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CUTTING DOWN TREES WITH A MARKOV CHAINSAW

BY LOUIGI ADDARIO-BERRY, NICOLAS BROUTIN AND CECILIA HOLMGREN

McGill University, Inria Paris-Rocquencourt and Stockholm University

We provide simplified proofs for the asymptotic distribution of the num-
ber of cuts required to cut down a Galton–Watson tree with critical, finite-
variance offspring distribution, conditioned to have total progeny n. Our proof
is based on a coupling which yields a precise, nonasymptotic distributional
result for the case of uniformly random rooted labeled trees (or, equivalently,
Poisson Galton–Watson trees conditioned on their size). Our approach also
provides a new, random reversible transformation between Brownian excur-
sion and Brownian bridge.

1. Introduction. The subject of cutting down trees was introduced by Meir
and Moon [39, 40]. One is given a rooted tree T which is pruned by random re-
moval of edges. At each step, only the portion containing the root is retained (we
refer to the portions not containing the root as the pruned portions), and the pro-
cess continues until eventually the root has been isolated. The main parameter of
interest is the random number of cuts necessary to isolate the root. The dual prob-
lem of isolating a leaf or a node with a specific label has been considered by Kuba
and Panholzer [32, 33].

The procedure has been studied on different deterministic and random trees.
Essentially two kinds of random models have been considered for the tree: recur-
sive trees with typical inter-node distances of order logn [22, 25, 26, 41] and trees
arising from critical, finite-variance branching processes conditioned to have size
n, with typical distances of order

√
n [23, 27, 28, 43, 44]. In this paper, we are

interested in the latter family, and will refer to such trees as conditioned trees for
short.

For conditioned trees emerging from a progeny distribution with variance
σ 2 ∈ (0,∞), once divided by σ

√
n, the number of cuts required to isolate the

root of a conditioned tree of size n converges in distribution to a Rayleigh random
variable with density xe−x2/2 on [0,∞). In this form, under only a second mo-
ment assumption, this was proved by Janson [28]; below we discuss earlier, partial
results in this direction. The fact that the Rayleigh distribution appears here with
a

√
n scaling in a setting involving conditioned trees struck us as deserving of ex-

planation. The Rayleigh distribution also arises as the limiting distribution of the
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length of a path between two uniformly random nodes in a conditioned tree, after
appropriate rescaling.

In this paper we show that the existence of a Rayleigh limit in both cases is
not fortuitous. We will prove using a coupling method that the number of cuts and
the distance between two random vertices are asymptotically equal in distribution
(modulo a constant factor σ 2). This approach yields as a by-product very simple
proofs of the results concerning the distribution of the number of cuts obtained in
[23, 27, 28, 43]; this is explained in Section 6.

At the heart of our approach is a coupling which yields the exact distribution of
the number of cuts for every fixed n, for the special case of uniform Cayley trees
(uniformly random labeled rooted trees). Given a rooted tree t and a sequence
S = (v1, . . . , vk) of not necessarily distinct nodes of t , consider an edge-removal
procedure defined as follows. The planting of t at S, denoted t〈S〉, is obtained from
t by creating a new node wi for each 1 ≤ i ≤ k, whose only neighbor is vi . (If the
vi ’s are not all distinct, then the procedure results in multiple new vertices being
connected to the same original vertex; if vi = vj for i �= j , then wi �= wj are both
connected to vi = vj .) Let W = {w1, . . . ,wk} be the set of new vertices (it may be
more natural to take W as a sequence, since S is a sequence, but taking W as a set
turns out to be notationally more convenient later). For a subgraph t ′ of t〈S〉 and a
vertex v, we write C(v, t ′) for the connected component of t ′ containing v; let also
C(V, t ′) be the (minimal) set of connected components containing all the vertices
in a set V .

Let F (0) = t〈S〉, and for j ≥ 0, let F (j+1) be obtained from F (j) by removing a
uniformly random edge from among all edges of C(W,F (j)), if there are any such
edges. The procedure stops at the first time j at which C(W,F (j)) simply consists
of the set of new vertices {w1, . . . ,wk}. We call this procedure planted cutting of S

in t . We remark that Janson [27] already introduced the planted cutting procedure
in the case k = 1. Note that if t is a rooted tree with root r , then t〈{r}〉 contains
only one node which is not a node of t , and in this case the cutting procedure
is almost identical to that described in the first paragraph of the Introduction; see,
however, the remark just before Theorem 3.1. Write M = M(t, S) for the (random)
total number of edges removed in the above procedure. We remark that for each
0 ≤ i ≤ M , F (i) has i + 1 connected components, each of which is a tree.

THEOREM 1.1. Fix n ≥ 1 and k ≥ 1, let Tn be a uniform Cayley tree on nodes
[n] = {1, . . . , n}, let V1, . . . , Vk be independent, uniformly random nodes of Tn and
write Sk = (V1, . . . , Vk). Then M(Tn,Sk)− k is distributed as the number of edges
spanned by the root plus k independent, uniformly random nodes in a uniform
Cayley tree of size n.

For k ≥ 1, let χk be a chi random variable with 2k degrees of freedom; the
distribution of χk is given by

P(χk ≤ x) =
∫ x

0

21−ks2k−1e−s2/2

(k − 1)! ds.
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COROLLARY 1.2. For any fixed k, as n → ∞, M(Tn,Sk)/
√

n converges to χk

in distribution.

The fact that, after rescaling, the number of edges spanned by the root and k

random vertices in Tn converges to χk in distribution is well known; see, for ex-
ample, Aldous [7], Lemma 21. In Appendix A we sketch one possible proof of
Corollary 1.2 and briefly discuss stronger forms of convergence.

REMARKS.

� In the special case k = 1, Theorem 1.1 states that the number of edges re-
quired to isolate the planted node in a planted uniform Cayley tree of size n is
identical in distribution to the number of vertices on the path between two uni-
formly random nodes in a uniform Cayley tree of size n. For the case k = 1,
Chassaing and Marchand [19] have also announced a simple bijective proof of
this result, based on linear probing hashing.

� After the current results were announced [3], and independently of our re-
sults, Bertoin [13] used powerful recent results of Haas and Miermont [24] to
establish the distributional convergence in Corollary 1.2. Bertoin’s results give a
different explicit interpretation of the number of cuts as the asymptotic distance
between two nodes. Bertoin and Miermont [14] also study the genealogy of the
fragmentation resulting from the removal of edges in a random order.

� The original analyses by Meir and Moon [39] include asymptotics for the
mean and variance of the number of cuts. In recent years, the subject of distribu-
tional asymptotics has been revisited by several researchers. Panholzer [43] and
Fill, Kapur and Panholzer [23] have studied the somewhat simpler case where, the
laws of the trees (as n varies), satisfy a certain consistency relation. More precisely,
if μn is the law of the n-vertex tree, the consistency condition requires that after
one step of the cutting procedure, conditional on the size k of the pruned frag-
ment, the pruned fragment and the remaining tree are independent, with respective
laws μk and μn−k . The class of random trees which satisfy this property includes
uniform Cayley trees. For this class, they obtained the limiting distribution of var-
ious functionals of the number of cuts using the method of moments, and gave
an analytic treatment of the recursive equation describing the cutting procedure.
Janson [27, 28] used a representation of the number of cuts in terms of general-
ized records in a labeled tree to extend some of these results to all the family trees
of critical branching processes with offspring distribution having a finite variance.
His method is also based on the calculation of moments.

In the case k = 1, our coupling approach also allows us to describe the joint
distribution of the sequence of pruned trees. In this paper, a forest is a sequence of
rooted labeled trees f = (t1, . . . , tj ) with pairwise disjoint sets of labels. In the nota-
tion of Theorem 1.1 and of the paragraph which precedes it, write M = M(Tn,S1)
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and write (T (1), . . . , T (M)) for the connected components of F (M), listed in the
order they are created during the edge-removal procedure on Tn〈S1〉. Note that the
edge-removal procedure stops at the first time that w1 is isolated, so necessarily
T (M) consists simply of the single vertex w1. For each 1 ≤ i ≤ M , T (i) is a tree,
which we view as rooted at whichever node of T (i) was closest to w1 in Tn〈S1〉; in
particular, necessarily T (M−1) is rooted at V1.

THEOREM 1.3. The forest (T (1), . . . , T (M−1)) is distributed as a uniformly
random forest on [n].

The analysis which leads to Theorem 1.3 will also yield as a by-product the
following result.

THEOREM 1.4. Let Fn = (T1, . . . , Tκ) be a uniformly random forest on [n].
For each i ∈ [κ − 1], add an edge from the root of Ti to a uniformly random node
from among all nodes in Ti+1, . . . , Tκ . Call the resulting tree T , and view T as
rooted at the root of Tκ . Then T is distributed as a uniform Cayley tree on [n].

It turns out that our coupling approach allows us to prove results about a natural
“continuum version” of the random cutting procedure which takes place on the
Brownian continuum random tree (CRT). Our main result about randomly cutting
the CRT is Theorem 5.1, below. Although we work principally in the language of
R-trees, Theorem 5.1 can be viewed as a new, invertible random transformation
between Brownian excursion and reflecting Brownian bridge. Though the precise
statement requires a fair amount of set-up, if this set-up is taken for granted the
result can be easily described. (For the reader for whom the following three para-
graphs are opaque, all the below terminology will be re-introduced and formally
defined later in the paper.)

Let (T , d) be a CRT with root ρ and mass measure μ, write skel(T ) for its
skeleton, and let P be a homogeneous Poisson point process on skel(T ) × [0,∞)

with intensity measure � ⊗ dt , where � is the length measure on the skeleton. We
think of the second coordinate as a time parameter. View each point (p, τ ) of P as a
potential cut, but only make a cut at p if no previous cut has fallen on the path from
the root ρ to p. At each time 0 ≤ t < ∞, this yields a forest of countably many
rooted R-trees; we write Tt for the component of this forest containing ρ. Run
to time infinity, this process again yields a countable collection of rooted R-trees,
later called (fi, i ∈ I∞). Furthermore, each element fi of the collection comes
equipped with a time index τi (the time at which it was cut).

For 0 ≤ t < ∞, let L(t) = ∫ t
0 μ(Ts) ds, and let L(∞) = limt→∞ L(t). It turns

out that L(∞) is almost surely finite. Next, create a single compact R-tree (T ′, d ′)
from the collection (fi, i ∈ I∞) and the closed interval [0,L(∞)] by identifying
the root of fi with the point L(τi) ∈ [0,L(∞)], for each i ∈ I∞, then taking the
completion of the resulting object. Let μ′ be the push-forward of μ under the
transformation described above.
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THEOREM 1.5. The triples (T ′, d ′,μ′) and (T , d,μ) have the same distribu-
tion. Furthermore, 0 ∈ T ′ and L(∞) ∈ T ′ are independent and both have law μ′.

Using the standard encoding of the CRT by a Brownian excursion, we may take
the triple (T , d,μ), together with the point ρ, to be encoded by a Brownian excur-
sion. Similarly, it is possible to view the triple (T ′, d ′,μ′), together with the points
0 and L(∞), as encoded by a reflecting Brownian bridge; see Section 10 of [11]
(this is also closely related to the “forest floor” picture of [15]). From this per-
spective, the transformation from (T , ρ) to (T ′,0,L∞) becomes a new, random
transformation from Brownian excursion to reflecting Brownian bridge. When ex-
pressed in the language of Brownian excursions and bridges, this theorem and our
“inverse transformation” result, Theorem 1.7, below, have intriguing similarities
to results from Aldous and Pitman [11]; we briefly discuss this in Appendix B.

As an immediate consequence of the above development, we will obtain the
following result. Let ν(t) be the mass of the tagged fragment in the Aldous–Pitman
[11] fragmentation at time t . Then, (ν(t), t ≥ 0) is distributed as (μ(Tt ), t ≥ 0) and
we have the following.

COROLLARY 1.6. The random variable
∫ ∞

0 ν(t) dt has the standard Rayleigh
distribution.

A different proof of this fact appears in a recent preprint by Abraham and Del-
mas [2]. We also note that the identity in Theorem 1.5 has been generalized to the
case of Lévy trees in [1].

We are also able to explicitly describe the inverse of the transformation of The-
orem 1.5, and we now do so. Let (T , d,μ) be a measured CRT, and let ρ,ρ′ be
independent random points in T with law μ. Let B be the set of branch points of T
on the path from ρ to ρ ′. For each b ∈ B let Tb be the set of points x ∈ T for which
the path from x to ρ contains a point b′ ∈ B with d(ρ, b′) > d(ρ, b). In words, Tb

is the set of points in subtrees that “branch off the path from ρ to ρ′ after b.” Then,
independently for each point b ∈ B , let yb be a random element of Tb, with law
μ/μ(Tb). Delete all nonbranch points on the path between ρ and ρ′; then, for each
b ∈ B , identify the points b and yb. Write (T ′, d ′) for the resulting tree, and μ′ for
the push-forward of μ to T ′.

THEOREM 1.7. The triples (T , d,μ) and (T ′, d ′,μ′) have the same distribu-
tion. Furthermore, the point ρ′ ∈ T ′ has law μ′.

We remark that it is not a priori obvious the inverse transformation should a.s.
yield a connected metric space, let alone what the distribution of the resulting space
should be. Theorems 1.5 and 1.7 together appear as Theorem 5.1, below.

PLAN OF THE PAPER. In Section 2 we gather definitions and state our nota-
tional conventions. In Section 3 we prove all finite distributional identities related
to the case k = 1, in particular proving Theorems 1.3 and 1.4, and in Section 4 we
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prove Theorem 1.1. Our results on cutting the CRT, notably Theorem 5.1, appear
in Section 5; finally, in Section 6 we explain how our results straightforwardly
imply the distributional convergence results obtained in [27, 28, 43].

