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PERFORMANCE OF THE METROPOLIS ALGORITHM ON
A DISORDERED TREE: THE EINSTEIN RELATION

BY PASCAL MAILLARD1 AND OFER ZEITOUNI2

Weizmann Institute of Science

Consider a d-ary rooted tree (d ≥ 3) where each edge e is assigned an
i.i.d. (bounded) random variable X(e) of negative mean. Assign to each ver-
tex v the sum S(v) of X(e) over all edges connecting v to the root, and assume
that the maximum S∗

n of S(v) over all vertices v at distance n from the root
tends to infinity (necessarily, linearly) as n tends to infinity. We analyze the
Metropolis algorithm on the tree and show that under these assumptions there
always exists a temperature 1/β of the algorithm so that it achieves a linear
(positive) growth rate in linear time. This confirms a conjecture of Aldous
[Algorithmica 22 (1998) 388–412]. The proof is obtained by establishing an
Einstein relation for the Metropolis algorithm on the tree.

1. Introduction. Given a d-regular rooted tree, attach to each edge e a ran-
dom variable X(e), such that the variables are independent and identically dis-
tributed. For a vertex v in the tree, denote by S(v) the sum of the variables X(e)

over all edges e on the path from the root to v. This defines a branching random
walk, a basic model for a disordered tree. It is natural to ask for an efficient algo-
rithm which explores the vertices of this tree in order to find vertices v with a large
value of S(v). In fact, Aldous [2] proposed this problem as a benchmark problem
for comparing different generic optimization algorithms, since the naïve approach,
which would be to simply explore all vertices down to the level n in the tree and
taking the one with the maximal value of S(v), is a bad choice for an algorithm
because the number of vertices grows exponentially in n.

The Metropolis algorithm is a general recipe for constructing a discrete-time
Markov chain on a finite state space for which a given distribution π is stationary
and whose transitions respect a given graph structure of the state space. In the con-
text of the comparison of algorithms discussed earlier, Aldous [2] suggested using
the Metropolis algorithm to “sample” a certain Gibbs measure on the vertices of a
branching random walk tree, namely the one which assigns mass eβS(v) to a ver-
tex v, for some parameter β > 0. In the case where this measure is infinite, for ex-
ample when there is an infinite number of vertices v with S(v) ≥ 0, this algorithm

Received April 2013; revised July 2013.
1Supported in part by a grant from the Israel Science Foundation.
2Supported in part by NSF Grant DMS-12-03201, the Israel Science Foundation and the Herman P.

Taubman chair of Mathematics at the Weizmann Institute.
MSC2010 subject classifications. 60K37, 60J22, 82C41.
Key words and phrases. Metropolis algorithm, Einstein relation, branching random walk, random

walk in random environment.

2070

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/13-AAP972
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


METROPOLIS ALGORITHM ON A DISORDERED TREE 2071

should “walk down the tree” and, for an appropriate choice of the parameter β ,
find vertices v with high values of S(v). Let |v| denote the level of the vertex v in
the tree, and let Vk be the vertex visited by the Metropolis algorithm at the time k.
Aldous raised the following natural question: If the maximum of the branching ran-
dom walk has positive speed, that is, if limn→∞ max|v|=n S(v)/n > 0, does there
exist a choice of the parameter β , such that lim infk→∞ S(Vk)/k > 0? We will
answer this question in the affirmative for a certain class of laws of the variables
X(e), including the binomial distribution.

In fact, we show more: Let vβ = limk→∞ S(Vk)/k, which exists almost
surely [2]. We show that there exists a parameter β0 > 0, such that vβ0 = 0 and
(dvβ/dβ)|β=β0 = σ 2/2, where σ 2 is the asymptotic variance of S(Vk), which we
show to be positive and finite. This result was conjectured by Aldous, who gave
heuristic arguments and numerical evidence for it [in the case where the variables
X(e) only take the values 1 and −1]. Results of this type are also known as Ein-
stein relations in the domain of random walks in random environments and our
methods of proof will indeed rely on many techniques from this field, some of
which have been obtained recently.

1.1. Definition of the model and statement of the main result. We are given a
d-regular infinite rooted tree, d ≥ 3. The root is denoted by ρ and the level/depth of
a vertex v in the tree by |v|. The notation u ∼ v denotes that u and v are connected
by an edge. The parent of a vertex v is denoted by �v (with the convention �ρ =
ρ). We write u ≤ v if u is an ancestor of v and u < v if u ≤ v but u 	= v. We
furthermore use the following handy notation: if u ≤ v, then [u, v] denotes the set
of vertices on the path from u to v, including u and v. The notation (u, v], [u, v)

and (u, v) then has obvious meaning. To each edge e = (�v, v), we then attach a
random variable X(e), such that the collection (X(e)) is i.i.d. according to the law
of a random variable X. Here, orientation of the edges matters, and we will set
X(v, �v) = −X(�v, v) for all v.

In what follows, we will introduce several assumptions, which we assume to
hold throughout the paper. We begin with the following assumptions on the law
of X.

(XS) The law of X is of compact support, that is, esssup |X| < ∞.
(XR) There exists β0 > 0, such that E[eβ0Xf (X)] = E[f (−X)] for all

bounded measurable functions f .
(XM) infβ≥0 �(β) > 0, where �(β) = logE[eβX] + log(d − 1).

Note that (XR) is equivalent to the Laplace transform β 
→ E[eβX] being symmet-
ric around β0/2. In particular, the constant β0 is necessarily unique unless X = 0
almost surely.

An example for a law satisfying (XS), (XR) and (XM) is the distribution of
2Y − n, where Y follows a binomial distribution of parameters n and p, with
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p ∈ (p0,1/2), where p0 = (1 − √
1 − (d − 1)−2/n)/2. In this case, β0 = log 1−p

p
.

In general, in order to construct a law satisfying (XS) and (XR), one can start
from a symmetric random variable X taking values in a compact interval [−K,K]
and define a law with Radon–Nikodym derivative proportional to e(−β0/2)X with
respect to the law of X. This law will then satisfy (XM) for β0 small enough.

We remark that assumption (XS) seems not to be crucial, and the argument ex-
tends to certain distributions with non compact support, at the cost of more com-
plicated technical arguments. To avoid this complication we chose to present the
result under this simplifying assumption. On the other hand, assumption (XR) is
essential for our treatment, as it ensures, at β0, the reversibility of the Markov
chain consisting of the environment viewed from the point of view of the particle;
see Proposition 2.2. The reversibility will be crucial both in the application of the
Kipnis–Varadhan theory, as well as in the proof of validity of the Einstein relation
(one may expect a correction term for non reversible chains).

