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ON THE STABILITY OF PLANAR RANDOMLY
SWITCHED SYSTEMS1

BY MICHEL BENAÏM, STÉPHANE LE BORGNE,
FLORENT MALRIEU AND PIERRE-ANDRÉ ZITT

Université de Neuchâtel, Université de Rennes 1, Université de Rennes 1
and Université de Bourgogne

Consider the random process (Xt )t≥0 solution of Ẋt = AIt
Xt , where

(It )t≥0 is a Markov process on {0,1}, and A0 and A1 are real Hurwitz matri-
ces on R

2. Assuming that there exists λ ∈ (0,1) such that (1 − λ)A0 + λA1
has a positive eigenvalue, we establish that ‖Xt‖ may converge to 0 or +∞
depending on the jump rate of the process I . An application to product of
random matrices is studied. This paper can be viewed as a probabilistic coun-
terpart of the paper [Internat. J. Control 82 (2009) 1882–1888] by Balde,
Boscain and Mason.

1. Introduction. The aim of the present paper is twofold. First, this work
answers a question by Charlot about the stochastic counterpart of the work [2].
Second, the piecewise deterministic Markov processes (PDMP) under study may
present a surprising blow-up when time goes to infinity.

Let A0, A1 ∈ R
2×2 be two real matrices which admit two eigenvalues with

negative real parts: A0 and A1 are said to be Hurwitz matrices. In [2], the
authors deal with the stability problem for the planar linear switching system
ẋt = (1 − ut )A0xt + utA1xt , where u : [0,∞) → {0,1} is a measurable function.
They provide necessary and sufficient conditions on A0 and A1 for the system to
be asymptotically stable for arbitrary switching function u. The main hypothesis
that ensures the existence of a control u such that the system is not asymptotically
stable is the following.

ASSUMPTION 1.1. There exists λ ∈ (0,1) such that the matrix Aλ given by
(1 −λ)A0 +λA1 has two real eigenvalues −λ− < 0 < λ+ with opposite signs. Let
us denote by u−, u+ two associated (real, unit) eigenvectors.
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REMARK 1.2. It is shown in [2] that Assumption 1.1 is equivalent to the rela-
tion

Tr(A0)Tr(A1) − Tr(A0A1) < −2
√

det(A0)det(A1).(1)

Assumption 1.1 may hold in many different cases as is illustrated by Exam-
ples 1.3 and 1.4. The complete description of the different cases is postponed to
Section 2.3.

EXAMPLE 1.3. Let us define A0 and A1 by

A0 =
(−1 2b

0 −1

)
and A1 =

(−1 0
2b −1

)

with b > 0. Then A0 and A1 are two Jordan matrices, and the eigenvalues of A1/2
are given by −1 ± b.

EXAMPLE 1.4. Let us define A0 and A1 by

A0 =
( −1 ab

−a/b −1

)
and A1 =

(−1 −a/b

ab −1

)

with a, b > 0. Then A0 and A1 have conjugate complex eigenvalues, and the eigen-
values of A1/2 are −1 ± a(b − 1/b)/2.

In the sequel, we suppose that Assumption 1.1 holds. Let us define λ0 = λ and
λ1 = 1 − λ. For any β > 0, consider the Markov process (X, I) on R

2 × {0,1}
driven by the generator Lβ ,

Lβf (x, i) = LCf (x, i) + βLJ f (x, i),

where

LCf (x, i) = Ai∇f (x, i) and LJ f (x, i) = λi

(
f (x,1 − i) − f (x, i)

)
.

The operator LC corresponds to the “continuous” part (the first component x

evolves along the flow of the vector field x �→ Aix), and βLJ gives the jumps
on the second component. If ν is a probability measure on R

2 × {0,1}, we denote
by Pν the law of the process (X, I) when the law of (X0, I0) is ν.

REMARK 1.5. One can easily construct the process (X, I) as follows. The
process (It )t≥0 is the Markov process on {0,1} with jump rates (βλi)i∈{0,1}. Then
(Xt)t≥0 is the solution of

Xt = X0 +
∫ t

0
AIsXs ds (t ≥ 0).

Notice that (It )t≥0 is a Markov process with invariant measure

βλ1

βλ0 + βλ1
δ0 + βλ1

βλ0 + βλ1
δ1 = (1 − λ)δ0 + λδ1.
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Our main result ensures that under Assumption 1.1 the norm of the continu-
ous component X goes to zero if the jumps are rare and to +∞ if the jumps are
sufficiently numerous (and X0 	= 0).