2. Notation and definitions. We note that the terminology introduced in Sec-
tions 2.2 and 2.3 is not used until Section 5, and the reader may wish to correspond-
ingly postpone their reading of these sections.

2.1. Finite trees and graphs. Given any finite graph G, we write v(G) for the
set of vertices (or nodes) of G and e(G) for the set of edges of G, and write |G| for
the size (number of vertices) of G. If we say that G is a graph on S, we mean that
v(G) = S. Given a graph G and w ∈ v(G), we write C(w,G) for the connected
component of G containing w. Given a graph G and S′ ⊂ e(G), we sometimes
write G \ S′ for the graph (v(G), e(G) \ S′).

Practically all graphs in this paper will be rooted trees and be denoted t or T .
When we write “tree” we mean a rooted tree unless we explicitly say otherwise.

Given a rooted labeled tree t , we write r(t) for the root of t . For a vertex u of
t write t (u) for the subtree of t rooted at u, write ht (u) for the number of edges
on the path from r(t) to u, and write a(u) = a(u, t) for the parent of u in t , with
the convention that a(r(t)) = r(t). At times we view the edges of t as oriented
toward r(t). In other words, if we state that (u, v) is an oriented edge of t , or write
(u, v) ∈ e(t), we mean that {u, v} ∈ e(t) and v = a(u). In this case we call u the
tail of {u, v} and v the head of {u, v}. It is also sometimes useful to view r(t) as
both the head and tail of a directed loop (r(t), r(t)); we will mention this again
when it arises.

Given a set S = {v1, . . . , vk} of nodes of t , we write t[[S]] or t[[v1, . . . , vk]] for
the subtree of t obtained by taking the union of all shortest paths between elements
of S, and call t[[S]] the subtree of t spanned by S; if r(t) ∈ S then we consider
t[[S]] as rooted at r(t). Given a single node v ∈ t , we write t r↔v to denote the
tree obtained from t by rerooting at v. As mentioned in the Introduction, in this
paper an ordered forest is a sequence of rooted labeled trees f = (t1, . . . , tk) with
pairwise disjoint sets of labels. If we write f = (t1, . . . , tk) is an ordered forest on S

we mean that v(t1) ∪ · · · ∪ v(tk) = S.
Given a finite set S, by a uniform Cayley tree on S we mean a rooted tree chosen

uniformly at random from among all rooted trees t on S; there are |S||S|−1 such
trees. Given a rooted or unrooted tree t , and an ordered sequence S = (v1, . . . , vk)

of elements of v(t), we recall the definition of t〈S〉 (the planting of t at S) from
the Introduction: for each 1 ≤ i ≤ k, create a new node wi and add a single edge
between wi and vi . Given a set U ⊂ v(t〈S〉), we write |U | for the number of nodes
of U \ {w1, . . . ,wk}. In other words, the nodes w1, . . . ,wk are not included when
performing node counts in t〈S〉.

2.2. Metric spaces and real trees. In this paper all metric spaces are assumed
to be separable. Given a metric space X = (X,d), and a real number c > 0, we
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write cX for the metric space obtained by scaling all distances by c. In other words,
if x, y ∈ X, then the distance between x and y in cX is cd(x, y). We also write
diam(X) = sup{d(x, y) :x, y ∈ X} ∈ [0,∞].

Given a metric space (X,d) and x, y ∈ X, a geodesic between x and y is an
isometry f : [0, d(x, y)] → X such that f (0) = x and f (d(x, y)) = y. In this case
we call the image Im(f ) a shortest path between x and y.

A metric space T = (T , d) is an R-tree if for all x, y ∈ T the following two
properties hold:

(1) There exists a unique geodesic between x and y. In other words, there exists
a unique isometry f : [0, d(x, y)] → T such that f (0) = x and f (d(x, y)) = y.

(2) If g : [0, d(x, y)] → T is a continuous injective map with g(0) = x and
g(d(x, y)) = y, then f ([0, d(x, y)]) = g([0, d(x, y)]).
Given an R-tree (T , d) and a, b ∈ T , we write [[a, b]] for the image of the unique
geodesic from a to b, and write ]]a, b[[= [[a, b]] \ {a, b}. The skeleton skel(T) is
defined as ⋃

a,b∈T

]]a, b[[.

(We could equivalently define skel(T) as the set of points whose removal discon-
nects the space.) Since (T , d) is separable by assumption, this may be re-written
as a countable union, and so there is a unique σ -finite measure � on T with
�(]a, b[) = d(a, b) for all a, b ∈ T and such that �(T \ skel(T )) = 0. We refer to �

as the length measure on T.
For a set S ⊂ T , write T [[S]] for the subspace of T spanned by

⋃
x,y∈S]]x, y[[

and dS for its distance (the restriction of d to T [[S]]), and note that (T [[S]], dS) is
again a real tree.

2.3. Types of convergence. Before proceeding to definitions, we remark that
not all the terminology of this subsection is yet fully standardized. The Gromov–
Hausdorff distance is by now well-established. The name “Gromov–Hausdorff–
Prokhorov distance” seems to have first appeared in [48], Chapter 27, where it had
a slightly different meaning. The probabilistic aspects of the Gromov–Hausdorff–
Prokhorov distance were substantially developed in [24, 42]. In particular, it is
shown in [42], Section 6.1, that the below definition of dGHP is equivalent to a
definition based on the more standard Prokhorov distance between measures.

Gromov–Hausdorff distance. Let X = (X,dX) and Y = (Y, dY ) be compact
metric spaces. The Gromov–Hausdorff distance dGH(X,Y) between X and Y is
defined as follows. Let S be the set of all pairs (φ,ψ), where φ :X → Z and
ψ :Y → Z are isometric embeddings into some common metric space (Z, dZ).
Then

dGH(X,Y) = inf
(φ,ψ)∈S dH

(
φ(X),ψ(Y )

)
,



2304 L. ADDARIO-BERRY, N. BROUTIN AND C. HOLMGREN

where dH denotes Hausdorff distance in the target metric space. It can be veri-
fied that dGH is indeed a distance and that, writing M for the set of isometry-
equivalence classes of compact metric spaces, (M, dGH) is a complete separable
metric space. We say that a sequence Xn = (Xn, dn) of compact metric spaces con-
verges to a compact metric space X = (X,d) if dGH(Xn,X) → 0 as n → ∞. It is
then obvious that X is uniquely determined up to isometry. There are two alternate
descriptions of the Gromov–Hausdorff distance that will be useful and which we
now describe.

Next, for compact metric spaces (X,dX) and (Y, dY ), and a subset C of X × Y ,
the distortion dis(C) is defined by

dis(C) = sup
{∣∣dX

(
x, x′) − dY

(
y, y′)∣∣ : (x, y) ∈ C,

(
x′, y′) ∈ C

}
.

A correspondence C between X and Y is a Borel subset of X × Y such that for
every x ∈ X, there exists y ∈ Y with (x, y) ∈ C and vice versa. Write C (X,Y ) for
the set of correspondences between X and Y . We then have

dGH(X,Y) = 1
2 inf

{
r :∃C ∈ C (X,Y ) such that dis(C) < r

}
and there is a correspondence which achieves this infimum.

Given a correspondence C between X and Y and ε ≥ 0 write

Cε = {
(x, y) ∈ X × Y :∃(

x′, y′) ∈ C,dX

(
x, x′) ≤ ε, dY

(
y, y′) ≤ ε

}
and note that Cε is again a correspondence, with distortion at most dis(C) + 2ε.
We call Cε the ε blow-up of C.

Let X = (X,dX, (x1, . . . , xk)) and Y = (Y, dY , (y1, . . . , yk)) be metric spaces,
each with an ordered set of k distinguished points (we call such spaces k-pointed
metric spaces). When k = 1, we simply refer to pointed (rather than 1-pointed)
metric spaces, and write (X,dX, x) rather than (X,dX, (x)). The k-pointed
Gromov–Hausdorff distance is defined as

dk
GH(X,Y)

= 1
2 inf

{
r :∃C ∈ C (X,Y ) such that (xi, yi) ∈ C,1 ≤ i ≤ k and dis(C) < r

}
.

It is straightforward to verify that for each k, the space (Mk, dk
GH) of marked

isometry-equivalence classes of k-pointed compact metric spaces, endowed with
the distance dk

GH, forms a complete separable metric space.

Couplings and Gromov–Hausdorff–Prokhorov distance. Let (X,d,μ) and
(X′, d ′,μ′) be two measured metric spaces, and let ν be a Borel measure on
X × X′. We say ν is a (defective) coupling between μ and μ′ if p∗ν ≤ μ and
p′∗ν ≤ μ′, where p :X × X′ → X and p′ :X × X′ → X′ are the canonical projec-
tions. The defect of ν is defined as

D(ν) = max
(
(μ − p∗ν)(X),

(
μ′ − p′∗ν

)(
X′)).
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We let C(μ,μ′) be the set of couplings between μ and μ′, and for ε ≥ 0 we write
Cε(μ,μ′) = {ν ∈ C(μ,μ′) :D(ν) ≤ ε}

The Prokhorov distance between two finite positive Borel measures μ,μ′ on
the same space (X,d) is

d◦
P
(
μ,μ′) = inf

{
ε > 0 :μ(F) ≤ μ′(Fε) + ε and μ′(F ) ≤ μ

(
Fε) + ε

for every closed F ⊆ X
}
,

where Fε = {x ∈ X :∃x′ ∈ F,d(x, x′) < ε}.
There is another distance which generates the same topology and lends itself

more naturally to combination with the correspondences introduced above. We
define

dP
(
μ,μ′) = inf

{
ε > 0 :∃ν ∈ Cε

(
μ,μ′), ν({(

x, x′) ∈ X × X :d
(
x, x′) ≥ ε

})
< ε

}
.

By analogy with the latter, the Gromov–Hausdorff–Prokhorov (GHP) distance be-
tween X = (X,d,μ) and X′ = (X′, d ′,μ′) is defined as

dGHP
(
X,X′) = inf

{
ε > 0 :

∃ν ∈ Cε

(
μ,μ′) and R ∈ C

(
X,X′) such that

ν
(
Rc

)
< ε,dis(R) < 2ε

}
.

We always have dGHP(X,X′) ≥ dGH(X,X′). Similarly to before, the collection M̂
of measured isometry-equivalence classes of compact metric spaces, endowed with
the distance dGHP, forms a complete separable metric space [42], Section 6.

Given X = (X,dX,μ, (x1, . . . , xk)) and X′ = (X′, d ′,μ′, (x′
1, . . . , x

′
k)), two

k-pointed measured metric spaces, we define the k-pointed Gromov–Hausdorff–
Prokhorov distance as

dk
GHP

(
X,X′)

= inf
{
ε > 0 :

∃ν ∈ Cε

(
μ,μ′) and R ∈ C

(
X,X′) such that

ν
(
Rc

)
< ε,dis(R) < 2ε and

(
xi, x

′
i

) ∈ R,1 ≤ i ≤ k

}
.

Once again, we may define an associated complete separable metric space
(M̂k, dk

GHP).

3. Cutting down uniform Cayley trees.

3.1. The Aldous–Broder dynamics. Given a simple random walk {Xn}n∈N on
a finite connected graph G, we may generate a spanning tree T of G by including
all edges (Xk,Xk+1) with the property that Xk+1 /∈ {Xi}0≤i≤k . The resulting tree
T is in fact almost surely a uniformly random spanning tree of G. (More generally,
if G comes equipped with edge weights {we : e ∈ e(G)}, then the probability the
simple random walk on the weighted graph G generates a specific spanning tree t

is proportional to
∏

e∈e(t) we.) This fact was independently discovered by Broder
[17] and Aldous [10], and the above procedure is commonly called the Aldous–
Broder algorithm.
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By reversibility, the tree T generated by the Aldous–Broder algorithm may in-
stead be viewed as generated by a simple random walk {Xn}n≤0 on G, started
from stationarity at time −∞; see [36], pages 127–128. If instead of stopping the
walk at time zero we instead stop at time i ≥ 0, then the walk {Xn}n≤i gives an-
other tree, say Ti . What we call the Aldous–Broder dynamics is the (deterministic)
rule by which the sequence {Ti, i ≥ 0} is obtained from T0 and from the sequence
{Xn,n ≥ 0}. In the current section, we explain these dynamics. In the next section,
we introduce a modification of the Aldous–Broder dynamics, and use it to exhibit
the key coupling alluded to in Section 1.

Recall that given a rooted tree t and x ∈ v(t), t (x) denotes the subtree of t rooted
at x. Fix an integer n ≥ 1 and a tree t on [n], and let x = (xi)i∈N be a sequence of
elements of [n] = {1,2, . . . , n}.

We then form a sequence of trees {T m(t,x) :m ∈ N}. First, T 0 = t . Then, for
m ≥ 0, we proceed as follows:

• if xm+1 = r(T m), then T m+1 = T m;
• if xm+1 �= r(T m), then form T m+1 by removing the unique edge of T m with tail

xm+1, then adding the edge (xm, xm+1), and finally rerooting at xm+1.

In all cases, r(T m) = xm for all m ≥ 1. We refer to this procedure as the Aldous–
Broder dynamics on t and x. One can equivalently think of the root vertex as
being both the head and tail of a directed loop; then one always removes the
unique edge with tail xm+1 in T m and adds the directed edge (xm, xm+1). Tak-
ing this perspective, let Rm+1 = Rm+1(t,x) be the subtree of T m rooted at xm+1,
so Rm+1 = T m(xm+1). Let Km+1 = Km+1(t,x) be the other component created
when removing the edge with tail xm+1, which is empty if xm+1 = xm and other-
wise contains xm. In all cases T m+1 is obtained from Rm+1 and Km+1 by adding
an edge from xm to xm+1; see Figure 1.