We now define the branching random walk by

S(v) = ∑
u∈(ρ,v]

X(�u,u), S(ρ) = 0.(1.1)

Note that X(u, v) = S(v)− S(u) for every two vertices u and v with u ∼ v, by the
above convention that X(u, v) = −X(v,u). Since �(β) is the log-Laplace trans-
form of this branching random walk, it is known [5] that limn→∞ max|v|=n S(v)/n

exists and is positive under assumption (XM). Note further that assumptions (XM)
and (XR) together imply that �(β) > 0 for all β ∈ R, such that
limn→∞ min|v|=n S(v)/n exists and is negative [5].

In order to define the Metropolis algorithm, we are given a function h :R+ →R

satisfying the following conditions [examples are h(x) = min(1, x) and h(x) =
x/(1 + x)]:

(H1) h takes values in [0,1], is nondecreasing and satisfies h(0) = 0 and
limx→∞ h(x) = 1.

(H2) It is Lipschitz-continuous and continuously differentiable on (0,1) ∪
(1,∞).

(H3) It satisfies the functional equation h(x) = xh(1/x) for all x ≥ 0.

For a given realization of the branching random walk and a parameter β ∈ R,
the Metropolis algorithm is then the Markov chain (Vn)n≥0 on the vertices of the
tree with the transition probabilities Pβ(v,w) given by

Pβ(v,w) = pβ

(
X(v,w)

)
for w ∼ v, where pβ(x) = 1

d
h
(
e(β0+β)x)

,

Pβ(v, v) = 1 − ∑
w∼v

Pβ(v,w).

We denote the (annealed, i.e., averaged over the environment) law of the Metropo-
lis algorithm on the branching random walk tree by Pβ and expectation with re-
spect to this law by Eβ . Our main theorem is the following:
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THEOREM 1.1. Set Sn = S(Vn).

(1) The limit σ 2 = limn→∞ S2
n/n exists P0-almost surely and is a strictly posi-

tive and finite constant.
(2) For each β ∈R, the deterministic limit vβ = limn→∞ Sn/n exists Pβ -almost

surely and satisfies

lim
β→0

vβ

β
= σ 2

2
.(1.2)

We note that the existence of vβ and the fact that it vanishes at β = 0 were
already shown in [2] (in a slightly more restrictive setup). The main novelty in
Theorem 1.1 is the proof of the Einstein relation (1.2), as well as the fact that the
right side is strictly positive.

1.2. Related works. Our main inspiration, as noted above, is Aldous’s
work [2]. In that paper, Aldous makes the crucial observation that a reversible
invariant measure for the environment viewed from the point of view of the par-
ticle exists at β = 0, and derives from this that v0 = 0, and the existence of the
limit σ 2 under P0; he also completely analyzes a greedy algorithm and formulates
a series of conjectures, some answered here. In the same paper, Aldous also refers
speculatively to [17] as relevant to the analysis near β = 0; indeed, the approach
of the latter to proofs of the Einstein relation forms the basis of the current paper,
as well to recent advances in the analysis of the Einstein relation for disordered
systems, as we now discuss.

The Einstein relation (ER) links the asymptotic variance of additive function-
als of (reversible) Markov chains in equilibrium to the chains’ response to small
perturbations. In a weak limit (where the time-scale is related to the strength of
the perturbation), Lebowitz and Rost [17] provide a general recipe (based on the
Kipnis–Varadhan theory, see [14] for a comprehensive account) for the validity of a
weak form of the ER in disordered systems. For the tagged particle in the symmet-
ric exclusion process, the ER was proved by Loulakis in d ≥ 3 [18] by perturbative
methods (using transience in an essential way); this approach was adapted to bond
diffusion in Z

d in special environment distributions [15]. For mixing dynamical
random environments with spectral gap, a full perturbation expansion was proved
in [16].

Significant recent progress was achieved by [11], where the Lebowitz–Rost ap-
proach was combined with good uniform in the environment estimates on certain
regeneration times in the transient regime, that are used to pass from a weak ER to
a full ER. These uniform estimates are typically not available for random walks on
(random) trees, and a completely different approach, based on explicit recursions,
was taken in [4], where (biased) random walks on Galton–Watson trees were an-
alyzed. While we still consider walks on trees, the approach we take is closer to
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that of [11], while replacing their uniform regeneration estimates with probabilis-
tic estimates, in the spirit of [22]. See also [12] for another approach to the proof
of the ER in the context of balanced random walks.

1.3. Overview of the proof and outline of the paper. As mentioned above, the
starting point is Aldous’s observation that under P0, the environment viewed from
the point of view of the particle forms a reversible Markov chain. We begin by
proving this (Proposition 2.2), and then apply the Kipnis–Varadhan theory to de-
duce an invariance principle for anti-symmetric additive functionals (Lemma 2.4).
This allows us to prove the weak ER, Theorem 2.1, following the Lebowitz–Rost
recipe.

To handle the perturbation, estimates on regeneration times and distances are
crucial. We work with level regeneration times that are introduced in Section 4;
these involve the random walk location {Vn}, not the vertices values {Sn}; of
course, the latter influence the transition probabilities of the random walk. In order
to transform the weak ER to a full ER, we need uniform bounds on the moments
of the regeneration times. These are obtained in Proposition 4.1, where it is proved
that the regeneration times exhibit uniform annealed stretched-exponential bounds.
The proof has two main steps: first, exponential moments are proved for regenera-
tion distances, using in a crucial way a structure lemma of Grimmett and Kesten;
see Lemma 4.4. Then, the estimates for regeneration times are obtained, using that
the walk must visit many well-separated fresh vertices, and between two such vis-
its, the walk has a large enough probability to hit distant levels. In proving the last
statement, an argument of Aidékon [1] is used; see Lemma 4.6.

2. The weak Einstein relation. In this section, we show that the Einstein re-
lation holds for times of the order of β−2. Specifically, we will prove the following
result:

THEOREM 2.1. (1) E0[Sn] = 0 for all n ≥ 0. Furthermore, the limit σ 2 =
limn→∞E0[S2

n]/n exists and is a finite, nonnegative constant.
(2) Set Sβ = βS
β−2�. Then,

Eβ

[
Sβ] → σ 2

2
as β → 0.

The proof of Theorem 2.1 uses a fairly generic and now classical change of mea-
sure argument in the spirit of Lebowitz and Rost [17]. It uses the crucial concept
of the environment seen from the particle, which we define as follows.