THEOREM 1.6. Under Assumption 1.1, there exists χ(β) ∈ R such that, for
any initial measure ν such that ν({0} × {0,1}) = 0,

1

t
log‖Xt‖ Pν-a.s.−−−−→

t→∞ χ(β).(2)

Moreover, there exist two constants 0 < β1 ≤ β2 < ∞ such that:

• if β < β1, then χ(β) is negative and ‖Xt‖ Pν-a.s.−−−−→
t→∞ 0;

• if β > β2, then χ(β) is positive and ‖Xt‖ Pν-a.s.−−−−→
t→∞ ∞.

REMARK 1.7. The process ((Xt , It ))t≥0 is what is called a piecewise deter-
ministic Markov process on R

2 × {0,1} (see [4, 6] for details) where the contin-
uous part is driven by two vectors fields that admit a unique stable point and are
exponentially stable. In [1] it is proved that if the process is recurrent, its invari-
ant measure is often absolutely continuous. The previous theorem shows that the
recurrence may not be so easy to establish (it can depend on the jump rates).

REMARK 1.8. A similar model of switching linear evolutions is studied in [9],
Chapter 8. In Section 8.4, stability results are established on a certain timescale;
that is, the process is studied for high β on a time interval that depends on β . In
Section 8.5 the existence of the “Lyapunov exponent” χ(β) is proved when the
angular process defined below is ergodic. The general case and the fact that χ(β)

may change sign with β is not considered in that work.

We prove Theorem 1.6 in Section 2. We do not know if β1 = β2 under Assump-
tion 1.1. Nevertheless, Section 3 is dedicated to the study of Examples 1.3 and 1.4
where this “phase transition” can be established. The exponential rate of growth
of the process is given by an expression analogous to Furstenberg’s formula [5].
Generally it is difficult to compute the element entering the Furstenberg formula;
see examples in [3, 8]. For the example of Section 3 one obtains an explicit ex-
pression of the “Lyapunov” exponent of (Xt)t≥0. Finally, in Section 4, we remark
that our results can be interpreted in terms of products of random matrices. We
obtain examples of products of random independent matrices, with eigenvalues of
modulus less than one, with a positive Lyapunov exponent (we are not in the frame
of unimodular matrices studied in [3, 8]).
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2. The general case. The proofs of the two parts of Theorem 1.6 use different
techniques. The easy part, when β is small, follows from a martingale argument
explained in Section 2.1. To study the process for large β , we use a polar de-
composition, detailed in Section 2.2. The angular process is studied in Sections
2.3 and 2.4. In Section 2.5 we give the main line of the proof of Theorem 1.6; the
proof of a key lemma is postponed to Section 2.6.

2.1. Few jumps: Convergence to zero. In this subsection, we suppose that β is
small: the i component rarely jumps. The two flows associated to A0 and A1 being
linear and attractive, there exists ρ > 0 and two norms V0 and V1, given by two
positive symmetric matrices M0 and M1, such that, for Vi(x) = 〈x,Mix〉,

LCVi(x, i) ≤ −ρVi(x).

Define, V (x, i) = Vi(x). Since |LJ f (x, i)| ≤ K(|f (x,0)| + |f (x,1)|), we get

LβV (x, i) = LCVi(x, i) + βLJ Vi(x, i)

≤ −ρVi(x) + βK
(
V0(x) + V1(x)

)
≤ −ρVi(x) + βK ′Vi(x)

by the equivalence of the norms. Therefore there exist a ρ′ > 0 and a β1 > 0 such
that, for β < β1,

∀(x, i) ∈ R
2 × {0,1} LβV (x, i) ≤ −ρ′V (x, i).

Consequently, the process (Mt)t≥0 defined by Mt = eρ′tV (Xt , It ) is a positive
supermartingale. It converges almost surely to a random variable which is almost
surely finite. Therefore V (Xt , It ) converges almost surely to zero, and ‖Xt‖ itself
converges to zero almost surely (exponentially fast).

2.2. A polar decomposition. We begin by decomposing the deterministic dy-
namics. Let A be a matrix on R

2 and x ∈ R
2 \ {0}. Consider (xt )t≥0 the solution of{

ẋt = Axt ,

x0 = x.