FIG. 1. Two successive trees T i and T i+1 built from the sequence construction: T i+1 is obtained
from T i by cutting above xi+1 and rearranging the parts in such a way that the subtree above the
cut is appended as a child of the root xi+1 of the subtree Ri+1 below the cut.
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3.2. A modified Aldous–Broder dynamics. Say that a sequence x ∈ [n]N is
good if for each k ∈ [n], sup{i :xi = k} = ∞. Fix a tree t on [n] and a good se-
quence x. We now describe a rule for removing a set of edges from t to obtain
an ordered forest F = F(t,x) on [n]. [Recall that an ordered forest is an ordered
sequence (t1, . . . , tk) of rooted trees.]

In words, to build F(t,x) we start from the tree t and make the cuts that are
dictated by the sequence x, but ignore any such cuts that fall in a subtree we have
already pruned at an earlier step. Since x is good, we will eventually prune the root
r(t) and so we will ignore all but finitely many of the cuts.

Formally, let σ0 = 0 and, for i ≥ 1, let

σi = inf

{
m > σi−1 :xm /∈

i−1⋃
j=1

t (xσj
)

}
.

Then let κ = κ(t,x) = inf{i :xσi
= r(t)}. Note that we always have σ1 = 1, that

κ < ∞ since x is good, and that for all j > κ , σj = ∞. Recall that we write t =
(v(t), e(t)), where v(t) and e(t) denote the vertex and edge set of t , respectively.
After all the cuts in x have been made, we are left with a graph

f = (
v(t), e(t) \ {(

xσi
, a(xσi

)
)
,1 ≤ i ≤ κ

})
.

For 1 ≤ i ≤ κ , let Ti = Ti(t,x) = C(xσi
, f ). Note that Ti is a tree, which we view

as rooted at xσi
. We then take

F = F(t,x) = (T1, . . . , Tκ).

Write ri = ri(t,x) for the root of Ti and note that rκ = r(t). Finally, write T̂ =
T̂ (t,x) for the tree obtained from the forest F(t,x) by adding a directed edge from
the root of Ti+1 to the root of Ti , for each i ∈ [κ −1], and rooted at r1 (as suggested
by the orientation of the edges). These definitions are illustrated in Figure 2. We
call this procedure the modified Aldous–Broder dynamics on t and x.

FIG. 2. Left: a tree t , with node labels suppressed for readability; the first five nodes x1, . . . , x5
of some good sequence are marked in the figure. Center: the forest F(t,x) built by applying the
modified Aldous–Broder dynamics to t with any sequence x starting with x1, . . . , x5. The trees are
T1(t,x), . . . , T4(t,x) are shown from left to right, and r1 = x1, r2 = x2, r3 = x4, r4 = x5. Right: the
tree T̂ (t,x), which has root x1.
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REMARK. The cutting procedure described above differs slightly from that
used in much of the work on the subject. More precisely, it is more common to
cut the tree by the removal of random edges rather than the selection of random
vertices. However, there is a close correspondence between the vertex selection
procedure and the edge selection procedure on a planted version of the same tree,
which means results proved for one procedure have immediate analogues for the
other. In particular, Janson ([27], Lemma 6.1) analyzed the difference between the
two variants and showed that it is asymptotically negligible.

Now let X = (Xm)m∈N be a sequence of i.i.d. uniform {1, . . . , n} random vari-
ables. It is easily seen that X is good with probability one. The following theorem
is the key fact underlying almost all the results of the paper.

THEOREM 3.1. Let T be a uniform Cayley tree on [n]. Then for any tree t on
[n] and any w ∈ [n],

P
(
T̂ (T ,X ) = t and r(T ) = w

) = n−n.

Since there are nn−1 labeled rooted trees on [n], there are nn possible ways to
choose a labeled rooted tree on [n], plus an additional vertex of said tree. In other
words, the theorem states that T̂ (T ,X ) is a uniform Cayley tree, and that r(T ) is
uniform on [n] and independent of T̂ (T ,X ) (the fact that r(T ) is uniform on [n]
is immediate from the fact that T is a uniform Cayley tree).

PROOF OF THEOREM 3.1. We proceed by induction on n, the case n = 1 be-
ing trivial. So we now suppose that n > 1. First, consider the case when w = r(T̂ );
we have r(T ) = r(T̂ ) precisely if X1 = r(T ) and in this case T̂ = T . Thus, for any
rooted tree t on [n],

P
(
T̂ = t, r(T ) = r(T̂ )

) = P
(
X1 = r(T ), T = t

) = 1

n
P(T = t) = 1

nn
,

since T is a uniform Cayley tree.
Next, fix a rooted tree t on [n] and any w ∈ [n], w �= r(t). Let c = c(t,w) be

the child of r = r(t) for which the subtree of t rooted at c contains the node w.
Let tr and tc be the subtrees containing r and c, respectively, when the edge (c, r)

is removed from t . If we are to have r(T ) = w and T̂ = t , then tr must appear as a
subtree of T , and we must additionally have X1 = r . Since T is a uniform Cayley
tree it follows that

P
(
r(T ) = w, T̂ = t

)
= P

(
r(T ) = w, T̂ = t, tr is a subtree of T ,X1 = r

)
(1)

= (n − |tr |)n−|tr |

nn−1 · 1

n
· P

(
r(T ) = w, T̂ = t |tr is a subtree of T ,X1 = r

)
.
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Now let X ′ = (X′
i )i∈N be the subsequence of X consisting of the nodes of

K1(T ,X ), the connected component of T containing the root after the edge above
X1 has been removed: for i ∈ N, let

ji = min
{
� :

∣∣{X1, . . . ,X�} ∩ v
(
K1(T ,X )

)∣∣ = i
}

and set X′
i = Xji

. Given that tr is a subtree of T and X1 = r , the entries of X ′ are
independent, uniformly random elements of v(tc). Furthermore, under this condi-
tioning we have that T̂ (T ,X ) = t and r(T ) = w precisely if T̂ (K1(T ,X ),X ′) = tc
and r(K1(T ,X )) = w. Since T is a uniform Cayley tree and K1(T ,X ) is obtained
from T by removing the subtree rooted at X1, it is immediate that conditional on its
vertex set, K1(T ,X ) is again a uniform Cayley tree (and has less vertices than T ).
By induction, it follows that

P
(
r(T ) = w, T̂ = t |tr is a subtree of T ,X1 = r

)
= P

(
T̂

(
K1(T ,X ),X ′) = tc, r

(
K1(T ,X )

) = w|tr is a subtree of T ,X1 = r
)

= |tc|−|tc|.

Since |tc| = n − |tr |, together with (1) this yields that P(T̂ (T ,X ) = t and r(T ) =
w) = n−n, as required. �

We can transform the modified Aldous–Broder procedure for isolating the root
into an edge-removal procedure, as follows. First, plant the tree to be cut at its root.
Next, each time a node is selected for pruning, instead remove the parent edge in-
cident to each selected vertex. The Aldous–Broder procedure then becomes the
planted cutting procedure described in the Introduction, and κ(T ,X ) is precisely
the number of edges removed before the planted vertex is isolated. But κ(T ,X ) is
also the number of vertices on the path from r(T̂ ) to r(T ) in T̂ . By Theorem 3.1,
and from known results about the distance between the root and a uniformly ran-
dom node in a uniform Cayley tree [4, 6, 7, 31, 41], the case k = 1 of Theorem 1.1
and of Corollary 1.2 follow immediately. By a well-known bijective correspon-
dence between labeled rooted trees with a distinguished vertex and ordered labeled
rooted forests (see, e.g., [11]), Theorem 1.3 also follows immediately (the forest
consists of the sequence of trees obtained when removing the edges on the path
between the root and the distinguished vertex).

REMARK. Aldous [5] studied the subtree rooted at a uniformly random node
in a critical, finite variance Galton–Watson tree conditioned to have size n. In par-
ticular, he showed that such a subtree converges in distribution to an unconditioned
critical Galton–Watson tree. It is then straightforward that, for fixed k ≥ 1, the first
k trees that are cut converge in distribution to a forest of k critical Galton–Watson
trees. On the other hand, a critical Galton–Watson tree conditioned to be large
converges locally (in the sense of local weak convergence of [9], i.e., inside balls
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of arbitrary fixed radius k around the root) to an infinite path of nodes having a
size-biased number of children (exactly one of which is again on the infinite path),
where each nonpath node is the root of an unconditioned critical Galton–Watson
tree. This is the incipient infinite cluster for critical, finite variance Galton–Watson
trees [30]. Theorem 1.3 then appears as a strengthening of this picture, valid only
for Poisson Galton–Watson trees, in which k is allowed to grow with n.

Recall that T is a uniform Cayley tree on [n] and that X = (Xm)m∈N is a
sequence of i.i.d. uniform elements of [n]. In the next proposition, which is
essentially a time-reversed version of Theorem 3.1, we write F(T ,X ) = F for
readability.

PROPOSITION 3.2. For any forest f = (t1, . . . , tk) on [n], given that F = f,
independently for each i ∈ [k−1] the parent a(r(ti), T ) of r(ti) in T is a uniformly
random element of

⋃k
j=i+1 v(tj ).

PROOF. If k = 1, then there is nothing to prove. If k > 1, then fix any sequence
v = (v1, . . . , vk−1) with vi ∈ ⋃k

j=i+1 v(tj ) for each i ∈ [k − 1]. Write t (f,v) for
the tree formed from f by adding an edge from r(ti) to vi for each i ∈ [k − 1]. In
order that F = f and that, for each i ∈ [k − 1], a(r(ti), T ) = vi , it is necessary and
sufficient that T = t (f,v) and that for each i ∈ [k], Xσi

= r(ti). The probability
that T = t (f,v) is n−(n−1). Furthermore, since (Xm)m∈N are i.i.d. elements of [n],

P
(
Xσi

= r(ti),1 ≤ i ≤ k|T = t (f,v)
) = ∏

i∈[k]

1

|⋃j≥i v(tj )| .

It follows that

P
(
F = f and a

(
r(ti), T

) = vi,1 ≤ i < k
) = 1

nn−1 · ∏
i∈[k]

1

|⋃j≥i v(tj )| ,

which proves the proposition since this expression does not depend on v1,

. . . , vk−1. �

Theorem 1.4 is an immediate consequence of Proposition 3.2.

4. Isolating more than one vertex. In this section we describe how to gen-
eralize the arguments of Section 3.2 to obtain results on isolating sets of vertices
of size greater than one. Recall that when performing the planted cutting of S in t ,
described in Section 1, we wrote W = {w1, . . . ,wk} for the set of new vertices, and
wrote M = M(t, S) for the (random) total number of edges removed. In order to
study the random variable M , it turns out to be necessary to study a transformation
of the planted cutting procedure. The modified procedure is defined via a canoni-
cal re-ordering of the sequence of removed edges. As such, it may be coupled with
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the original procedure so that the final set of removed edges is the same in both. In
particular, both procedures isolate the vertices of W , and the total number of cuts
has the same distribution in both.

In the following, for an edge e and a connected component C, we write e ∈ C to
mean that both endpoints of e lie in C, or equivalently (since the connected com-
ponents are trees) that the removal of e leaves C disconnected. Also, recall from
Section 2 that given a set A of edges, we write t \ A for the graph (v(t), e(t) \ A).

Now fix a sequence e = (e1, . . . , em) of distinct edges of t . We say that e is a
possible cutting sequence (for S in t) if:

• each edge {vi,wi}, 1 ≤ i ≤ k appears in e (e really isolates w1, . . . ,wk), and
• for each 1 ≤ j ≤ m, one has ej ∈ C(W, t \ {e1, . . . , ej−1}), that is, each ej in-

deed produces a cut.

We now describe a canonical re-ordering of e, which we denote e∗; this re-ordering
operation gives rise to the modified cutting procedure. In e∗, we first list all edges
whose removal decreases the size of the component containing w1 (in increasing
order of arrival time). We then list all remaining edges whose removal decreases
the size of the component containing w2, again in increasing order of arrival time,
and so on. (This is somewhat related to a size-biased reordering of an exchangeable
random structure; see [45], Chapter 1. The next three paragraphs formalize this
description.)

For 1 ≤ i ≤ k, write

Ui = Ui(e) = {
j : ej ∈ C

(
wi, t \ {e1, . . . , ej−1})}

and let U∗
i = Ui \ (

⋃i−1
j=1 Uj). In words, U∗

i is the set of times j at which the
component containing wi does not contain any of w1, . . . ,wi−1, and such that
removing the current edge ej decreases the size of this component.

Next, let m(i) = m(i, t, e) = |Ui |, write Zi = Zi(e) = (zi,1, . . . , zi,m(i)) for
the sequence obtained by listing the elements of Ui in increasing order, and
define Z∗

i accordingly. Notice that once wi is in a component distinct from
w1, . . . ,wi−1, it can never rejoin such a component, and so writing s(i) =
s(i, t, e) = min{� : zi,� ∈ U∗

i }, we must have

Z∗
i = (zi,s(i), zi,s(i)+1, . . . , zi,m(i)).