Let � be the space of rooted d-regular unlabeled trees ω with marked edges, that
is, to every two vertices u and v with u ∼ v we associate a real number Xω(u, v)
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with Xω(v,u) = −Xω(u, v). Note that “unlabeled” means that we do not distin-
guish between the neighbors of a vertex,3 this will be crucial for what follows. The
root of every tree ω is denoted by ρ. For every vertex v, we then define the shift
operator θv :� → �, which yields the tree ω “seen from the vertex v.” A bit more
formally,4 if for a vertex u in ω we denote by θ−1

v u its corresponding vertex in
θvω, then Xθvω(θ−1

v u, θ−1
v w) = Xω(u,w). In particular, if v ∼ ρ, then the mark of

the edge (ρ, v) “changes its sign upon passing from ω to θvω.”
Define Sω(v) for each vertex v analogously to (1.1). For ω ∈ �, we then define

the operators Lω and Lω acting on functions f :R→R by

Lωf = ∑
v∼ρ

f
(
Sω(v)

) = ∑
v∼ρ

f
(
Xω(ρ, v)

)
and Lωf = Lω(pf ),

where p(x) = p0(x) = d−1h(eβ0x); see Section 1.1.
Let P be the law on � under which all edges Xω(�u,u) are i.i.d. according to

the law of X; see Section 1.1. We denote by E the expectation with respect to P.
Furthermore, let Pβ be the law of the Metropolis algorithm (Vn)n≥0 with transition
probabilities Pβ defined in Section 1.1 and the underlying tree ω0 distributed ac-
cording to P. Expectation w.r.t. Pβ is denoted by Eβ , and we also set P = P0 and
E = E0. Setting ωn = θVnω0 then defines a Markov chain (ωn)n≥0 on the space
�, which jumps from ω to θvω with probability pβ(X(ρ, v)) for every v ∼ ρ. Let
(Fn)n≥0 be the natural filtration of (ωn)n≥0, augmented by sets of zero measure.
The process Sn = Sω0(Vn) is then adapted to (Fn)n≥0, since it can be almost surely
reconstructed from ω0, . . . ,ωn.

The following result was already observed by Aldous [2], who had a more com-
plicated proof for it.

PROPOSITION 2.2. The process (ωn)n≥0 is reversible and ergodic under P.

PROOF. In order to show reversibility, since (ωn)n≥0 is a Markov process, we
only have to show that E[F(ω0,ω1)] = E[F(ω1,ω0)] for every bounded (Borel)
measurable functional F :�2 → R. For this, it is obviously enough to show that
E[(F (ω0,ω1) − F(ω1,ω0))1ω0 	=ω1] = 0. Now we have

E
[
F(ω0,ω1)1ω0 	=ω1

] = ∑
v∼ρ

E
[
p

(
Xω0(ρ, v)

)
F(ω0, θvω0)

]
= ∑

v∼ρ

E
[
p

(−Xω(ρ, v)
)
eβ0Xω(ρ,v)F (ω, θvω)

]
,

3There are several ways how to render this formal, one of which consists of first defining the space

�̃ of labeled rooted d-regular trees with marks, which is homeomorphic to R
N. The space � is then

defined as the quotient space with respect to the group of graph automorphisms fixing the root. It is
endowed with the Borel σ -algebra induced by the quotient topology.

4In order to render this completely formal, one can first define the shift operator on the auxiliary
space �̃ (see above) and then show that it induces a well-defined operator on �.
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where the last equality follows from assumption (H3). Conditioned on Xω(ρ, v),
the environment θvω is distributed as ω but with one edge pointing away from
the root bearing the value −Xω(ρ, v) (remember that the vertices are unlabeled,
such that “it can be any one of them,” which amounts to saying that “we do not
know where we came from”). By assumption (XR), the right-hand side of the last
equation is therefore equal to∑

v∼ρ

E
[
p

(
Xω(ρ, v)

)
F(θvω,ω)

] = E
[
F(ω1,ω0)1ω0 	=ω1

]
,

which finishes the proof of the reversibility.
Ergodicity follows from a classical ellipticity argument which we recall (see

also [23], Corollary 2.1.25, for a similar argument): Let Q be a stationary proba-
bility measure of the Markov chain (ωn)n≥0 with Q � P. We wish to show that
P � Q, which will imply ergodicity since ergodic measures are the extremal points
in the convex set of stationary probabilities. Define the event E = {dQ/dP = 0}.
By invariance, EQ[P1E] = EQ[1E] = 0, where P is the transition kernel of the
Markov chain. This further implies 1E ≥ P1E , P-almost surely. Since the tran-
sition probabilities are strictly positive, we then have 1E(ω) ≥ maxv∼ρ 1E(θvω),
because 1E(ω) takes values in {0,1}. Fixing an infinite ray ρ = v0, v1, v2, . . . , we
then get by iteration of the previous inequality that 1E(ω) ≥ 1E(θvi

ω) for every i,
whence 1E ≥ n−1 ∑n

i=1 1E(θvi
ω) for every n. But since P is a product measure

and therefore ergodic with respect to the shift along the ray, Birkhoff’s ergodic
theorem now gives 1E ≥ P(E), P-almost surely, which implies P(E) ∈ {0,1}. But
Q � P by hypothesis, whence P(E) = 0. This finishes the proof. �

We recall the following basic fact about reversible processes.

LEMMA 2.3. For any bounded measurable functionals F and G and every
n ≥ 0, we have

E
[
F(ω0, . . . ,ωn)G(ωn)

] = E
[
F(ωn, . . . ,ω0)G(ω0)

]
.

We will need the following result about anti-symmetric additive functionals of
reversible ergodic Markov processes. It is implicit in the proof of Theorem 2.1
in [8] and relies on a celebrated result from [13]; see also Chapters 1 and 2 in [14]
for a comprehensive account of the theory.

LEMMA 2.4. Let F :�2 → R be an anti-symmetric measurable functional,
that is, F(ω,ω′) = −F(ω′,ω) for all ω,ω′ ∈ �, with E[F(ω0,ω1)

2] < ∞. Define
a sequence of random variables by Sn = ∑n

k=1 F(ωk−1,ωk) for all n > 0. Then:

(1) The time-variance σ 2 = limn→∞ 1
n
E[S2

n] exists and is finite.
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(2) There exists a square integrable martingale Mn with stationary ergodic in-
crements, such that 1√

n
(Sn − Mn) converges to 0 in L2. In particular, 1√

n
Sn con-

verges in law to a centered Gaussian variable with variance σ 2.

The following lemma makes precise an expansion of pβ around p for small β .
It easily follows from assumptions (H1)–(H3).

LEMMA 2.5. There exist measurable functions qβ(x) and q(x), such that:

(1) pβ(x) = p(x) exp(βqβ(x));
(2) qβ(x) is uniformly bounded for all x ∈ R and small enough β , and qβ(x) →

q(x) as β → 0, for all x ∈ R;
(3) q(0) = qβ(0) = 0;
(4) there exists a constant c > 0, such that for small enough β , we have

|Lω(eβqβ − 1)| ≤ βc(1 −Lωp) and |Lωq| ≤ c(1 −Lωp).