First of all, since x is not 0, then, for any t ≥ 0, xt is not equal to 0. Therefore
it is possible to define the polar coordinates (rt , θt ) of xt . Call eθ the unit vector
(cos θ, sin θ) and define ut = eθt :xt may be written rtut . Since r2

t = 〈xt , xt 〉, we
have

rt ṙt = 〈xt ,Axt 〉,
A(rtut ) = ẋt = ṙt ut + rt u̇t .

Therefore,

ṙt = rt 〈ut ,Aut 〉,(3)

u̇t = Aut − 〈ut ,Aut 〉ut .(4)
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The evolution of ut on the circle is autonomous. The derivative u̇t vanishes when
Aut = 〈ut ,Aut 〉ut , that is, when ut is a eigenvector of A. As a consequence, equa-
tion (4) has:

• four stationary points if and only if A admits two different eigenvalues,
• two stationary points if and only if A is a Jordan matrix as in Example 1.3,
• no stationary points if and only if the eigenvalues of A are not real.

Let us write equation (4) in terms of the angles θt . Since u̇t = θ̇t eθt+π/2, the scalar
product of (4) with eθt+π/2 gives

θ̇t = 〈Aeθt , eθt+π/2〉
(5)

= (A22 − A11) sin(θt ) cos(θt ) + A21 cos2(θt ) − A12 sin2(θt ).

The critical points of this differential equation are related to the eigenvector of A

as it is pointed out in the following lemma.

LEMMA 2.1. For any matrix A, the function

d : θ �→ d(θ) = 〈Aeθ , eθ+π/2〉
given by (5) is π -periodic and d(θ) = 0 if and only if eθ is an eigenvector of A.
Finally, the function d is constant and equal to zero if and only if A = λI2.

PROOF. If θ is changed to θ + π , then both eθ and eθ+π/2 are changed to
their opposite, so that 〈Aeθ , eθ+π/2〉 remains unchanged. We have already seen
that d(θ) = 0 if and only if eθ is an eignevector of A. �

2.3. The angular process. Let us use the polar decomposition to study the pro-
cess ((Xt , It ))t≥0. Between jumps, the process follows the deterministic dynam-
ics described above, with A ∈ {A0,A1}. Since the evolution of the angle θ is au-
tonomous for each dynamics, the process (
, I) is a Markov process on R×{0,1}.
The evolution of (Rt )t≥0 is determined by the one of the process ((
t , It ))t≥0, by
solving equation (3) between the jumps. If we call A(θ, i) = 〈Aieθ , eθ 〉, then

Rt = R0 exp
(∫ t

0
A(
s, Is) ds

)
(6)

and Rt appears as a multiplicative functional of ((
s, Is))0≤s≤t .
The proof of Theorem 1.6 relies on the study of the long time behavior of (
, I).

We will see in the sequel that this process may be ergodic (i.e., it admits a unique
invariant measure) or not. Let us define, for i ∈ {0,1} and λ ∈ (0,1),

di(θ) = 〈Aieθ , eθ+π/2〉,
dλ(θ) = (1 − λ)d0(θ) + λd1(θ).
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The generator of the Markov process (
, I) is given by

Lβf (θ, i) = LCf (θ, i) + βLJ f (θ, i),

where

LCf (θ, i) = di(θ)∂θf (θ, i) and LJ f (θ, i) = λi

(
f (θ,1 − i) − f (θ, i)

)
.(7)

Once again, LC is the continuous drift and βLJ is the jump part. Let us also
introduce the averaged (deterministic) dynamic

LAf (θ, i) = dλ(θ)∂θf (θ, i).(8)

Under Assumption 1.1, Lemma 2.1 ensures that the vector field Fλ = dλ∂θ has
exactly four critical points on [0,2π). As dλ is π -periodic it suffices to describe
it only on an interval of length π connecting two zeros of dλ corresponding to
the negative eigenvalues of Aλ. Let [θ−, θ− + π) this interval. The function dλ

vanishes only once on (θ−, θ− + π) at a point θ+ corresponding to the positive
eigenvalues of Aλ. We have

dλ(θ)

{
> 0, if θ ∈ (θ−, θ+),
< 0, if θ ∈ (θ+, θ− + π).

(9)

Let us first notice that, under Assumption 1.1, the critical points d0, d1 and dλ are
different.