We then write

e∗ = (ez1,s(1)
, . . . , ez1,m(1)

, ez2,s(2)
, . . . , ez2,m(2)

, . . . , ezk,s(k)
, . . . , ezk,m(k)

)

= (
e∗

1, . . . , e
∗
m

)
,

the latter equality constituting the definition of e∗
1, . . . , e

∗
m. For 1 ≤ i ≤ k, let

ai(t, e∗) = 1 + ∑i−1
�=1(m(�) − s(�) + 1) let bi(t, e∗) = ∑i

�=1(m(�) − s(�) + 1),
and set

e∗
i = (

e∗
j , ai ≤ j ≤ bi

) = (
ezi,j

, s(i) ≤ j ≤ m(i)
)
.
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We remark that necessarily ezi,m(i)
= {wi, vi}, and so in particular the sequence e∗

i

is nonempty for each 1 ≤ i ≤ k.
Now write E = E(t, S) = (E1, . . . ,EM) for the random sequence of re-

moved edges (in the original planted cutting procedure), write E∗ = E∗(t, S) =
(E∗

1 , . . . ,E∗
M) for the rearrangement of E described above, and likewise define

E∗
i , for 1 ≤ i ≤ k, as above.
It is easily seen that if e is not a possible cutting sequence, then P(E(t, S) =

e) = 0, and if e is a possible cutting sequence, then

P
(
E(t, S) = e

) =
m∏

j=1

1

|e(C(W, t \ {e1, . . . , ej−1}))| .(2)

For our purposes, it is in fact the expression for P(E∗(t, S) = e∗) given in the
following lemma that will be more useful. Fix any sequence f = (f1, . . . , fm) of
edges of t〈S〉. If there exists a possible cutting sequence e = (e1, . . . , em) for S =
(v1, . . . , vk) in t such that e∗ = f, then we say that f is valid (for t and S).

LEMMA 4.1. Given any sequence f = (f1, . . . , fm) that is valid for t and S,
we have

P
(
E∗(t, S) = f

) =
k∏

i=1

bi(t,f)∏
j=ai(t,f)

1

|e(C(wi, t \ {f1, . . . , fj−1}))| .

PROOF. We prove the lemma by induction on |e(t〈S〉)|. Fix f as in the state-
ment of the lemma, write

E(f) = E(f, t, S) = {
e : e is a possible cutting sequence for S in t and e∗ = f

}
and note that f ∈ E(f). For any e = (e1, . . . , em) ∈ E(f) we necessarily have
e1 = f1, and so

P
(
E∗

1(t, S) = f1
) = P

(
E1(t, S) = f1

) = 1

|e(t〈S〉)| .

If e1 = {v1,w1}, then writing S′ = (v2, . . . , vk), we have

P
(
E∗ = f|E∗

1 = f1
) = P

(
E∗ = f|E1 = f1

)
= P

(
E∗(

t, S′) = (f2, . . . , fm)
)

and the result follows by induction since t〈S′〉 has fewer edges than t〈S〉.
If e1 �= {v1,w1}, then write t1 = C(w1, t〈S〉 \ {e1}), and write t2 for the other

component of t〈S〉 \ {e1}; each of these trees has fewer edges than t〈S〉. Write
S1 = (x1, . . . , xk1) and S2 = (y1, . . . , yk2) for the nodes of S within t1 and t2, re-
spectively, listed in the same order as in S.
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Now fix any possible cutting sequence e = (e1, . . . , em) with e1 = f1. Write e(1)

and e(2) for those edges in the sequence (e2, . . . , em) falling in t1 and t2, respec-
tively, and listed in the same order as in e. Then it is clear that, conditionally on
E1 = f1, the sequences E(t1, S1) and E(t2, S2) have the distribution of the planted
cutting procedure on t1〈S1〉 and t2〈S2〉, respectively, and are independent. In other
words,

P
(
E(t1, S1) = e(1),E(t2, S2) = e(2)|E1 = f1

)
= P

(
E(t1, S1) = e(1)) · P

(
E(t2, S2) = e(2)).

Furthermore, if e ∈ E(f), then e1 = f1, and e ∈ E(f) if and only if e(1) ∈
E(f(1), t1, S1) and e(2) ∈ E(f(2), t2, S2). [Note: this does not mean that the map
from e to (e(1), e(2)) is bijective! In fact, for a given pair e(1) ∈ E(f(1), t1, S1) and
e(2) ∈ E(f(2), t2, S2), the number of pre-images in E(f) is precisely

(m−1
m1

)
, where

m1 is the length of f(1).] Also, f(1) (resp., f(2)) is valid for t1 and S1 (resp., for t2
and S2). It follows that

P
(
E∗ = f|E1 = f1

)
= ∑

e∈E
P(E = e|E1 = f1)

= ∑
e(1)∈E(f(1),t1,S1)

∑
e(2)∈E(f(2),t2,S2)

P
(
E(t1, S1) = e(1),E(t2, S2) = e(2)|E1 = f1

)
= ∑

e(1)∈E(f(1),t1,S1)

∑
e(2)∈E(f(2),t2,S2)

P
(
E(t1, S1) = e(1)) · P

(
E(t2, S2) = e(2))

= P
(
E∗(t1, S1) = f(1)) · P

(
E∗(t2, S2) = f(2))

from which the result again follows by induction. �

The formula in the preceding lemma implies that removing edges in the order
given by E∗ corresponds to the following procedure. For each 1 ≤ i ≤ k, in that
order, remove edges of t uniformly at random from among those whose removal
reduces the size of the component currently containing wi , until wi is isolated. We
call this the ordered cutting of S in t .

For 1 ≤ i ≤ k, write Mi for the random time at which wi is isolated in the
ordered cutting procedure

Mi = Mi(t, S) = max
{
j :E∗

j ∈ C
(
wi, t \ {

E∗
1 , . . . ,E∗

j−1
})}

= min
{
j :

∣∣C(
wi, t \ {

E∗
1 , . . . ,E∗

j

})∣∣ = 0
}

(recall that the counting does not include planted vertices), and note that M1 <

M2 < · · · < Mk
d= M .
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Now, let T be a uniform Cayley tree on [n], let V1, . . . , Vk be independent,
uniformly random elements of [n], and let Sk = (V1, . . . , Vk). Then write Mk =
M(T,Sk) for the number of edges removed during the ordered cutting of Sk in t .

THEOREM 4.2. Mk − k is distributed as the number of edges spanned by
the root plus k independent, uniformly random nodes in a uniform Cayley tree of
size n.

Theorem 1.1 follows immediately from Theorem 4.2 and the relationship be-
tween planted cutting and ordered cutting described above. To prove Theorem 4.2,
we will exhibit a coupling which generalizes that of Section 3.2 and which we
now explain. The coupling hinges upon the following, easy lemma, whose proof is
omitted. Recall that if S is a set of nodes in a tree t , then t[[S]] is the subtree of S

spanned by S.

LEMMA 4.3. Fix i ≥ 1. Let T be a uniform Cayley tree on [n], let V1, . . . , Vi+1
be independent, uniformly random elements of [n], and let S = {r(T ),V1, . . . , Vi}.
Let U be the most recent ancestor of Vi+1 in T which is an element of v(T [[S]]).
Let R be the set of nodes whose path to Vi+1 uses no edges of T [[S]] (such paths
may pass through U ). Let T + = T [[R]], let T − = T [[([n] \ R) ∪ {U}]] and root T +
and T − at U and at r(T ), respectively. Then conditionally on R, T + is a uniformly
random labeled rooted tree on R, independent of T − and of V1, . . . , Vi , and Vi+1
is a uniformly random element of R independent of T +, T − and V1, . . . , Vi .

The definitions in Lemma 4.3 are depicted in Figure 3.

PROOF OF THEOREM 4.2. We provide a coupling between the random se-
quence of edges E∗(T , (V1, . . . , Vk)) and a sequence T1, . . . , Tk of trees on [n],

FIG. 3. An example of the definitions of Lemma 4.3 in the case i = 2 [so S = (r(T ),V1,V2)]. The
subtree T [[S]] is in thicker black lines. The tree T + is in thick grey lines, and the tree T − consists of
all black lines (thick and thin).
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such that the following properties hold. First, for any rooted tree t on [n], and any
v1, . . . , vi elements of [n] (not necessarily distinct),

P(Ti = t, V1 = v1, . . . , Vi = vi) = n−(n−1+i).(3)

Second, for each 1 ≤ i ≤ k, the following holds:

(�) the forest obtained from T 〈(V1, . . . , Vi)〉 by first removing all edges of
{E∗

1 , . . . ,E∗
Mi

}, then deleting w1, . . . ,wi , is identical to the forest obtained
from Ti by removing all edges of its subtree Ti[[r(Ti),V1, . . . , Vi]].

Equation (3) says that Ti is a uniform Cayley tree and V1, . . . , Vi are independent
of Ti , and (�) then implies in particular (by considering only the case i = k) that
Mk − k is equal to the number of edges of Tk[[r(Tk),V1, . . . , Vk]]. This clearly im-
plies the theorem, and so it remains to explain how we construct such a sequence.

Fix a sequence X = (Xi)i≥1 of i.i.d. uniform elements of [n]. Let T1 be the tree
built by running the modified Aldous–Broder dynamics on T r↔V1 (recall that this
is the tree T , rerooted at node V1) with the sequence (Xi)i≥1. [In the notation of
Section 3.2, T1 = T̂ (T r↔V1,X ).] By Theorem 3.1, for any tree t on [n] and any
v ∈ [n], P(T1 = t, V1 = v) = n−n, so (3) holds in the case i = 1. Temporarily write
u1, . . . , u� for the nodes on the path in T1 from r(T1) to V1, in the same order they
appear on that path. We must then have u� = V1, and M1 = �. For 1 ≤ j ≤ � − 1,
let E∗

j = {uj , a(uj , T
r↔V1)}, and note that this is also an edge of T since T and

T r↔V1 have the same edge set. Then let E∗
M1

= {u�,w1} = {V1,w1}. (An example
of this construction is shown in Figure 4.) By construction, it is immediate that (�)
then holds in the case i = 1.

FIG. 4. Left: the tree T 〈(V1)〉. Center: the tree T r↔V1 , planted at V1. Right: the tree T1. The vertex
and edge labels provide an example of the construction in the proof of Theorem 4.2, in the case k = 1.
For each of the three trees, the forest obtained by removing the bold edges [and, for T 〈(V1)〉, then
throwing away the vertex w1] is identical.
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Now fix 1 ≤ j < k, suppose that T1, . . . , Tj and (E∗
1 , . . . ,E∗

Mj
) are already de-

fined and that (3) and (�) both hold for each 1 ≤ i ≤ j . As defined, Vj+1 is inde-
pendent of Ti and of (E∗

1 , . . . ,E∗
Mj

), and so for any tree t on [n] and any sequence
u1, . . . , uj+1 of elements of [n], we have

P(Tj = t, V1 = u1, . . . , Vj+1 = uj+1) = n−(n−1+i+1).(4)

Let U be the most recent ancestor of Vj+1 that lies in Tj [[r(Ti),V1, . . . , Vj ]], and
define T + and T − as in Lemma 4.3.

Now let X ′ be a random sequence such that conditionally on v(T +), the entries
of X ′ are independent uniform elements of v(T +), independent of all preceding
randomness. Then apply the modified Aldous–Broder dynamics to T +,r↔Vj+1 ,
and call the result T ∗. By Theorem 3.1, given that v(T +) = S, (T +,Vj+1) and
(T ∗,Vj+1) are identically distributed. As above, let u1, . . . , u� be the nodes on
the path from r(T ∗) to Vj+1, and note that we must have Mj+1 = Mj + �. For
1 ≤ i ≤ � − 1 let E∗

Mi+j = {ui, a(ui, T
+,r↔Vj+1)}, and let E∗

Mj+1
= {Vj+1,wj+1}.

In words, we have applied exactly the same construction as in the case i = 1, but
to the subtree T + of T (which contains Vj+1). Figures 3 and 4 may be useful as
visual aids to these definitions.

Write P for the parent of U in Tj , and C1, . . . ,C� for the children of U in
Tj \ T + (any such child is an ancestor of at least one of V1, . . . , Vj ). Now let Tj+1
be the tree obtained from Tj by replacing T + by T ∗. In other words, Tj+1 is built
from Tj by, first, removing all edges of Tj that are incident to nodes of T + and
then, second, adding all edges of T ∗ as well as edges from the root of T ∗ to P and
to each of C1, . . . ,C�. With this construction, (�) now holds for all 1 ≤ i ≤ j + 1.

Finally, write R = v(T +). By Lemma 4.3 and by Theorem 3.1, (T +,Vj+1) and
(T ∗,Vj+1) are identically distributed conditionally on their vertex sets, and both
are independent of T − and of V1, . . . , Vj . It follows that (4) still holds with Tj

replaced by Tj+1, and this verifies (3) and completes the proof by induction. �

5. A novel transformation of the Brownian CRT. In [28], Janson suggested
that it should be possible to define a version of the cutting procedure directly on T .
In this section, we provide such a construction. This construction yields straightfor-
ward, “conceptual” proofs of some of the main results of [28], and also provides a
novel, reversible transformation from T to another, doubly-rooted Brownian CRT.
(We remark in passing that the results of this section can also be straightforwardly
used to prove the first convergence result from Theorem 1.10 of [28].) Using the
by now well-known coding of the Brownian CRT by a standard Brownian excur-
sion, this transformation can be viewed as a new, invertible random transformation
between Brownian excursion and Brownian Bridge.

We now describe the details of the construction, using the language of R-trees.
For the interested reader, we describe the corresponding transformation from
Brownian excursion to reflecting Brownian bridge in Appendix B.
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We begin with a quick, high-level description of the transformation. An initial
compact real tree T distributed as the Brownian CRT will be cut by points falling
on its skeleton. When a point arrives, the current tree is separated into two con-
nected components; the one containing the root will suffer further cuts at later
times, while the other one—the pruned tree—will no longer be cut. As in the dis-
crete transformation of Section 3.2, the cut trees are rearranged by attaching their
roots to a “backbone” so as to form a new real tree. We now describe the continu-
ous transformation by first building the backbone that will eventually connect the
roots of the pruned subtrees, and then specifying where these subtrees should be
grafted along the backbone.

5.1. The details of the transformation. Let P be a Poisson process on
skel(T ) × [0,∞) with intensity measure � ⊗ dt , and for each t ≥ 0, let

P◦
t = {

x ∈ T :∃s,0 ≤ s ≤ t, (x, s) ∈ P
}
.