We are now ready for the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. First part: We first note that there exists a mea-
surable functional F :�2 → R, such that S1 = F(ω0,ω1), P-almost surely. This
follows from the fact that P-almost surely, the d shifted environments θvω, v ∼ ρ

are all different, otherwise there would be at least two identical subtrees of the
vertices in the second generation which is an event of probability zero (except if
X = 0 almost surely, in which case the lemma is trivial). By the definition of S1,
we can furthermore choose F to be anti-symmetric in the sense of Lemma 2.4. In
particular, E[S1] = −E[S1] = 0 by Lemma 2.3, whence E[Sn] = 0 for all n ≥ 0.
The second statement follows from the first part of Lemma 2.4.

Second part: We will use a change of measure argument as in [17]. The basic
idea is to write the Radon–Nikodym derivative of Pβ with respect to P as an expo-

nential martingale of the form exp(Z
β
n − 1

2A
β
n) for some martingale (Z

β
n )n≥0 and to

show that the pair (βS
β−2�,Z
β


β−2�) converges in law under P to a centered Gaus-

sian vector (GS,GZ) with covariance E[GSGZ] = 1
2E[G2

S] = 1
2σ 2. The theorem

then follows from a standard change of measure argument for Gaussian variables.
Here are the details:

Step 0: Set 
Sn = Sn+1 − Sn for all n ≥ 0. The Radon–Nikodym derivative of
Pβ with respect to P is given by

log
dPβ

dP

∣∣∣∣
Fn

=
n−1∑
k=0

[
log

pβ(
Sk)

p(
Sk)
+ log

(
1 −Lωk

pβ

1 −Lωk
p

)
1ωk=ωk+1

]
=: Yn.(2.1)

Note that if 1−Lωk
p = 0, then ωk 	= ωk+1 with probability 1, such that the second

summand is well defined. Note also that here and in what follows, the empty sum
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always has value 0. If qβ and q are the functions from Lemma 2.5, we can write
the process Yn as

Yn = β

n−1∑
k=0

qβ(
Sk) +
n−1∑
k=0

log
(

1 − Lωk
(eβqβ − 1)

1 −Lωk
p

)
1ωk=ωk+1 .(2.2)

We then define the process (An)n≥0 by (we suppress the dependence on β from
the notation)

An = −2
n∑

k=1

E[Yk − Yk−1|Fk−1]

= −2
n−1∑
k=0

[
βLωk

qβ + (1 −Lωk
p) log

(
1 − Lωk

(eβqβ − 1)

1 −Lωk
p

)]
.

(Consistent with the definitions we have that Y0 = A0 = 0.) Note that by
Lemma 2.5, we have for small β ,

An+1 − An = 2
(
Lωn

(
eβqβ − 1

)
βLωnqβ

) − (Lωn(e
βqβ − 1))2

1 −Lωnp
+ O

(
β3)

(2.3)
= β2(

Lωnq
2 + (Lωnq)2/(1 −Lωnp) + o(1)

)
.

We further define the process (Zn)n≥0 (again suppressing the dependence on β)
by

Zn = Yn −
n∑

k=1

E[Yk − Yk−1|Fk−1] = Yn + 1

2
An,

such that (Zn)n≥0 is a martingale under P with respect to the filtration (Fn)n≥0.
Step 1: We wish to show that the random variable Zβ = Z
β−2� converges in

law under P to a centered Gaussian variable with variance σ 2
Z < ∞. Define the

P-martingale (Mn)n≥0 by

Mn =
n−1∑
k=0

(
q(
Sk) − Lωk

q

1 −Lωk
p

1ωk=ωk+1

)
.

By (2.3) and Lemma 2.5, we then have

E
[
(Zn − βMn)

2] = E

[
n−1∑
k=0

[
Yn+1 − Yn − β(Mn+1 − Mn) + O

(
β2)]2

]
(2.4)

= o
(
β2n

)
,

whence E[(Zβ − βM
β−2�)2] → 0 as β → 0.
Note that by the fourth point of Lemma 2.5, Mn is square-integrable and by

Proposition 2.2, the sequence of its increments (Mn+1 − Mn)n≥0 is stationary and
ergodic. By the martingale central limit theorem for stationary ergodic sequences
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(see, e.g., [9], Theorem 7.7.5), the sequence (Mn/
√

n)n≥0 then converges in law
under P to a centered Gaussian variable with variance σ 2

Z = E[M2
1 ] = E[Lωq2 +

(Lωq)2/(1 −Lωp)]. Together with (2.4), this proves the above-mentioned conver-
gence of Zβ .

Step 2: We wish to show that the random variable Aβ = A
β−2� converges in

probability to σ 2
Z under the law P. Define the process A′

n by A′
n = ∑n−1

k=0[Lωk
q2 +

(Lωk
q)2/(1 − Lωk

p)]. By Proposition 2.2 and the ergodic theorem, the sequence
(A′

n/n)n≥0 converges P-almost surely to E[A′
1] = σ 2

Z . Together with (2.3), this
yields the above-mentioned convergence of Aβ as β → 0.

Step 3: Recall the definition Sβ = βS
β−2�. We wish to show that the pair
(Sβ,Zβ) converges in law under P to a centered Gaussian vector (GS,GZ) with
covariance E[GSGZ] = 1

2E[G2
S] = 1

2σ 2 (with σ 2 from Lemma 2.4). By (2.4), it
is enough to show that this convergence holds for the pair (Sn/

√
n,Mn/

√
n) as

n → ∞. By Lemma 2.4, every linear combination aSn + bMn is the sum of a
square-integrable martingale with stationary and ergodic increments and a process
Rn with 1√

n
Rn → 0 in L2, as n → ∞. Again by the martingale CLT for station-

ary, ergodic sequences ([9], Theorem 7.7.5), the pair (Sn/
√

n,Mn/
√

n) then con-
verges in law as n → ∞ to a centered Gaussian vector (GS,GZ) with E[G2

S] = σ 2,
E[G2

Z] = σ 2
Z and E[GSGZ] = limn→∞E[SnMn]/n = limβ→0 E[SβZβ].

It remains to show that limβ→0 E[SβZβ] = σ 2/2. In order to prove this, recall
the definition of 
Sn = Sn+1 − Sn and define 
Zn = Zn+1 − Zn. We have for
every n ≥ 0,

E
[
S2

n+1 − S2
n

] = E
[
(
Sn)

2 + 2Sn
Sn

] = E
[
Lωn

(
x2) + 2SnLωnx

]
,(2.5)

where x is the identity function. By Lemma 2.3, we have E[SnLωnx] =
E[(−Sn)Lω0x], whence, summing (2.5) over n, we get,

E
[
S2

n

] =
n∑

k=1

E

[
Lω0

(
x2) − 2Lω0x ×

k−2∑
j=0


Sj

]
.

