(0,1)ν(ds,dx)

where

ν(ds,dx) = c

μ

1

xγ−1 e−xs/μ ds dx.

To prove Lemma B.1, we rely on [15], Theorem VII.3.7. Dealing with small jumps
of the martingale �Mn indeed enables us to work with “square-integrable” processes
[note that

∫ t
0
∫
R

x21x∈(0,1)ν(ds,dx) < ∞].
Taking the same notation as in [15], we first have to compute the characterics

(Bn,Cn, νn) of �M(1)
n , which are defined via the following equation: for every t ≥ 0

and u ∈ R,

E
[
exp

(
iu �M(1)

n (t)
)]

= exp
(
iuBn(t) − 1

2
u2Cn(t) +

∫ t

0

∫ 1

−n−a

(
eiux − 1 − iux

)
νn(ds,dx)

)
.

The exponential formula for Poisson point processes yields

E
[
exp

(
iu �M(1)

n (t)
)]

= exp
{
n

∑
k<na

νk

(
1 − e−kψ(tn−a))(eiu(k−2)n−a − 1 − iu(k − 2)n−a)}.

Consequently, Bn = Cn = 0 and

νn(ds,dx) = ds
∑
k<na

δ(k−2)n−a (dx)n1−akνkψ
′(sn−a)e−kψ(sn−a).

According to [15], Theorem VII.3.7, Lemma B.1 will be proved as soon as we
have shown that for every t ≥ 0,∫ t

0

∫ 1

−n−a
x2νn(ds,dx) −→

n→∞

∫ t

0

∫ 1

0
x2ν(ds,dx),(B.1)



THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH 2587

and for every t ≥ 0 and g ∈ C2(R+),∫ t

0

∫ 1

−n−a
g(x)νn(ds,dx) −→

n→∞

∫ t

0

∫ 1

0
g(x)ν(ds,dx),(B.2)

where C2(R+) is the set of all continuous bounded functions R+ →R which are 0
on a neighborhood 0 and have a limit at infinity.

Let us establish (B.1). Elementary calculations yield∫ t

0

∫ 1

−n−a
x2νn(ds,dx) = n1−2a

∑
k<na

(k − 2)2νk

(
1 − e−kψ(tn−a)).

A difficulty stems from the lack of good estimates for νk when k is small. That is
why we write∫ t

0

∫ 1

−n−a
x2νn(ds,dx) = n1−2a

∑
k∈N∗

(k − 2)2νk

(
1 − e−kψ(tn−a))

− n1−2a
∑
k≥na

(k − 2)2νk

(
1 − e−kψ(tn−a)).

It is easy to see that the first term in the difference tends to c�(4−γ )

(γ−3)μγ−3 tγ−3. As for

the second, recalling that νk ∼ ck−γ ,

n1−2a
∑
k≥na

(k − 2)2νk

(
1 − e−kψ(tn−a))

∼
n→∞n1−2a

∫ ∞
na

dx x2cx−γ (1 − e−xψ(tn−a)).
A change of variable and an application of the dominated convergence theorem
[recall that ψ(x) = x

μ
+ o(x)] yield

n1−2a
∑
k≥na

(k − 2)2νk

(
1 − e−kψ(tn−a)) −→

n→∞

∫ ∞
1

dx c
1 − e−xt/μ

xγ−2 .

Noticing that

c�(4 − γ )

(γ − 3)μγ−3 tγ−3 =
∫ ∞

0
dx c

1 − e−xt/μ

xγ−2 ,

and we finally get∫ t

0

∫ 1

−n−a
x2νn(ds,dx) −→

n→∞

∫ 1

0
dx c

1 − e−xt/μ

xγ−2 ,

which proves (B.1).
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We now turn our attention to (B.2). Let ε ∈ (0,1) and g : [ε,1] → R be a con-
tinuous function. Then∫ t

0

∫ 1

−n−a
g(x)νn(ds,dx) = n

∑
εna<k<na

g

(
k − 2

na

)
νk

(
1 − e−kψ(tn−a)).

Proceeding as before, we obtain∫ t

0

∫ 1

−n−a
g(x)νn(ds,dx) −→

n→∞

∫ 1

ε
dx g(x)c

1 − e−xt/μ

xγ
,

completing the proof of Lemma B.1. �

In order to finish the proof Theorem 8.1, we now show the convergence of the
martingale related to the big jumps.