In [8], Aldous and Pitman used the point process P to construct (what is now
called) a self-similar fragmentation process on T [12]. For each t ≥ 0, let F◦

t =
T \ P◦

t . In particular, two points u, v ∈ T \ P◦
t are in the same component of F◦

t

precisely if, in T , the path [[u, v]] contains no element of P◦
t . Aldous and Pitman

[8] established many beautiful facts about how the collection of masses of the
components of F◦

t evolve with t ; one basic fact from [8] is that a.s., for each t > 0,
F◦

t has only countably many components, and the total mass of all components of
F◦

t is one. (This seems intuitively obvious, but note that it is a priori possible that
for every t > 0, F◦

t contains uncountably many components, each of mass zero;
consider [0,1] \Q.)

DESCRIPTION OF THE BACKBONE. For t ≥ 0, write T̃t for the component
of F◦

t containing the root ρ at time t ; then define a process (L(t), t ≥ 0) by setting

L(t) =
∫ t

0
μ(T̃s) ds.(5)

The process L(t) is the continuum analogue of the “number of cuts by time t”; the
process (L(t), t ≥ 0) will code the distance along the backbone in the continuum
transformation; see Theorem 5.5 and Corollary 5.6 below.

Theorem 6 of [8] states that if we define an increasing function (X(t), t ≥ 0) by(
μ(T̃t ), t ≥ 0

) = 1

1 + X(t)
,(6)

then X(·) is a stable subordinator of index 1/2, or in other words, is distributed
as the inverse local time process at zero of a standard reflecting Brownian mo-
tion. The function X(·) has almost sure quadratic growth, and it follows that
L(∞) := limt→∞ L(t) is almost surely finite. [The proof of Corollary 5.6, below,
contains a different proof that L(∞) is almost surely finite, using the principle of
accompanying laws.]
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THE PRUNED SUBTREES, AND THEIR GRAFTING ON THE BACKBONE.
Since P is a countable set, we may enumerate its atoms as ((pi, τi), i ∈ N). For
t ≥ 0, let

It = {
i ∈N : 0 ≤ τi ≤ t,μ(T̃τi

) < μ(T̃τi−)
}

and let

Pt = {pi : i ∈ It } ⊆P◦
t .

Let P∞ = ⋃
t≥0 Pt , and let I∞ = ⋃

t≥0 It . Next, for 0 ≤ t ≤ ∞, let F̃t = T \
Pt , let d̃t be its intrinsic distance: for points x, y in the same component of F̃t ,
we have d̃t (x, y) = d(x, y), while for x, y in distinct components of F̃t , we have
d̃t (x, y) = ∞,1 and let μ̃t be the restriction of μ to F̃t . Then let (Ft , dt ) be the
metric space completion of (F̃t , d̃t ), and let μt be the extension of μ̃t obtained by
assigning measure zero to all points of Ft \ F̃t ; note that there are only countably
many such points.2

Next, write Tt for the component of Ft containing ρ. We then have that a.s. for
all t ≥ 0, T̃t is a connected component of F̃t , and that a.s.(

μ(T̃t ), t ≥ 0
) = (

μt(Tt ), t ≥ 0
)
.(7)

By definition, a.s. for every 0 ≤ s < t , every component of F̃s not containing ρ is
also a component of F̃t . This naturally extends to the completions Fs and Ft .

For 0 ≤ t ≤ ∞, let φ̃t be the identity map from F̃t to T , and let φt be the unique
extension of φ̃t to Ft whose restriction to any component of Ft is a continuous
function. With probability one, for each i ∈ I∞, pi has degree two in T and also in
Fτi−. It follows that almost surely, for each i ∈ I∞, Fτi

\ Fτi− contains precisely
two points. Call these points xi and yi , labeled so that xi /∈ Tτi

and yi ∈ Tτi
. Write

fi for the component of Fτi
containing xi . Necessarily, xi ∈ fi \F̃t and pi = φt(xi)

is the closest point of φt(fi) to ρ; in other words, pi is “the root of the subtree cut
at time τi .” Also, xi and yi are both leaves in Fτi

. For distinct points pi,pj ∈ It

the trees fi, fj are disjoint, so in particular xi �= xj .
The space (F∞, d∞,μ∞) is the limiting analogue of the forest F from Sec-

tion 3.2. We note that (T ,μ) can be recovered from (F∞, d∞,μ∞) by identifying
xi and yi for each pi ∈ I∞, and taking as measure the corresponding push-forward
of μ∞.

1See [18], Sections 2.3 and 2.4, for the general definition of intrinsic distance for a subset of a
metric space.

2The assiduous reader may ask: the forest (Ft , dt ,μt ) is meant to be a random element of what
(Polish) space? One possible answer is to view this forest as given by some random function
et : [0,1] → [0,∞) with et (0) = et (1) = 0, and with the “components” of the forest separated by
the zeros of et ; this perspective is elaborated in Appendix B. However, this forest itself is essentially
introduced for expository purposes and plays no role in the sequel; as such, the details of how to
formalize the definition of (Ft , dt ,μt ) are unimportant in the remainder of the paper.
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For 0 ≤ t ≤ ∞, let At be the real tree consisting of the line segment [0,L(t)]
with the standard distance. Then form a measured R-tree (T̂t , d̂t , μ̂t ) from At and
Ft \ Tt , by identifying xi ∈ fi and L(τi) ∈ [0,L(t)], for each i ∈ It , with measure
μ̂t given by the push-forward of μt |Ft\Tt . [We justify that (T̂t , d̂t , μ̂t ) is indeed a
well-defined random R-tree, using a coding by excursions, in Appendix B.] We
naturally view these spaces as increasing in t . Write T̂ = T̂∞, d̂ = d̂∞, μ̂ = μ̂∞
and let u = L(0) and v = L(∞). Almost surely both u and v are elements of T̂ .

The set of points of [[u, v]] of degree greater than two in (T̂ , d̂) are precisely the
images in T̂ of the points {xi, i ∈ I∞} in F∞, and if x is the image of such a point
xi , then d̂(u, x) = L(τi). It follows that the set of times {τi, i ∈ I∞} is measurable
with respect to (T̂ , d̂, μ̂). Also, a.s. {yi, i ∈ I∞} ∩ {xi, i ∈ I∞} = ∅, so none of
the points {yi, i ∈ I∞} are identified with other points when forming T̂ . In other
words, we may view the points {yi, i ∈ I∞} as points of T̂ (rather than as members
of equivalence classes of points).

Now recall the definition of (T , d,μ,ρ) from the start of the section, and let ρ′
be a point of T selected according to μ and independent of ρ.

THEOREM 5.1. It holds that (T̂ , d̂, μ̂, (u, v)) has the same distribution as
(T , d,μ, (ρ,ρ ′)). Furthermore, conditionally on (T̂ , d̂, μ̂, (u, v)), the elements of
{yi, i ∈ I∞} are mutually independent, and for all i ∈ I∞, yi is distributed accord-
ing to the probability measure μ̂|T̂ \T̂τi

/(1 − μ̂(T̂τi
)).

We remark that Theorem 1.5 is an immediate consequence of the first assertion
of the theorem. Likewise, Theorem 1.7 immediately follows from the definitions
of (T̂ , d̂, μ̂, (u, v)) and of the points {yi, i ∈ I∞} and from the second assertion of
the theorem.

The remainder of Section 5 is devoted to the proof of Theorem 5.1. The proof
of Theorem 5.1 relies on couplings with the construction for uniform Cayley trees,
and we introduce these couplings in Section 5.2. In Section 5.3, we show that the
process (L(t), t ≥ 0) is indeed the correct analogue of “number of cuts” in the
discrete setting. Finally, we wrap up the proof of Theorem 5.1 in Section 5.4.

5.2. Some couplings between discrete and continuous trees. The couplings we
introduce in this section are not specific to the case of uniform Cayley trees. This
will be important in Section 6, when we extend our results to other finite-variance
critical conditioned Galton–Watson trees.

Let ξ = (ξi, i ≥ 0) be a critical finite-variance offspring distribution, that is, a
probability distribution on {0,1, . . .} with∑

i≥0

iξi = 1 and σ 2 = ∑
i≥0

i(i − 1)ξi ∈ (0,∞).

In the following, we consider only values of n such that a sum of n i.i.d. random
variables with distribution ξ equals n−1 with positive probability. For such n ≥ 1,
let T n be a Galton–Watson tree with offspring distribution ξ , conditioned to have



2320 L. ADDARIO-BERRY, N. BROUTIN AND C. HOLMGREN

n nodes. For x, y ∈ T n let dn(x, y) be σn−1/2 times the graph distance between x

and y in T n. Let ρn denote the root of T n, let μn be the measure placing mass 1/n

on each node of T n and let �n be the measure placing mass σn−1/2 on each vertex
of T n (the “discrete, rescaled length measure”). Let next, T be the Brownian CRT
with root ρ and distance metric d , let μ be its mass measure and let � be the
length measure on the skeleton of T . We will use the following fundamental result
heavily.

THEOREM 5.2 (Aldous [7], Le Gall [35]). It holds that(
T n, dn,μn,ρn) d→ (T , d,μ,ρ)

as n → ∞, where convergence is in the 1-pointed Gromov–Hausdorff–Prokhorov
sense.

Strictly speaking, neither of the above papers establishes Gromov–Hausdorff–
Prokhorov convergence. However, deducing Theorem 5.2 from the earlier results
is essentially immediate; we briefly sketch the line of the proof. First, by Propo-
sition 10 of [42], to prove Theorem 5.2 it suffices to establish convergence of
(T n, dn,μn) to (T , d,μ) in the Gromov–Hausdorff–Prokhorov sense. Second,
it is straightforward to verify that Gromov–Hausdorff–Prokhorov convergence
is equivalent to Gromov–Hausdorff convergence plus convergence of all finite-
dimensional marginals. The former convergence is established in [35], and the
latter is established in [7]. (See also Theorem 8 of Haas and Miermont [24], who
explicitly state Gromov–Hausdorff–Prokhorov convergence as an application of
their results on Markov branching trees.)

First, by Skorohod’s representation theorem (see, e.g., [16]), we may consider a
probability space (�,F,P) in which we have the almost sure GHP convergence(

T n, dn,μn,ρn) → (T , d,μ,ρ).

In such a space, we may find a sequence of correspondences (Rn,n ≥ 1) between
T n and T , such that dis(Rn) → 0 almost surely as n → ∞. We may also find a se-
quence of couplings (νn, n ≥ 1) between μn and μ such that the defect D(νn) → 0
almost surely as n → ∞, and such that νn(R

c
n) → 0 almost surely as n → ∞.

Next, let (si, i ≥ 1) be a random sequence of independent points of T distributed
according to μ, and for each n ∈ N let (sn

i , i ≥ 1) be a sequence of independent
points of T n distributed according to μn. Also, write s0 = ρ and sn

0 = ρn for no-
tational convenience, and for k ≥ 1 write Sn

k = {sn
0 , . . . , sn

k }. The almost sure GHP
convergence above implies [42], Proposition 10, that for each fixed k ≥ 1,(

T n, dn,μn,
(
sn

0 , . . . , sn
k

)) d→ (
T , d,μ, (s0, . . . , sk)

)
,

in the sense of dk+1
GHP, and Skorohod’s theorem (applied once for each k ≥ 1) then

implies that we may work in a space in which almost surely, for all ε > 0,

lim
n→∞ inf

{
k :dk+1

GHP

((
T n,μn,

(
sn

0 , . . . , sn
k

))
,
(
T ,μ, (s0, . . . , sk)

)) ≥ ε
} = ∞.(8)
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For each n, k ≥ 0, recall that T n[[Sn
k ]] is the subtree of T n spanned by Sn

k , and let
�n
k be the restriction of �n to T n[[Sn

k ]]. Also, let T [[Sk]] be the subtree of T spanned
by Sk = {s0, . . . , sk}, and let �k be the length measure on T [[Sk]]. In the space in
which (8) almost surely holds, we immediately have

sup
k∈N

lim
n→∞dk+1

GHP

((
T n[[

Sn
k

]]
, �n

k,
(
sn

0 , . . . , sn
k

))
,
(
T [[Sk]], �k, (s0, . . . , sk)

)) = 0.(9)

For each n let Pn be a Poisson process on T n × [0,∞) with intensity measure
�n ⊗ dt . Then Pn converges in distribution to P in the sense of uniform conver-
gence on sets of finite length measure [20], Chapter 11.

Recall that we have enumerated the atoms of P as ((pi, τi), i ∈ N); likewise,
for each n ∈ N we list the atoms of Pn as ((pn

i , τ n
i ), i ∈ N). We noted above that

a.s. for each i ∈ N, pi has degree two in T and in Fτi−. Since T is compact, yet
another application of Skorohod’s theorem then implies that we may find a space
in which in addition to (8) and (9), almost surely for each ε > 0 we have

lim
n→∞ inf

{
i :

∣∣τn
i − τi

∣∣ > ε
} = ∞(10)

for each k ≥ 0 we have

lim
n→∞ inf

{
i ∈ N :

∣∣T [[Sk]] ∩ {p1, . . . , pi}
∣∣ �= ∣∣T n[[

Sn
k

]] ∩ {
pn

1 , . . . , pn
i

}∣∣}
(11)

= ∞
and for any fixed k ≥ 0, i ≥ 1, writing

Un
k,i = (

sn
0 , . . . , sn

k ,pn
1 , . . . , pn

i

)
and Uk,i = (s0, . . . , sk,p1, . . . , pi),

we a.s. have

dk+1+i
GHP

((
T n, dn,μn,Un

k,i

)
, (T , d,μ,Uk,i)

) → 0(12)

as n → ∞.
To sum up: by a sequence of applications of Skorohod’s theorem we have ar-

rived at a space in which, after rescaling, the sequence T n converge almost surely
to a Brownian CRT T . We have additionally coupled a sequence of random draws
from the mass measure of T to its discrete counterpart, and a Poisson process on
skel(T )×[0,∞) to its discrete counterpart, in such a way that any finite collection
of such points in the limiting space is arbitrarily closely approximated by a corre-
sponding (in both the informal and the technical sense) collection of points in T n,
for n large enough. Furthermore, we have done so in such a manner that for any
fixed t > 0 and k ≥ 1, the operation of restricting the Poisson process to the set of
points arriving before time t and falling within the subtree spanned by the first k

random draws from the mass measure, commutes with taking the large-n limit.
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5.3. The convergence of the discrete backbones. In this section we continue to
assume that T n is a conditioned Galton–Watson tree with critical, finite-variance
offspring distribution ξ . Before proving Theorem 5.1, we also need to express the
modified Aldous–Broder dynamics in the setting of conditioned Galton–Watson
trees. The only minor issue which needs to be addressed is the fact that the modi-
fied Aldous–Broder dynamics should ignore points of Pn which fall in an already
cut subtree.