LEMMA 2.2. Under Assumption 1.1 if θ is a critical point of dλ, then
d0(θ) d1(θ) < 0. In particular, θ is not a critical point of di , i ∈ {0,1}.

PROOF. Assume that there exists θ such that dλ(θ) = 0 = d0(λ). Then
d1(θ) = 0. As a consequence, uθ is an eigenvector for A0, A1 and Aλ associated to
the respective eigenvalues η0, η1 and ηλ = (1 − λ)η0 + λη1. This implies that the
second eigenvalue of Aλ is also a convex combination of two complex numbers
with negative real part [consider the relation Tr(Aλ) = (1−λ)Tr(A0)+λTr(A0)].
This cannot hold under Assumption 1.1. As a consequence, d0(θ) d1(θ) 	= 0. Since
dλ(θ) = 0, we get that d0(θ) and d1(θ) have opposite signs. �

Without loss of generality we can assume that d0(θ+) < 0 and d1(θ+) > 0. Be-
cause of the equality dλ = (1 −λ)d0(θ)+λd1(θ) we have constraints on the signs
of the di . Let us list all the possibilities:

(a) d0 vanishes 0, 1 or 2 times on (θ−, θ+), and d1 does not vanish at all;
(b) d1 vanishes 0, 1 or 2 times on (θ+, θ− + π), and d0 does not vanish at all;
(c) d1 vanishes 2 times on (θ+, θ− + π) at points θ1m < θ1M , and d0 vanishes

1 or 2 times on (θ1m, θ1M);
(d) d0 vanishes 2 times on (θ−, θ+) at points θ0m < θ0M , and d1 vanishes 1 or 2

times on (θ0m, θ0M);
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FIG. 1. The three flows in cases (e) and (f). The outer arrows, in red, represent the flow of d1. The
middle ones, in blue, represent d0 and the inner ones the averaged flow dλ. In the two cases, there is
a region around θ+, that is, left invariant by both flows. The regions on each side are unstable and
lead back to the invariant region.

(e) d1 vanishes 1 or 2 times on (θ+, θ− + π) at points θ1m ≤ θ1M , and d0 van-
ishes 1 or 2 times on (θ−, θ+) at points θ0m ≤ θ0M ;

(f) d0 vanishes 2 times at points θ0m < θ0M and d1 vanishes 2 times at points
θ1m < θ1M such that θ1m < θ0m < θ+ < θ1M < θ0M .

In the last two cases we have a subinterval of (θ−, θ− + π), that is, invariant for
both of the systems θ̇t = di(θt ) : (θ0M,θ1m) in case (e), (θ0m, θ1M) in case (f); see
Figure 1.

2.4. Ergodic properties of the angular process. Since the asymptotic behavior
of Rt = ‖Xt‖ depends on the long time behavior of the process (U, I ) = (e
, I ),
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let us briefly study its ergodicity (recurrent and transient points, number of invari-
ant measures. . . ).

First, we remark that when Assumption 1.1 is satisfied, there exists ε > 0 such
that:

• the points {(θ, i) : θ ∈ (θ− − ε, θ− + ε), i = 0,1} lead with positive probability
to (θ+, j) and (θ+ − π, j), j = 0,1;

• the points {(θ, i) : θ ∈ (θ− + π − ε, θ− + π + ε), i = 0,1} lead with positive
probability to (θ+, j) and (θ+ + π, j), j = 0,1.

Thus if one of the sets (θ− −ε, θ− +ε)×{0,1} or (θ− +π −ε, θ− +π +ε)×{0,1}
is attained with positive probability starting from (θ+,0), then the Markov process
(Ut , It ) on the circle is recurrent. This is the case in situations (a), (b), (c), (d)
described above. In these situations the process (Ut , It ) is irreducible and has a
unique invariant measure.

In cases (e) and (f), (Ut , It ) has exactly two distinct recurrent classes and two
invariant measures supported by two intervals on the circles corresponding to the
invariant interval defined above and its symmetric. Let μβ and μ̃β be these two
ergodic invariant measures. For any initial measure μ on T× {0,1},

1

t

∫ t

0
f (Us, Is) ds

Pμ-a.s.−−−−→
t→∞ P

∫
f (u, i) dμβ(u, i) + (1 − P)

∫
f (u, i) dμ̃β(u, i),

where P ∈ {0,1} is a random variable such that P(P = 1) is the probability that
(U, I ) reaches the class of (eθ+,0) when the law of (U0, I0) is μ. Now by symme-
try we have

∫
f (u, i) dμ̃β(u, i) =

∫
f (−u, i) dμβ(u, i),

so that, if f (−u, i) = f (u, i), in all cases, we have

1

t

∫ t

0
f (Us, Is) ds

Pμ-a.s.−−−−→
t→∞

∫
f (u, i) dμβ(u, i).