LEMMA B.2. The martingale �M(2)
n defined for every t ≥ 0 by

�M(2)
n (t) = ∑

(s,k)∈
n

1k≥na (k − 2)n−a1s≤tn1−a

−
∫
(0,n)×N∗

πn(ds, k)1k≥na (k − 2)n−a1s≤tn1−a

converges in distribution with respect to the Skorokhod topology on every finite
interval as n → ∞ to a process (X

(2)
t )t≥0 with independent increments character-

ized by: for every s, t ≥ 0, u ∈R,

E
[
exp

(
iuX

(2)
t

)] = exp
(∫ t

0
ds

∫ ∞
1

dx
(
eiux − 1 − iux

) c

μ

1

xγ−1 e−xs/μ

)
.

PROOF. The existence of X(2) is easily obtained as the sum of

Bν
t = −

∫ t

0
ds

∫ ∞
1

dx x
c

μ

1

xγ−1 e−xs/μ, t ≥ 0,(B.3)

and the partial sum of the jumps of a Poisson point process with intensity
1x≥1ν(ds,dx) [recall that ν(ds,dx) = c

μ
1

xγ−1 e−xs/μ ds dx]. Let us see how

Lemma B.2 derives from [15], Theorem VII.3.4.
As before, we first have to compute the characterics (Bn,Cn, νn) of �M(2)

n , which
are now defined via the equation: for every s, t ≥ 0, u ∈ R,

E
[
exp

(
iu �M(2)

n (t)
)]

= exp
(
iuBn(t) − 1

2
u2Cn(t) +

∫ t

0

∫ ∞
1−2n−a

(
eiux − 1

)
νn(ds,dx)

)
.
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The exponential formula for Poisson point processes yields

E
[
exp

(
iu �M(2)

n (t)
)] = exp

{
−iun1−a

∑
k≥na

(k − 2)νk

(
1 − e−kψ(tn−a))

+ n
∑
k≥na

νk

(
1 − e−kψ(tn−a))(eiu(k−2)n−a − 1

)}
.

Consequently, Cn = 0,

Bn(t) = −n1−a
∑
k≥na

(k − 2)νk

(
1 − e−kψ(tn−a))

and

νn(ds,dx) = ds
∑
k≥na

δ(k−2)n−a (dx)kνkn
1−aψ ′(sn−a)e−kψ(sn−a).

According to [15], Theorem VII.3.4, Lemma B.2 will be proved as soon as we
have shown that for every t ≥ 0,

sup
s≤t

∣∣Bn(t) − Bν
t

∣∣ −→
n→∞ 0,(B.4)

and for every t ≥ 0 and g ∈ C2(R+),∫ t

0

∫ ∞
1−2n−a

g(x)νn(ds,dx) −→
n→∞

∫ t

0

∫ ∞
1

g(x)ν(ds,dx).(B.5)

Equation (B.5) can be shown exactly the same way as (B.2), and to prove (B.4), it
suffices to compare the series to the corresponding integrals as we did above. �

B.2. Completion of the proof of Lemma 8.4. In this section, we give the
missing elements in the proof of Lemma 8.4. This is provided by Lemma B.3.

LEMMA B.3. The following four assertions hold:

(1) Xν
t + Aν

t

p→ −∞ as t → ∞;

(2) sup {|γ | :γ is an excursion of Rν s.t. l(γ ) ≥ t} p→ 0 as t → ∞;
(3) The set {t :Rν

t = 0} contains no isolated points a.s.;
(4) For every t > 0, P(Rν

t = 0) = 0.

PROOF OF LEMMA B.3(1). By Lemma B.1,

E
[(

X
(1)
t

)2] = c

μ

∫ t

0
ds

∫ 1

0
dx

1

xγ−3 e−xs/μ ≤ ct

∫ 1/t

0
dx

1

xγ−3 + c

∫ ∞
1/t

dx
1

xγ−2 ,

so that

E
[(

X
(1)
t

)2] ≤ c

(γ − 3)(4 − γ )
tγ−3.
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Applying Markov’s inequality, we deduce that

t−(γ−3)X
(1)
t

p−→
t→∞ 0.(B.6)