Furthermore, since (Zn)n≥0 is a martingale, we have

E[Sn+1Zn+1 − SnZn] = E[Zn+1
Sn]
(2.6)

= E
[
β
Sn

(
qβ(
Sn) − Lωnqβ

) + (Lωnx)Zn

]
,

where we made use of the fact that 
Sk = 0 on the event that ωk = ωk+1. Applying
Proposition 2.2 to the term E[(Lωnx)Zn], we see that the terms corresponding to
the second summand in the brackets of (2.1) cancel. Summing (2.6) over n, this
yields

E[SnZn] = β

n∑
k=1

E

[
Lω0(xqβ) − Lω0x ×

k−2∑
j=0

(
qβ(
Sj ) − qβ(−
Sj)

)]

+E[Sn−1Lω0qβ ].
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Now, by assumption (H3) we have qβ(x) − qβ(−x) = x for every x (this is the
critical point!). Moreover, by reversibility, we have E[Lωf ] = E[Lωf ] for every
function f , where f (x) = f (−x). This yields

E
[
Lω(xqβ)

] = 1
2 × E

[
Lω(xqβ − xqβ)

] = 1
2 × E

[
Lω

(
x2)]

.

Altogether, the previous equations now yield

E
[
SβZβ] = E

[(
Sβ)2]

/2 + βE[S
β−2−1�Lω0qβ].
Convergence of the first summand has been established above, and the second
tends to 0 by Lemma 2.4 and the Cauchy–Schwarz inequality. Hence, we obtain
limβ→0 E[SβZβ] = σ 2/2 as claimed.

Step 4: We claim that Eβ[Sβ] → E[GS exp(GZ − 1
2σ 2

Z)], as β → 0. Since
(GS,GZ) is a centered Gaussian vector with E[GSGZ] = 1

2E[G2
S] = σ 2/2 and

E[G2
Z] = σ 2

Z , this will finish the proof of the theorem. By (2.1), Eβ[Sβ] =
E[Sβ exp(Zβ − 1

2Aβ)] and by the convergences in law established above, it suf-
fices to show that this last expression is uniformly integrable. Now, since Zn

and exp(Zn − 1
2An) are martingales, An is a submartingale. An being Fn−1-

measurable, it is therefore increasing in n. It then remains to show that Sβ exp(Zβ)

is uniformly integrable. By the fourth point of Lemma 2.5, Zn is a martingale
with bounded increments for β small enough. Azuma’s inequality [3] then im-
plies that all exponential moments of Zβ are uniformly bounded in β , for small
enough β . Furthermore, E[(Sβ)2] is uniformly bounded by the first part of this the-
orem. Hölder’s inequality then yields uniform boundedness of E[(Sβ exp(Zβ))c]
for some constant c > 1, which finishes the proof. �

3. Estimates on the branching random walk. In this section, we establish
an estimate for the branching random walk (Lemma 3.3 below). We recall that
for two vertices u, v with u ≤ v, we denote by [u, v] the set vertices on the path
connecting u and v. Similarly, if n,m ∈ N, then we define [n,m] to be the set
of vertices between levels/depths n and m. More generally, for a vertex u, we let
[n,m]u denote the set of vertices between levels/depths n and m in the subtree
rooted at u (which means that these vertices are between levels n+|u| and m+|u|
in the original tree), such that [m,n] = [m,n]ρ . Finally, we write [n] for [n,n] and
[n]u for [n,n]u.

LEMMA 3.1. There exist c ∈ (0,∞) and b > 1, such that for large L,

P
(
∀v ∈ [L] : max

w∈[ρ,v]
∣∣S(w)

∣∣ > c logL
)

≤ e−Lb

.

We will first establish the following intermediate bound:
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LEMMA 3.2. There exist constants C1,C2 > 0 such that for all large L,

P
(
∃v ∈ [L] : max

w∈[ρ,v]
∣∣S(w)

∣∣ ≤ C1

)
> C2.

PROOF. The proof is a standard first and second moment calculation. Fix C1 >

0 large. Let (Sn)n≥0 be a random walk starting at 0 with steps distributed according
to the law of X. For n ≥ 0 and x ∈ [−C1,C1], define the event B

(x)
n = {∀k ≤

n : |Sk + x| ≤ C1} and set Bn = B
(0)
n . By assumption (XM) and standard large and

small deviations estimates, there exists c0 < d − 1, such that for C1 large enough,

∃L0 ∈ N ∀L > L0 ∀n ≥ 0 P(Bn) ≥ c−n
0 .(3.1)

Indeed, this is obtained, for example, by combining the change of measure in the
Mogulskii–Varadhan theorem [7], Theorem 5.1.2, with the fact that a centered
random walk with bounded i.i.d. increments stays in a tube of width a for time n

with probability at least e−Cn/a2
for all n and a > a0 and some constant C > 0; for

finer estimates see, for example, [21].
In the sequel, we fix such a C1 once and for all. By an argument similar to the

above, there exists a constant C′
1 depending on C1 only such that(

C′
1
)−1 sup

x∈[−C1,C1]
P

(
B(x)

n

) ≤ P(Bn) ≤ C ′
1 inf

x∈[−C1/2,C1/2] P
(
B(x)

n

)
.(3.2)

To see (3.2), note from the above that P(Bn−C)/P (Bn) is bounded by a constant
depending on C only, uniformly in n > n0(C), and then couple the walk started
at x with the walk started at 0 by time C, with a fixed positive probability.

The second inequality in (3.2) yields the existence of a constant C′′
1 (depending

on C1) so that for every k ≤ L,

P(BL−k)P(Bk) ≤ C ′′
1 P(BL),(3.3)

because conditioned on Bk , the probability that |Sk| ≤ C1/2 is bounded from be-
low by a strictly positive constant uniformly in k.

For v ∈ [L], let

Av = 1{maxw∈[ρ,v] |S(w)|≤C1}.
Further let A = ∑

v∈[L] Av . Then,

E[A] = (d − 1)LP
(∀n ≤ L : |Sn| ≤ C1

) = (d − 1)LP(BL).