Finally notice that the invariant measures are always absolutely continuous with
respect to λT ⊗ (δ0 + δ1), where λT is the Lebesgue measure on T.

2.5. Many jumps: Blow up. In the sequel, μβ stands for any invariant measure
of (U, I ), and we identify u = eθ with θ . As A(θ, i) = 〈Aieθ , eθ 〉 = A(θ + π, i)

we get [see the expression (6)]

1

t
log(Rt/R0)

a.s.−−−−→
t→∞

∫
A(θ, i) dμβ(θ, i).
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As a consequence, for any probability measure ν on R
2 × {0,1} such that ν({0} ×

{0,1}) = 0, the convergence (2) in Theorem 1.6 holds with

χ(β) =
∫

A(θ, i) dμβ(θ, i).

In order to prove that χ(β) is positive when β is large we use the following lemma,
which will be proved in Section 2.6.

LEMMA 2.3. When β is large, the invariant measures are concentrated
around the stable points θ+ and θ̃+ = θ+ + π of the averaged dynamical system.
More precisely, for any ε > 0, and any neighborhood K ⊂ T of the set {θ+, θ̃+},
there exists a β(K, ε) such that, for any β ≥ β(K, ε),

μβ

(
K × {0,1}) ≥ 1 − ε.

Thanks to this result, we can now prove∫
A(θ, i) dμβ(θ, i) > 0

for β large enough. For θ = θ+ or θ = θ̃+, we know that∫
A(θ+, i) dμβ(θ, i) = 〈Aλeθ+, eθ+〉 = λ+ > 0.

Moreover A(·, i) is continuous for i = 0,1. Choose K , a neighborhood of θ+, θ̃+,
such that

∀(θ, i) ∈ K × {0,1} A(θ, i) ≥ 2λ+
3

.

Thanks to Lemma 2.3, for β large enough,

μβ

(
K × {0,1}) ≥ 1 − λ+

6‖A‖∞
.

Therefore,∣∣∣∣
∫

A(θ, i) dμβ(θ, i) − λ+
∣∣∣∣ ≤

∫ ∣∣A(θ, i) −A(θ+, i)
∣∣1θ∈K dμβ

+
∫ ∣∣A(θ, i) −A(θ+, i)

∣∣1θ /∈K dμβ

≤ λ+
3

+ 2‖A‖∞μβ

(
K̄ × {0,1})

≤ 2λ+
3

.

This shows that χ(β) ≥ λ+
3 > 0. Hence Rt converges a.s. to infinity; this completes

the proof of Theorem 1.6.
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2.6. The invariant measures concentrate near the attractive points. This sec-
tion is devoted to the proof of Lemma 2.3. The idea is that the averaged system
gets back quickly to the stable points, so most of the mass of the invariant measure
μβ should be located near these stable points. To quantify this attraction to the
stable points, we find a Lyapunov function, in the following sense.

LEMMA 2.4. Suppose that there exists a function (θ, i) �→ fβ(θ, i) that satis-
fies

fβ(θ, i) ≥ a > 0,
(10)

Lβfβ(θ, i) ≤ −ρfβ(θ, i) + C1{θ∈K}.

Then μβ(K) ≥ aρ/C.

PROOF. Integrating (10) with respect to the invariant measure μβ , we get

0 =
∫

Lβfβ dμβ ≤ −ρ

∫
fβ dμβ + Cμβ(K),

which proves the result. �

The Lyapunov function fβ will be constructed by the classical “perturbation”
method; for details, see, for example, [7]. We start from a test function f (de-
pending only on θ ) adapted to the averaged dynamical system driven by dλ, and
build a perturbation fβ = f − β−1g of this function such that Lβfβ ≈ LAf ; this
perturbed function will satisfy the hypotheses of Lemma 2.4 with appropriate con-
stants.