Letting η = (γ − 3)/2, this implies that t−(1+η)X
(1)
t

p→ 0 as t → ∞. Then
notice that X

(2)
t is less than

∑
s≤t �s , where � is a Poisson point process

with intensity 1x≥1ν(ds,dx) [recall that ν(ds,dx) = c
μ

1
xγ−1 e−xs/μ ds dx]. Now

E[∑s≤t �s] = c
μ

∫ t
0 ds

∫ ∞
1 dx 1

xγ−2 e−xs/μ ≤ c
μ(γ−3)

t . Consequently, by Markov’s

inequality, t−(1+η) ∑
s≤t �s

p→ 0 as t → ∞. Since t−(1+η)Aν
t → −∞ as t → ∞,

property (1) is proved. �

PROOF OF LEMMA B.3(2). Restate (2) as follows: for every ε > 0,

number of
(
excursion of Rν with length > 2ε

)
< ∞ a.s.

Fix ε > 0 and define events Cn = {sups∈[(n−1)ε,nε](Xν
(n+1)ε + Aν

(n+1)ε − Xν
s −

Aν
s ) > 0}. It is easily seen that it suffices to show that P(Cn infinitely often) = 0.

By (B.6), it is enough to prove that∑
n≥1+s0/ε

P
(
Cn ∩ Cs0

)
< ∞ for every large s0,(B.7)

where Cs0 = {supt≥s0
t−(γ−3)|X(1)

t | ≤ δ} for some positive (small) constant δ > 0
to be chosen later. Now

Cn ⊂
{

sup
s∈[(n−1)ε,nε]

(
X

(2)
(n+1)ε − X(2)

s

)
≥ c�(4 − γ )

(γ − 3)(γ − 2)μγ−2 εγ−2((n + 1)γ−2 − nγ−2)
− sup

s∈[(n−1)ε,nε]
(
X

(1)
(n+1)ε − X(1)

s

)}
.

For every n larger than 1 + s0/ε, on Cs0 , we have

sup
s∈[(n−1)ε,nε]

(
X

(1)
(n+1)ε − X(1)

s

) ≤ 2δεγ−3(n + 1)γ−3 ≤ 2δεγ−32γ−3nγ−3.

Consequently, for every n larger than 1 + s0/ε,

Cn ∩ Cs0 ⊂
{

sup
s∈[(n−1)ε,nε]

(
X

(2)
(n+1)ε − X(2)

s

)
≥

(
c�(4 − γ )

(γ − 3)μγ−2 εγ−2 − δεγ−32γ−2
)
nγ−3

}
.



THE COMPONENT SIZES OF A CRITICAL RANDOM GRAPH 2591

Taking δ = ε
c�(4−γ )

(γ−3)μγ−22γ−1 , and denoting c�(4−γ )

2(γ−3)μγ−2 εγ−2 by ρ, we thus have for
every n large enough,

Cn ∩ Cs0 ⊂
{

sup
s∈[(n−1)ε,nε]

(
X

(2)
(n+1)ε − X(2)

s

) ≥ ρnγ−3
}
.

Now, considering a Poisson point process � with intensity 1x≥1ν(ds,dx), where
ν(ds,dx) = c

μ
1

xγ−1 e−xs/μ ds dx, observe that

P

(
sup

s∈[(n−1)ε,nε]
(
X

(2)
(n+1)ε − X(2)

s

) ≥ ρnγ−3
)

≤ P

( ∑
s∈[(n−1)ε,(n+1)ε]

�s ≥ ρnγ−3
)

≤ ρ−1n−γ+3
E

[ ∑
s∈[(n−1)ε,(n+1)ε]

�s

]

= ρ−1n−γ+3 c

μ

∫ (n+1)ε

(n−1)ε
ds

∫ ∞
1

dx x
1

xγ−1 e−xs/μ.

We deduce that for every n larger than 2 + s0/ε,

P
(
Cn ∩ Cs0

) ≤ 2εc

ρμ
n−γ+3

∫ ∞
1

dx x2−γ e−nxε/(2μ) ≤ 4c

ρ
n−γ+2e−nε/(2μ),

which proves (B.7) and completes the proof of assertion (2). �

PROOF OF LEMMA B.3(3). To show property (3), we first consider the case
t = 0. We aim at showing that inf{s > 0 :Xν

s + Aν
s < 0} = 0 a.s. To do so, we shall

in fact prove an analogous result for a certain Lévy process, which will be obtained
by using standard properties of Lévy processes. We shall deduce property (3) by
comparing our process Xν with the studied Lévy process.