As for the second moment, denote by u∧ v the most recent common ancestor of u

and v. We then have for large L,

E
[
A2] = ∑

u,v∈[L]
E[AvAu] ≤ ∑

u,v∈[L]
P(BL) sup

x∈[−C1,C1]
P

(
B

(x)
L−|u∧v|

)
≤ C′

1C
′′
1 P(BL)2

∑
u,v∈[L]

P(B|u∧v|)−1,
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where the last inequality follows from (3.2) and (3.3). Equation (3.1) now yields∑
u,v∈[L]

P(B|u∧v|)−1 ≤ ∑
u,v∈[L]

c
|u∧v|
0 ≤ C(d − 1)2L

for some C > 0. The lemma now follows from the previous three inequalities to-
gether with the Paley–Zygmund bound P(A > 0) ≥ E[A]2/E[A2]. �

PROOF OF LEMMA 3.1. Let c > 0, and set H = �c logL�. Let C1 be as in
Lemma 3.2. Let g = esssup |X|, which is finite by assumption (XS). The branching
random walks spawned by the vertices at level H being independent, we have

P
(
∀v ∈ [L] : max

w∈[ρ,v]
∣∣S(w)

∣∣ > gH + C1

)
≤ P

(
∀v ∈ [L − H ] : max

w∈[ρ,v]
∣∣S(w)

∣∣ > C1

)(d−1)H

.

The lemma now follows from the last inequality together with Lemma 3.2, by
choosing c large enough. �

LEMMA 3.3. There exist c ∈ (0,∞) and b > 1, such that for large L,

P
(
∃u ∈ [0,L] ∀v ∈ [L] with u ≤ v : max

w∈[u,v]
∣∣S(w) − S(u)

∣∣ > c logL
)

≤ e−Lb

.

PROOF. Let c be as in the statement of Lemma 3.1. We say that a vertex u is
H -bad if for all v ∈ [H ]u there exists w ∈ [u, v], such that |S(w)−S(u)| > c logL.
Note that if u is H -bad, then it is K-bad for every K > H . A simple union bound
gives

P
(∃u ∈ [0,L] : u is

(
L − |u|)-bad

) ≤ P
(∃u ∈ [0,L] : u is L-bad

)
≤ (d − 1)L+1P(ρ is L-bad).

The statement then follows from Lemma 3.1. �

4. Regeneration times. In this section, we establish a regeneration structure
for the Metropolis algorithm, which will permit us to prove Theorem 1.1 from
the previously established Theorem 2.1. Recall the definition of the Metropolis
algorithm (Vn) from Section 1.1, which depends on a parameter β ∈R. Define the
level regeneration times (τn)n≥0 by τ0 = 0 and τn+1 to be the first time after τn

where the chain (Vn)n≥0 hits a level L for the first time, then immediately jumps
to level L + 1 and never gets back to level L again.

As in Sections 2 and 3, we denote the law of the branching random walk by P,
which is a law on �. We further denote the (quenched) law of the Metropolis algo-
rithm (Vn)n≥0 started from the vertex v and given the branching random walk
ω (the environment) by P v

ω,β . The annealed law is denoted by P
v
β(dω,dV ) =

P(dω)P v
ω,β(dV ). We also set Pβ = P

ρ
β , and note that this agrees with earlier nota-

tion. Our goal is to show:
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PROPOSITION 4.1. For each K > 0, there exists a = a(K) > 0 and na =
na(K) > 0 such that for all n > na and |β| ≤ K , Pβ(τ1 > n) ≤ e−na

and Pβ(τ2 −
τ1 > n) ≤ e−na

.

The main point in Proposition 4.1 is in uniformity (in β) of the tail bounds for the
regeneration times. This uniformity is in sharp contrast to other settings discussed
in the literature, where the regeneration times usually blow up when the parameter
approaches the critical value [4, 10]. We remark that we actually only need that
Eβ[τ k

1 ] is uniformly bounded for β in a neighborhood of 0, for some k > 2.
In order to prove Proposition 4.1, we will make use of the relation between

the Markov chain (Vn)n≥0 and electrical networks [19]: Let N(v) be the set of
neighbors of v including v. For w ∈ N(v), set

Q(v,w) = Pβ(v,w)

Pβ(v, �v)
, Q(v) = ∑

w∈N(v)

Q(v,w),

C(v,w) = Q(v,w)
∏
u≤v

Q(�u,u), C(v) = ∑
w∈N(v)

C(v,w).

One checks that for every w ∈ N(v), C(v,w) = C(w,v) and that

C(v,w)/C(v) = Q(v,w)/Q(v) = Pβ(v,w),

whence the Markov chain (Vn)n≥0 has an interpretation as the random walk on the
rooted d-regular tree with loops, induced by the edge conductances C(v,w). By
assumption (H3), one has for u ≤ v,

C(�v, v)

C(�u,u)
= h(e(β0+β)X(v))

h(e(β0+β)X(u))
e(β0+β)(S(�v)−S(u)).(4.1)

By assumptions (XS) and (H1)–(H3), this implies the existence of a constant c > 0,
such that

ce(β0+β)(S(�v)−S(u)) <
C(�v, v)

C(�u,u)
< c−1e(β0+β)(S(�v)−S(u)).(4.2)

Define TL to be the first strictly positive time the chain (Vn)n≥0 hits the level L.
Furthermore, denote by Tu and T ∗

u , respectively, the first nonnegative and strictly
positive times the chain hits a vertex u.

The first lemma gives a uniform bound on the annealed probability that the
Metropolis algorithm started from a vertex v escapes to infinity without coming
back to its parent �v. It was essentially already observed by Aldous [2], Lemma 8.

LEMMA 4.2. For each K > 0, there exists c = c(K) > 0, such that for each
vertex v 	= ρ and for all |β| ≤ K , we have

E
[
P v

ω,β(T�v = ∞)
]
> c.
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PROOF. Fix v 	= ρ and define f (β) := E[P v
ω,β(T�v = ∞)]. Note that f does

not depend on v by the definition of the measure P. As mentioned in Sec-
tion 1.1, under assumptions (XM) and (XR), there exists almost surely two in-
finite rays v0, . . . , vn, . . . and w0, . . . ,wn, . . . with lim infn→∞ S(vn)/n > 0 and
lim supn→∞ S(wn)/n < 0. By (4.2), the former has finite resistance if β > −β0,
and the latter if β < −β0, whence f (β) > 0 for each β 	= −β0. If β = −β0,
the Metropolis algorithm is just a simple random walk on the d-regular tree and
therefore f (−β0) > 0 as well. It follows that f is positive for every β ∈ R. Fur-
thermore, f (β) is continuous because it is the decreasing limit as L → ∞ of
E[P v

ω,β(TL < T�v)] and each of these quantities depends only on a finite portion
of the tree and is therefore continuous in β by assumption (H2). This immediately
implies the lemma. �

The following important lemma controls quenched hitting probabilities and will
be used in the evaluation of quenched escape probabilities.

LEMMA 4.3. For each K > 0, there exist c,L0 > 0, b > 1 depending on K ,
such that for |β| ≤ K and L > L0,

P
(∃v ∈ [1,L − 1] :P v

ω,β(TL < T�v) < L−c) < e−Lb

.