First, we consider the planted tree T n〈ρn〉 and call the planted vertex wn. We
extend μn to v(T n〈ρn〉) by setting μn({wn}) = 0. Recall the notation a(v) for the
parent of vertex v. For each 0 ≤ t ≤ ∞, let T n

t be the component of(
v
(
T n〈

ρn〉)
, e

(
T n〈

ρn〉) \ {(
pn

i , a
(
pn

i

))
: 0 ≤ τn

i ≤ t
})

containing wn, and define T n
t− accordingly. (The forest in the preceding equation

is the finite-n analogue of F◦
t , but will not be used in what follows.) Write

In
t = {

i ∈ N : 0 ≤ τn
i ≤ t,μn(

T n
t

)
< μn(

T n
t−

)}
for the indices corresponding to “effective” cuts up to time t , and let

Pn
t = {

pn
i : i ∈ In

t

}
be the set of locations of these cuts. For i ∈ In∞ let xn

i = pn
i and let yn

i be the parent
of xn

i in T n (here we view ρn as its own parent). Then, for 0 ≤ t ≤ ∞, let

Fn
t = (

v
(
T n)

, e
(
T n) \ {

(xi, yi) : 0 ≤ τi ≤ t
})

and for i ∈ In∞ write f n
i for the component of Fn∞ containing xn

i . Note that f n
i is

in fact a component of Fn
t for all τn

i ≤ t ≤ ∞.
Write κn = |In∞|, and write πn for the permutation of In∞ that reorders the ele-

ments of In∞ in increasing order of the corresponding cut time, so that for i, j ∈ In∞,
πn(i) < πn(j) if and only if τn

i < τn
j . Also, write

un = xn
πn(1) and vn = xn

πn(κn).

Finally, let T̂ n be the tree obtained from Fn∞ by removing wn, then adding the
edges (

xn
πn(i+1), x

n
πn(i)

)
1 ≤ i < κn.

We view T̂ n as rooted at un.

REMARK. It is a standard fact that if ξ is a mean-one Poisson distribution (in
fact, the mean does not matter), then T n has the same distribution as the tree ob-
tained from a uniform Cayley tree on [n] by removing the vertex labels. In this
case, Theorem 3.1 then implies that T̂ n is distributed as a uniform Cayley tree
with labels removed, and vn is a uniformly random element of v(T̂ n), independent
of T̂ n. This fact will be used in the course of the proof of Theorem 5.1 in Sec-
tion 5.4. However, it plays almost no role in the current section. In particular, all
results presented in this section, with the exception of Corollary 5.6, are valid for
general critical, finite-variance conditioned Galton–Watson trees.
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LEMMA 5.3. In the space where (8)–(12) hold, almost surely(
μn(

T n
t

)
, t ≥ 0

) → (
μt(Tt ), t ≥ 0

)
,

in the sense of uniform convergence on compacts for the Skorohod J1 topology.

PROOF. Write νk for the uniform measure on points s0, . . . , sk . In other words,
given T and s0, . . . , sk , νk assigns mass 1/(k + 1) to each of the points s0, . . . , sk .
Similarly, write νn

k for the uniform measure on sn
0 , . . . , sn

k . By (12), for any fixed
i, k ≥ 1, almost surely

lim
n→∞dk+1+i

GHP

((
T n, dn, νn

k ,Un
k,i

)
, (T , d, νk,Uk,i)

) = 0.(13)

Also, by Theorem 8 of [8], for almost every realization of T ,

lim
k→∞dP(νk,μ) = 0.(14)

(In fact, in [8], only almost sure weak convergence is claimed, but the proof simply
consists of an application of the Glivenko–Cantelli theorem and is easily seen to
yield convergence with respect to dP.) Since for all t ≥ 0, Tt is a compact subspace
of T , and the Tt are decreasing in t , it follows that(

νk(Tt ), t ≥ 0
) → (

μt(Tt ), t ≥ 0
)

(15)

as k → ∞. Combining (13) with (10) and (11), we obtain that for each k ≥ 0,
almost surely (

νn
k

(
T n

t

)
, t ≥ 0

) → (
νk(Tt ), t ≥ 0

)
(16)

as n → ∞. Next, combining (14) with (12), we obtain that almost surely

lim
k→∞ lim

n→∞dk+1+i
GHP

((
T n, dn,μn,Un

k,i

)
, (T , d, νk,Uk,i)

) = 0,

which together with (13) implies that almost surely

lim
k→∞ lim sup

n→∞
dP

(
μn, νn

k

) = 0.

In view of (15) and (16), this proves the lemma. �

Next, for each n ≥ 1, reorder the elements of Pn as {(pn,i, tn,i), i ≥ 1} so that
tn,i < tn,i+1 for all i ≥ 1. We emphasize that here we consider all atoms of Pn, not
only those that correspond to “effective cuts.”

LEMMA 5.4. In the space where (8)–(12) hold, a.s.(
1

σ
√

n

∑
{j : tn,j≤t}

μn(
T n

tn,j

)
, t ≥ 0

)
→ (

L(t), t ≥ 0
)
,

in the sense of uniform convergence on compacts for the uniform distance, as
n → ∞.
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PROOF. From Lemma 5.3 it is immediate that(∫ t

0
μn(

T n
s

)
ds, t ≥ 0

)
→

(∫ t

0
μs(Ts) ds, t ≥ 0

)
as n → ∞. Also, �n(T n) = σ

√
n, so the set {τn

i , i ∈ N} forms a Poisson point
process of intensity σ

√
n on [0,∞), from which it follows straightforwardly that(

1

σ
√

n

∑
{j : tn,j≤t}

μn(
T n

tn,j

)
, t ≥ 0

)
→

(∫ t

0
μs(Ts) ds, t ≥ 0

)
and the result then follows from (7) and the definition of L(t) in (5). �

Our next goal is to show that (L(t), t ≥ 0) is the limit of the discrete process
which tracks the number of effective cuts up to time t

√
n. Write

Ln(t) = ∣∣Pn
t

∣∣ = #
{
s ≤ t :μn(

T n
s

)
< μn(

T n
s−

)}
and note that, for every n ≥ 1, Ln(t) increases to κn(T n) = #{s > 0 :μn(T n

s ) <

μn(T n
s−)}, as t → ∞.

THEOREM 5.5. In the space in which (8)–(12) hold, a.s.(
Ln(t)/

(
σn1/2)

, t ≥ 0
) → (

L(t), t ≥ 0
)

in the sense of uniform convergence on compacts for the uniform distance, as
n → ∞.

In proving Theorem 5.5 we will use a martingale inequality from [37], Theo-
rem 3.15. Let {Xi}ni=0 be a bounded martingale with X0 = 0, adapted to a filtration
{Gi}ni=0. Next let V = ∑n−1

i=0 V[Xi+1|Gi], where

V[Xi+1|Gi] := E
[
(Xi+1 − Xi)

2|Gi

] = E
[
X2

i+1|Gi

] − X2
i

is the predictable quadratic variation of Xi+1. Define

v = ess supV and b = max
0≤i≤n−1

ess sup(Xi+1 − Xi |Gi ),

where for a random variable X, the essential supremum ess supX is defined to
equal sup{x : P(X ≥ x) > 0}. Then we have the following bound [37]. For any
t ≥ 0,

P
(

max
0≤i≤n

Xi ≥ t
)

≤ exp
(
− t2

2v(1 + bt/(3v))

)
.(17)

PROOF OF THEOREM 5.5. In a first part, we prove uniform convergence on
compacts for which we do not need the trees T n, n ≥ 1, to be uniform Cayley
trees. Fix δ > 0 and C > 0. By Lemma 5.4, a.s.

sup
0≤t≤C

∣∣∣∣ 1

σ
√

n

∑
{j : tn,j≤t}

μn(
T n

tn,j−1

) − L(t)

∣∣∣∣ → 0
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as n → ∞. It follows that

P
(

lim sup
n→∞

sup
0≤t≤C

∣∣∣∣ 1

σ
√

n
Ln(t) − L(t)

∣∣∣∣ > δ

)
(18)

≤ P
(

lim sup
n→∞

sup
0≤t≤C

∣∣∣∣Ln(t) − ∑
{j : tn,j≤t}

μn(
T n

tn,j−1

)∣∣∣∣ > σδn1/2
)
.

Also, since Pn has intensity measure �n ⊗ dt and �n(v(T n)) = σn1/2, we have
that

lim
x→∞ P

(
lim inf
n→∞ tn,�x√

n� > C
)

= 1,

which implies that the probability in (18) is at most

lim
x→∞ P

(
lim sup
n→∞

max
i≤x

√
n

∣∣∣∣Ln(tn,i) − ∑
1≤j≤i

μn(
T n

tn,j−1

)∣∣∣∣ > σδn1/2
)
.(19)

For i ≥ 1, write

Xi = 1{μn(T n
tn,i

)<μn(T n
tn,i−1

)}.

Also, for each i ≥ 1, let Pn
i = {pn,1, . . . , pn,i}. Taking Gn,i to be the sigma field

generated by T n and Pn
i , then (Xi, i ≥ 1) is adapted to (Gn,i, i ≥ 1). Note that

E[Xi |Gn,i−1] = μn(
T n

tn,i−1

) = E
[
X2

i |Gn,i−1
]
,

so in all cases Var[Xi |Gn,i−1] ≤ 1/4. Also, for all i ≥ 1 we have
∑i

j=1 Xj =
Ln(tn,i). By (17), for any fixed x > 0 and n ≥ 1, we thus have

P
(

max
i≤x

√
n

∣∣∣∣∑
j≤i

Xj − ∑
j≤i

μn(
T n

tn,j−1

)∣∣∣∣ ≥ y

)
(20)

≤ 2 exp
(
− 2y2

x
√

n(1 + 4y/(3x
√

n))

)
.

Applying this bound with y = δ
√

n and summing over n, it follows by Borel–
Cantelli that

P
(

lim sup
n→∞

max
i≤x

√
n

∣∣∣∣Ln(tn,i) − ∑
1≤j≤i

μn(
T n

tn,j−1

)∣∣∣∣ > δn1/2
)

= 0,

which together with (19) shows that (Ln(t)/(σn1/2),0 ≤ t ≤ C) → (L(t),

0 ≤ t ≤ C) almost surely for the uniform distance. �

COROLLARY 5.6. If ξ is the Poisson(1) distribution then in the space in which
(8)–(12) hold, (

Ln(t)/n1/2, t ≥ 0
) → (

L(t), t ≥ 0
)

in probability in the sense of uniform convergence on [0,∞).
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PROOF. If ξ is the Poisson(1) distribution, then σ = 1. Uniform convergence
on compacts follows from Theorem 5.5. Furthermore, as noted in the remark just
before Lemma 5.3, in this case T n is distributed as a uniform Cayley tree on [n]
with labels removed. Also, T̂ n is again distributed as a uniform Cayley tree with
labels removed, and κn(T n) is the distance between un and vn in T̂ n, it follows
from Theorem 3.1 that κn(T n)/n1/2 converges in distribution to a Rayleigh ran-
dom variable.

For any t, δ > 0, given that μn(T n
t ) ≤ δ, the difference κn(T n) − Ln(t) is dom-

inated by the number of cuts required to isolate the root of a uniform Cayley tree
on �δn� vertices. It follows that for any ε > 0,

lim
t→∞ lim sup

n→∞
P

(
κn(

T n) − Ln(t) > εn1/2) = 0.(21)

By the principle of accompanying laws (Theorem 9.1.13 of [47]), in the space in
which (8)–(12) hold, we have

κn(T n)

n1/2

p→ L(∞) = lim
t→∞L(t),

which together with (21) implies uniform convergence on [0,∞). [This also yields
a second proof that L(∞) is almost surely finite, as promised just after (5).] �

Before proving Theorem 5.1 we note one consequence of Corollary 5.6, stated
in the Introduction as Corollary 1.6. A different proof of this result can be found
in Abraham and Delmas [2].

PROOF OF COROLLARY 1.6. In proving Corollary 5.6 we showed the exis-
tence of a space in which

L(∞)
p= lim

n→∞
κn(T n)

n1/2

and the latter limit is Rayleigh distributed by Theorem 3.1 The lemma then follows
from the definition of L(t) in (5) and (7). �

5.4. The proof of Theorem 5.1. In this section, in order to use the discrete
results of Section 3, we assume that ξ is the Poisson(1) distribution, or equivalently
(see the remark just before Lemma 5.3) that T n is a uniform Cayley tree on [n]
with its labels removed. In particular, this implies that σ = 1.

Recall the definitions of the trees {fi, i ∈ I∞} and {f n
i , i ∈ In∞} from pages 2318

and 2322 (here we simply view each fi as a subset of T ). Also, write d̂n for n−1/2

times the standard graph distance on T̂ n, and write μ̂n for the uniform probability
measure on v(T̂ n).