Observe that for every s ∈ [0,∞) and x ∈ (0,∞), c
μ

1
xγ−1 e−xs/μ ≤ c

μ
1

xγ−1 .
Recalling the two remarks situated at the beginning of the proofs of Lem-
mas B.1 and B.2 (we described there a way to define X(1) and X(2)), we can couple
the process Xν and construct a stable process L with index γ − 2 with no negative
jumps such that

∀s ≥ 0,∀u ∈ R E
[
exp(iuLs)

] = exp
(
s

∫ ∞
0

dx
(
eiux − 1 − iux

) c

μ

1

xγ−1

)
satisfying

∀s ≥ 0 Xν
s ≤ Ls + c

μ

∫ s

0
dr

∫ ∞
0

dx
1

xγ−2

(
1 − e−xr/μ),
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that is,

∀s ≥ 0 Xν
s ≤ Ls + c�(4 − γ )

(γ − 3)(γ − 2)μγ−2 sγ−2.

Consequently Xν + Aν ≤ L. Since inf{s > 0 :Ls < 0} = 0 a.s., with probability 1,
0 is not an isolated point of the set {t :Rν

t = 0}.
This is now standard to get assertion (3); see, for instance, [5], Proposition VI.4,

or the end of the proof of assertion (d) of [2], Proposition 14. �

PROOF OF LEMMA B.3(4). Here again, we shall use a coupling argument.
Indeed, imagine we are able to prove that for a certain process (Qs)s∈[0,t],

P
(
Qt = inf

{
Qs : s ∈ [0, t]}) = 0,

and for every s ∈ [0, t],
Xν

t + Aν
t − (

Xν
s + Aν

s

) ≥ Qt − Qs.

Then, with probability one,

sup
{
Xν

t + Aν
t − (

Xν
s + Aν

s

)
: s ∈ [0, t]} ≥ sup

{
Qt − Qs : s ∈ [0, t]} > 0,

establishing assertion (4). Let us prove that such a coupling exists.
We have to bound the increments of Xν + Aν from below. We first focus on

X(1). Let t ∈ (0,∞). Arguing as before (just recall the remark made at the be-
ginning of Lemma B.1), since for every s ∈ [0, t] and x ∈ (0,1), c

μ
1

xγ−1 e−xs/μ ≥
c
μ

1
xγ−1 e−xt/μ, we can construct a Lévy process (Q

(1)
s )s∈[0,t] such that

E
[
exp

(
iuQ(1)

s

)] = exp
(
s

∫ 1

0
dx

(
eiux − 1 − iux

) c

μ

1

xγ−1 e−xt/μ

)
∀s ∈ [0, t],∀u ∈R

satisfying

X
(1)
t − X(1)

s ≥ Q
(1)
t − Q(1)

s + c

μ

∫ t

s
dr

∫ 1

0
dx

1

xγ−2

(
e−xt/μ − e−xr/μ)

∀s ∈ [0, t].
Since for every a, b ∈ (0,∞) such that a < b, e−a − e−b ≤ b − a, we have for
every s ∈ [0, t]

X
(1)
t − X(1)

s ≥ Q
(1)
t − Q(1)

s − c

2(4 − γ )μ2 (t − s)2.

Recalling the definition of Bν [see (B.3)], we deduce that for every s ∈ [0, t],
Xν

t − Xν
s ≥ Q

(1)
t − Q(1)

s − c

2(4 − γ )μ2 (t − s)2 + Bν
t − Bν

s .
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We easily deduce that there exists C > 0 (only depending on t) such that for every
s ∈ [0, t],

Xν
t + Aν

t − (
Xν

s + Aν
s

) ≥ Q
(1)
t − Q(1)

s − C(t − s).

Consequently,

sup
{
Xν

t + Aν
t − (

Xν
s + Aν

s

)
: s ∈ [0, t]}

≥ sup
{
Q

(1)
t − Ct − (

Q(1)
s − Cs

)
: s ∈ [0, t]}.

Now, applying [5], Theorem VII.2 and page 158, to the Lévy process (Q
(1)
s −

Cs)s∈[0,t], we have

P
(
Q

(1)
t − Ct = inf

{
Q(1)

s − Cs : s ∈ [0, t]}) = 0.

We deduce that

P
(
Xν

t + Aν
t = inf

{
Xν

s + Aν
s : s ∈ [0, t]}) = 0,

which is assertion (4). �
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