PROOF. Let v ∈ [1,L− 1], and let u ∈ [L − |v|]v , such that |u| = L. By (4.2),
we have for a fixed environment ω, for some c > 0,

P v
ω,β(Tu < T�v) =

( ∑
v≤w≤u

C(�v, v)

C( �w,w)

)−1

> c

( ∑
v≤w<u

e(β0+β)(S(w)−S(v))

)−1

.

This gives for |β| ≤ K ,

P v
ω,β(TL < T�v) ≥ max

u∈[L−|v|]v
P v

ω,β(Tu < T�v)

>
c

L
max

u∈[L−|v|]v
min

w∈[v,u)
e−(K+β0)|S(w)−S(v)|.

The statement now follows from Lemma 3.3. �

For a vertex v, denote by �(v) the depth of the first excursion below v after Tv ,
that is,

�(v) = sup
{|Vn| − |v| :n ≥ Tv and |Vk| > |v| ∀k ∈ {Tv + 1, . . . , n}}

(4.3)
∈ N∪ {∞}.

Note that since the probability of jumping from v to one of its children does not
involve X(�v, v), the event �(v) > 0 is independent from X(�v, v) (conditioned on
Tv < ∞).
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LEMMA 4.4. For each K > 0 there exist α = α(K),L0 = L0(K) > 0, such
that for |β| ≤ K and L > L0,

P
(
Pω,β

(
L ≤ �(ρ) < ∞)

> e−αL)
< e−αL.

PROOF. Fix ε ∈ (0,1). For a vertex v, define the variable A(v) by A(v) = 1
if for one of v’s sisters v, one has P v

ω,β(T ∗
v = ∞, T�v = ∞) ≥ ε and A(v) = 0

otherwise. In words, A(v) = 1 if the (quenched) probability of a walk, started at
an appropriate sister v of v, to escape to infinity through the subtree rooted at v

without visiting again v is at least ε. By Lemma 4.2, we can choose ε such that
E[A(v)] > 1/2 for all |β| ≤ K . By a result due to Grimmett and Kesten (see [6],
Lemma 2.2, (2.1) for this version), there exist then α,γ > 0, such that Pβ(GL) ≥
1 − e−αL for large L, where

GL =
{

min
v∈[L]

∑
w∈[2,v]

A(w) ≥ γL

}
.

Now, let ω ∈ GL. We wish to bound Pω,β(L ≤ �(ρ) < ∞). For this, define T m for
m = 2, . . . ,L − 1 to be the first time after TL that the Markov chain (Vn)n≥0 hits
level m. If T m < ∞ and A(VT m) = 1, then by assumptions (XS) and (H1)–(H3),
the probability that from VT m the chain reaches V T m after two steps is bounded
from below by δ/ε for some δ sufficiently small. It follows that for ω ∈ GL,

Pω,β

(
L ≤ �(ρ) < ∞) ≤ (1 − δ)

∑
w∈[2,VT ] A(w) ≤ (1 − δ)γL.

This yields the lemma (reducing the value of α if necessary). �

LEMMA 4.5. For each K > 0 there exist α = α(K),L0 = L0(K) > 0, such
that for |β| ≤ K and L > L0,

Pβ

(|Vτ1 | ≥ L
)
< e−αL.

PROOF. Define a sequence of random numbers L0,L1, . . . recursively as fol-
lows:

• L0 = 1;
• for n ∈ N, let vn = VTLn

. If �(vn) < ∞, then Ln+1 = Ln + �(vn) + 1;
• otherwise, set Lm = ∞ for m > n.

Let N be the largest number n, such that Ln < ∞. Then by construction, |Vτ1 | =
LN . Furthermore, the differences (Ln+1 − Ln)0≤n<N are independent and identi-
cally distributed as �+1 conditioned on � < ∞, and N is geometrically distributed
with success probability P(� = ∞) > 0 [� as in (4.3)]. The lemma then follows
from Lemma 4.4. �
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LEMMA 4.6. Let Gn be the σ -field generated by V0, . . . , Vn and let T be a
stopping time with respect to the filtration (Gn)n≥0, such that VT 	= Vk for all
k < T . Then for each K > 0 there exists a constant c = c(K) > 0, such that for
|β| ≤ K and all N ≥ 0, we have

Pβ

(
max

T ≤j<T +N
|Vj | ≥ cN

∣∣GT

)
> c.

PROOF. We follow the proof of [1], Theorem 1.5. Throughout the proof,
c0, c1, . . . will denote positive constants which are uniform in |β| ≤ K .

Step 1. For a vertex v 	= ρ, define πω,β(v) = P v
ω,β(T�v = ∞). Note that the ran-

dom variables πω,β(v), v 	= ρ, are identically distributed under P (but not inde-
pendent). Let πω,β denote a random variable with this law. We wish to show that
for some constant c0,

E[1/πω,β] ≤ c0.(4.4)

Denote by v1, . . . , vd−1 the children of the vertex v. By assumptions (XS) and
(H1)–(H3), we have

P v
ω,β(V1 = vi) ≥ c1, i = 1, . . . , d − 1,(4.5)

which yields πω,β(v) ≥ c1
∑d−1

i=1 πω,β(vi). Now, note that the variables πω,β(vi),
i = 1, . . . , i − 1 are independent under P. The previous inequality then yields for
every x ≥ 0,

P
(
πω,β(v) ≤ x

) ≤ P
(

max
i=1,...,d−1

πω,β(vi) ≤ x/c1

)
(4.6)

= P
(
πω,β(v) ≤ x/c1

)d−1
.

Furthermore, by Lemma 4.2, there exists a constant c2, such that

P
(
πω,β(v) ≤ 2c2

) ≤ 1/2.(4.7)

Together with (4.6), this now easily implies (4.4).
Step 2. For a vertex v, let Nv denote the number of times the vertex v has been

visited by the Metropolis algorithm (Vn)n≥0. We wish to show that for each k ≥ 0,

Eβ

[ ∑
|v|=k

Nv

]
≤ c3.(4.8)

Recall that T ∗
v denotes the first strictly positive hitting time of the vertex v,

such that Ev
ω,β [Nv] = 1/P v

ω,β(T ∗
v = ∞). By (4.5), we have P v

ω,β(T ∗
v = ∞) ≥

c1πω,β(v1), such that

Eβ[Nv] = E
[
P

ρ
ω,β(Tv < ∞)Ev

ω,β[Nv]] ≤ c1Pβ(Tv < ∞)E
[
1/πω,β(v1)

]
(4.9)

≤ c4Pβ(Tv < ∞),
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by (4.4). Furthermore, we have for every k ≥ 0,

1 ≥ ∑
|v|=k

Pβ(Tv < ∞,Vn ≥ v1 ∀n > Tv)

(4.10)
≥ c1

∑
|v|=k

Pβ(Tv < ∞)E
[
πω,β(v1)

]
,

and by (4.7), we have E[πω,β(v1)] = E[πω,β] ≥ c2. Equations (4.10) and (4.9)
now yield (4.8).