We work in a space where (8)–(12) all hold. For any ε > 0, let

Jε = {
i ∈ I∞ :μ∞(fi) > ε

}
.
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The set Jε is necessarily finite (it has size at most ε−1), so K(ε) := sup{i : i ∈ Jε}
is a.s. finite. By (11), for all n sufficiently large we in particular have that Jε ⊂ In∞,
and we hereafter assume that inclusion indeed holds.

Let S = {u, v} ∪ ⋃
i∈Jε

fi , and let T̂ε = ⋃
x,y∈S [[x, y]]. In words, T̂ε is the min-

imal subtree of T̂ which contains each of the subtrees fi , i ∈ Jε and also contains
the distinguished nodes u and v. Likewise, let

T̂ n
ε = T̂ n

[[{
un, vn} ∪ ⋃

i∈Jε

v
(
f n

i

)]]
.

We let d̂ε = d̂|T̂ε
, and define μ̂ε, d̂

n
ε , μ̂n

ε accordingly.
The set I∞ is countable and Jε ↑ I∞ as ε ↓ 0. Also, it follows from the result of

Aldous and Pitman [8] mentioned earlier that
∑

i∈I∞ μ∞(fi) = 1 a.s., and we thus
a.s. have

lim
ε↓0

∑
i /∈Jε

μ∞(fi) = 0.

Since T is compact and each fi can be viewed as a subtree of T , we must also a.s.
have

lim
ε↓0

sup
i /∈Jε

diam(fi) = 0.

(Otherwise, there would exist δ > 0 and an infinite set S ⊂ I∞ such that for each
i ∈ S, fi has height greater than δ. For i ∈ S, letting qi be any point in fi whose
distance to the root pi of fi is at least δ, the set {qi, i ∈ S} is infinite and its
elements have pairwise distance at least δ, contradicting compactness.) By these
facts and by (12), for any δ > 0 there is N = N(ε, δ) which is almost surely finite,
such that for all n ≥ N and i ∈ Jε ,

dk+1+i
GHP

((
T n, dn,μn,Un

k,i

)
, (T , d,μ,Uk,i)

)
< δ(22)

and additionally
∑

i /∈Jε
μ∞(fi) < δ and supi /∈Jε

diam(fi) < δ. We fix a correspon-
dence C ∈ C ((T n, dn,μn,Un

k,i), (T , d,μ,Uk,i)) with dis(C) < 2δ and containing
the appropriate pairs of points from Un

k,i and Uk,i . It follows from the fact that
supi /∈Jε

diam(fi) < δ that

d2
GHP

((
T̂ , d̂, μ̂, (u, v)

)
,
(
T̂ε, d̂ε, μ̂ε, (u, v)

))
< δ(23)

and that

sup
i∈In∞\Jε

n−1/2 diam
(
f n)

< 3δ.(24)

Next, write mδ = supx∈T μ(B(x, δ)), where B(x, δ) is the ball of radius δ around
x in T . We have mδ ↓ 0 a.s. as δ → 0. Choose 0 < δ < ε2 small enough that
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m4δ < ε2. Then for n ≥ N(ε, δ), and for all i ∈ Jε , by considering the δ blow-up
Cδ of the correspondence C, we see that

d1
GHP

((
f n

i , dn∞|f n
i
,μn∞|f n

i

)
, (fi, d∞|fi

,μ∞|fi
)
)
< 2δ + m4δ < 2ε2.(25)

In particular, for each i ∈ Jε , |μn∞(f n
i ) − μ∞(fi)| < 2ε2, so∑

i∈Jε

∣∣μn∞
(
f n

i

) − μ∞(fi)
∣∣ < 2ε2|Jε| < 2ε(26)

and ∑
i∈In∞\Jε

μn∞
(
f n

i

) ≤ 2ε + δ < 3ε.(27)

By (24) and (27), it follows that for all n sufficiently large,

d2
GHP

((
T̂ n, d̂n, μ̂n,

(
un, vn))

,
(
T̂ n

ε , d̂n
ε , μ̂n

ε ,
(
un, vn)))

< 3(δ + ε) < 6ε.

For each i ∈ I∞, L(τi) = d̂(u, xi) and for each i ∈ In∞, n−1/2Ln(τn
i ) = d̂(un, xn

i ).
By Corollary 5.6, it follows that for all i ∈ Jε , for all n sufficiently large,

|d̂(u, xi) − d̂n(un, xn
i )| < δ. Together with (25) and (26), this implies that

d2
GHP

((
T̂ n

ε , d̂n
ε , μ̂n

ε ,
(
un, vn))

,
(
T̂ε, d̂ε, μ̂ε, (u, v)

))
< max

(
δ + 2ε2,2ε

)
< 3ε.

By the two preceding inequalities, (23) and the triangle inequality, we obtain that
a.s. for all n sufficiently large,

d2
GHP

((
T̂ n, d̂n, μ̂n,

(
un, vn))

,
(
T̂ , d̂, μ̂, (u, v)

))
< 9ε + δ < 10ε.

Since ε > 0 was arbitrary, the first assertion of the theorem then follows from
Theorem 3.1.

Finally, since the distribution of the collection {yi, i ∈ I∞} is determined by
its finite-dimensional distributions, the assertion in the statement of Theorem 5.1
about the collection {yi, i ∈ I∞} then follows from Lemma 5.7, below, whose
straightforward proof is omitted.

LEMMA 5.7. Fix n ≥ 1, k ≥ 1, let K = {i ∈ In∞ :pn
i ∈ T n[[Sn

k ]]} and let j ∈ K

be the element i ∈ K which minimizes τn
i . Suppose that T n is a uniform Cayley

tree on [n]. Then for any S ⊂ v(T n), any tree t with v(t) = S, and any y ∈ S,

P
(
T n

τn
j

= t and yn
j = y|v(

T n
τn
j

) = S
) = |S|−|S|.
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6. Conditioned Galton–Watson trees with finite variance. We now want to
prove that the picture that we have obtained for the process in the case of uniform
Cayley trees is also valid when one considers conditioned Galton–Watson trees
with critical, finite-variance offspring distribution. Fix an offspring distribution
ξ = (ξ0, ξ1, . . .) with∑

i≥0

iξi = 1 and
∑
i≥0

i(i − 1)ξi = σ 2 ∈ (0,∞).

THEOREM 6.1. Let T n be distributed as a Galton–Watson tree with offspring
distribution ξ , conditioned to have n vertices. Then after rescaling, the number of
cuts κ(T n) required to isolate the root of T n is asymptotically Rayleigh distributed,

lim
n→∞ P

(
κ
(
T n) ≥ σx

√
n
) = e−x2/2.

Under a finite-variance assumption, Galton–Watson trees conditioned on their
size have the same scaling limit as uniform Cayley trees, so when looking at a
(n,

√
n) rescaling for time and space, the cutting process will essentially look the

same. Completing the argument then boils down to showing that once the left-over
tree has size o(n) the number of cuts needed to completely destroy it is o(

√
n).

The following lemma shows that this is indeed the case. (Although the factor ε1/6

is certainly not best possible, it is sufficient for our needs.)

LEMMA 6.2. Suppose that Eξ = 1 and Var[ξ ] = σ 2 ∈ (0,∞). Let T n be a
Galton–Watson tree with progeny distribution ξ , conditioned on having size n. Let
also τn(ε) = inf{t :μn(T n

t ) < ε}. Then

lim sup
n→∞

P
(
κ
(
T n

τn(ε)

) ≥ ε1/6√n
) →
ε→0

0.

PROOF. Recall that for a rooted tree T and a node v of T , we write hT (v) for
the height of v in T , which is the number of edges on the path from the root to v.
We also write h(T ) = maxv∈v(T ) hT (v), and call h(T ) the height of T . Finally, for
i ≥ 0 write wi(T ) = #{v ∈ v(T ) :hT (v) = i}.

For any x, y > 0 we have

P
(
κ
(
T n

τn(ε)

) ≥ y
√

n
) ≤ P

(
κ
(
T n

τn(ε)

) ≥ y
√

n,h
(
T n

τn(ε)

) ≤ x
√

n
)

(28)
+ P

(
h
(
T n

τn(ε)

)
> x

√
n
)
.

The first term above is easily bounded using Markov’s inequality. We use Jan-
son’s representation of the number of cuts as records in the tree [27, 28]. Given a
tree t , rooted at r , one can assign extra labels to the vertices using a random per-
mutation of {1,2, . . . , |t |}. This random permutation determines the order in which
the vertices are considered for cutting. In this representation, a vertex u will actu-
ally produce a cut if and only if the path [[r, u]] between u and the root has not been
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previously cut. This happens precisely if u has the minimum label of all vertices
on [[r, u]]. In particular, conditional on the height ht (u) of u in t , the probability
that a vertex u produces a cut is (ht (u) + 1)−1. It follows that

P
(
κ
(
T n

τn(ε)

) ≥ y
√

n,h
(
T n

τn(ε)

) ≤ x
√

n
)

≤ 1

y
√

n
· E

[
κ
(
T n

τn(ε)

)
1{h(T n

τn(ε)
)≤x

√
n}

]
≤ 1

y
√

n
· E

[ ∑
u∈T n

τn(ε)

1

1 + hT n(u)
1{h(T n

τn(ε)
)≤x

√
n}

]
(29)

≤ 1

y
√

n
· E

[ ∑
0≤i≤x

√
n

∑
{u : hT n(u)=i}

1

1 + hT n(u)
1{h(T n

τn(ε)
)≤x

√
n}

]

≤ 1

y
√

n
· ∑

0≤i≤x
√

n

E[wi(T
n)]

1 + i

≤ 1

y
√

n
· ∑

0≤i≤x
√

n

Ci

1 + i
≤ Cx

y
,

we used the fact that E[wk(T
n)] ≤ Ck uniformly in k ≥ 0 and n ≥ 0 (see Devroye

and Janson [21]) to obtain the second-to-last inequality.
To bound the second term, we relate the finite-n trees T n to their limit T . We

work in a space in which (8)–(12) all hold, and recall from Section 5.2 the defini-
tions of the collections of points (si, i ≥ 1) and {pn

i : i ∈ N}, and of their finite-n
counterparts (sn

i , i ≥ 1) and {pn
i : i ∈ N}. In particular, recall the definitions of the

sequences Sk , Sn
k , from page 2321.

We now use that for all δ > 0,

lim
k→∞ P

(
d1

GH
(
(T , d, ρ), (T [[Sk]], d|T [[Sk]], ρ) > δ

)) = 0.

By (8), we then also have that

lim
k→∞ lim sup

n→∞
P

(
dGH

((
T n, dn, ρn)

,
(
T n[[

Sn
k

]]
, dn|T n[[Sn

k ]], ρn)
> δ

√
n
)) = 0.

Equations (10), (11) and (12) provide a coupling of the cuts falling on T n[[Sn
k ]]

with those falling on T [[Sk]] so that for any fixed t > 0 and for all sufficiently
large n, the cuts falling within T n[[Sn

k ]] and within T [[Sk]] occur at essentially the
same times and at essentially the same locations. [This is precisely formalized by
(10), (11) and (12).] It then follows that in this space, for any ε > 0 and δ > 0,

lim sup
n→∞

P
(
d1

GH
((

T n
τn(ε), σn−1/2dn|T n

τn(ε)
, ρn)

, (Tτ(ε), d|Tτ(ε)
, ρ)

)
> δ

) = 0.
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Taking δ = x
√

ε, from this we immediately obtain that

lim sup
n→∞

P
(
h
(
T n

τn(ε)

) ≥ x

σ

√
εn

)
≤ P

(
h(Tτ(ε)) ≥ x

√
ε
)

(30)
≤ e−αx2

for some constant α > 0. The last inequality holds since: conditional on its mass,
Tτ(ε) is a Brownian CRT (see [8], equation (44)); we have μ(Tτ(ε)) ≤ ε; the height
of a Brownian CRT is distributed as the supremum of a Brownian excursion; and
the supremum of a Brownian excursion has Gaussian tails [29].

Then, choosing, for instance, x = ε1/3 in (28) and y = ε1/6 and using the bounds
in (29) and (30) to bound (28) proves the result. �

Putting together Corollary 1.6 and the following lemma then yields Theo-
rem 6.1.

LEMMA 6.3. Let T n be a Galton–Watson tree with offspring distribution ξ

conditioned to have size n, and let T be a Brownian CRT. If Eξ = 1 and Var(ξ) =
σ 2 ∈ (0,∞) then

κ(T n)

σ
√

n

d→
n→∞

∫ ∞
0

μ(Tt ) dt.

PROOF. Write T n
t for the subtree containing the root at time t of the cutting

process, and as in Section 5.3 write

Ln(t) = #
{
s ≤ t :μn(

T n
t

)
< μn(

T n
t−

)}
for the number of cuts occurring before time t , Theorem 5.5 implies that for any
fixed t ∈ [0,∞)

Ln(t)

σ
√

n

d→
∫ t

0
μ(Tt ) dt(31)

as n → ∞.
Recall that τn(ε) = inf{t :μn(T n

t ) < ε}. Since τn(ε) < ∞ almost surely and
additionally τn(ε) → τ(ε) in distribution jointly with the convergence in (31), we
have

Ln(τn(ε))

σ
√

n

d→
∫ τ(ε)

0
μ(s) ds.