Step 3. Recall the notation in the statement of the lemma, and let L ∈ N. Define
the event ET = {Vn ≥ VT ∀n > T }. A straightforward extension of the proof of the
last step allows us to prove that for every constant C > 0,

Pβ

(
ET ,

∑
w∈[VT ,L]

Nw > CL
∣∣∣GT

)
≤ 1

CL
Eβ

[ ∑
w∈[VT ,L]

Nw1ET

∣∣∣GT

]
< c3C

−1.

Furthermore, by (4.5), we have Pβ(ET |GT ) ≥ c1E[πω,β] ≥ c1c2. This now yields
for every constant c > 0 and every N ∈ N,

Pβ

(
max

T ≤j<T +N
|Vj | ≥ cN

∣∣GT

)
≥ Pβ

(
ET ,

∑
w∈[VT ,cN]

Nw ≤ N
∣∣∣GT

)
> c1c2 − c3c.

Setting c = c1c2/2c3 yields the proof. �

PROOF OF PROPOSITION 4.1. The proof follows an argument in the spirit
of [22], Proposition 3. Let K > 0. Let L = L(n) go to infinity with n (we will later
choose L = nb for some constant b). We have, with TL denoting the hitting time
of level L, and with α > 0 as in the statement of Lemma 4.5,

Pβ(τ1 > n) ≤ Pβ

(
T|Vτ1 | > n, |Vτ1 | < L

) + Pβ

(|Vτ1 | ≥ L
)

(4.11)
≤ Pβ(TL > n) + e−αL,

where in the last inequality we used the fact that TL′ ≤ TL for L′ ≤ L.
Let c be the constant from Lemma 4.3 and set c̄ = 6(c ∨ 1). Throughout the

proof, all constants will be uniform in β for |β| ≤ K . We write L = Lc̄. Define
a vertex v to be fresh if it is visited by the random walk for the first time before
time L. We will upper bound Pβ(TL > n) by showing that on the one hand, there
cannot be too few fresh points that are well separated and on the other hand, if
there are many such fresh points, it is unlikely that TL is large.

For a vertex v, let Nv denote the number of visits to v by time L, and let Nu
v

denote the number of times the random walk visits v before time L, and then, at
the next step that it moves, it visits the ancestor of v before time L. Clearly, for
each v, Nu

v ≤ Nv , while, using the Markov property, there exist constants γ, γ ′ > 0
such that

Pβ

(∃v :Nv ≥ L
1/2

,Nu
v ≤ γL

1/2) ≤ Le−γ ′L1/2

.(4.12)
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On the other hand, the event{
Nv ≥ L

1/2
,Nu

v > γL
1/2

, TL ≥ L
}

implies that the random walk visited v and then hit �v at least γL
1/2

times. By
Lemma 4.3 and the Markov property, the probability that there exists a fresh vertex
v satisfying the last event is bounded above by

L
(
1 − L−c)γL

1/2

≤ Le−γLc̄/2−c ≤ Le−γL2(c∨1)

.

Combining this with (4.12), we conclude that for all large L,

Pβ

(∃v :Nv ≥ L
1/2

, TL ≥ L
) ≤ e−L.(4.13)

On the event {∀v :Nv < L
1/2}, there are at least L

1/2
fresh points, and therefore

there are at least L
1/4

fresh points that are L
1/4

-separated. Let c be the constant
from Lemma 4.6. At each arrival to such a fresh point, with (annealed) probability

at least c the walk hits level L before time L/c < L
1/4

, for large L. It follows that

Pβ

(∀v :Nv < L
1/2

, TL ≥ L
) ≤ CL

1/4

0(4.14)

for some C0 ∈ (0,1). By (4.13) and (4.14), there exists now a constant b > 0,
such that with L = nb, we have Pβ(TL > n) ≤ 2e−L. Together with (4.11), this
completes the proof of the first statement of Proposition 4.1.

As for the second statement, let ρ1, . . . , ρd−1 be the children of the root. The
law of the subtree of the branching random walk tree rooted at Vτ1 is equal in law
under Pβ to the subtree rooted at V1, conditioned on V1 ∈ {ρ1, . . . , ρd−2} and on
T ∗

ρ = ∞. In particular,

Pβ(τ2 − τ1 ≥ n) = Pβ

(
τ1 ≥ n|V1 ∈ {ρ1, . . . , ρd−2}, T ∗

ρ = ∞) ≤ Pβ(τ1 ≥ n)/c1c2,

where c1 and c2 are the constants from the proof of Lemma 4.6. This finishes the
proof. �

PROOF OF THEOREM 1.1. Existence and finiteness of the limit σ 2 =
limn→∞ S2

n/n follows from the first part of Theorem 2.1. In order to prove
the remaining statements, we will use the regeneration structure established
in this section. Note that the random vectors {(τi+1 − τi, Sτi+1 − Sτi

)}i≥1 are
i.i.d. under the law Pβ and independent from (τ1, Sτ1). Furthermore, by (XS),
|Sn − Sm| ≤ g|n − m|, where g = esssup |X|. Proposition 4.1 and the P-almost
sure convergence of S2

n/n to σ 2 now yields

σ 2 = lim
k→∞

S2
τk

k
· k

τk

= E[(Sτ2 − Sτ1)
2]

E[τ2 − τ1] > 0,

which proves the first part of the theorem.
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As for the second part, by standard arguments (see, e.g., the proof of Theo-
rem 4.1 in [20]), vβ = limn→∞ Sn/n exists almost surely if Eβ[τ2 − τ1] < ∞,
which is the case for all β by Proposition 4.1. Furthermore, we have vβ =
Eβ[Sτ2 − Sτ1]/Eβ[τ2 − τ1], which implies in particular that |vβ | ≤ g.

Now let Kβ = inf{k > 0 : τk > β−2}. By the optional stopping theorem, we have

Eβ[SτKβ
] = Eβ[Sτ1] + vβEβ[τKβ − τ1],

such that by Proposition 4.1 and assumption (XS), for some constant C > 0,∣∣Eβ[S
β−2�] − vββ−2∣∣ ≤ CEβ

[
τKβ − β−2]

.

Crude moment bounds using Proposition 4.1 yield that the right-hand side of
the above equation is o(β−1), which yields limβ→0 vβ/β = limβ→0 Eβ[S
β−2�] =
σ 2/2 by Theorem 2.1. This finishes the proof. �
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