On the other hand,

κ(T n) − Ln(τn(ε))√
n

≤ κ(T n
τn(ε))√
n

→
ε→0

0,
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in probability, uniformly for all n sufficiently large, by Lemma 6.2. Since
τ(ε) → ∞ almost surely as ε → 0, it follows that

κ(T n)

σ
√

n

d→
∫ ∞

0
μ(Tt ) dt

as n → ∞, as claimed. �

APPENDIX A: COROLLARY 1.2: PROOF SKETCH AND DISCUSSION

Fix a rooted tree t with nodes {1, . . . , n}, and a sequence (v1, . . . , vk) ∈
{1, . . . , n}k of nodes of t . In t , view the children of a node as ordered so that node
labels increase from left to right. Let t ′ be the subtree of t spanned by the root and
v1, . . . , vk . Let the reduced tree t∗ be obtained from t ′ by suppressing degree-two
vertices (so in t∗, the parent of vi corresponds to the most recent common ancestor
of vi and any of the vj with vj �= vi ) and suppressing vertex labels (but keeping
the plane tree structure). Since t∗ has no nodes of degree 2, it has at most 2k − 1
edges, with equality precisely if it is binary and v1, . . . , vk are distinct. Write e for
the number of edges of t∗.

Given the tree t∗, one may recover t by listing an ordered rooted forest
f1, . . . , fm, together with a weak composition (c1, . . . , ce) of m into e parts. To
do so, list the edges of t∗ according to their order of first traversal by a con-
tour exploration of t∗. Then glue the roots of f1, . . . , fc1 along the first edge,
fc1+1, . . . , fc1+c2 along the second edge, and so on. A result of Riordan [46] states
that the number of ordered rooted forests on vertices {1, . . . , n} with m components
is

Bn,m := m!
(

n − 1
m − 1

)
nn−m.

It follows that the number of trees t with reduced tree t∗ and such that t ′ has m

vertices, is

Ak

(
t∗

)
Bn,m

(
m + e − 1

e − 1

)
,

where
(m+e−1

e−1

)
is the number of weak compositions of m into e parts, and Ak(t

∗) is
a combinatorial factor counting the possible locations of v1, . . . , vk in t∗. More pre-
cisely, Ak(t

∗) is the number of multi-sets of vertices from t∗ of size k (with multi-
plicity) containing all leaves of t∗. In particular, if t∗ has k leaves then Ak(t

∗) = 1.
Since the total number of k-marked rooted trees on [n] is nn+1−k , and the num-
ber of binary plane trees with k leaves is given by the (k − 1)’st Catalan number,
straightforward approximations then prove Corollary 1.2.

It seems worthwhile to further observe that for any p ∈ [1,∞), the collection
of laws of the random variables ((n−1/2M(Tn,Sk))

p, n ≥ 1) forms a uniformly
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integrable family. To see this, using the notation of Theorem 1.1, let En be number
of edges in the subtree of Tn spanned by its root r = r(Tn) plus V1, . . . , Vk . By
Theorem 1.1,

M(Tn,Sk)
d= En + k.

Furthermore, writing dn for graph distance in Tn, we have

En + k ≤
k∑

i=1

dn(r,Vi) + k.

Since (dn(r,Vi),1 ≤ i ≤ k) are i.i.d. it follows by a union bound that for x > 0,

P
((

n−1/2M(Tn,Sk)
)p ≥ x

) ≤ kP
(
dn(r,V1) ≥ n1/2x1/p/k − 1

)
.(32)

But the law of dn(r,V1) is well-known (see [38] for an early derivation): we have,
for � ≥ 1,

P
(
dn(r,V1) ≥ �

) =
�−1∏
j=1

(
1 − j

n

)
≤ exp

(
−�(� − 1)

2n

)
.(33)

Using (32) and (33), standard manipulations imply that for all p ≥ 1,

lim
K→∞ sup

n≥1
E

[(
n−1/2M(Tn,Sk)

)p1{(n−1/2M(Tn,Sk))
p≥K}

]
= lim

K→∞ sup
n≥1

∑
�≥K

P
(
n−1/2M(Tn,Sk) ≥ �1/p)

= 0.

This establishes the claimed uniform integrability.
Finally, note that convergence in distribution and the above uniform integrability

imply that in any space in which (a sequence of random variables with the laws
of) (n−1/2M(Tn,Sk), n ≥ 1) converges in probability to χk (a chi random variable
with 2k degrees of freedom), we additionally have convergence in Lp . This follows
by standard arguments, for example, Theorem 13.7 of [49].

APPENDIX B: EXCURSIONS, BRIDGES, TREES AND FORESTS

In this section, we describe the transformations of Section 5 in the language
of excursions. This perspective on the results serves two purposes. First, in the
excursion framework, a similarity is immediately apparent, between the results
of the current paper and results of Aldous and Pitman [11] on scaling limits of
random mappings and on decompositions of reflecting Brownian bridge. Though
there seems to be no direct link between the main results of the two papers, the idea
that they may possess a common strengthening is intriguing. Second, as noted in
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the body of Section 5, a careful reader may have had questions about the preci-
sion of the definitions of some of the random objects under consideration, and the
excursion-theoretic description clarifies such matters.

Let e = (e(t),0 ≤ t ≤ 1) be a standard Brownian excursion, and write Te for the
R-tree coded by e. (We recall that the points of Te are equivalence classes {[x],0 ≤
x ≤ 1}, where points x, y ∈ [0,1] are equivalent if e(x) = e(y) = inf{e(z) :x ≤ z ≤
y}, and refer the reader to [34] for more details of this standard construction.)

Next, let Ae = {(s, y) ∈ [0,1] × R+ : 0 ≤ y ≤ e(s)} be the set of points lying
above the x-axis and below the graph of e. For each point (x, y) in Ao

e , the interior
of Ae, let

s(x, y) = s(x, y, e) = inf
{
x′ :x′ ∈ (0, x), e(z) ≥ y ∀z ∈ [

x′, x
]}

and let

s̄(x, y) = s̄(x, y, e) = sup
{
x′ :x′ ∈ (x,1), e(z) ≥ y ∀z ∈ [

x, x′]}.
In other words, the line segment [s(x, y), s̄(x, y)] × {y} is the maximal horizontal
line segment through (x, y) contained in Ae.

We wish to obtain an excursion-theoretic representation of the Poisson process
on skel(Te) × [0,∞) with intensity measure � ⊗ Leb[0,∞), where � is the length
measure on skel(Te) and Leb[0,∞) is Lebesgue measure on [0,∞). To do so, for
(x, y) ∈ Ao

e , we view the points of [s(x, y), s̄(x, y))×{y} as representing the point
[s(x, y)] of skel(Te). We then consider a process P◦

e which, conditional on e, is a
Poisson process on Ao

e × [0,∞) with intensity measure at ((x, y), t) given by

dLebAo
e
⊗ dLeb[0,∞)

s̄(x, y, e) − s(x, y, e)
.

For t ∈ [0,∞), let

Xt = Xt

(
e,P◦

e

) = {
z ∈ [0,1] :∃(

(x, y), s
) ∈ P◦

e , s ≤ t, z ∈ [
s(x, y), s̄(x, y)

]}
.

In words, the (equivalence classes of) points of Xt are the points of Te lying in
subtrees that have been cut by P◦

e by time t . We define Xt− accordingly, let Yt =
[0,1] \ Xt and let Yt− = [0,1] \ Xt−.

Next, for 0 ≤ t ≤ ∞, let mt = Leb[0,1](Yt ) be the Lebesgue measure of the
points that are not yet cut at time t , and let mt− = Leb[0,1](Yt−). Then let Pe =
{p = ((x, y), t) ∈ P◦

e :mt < mt−} for the set of points that reduce the measure
of the “uncut subtree.” We next explain how the points of Pe yield a family of
transformations of the excursion e.

For z ∈ �Yt , the closure of Yt , let vt (z) = Leb[0,1]([0, z] ∩ Yt ). The function
vt : �Yt → [0,mt ] is nondecreasing. Furthermore, the results of [8] imply that
vt (1) = mt and that for 0 ≤ z < z′ ≤ 1 we have vt (z) = vt (z

′) if and only if
there exists (x, y) ∈ Ao

e such that z = s(x, y) and z′ = s̄(x, y). In other words,
vt (z) = vt (z

′) precisely if [z] = [z′] is the root of a subtree that is cut before or at
time t .
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Let e0
t : [1 −mt,1] → [0,∞) be given by setting e0

t (z) = e(v−1
t (z − (1 −mt))),

where v−1
t (u) = inf{x :vt (x) ≥ u} [we could in fact take v−1

t (u) to be any point in
the pre-image of u under vt ; the comments of the preceding paragraph show that
the value of e(v−1

t (u)) does not depend on this choice]. Then Theorem 4 of [8],
together with the comments in Section 3.5 of that paper, implies that conditional
on mt , if the function e0

t is translated to have domain [0,mt ] then the result is
distributed as a standard Brownian excursion of length mt . We define mt−, vt−
and the excursion et− similarly.

Next, for each point p = ((x, y), t) of Pe, we define a random function ep with
domain [1 − mt−,1 − mt ] as follows. For z ∈ [1 − mt−,1 − mt ], set

ep(z) = et−
(
v−1
t−

(
s(x, y)

) + z
)
.

Notice that

(1 − mt) − (1 − mt−) = mt− − mt = vt−
(
s̄(x, y)

) − vt−
(
s(x, y)

)
.

Translated to have range [0, vt−(s̄(x, y)) − vt−(s(x, y))], the excursion ep then
codes the tree cut by point p under the standard coding of trees by excursions.

Finally, for t ∈ [0,∞) let et : [0,1] → [0,∞) be the unique function such that
et |[1−mt ,1] ≡ e0

t and such that for each p = (x, y, s) ∈ Pe with 0 ≤ s ≤ t ,

et |[1−ms−,1−ms ] ≡ ep.

The function et is the “concatenation” of the functions{
ep,p = (x, y, s) ∈ Pe : 0 ≤ s ≤ t

}
and of the function e0

t . We define the function et− similarly. The function et is
comprised of a countably infinite number of excursions away from zero; the trees
coded by these excursions together comprise the R-forest (Ft , dt ,μt ) of Section 5.
A similar coding of a random continuum forest, by a reflecting Brownian bridge
conditioned on its local time at zero, is described in [8], Section 3.5.

The random variables (et , t ≥ 0) are consistent in the sense that for any fixed
s ∈ [0,1), there is an almost surely finite time t0 such that for all t ′ > t ≥ t0,
et ′ |[0,s] = et |[0,s]. It follows that the limit e∞ = limt→∞ et is almost surely well-
defined.

In the current terminology, for 0 ≤ t ≤ ∞, we have

L(t) =
∫ t

0
ms ds.

We view et |[0,1−mt ] = e∞|[0,1−mt ] as coding a random measured R-tree with mass
1 − mt , as follows. Let d∗

t : [0,1 − mt ] → [0,∞) be given by setting

d∗
t (u, v) = et (v) + et (u) − 2 inf

u≤s≤v
et (s) + L(sv) − L(su),

for all 0 ≤ u ≤ v ≤ 1 − mt such that there exist su, sv ∈ [0, t] for which u ∈ [1 −
msu−,1 − msu) and v ∈ [1 − msv−,1 − msv).
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Then the tree (T̂t , d̂t , μ̂t ) of Section 5 may be defined as follows. Set T̂t =
{[u],0 ≤ u ≤ 1 − mt }, where [u] denotes the equivalence class of u : [u] = {0 ≤
v ≤ 1 − mt :d∗

t (u, v) = 0}. Let d̂t be the push-forward of d∗
t to T̂t , and let μ̂t be

the push-forward of Lebesgue measure on [0,1 − mt ] to T̂t .
The content of the first assertion of Theorem 5.1 is that e∞ is distributed as

a reflecting Brownian bridge; we may see the equivalence between the first part
of Theorem 5.1 and the latter statement as follows. First, a standard and trivial
extension of Theorem 5.2, states that a uniformly random doubly-marked tree
on [n] converges to (T , d,μ, (ρ,ρ ′)) with respect to d2

GHP, where (T , d,μ) is
a Brownian CRT and ρ,ρ′ are independent elements of T , each with law μ. Next,
recall the standard one-to-one map between doubly-marked trees on [n] and or-
dered rooted forests on [n] which “removes the edges on the path between the two
marked vertices.” Finally, results from [11]—in particular, the first two distribu-
tional convergence results in Theorem 8 of that paper, together with the remark in
Section 10—imply that that the contour process of a uniformly random ordered
rooted forest on [n] converges after appropriate rescaling to a reflecting Brownian
bridge. (We remark that a direct encoding of a doubly-rooted Brownian CRT by re-
flecting Brownian bridge, also mentioned in the Introduction, is given in [15]. The
latter is closely related to, but distinct from, the encoding obtained by considering
ordered rooted forests as above.)

Next, for each point p = ((x, y), t) ∈ Pe, let

up = 1 − mt + vt

(
s(x, y, e)

) ∈ [1 − mt,1].
If we view e0

t as coding a tree, then the (equivalence class of the) point up is a
leaf of this tree. Then let yp = yp(e,Pe) be the push-forward of up under the map
that sends et → e∞. In other words, let p′ = ((x′, y′), t ′) be the a.s. unique point
of Pe with t ′ > t , with s(x′, y′, e) < s(x, y, e), with s̄(x′, y′, e) > s̄(x, y, e), and
minimizing t ′ subject to these constraints. Then we set

yp(e,Pe) = 1 − mt ′− + vt ′−
(
s(x, y, e)

) − vt ′−
(
s
(
x′, y′, e

))
.

The second assertion of Theorem 5.1 is that conditional on e∞, the law of {yp,p ∈
Pe} is the same as that of the following family of random variables. Let Z = {z ∈
(0,1) : e∞(z) = 0}. Then independently for each z ∈ Z let Yz be uniform on [z,1].

We remark that a related family of random variables plays a role in Theorem 8
of [11] (in particular in the third distributional convergence of that theorem). The
latter theorem, which describes a distributional limit for uniformly random map-
pings of [n], has several suggestive similarities to our main result. We do not see
any direct relation between the distributional limits described in that paper and
those established here. Establishing such a relation would certainly be of interest,
and would likely yield insights in both the discrete and limiting settings.
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