Let K be a small neighborhood of the stable points θ+, θ̃+ and ε > 0. There
exists a 2π -periodic function f that satisfies the following properties:

(1) f is C2(R);
(2) f (θ−) = f (θ̃−) = 2, f (θ+) = f (θ̃+) = 1;
(3) f ′(θ−) = f ′(θ+) = f ′(θ̃+) = f ′(θ̃−) = 0;
(4) f ′′(θ−) = −1, f ′′(θ+) = ε;
(5) f is monotonous between its critical points.

Notice that, by design, f decreases along the trajectories of the averaged system,

∀θ ∈ [0,2π ] LAf (θ) = dλ(θ)f ′(θ) ≤ 0.(11)

In the sequel, we still denote by f the function (θ, i) ∈ T× {0,1} �→ f (θ). Let us
define g and fβ on T× {0,1} by

g(θ, i) = LAf (θ) − LCf (θ, i),

fβ(θ, i) = f (θ) − 1

β
g(θ, i),
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where LC is the continuous part of Lβ defined in (7), and LA is given by (8).
A straightforward computation ensures that, for any θ ∈ T, i �→ g(θ, i) is solu-
tion of

LJ g(θ, ·) = LCf (θ, ·) − LAf (θ) = −g(θ, ·).(12)

Indeed, keeping in mind that LAf does not depend on i, we have for any (θ, i) ∈
T× {0,1},

LJ g(θ, i) = λi

(
g(θ,1 − i) − g(θ, i)

)
= λi

(−LCf (θ,1 − i) + LCf (θ, i)
)

= LCf (θ, i) − (
λiLCf (θ,1 − i) + (1 − λi)LCf (θ, i)

)
= LCf (θ, i) − (

λid1−i (θ)f ′(θ) + λ1−idi(θ)f ′(θ)
)

= LCf (θ, i) − LAf (θ).

Thus, we get from equation (12) that

Lβfβ(θ, i) = LCf (θ, i) − β−1LCg(θ, i) + βLJ f (θ, i) − LJ g(θ, i)

= LAf (θ) − β−1LCg(θ, i)

since LJ f (θ, i) = 0 according to the fact that f does not depend on i ∈ {0,1}. The
definition of g ensures that

Lβfβ(θ, i) = LAf (θ) + β−1Rf (θ, i),(13)

where

Rf (θ, i) = LCLCf (θ, i) − LCLAf (θ, i),

LCLCf (θ, i) = di(θ)2f ′′(θ) + di(θ) d ′
i(θ)f ′(θ),

LCLAf (θ, i) = di(θ) dλ(θ)f ′′(θ) + di(θ) d ′
λ(θ)f ′(θ).

Thus there exists R̄ε such that for any (θ, i) ∈ R × {0,1}, |Rf (θ, i)| ≤ R̄ε . In
particular, if β is sufficiently large, one can assume that

1
2 ≤ 1 − ε ≤ fβ(θ, i) ≤ 3.(14)

Let us prove (10) between two critical points θ− < θ+, splitting the interval
[θ−, θ+] in three regions,

[θ−, θ− + l−], [θ− + l−, θ+ − l+] and [θ+ − l+, θ+],
where l− and l+ depend on f , ε and K (but not on β).



ON THE STABILITY OF PLANAR RANDOMLY SWITCHED SYSTEMS 303

First region. Since θ− is a critical point of dλ, one has LAf (θ−) = 0. More-
over f ′(θ−) is equal to 0 since f reaches its minimum at θ−. From (13), the ex-
pressions of LCLCf and LCLAf , we get that

Lβfβ(θ−, i) = β−1Rf (θ−, i) = β−1 di(θ−)2f ′′(θ−) ≤ −β−1cu,

where

cu = min
(
d0(θ−)2, d1(θ−)2)

> 0.(15)

By continuity, we can find l− > 0 (that does not depend on β) such that Rf (θ, i) ≤
−cu/2 for θ ∈ [θ−, θ− + l−]. Remembering (11), we obtain

Lβfβ(θ, i) ≤ β−1Rf (θ, i)

≤ −cu

2
β−1(16)

≤ −cu

6
β−1fβ(θ, i),

where the last line follows from (14).

Second region. For θ ∈ [θ− + l−, θ+ − l+], |dλ(θ)| and |f ′(θ)| are bounded
below, so LAf (θ) ≤ −ρ for some ρ > 0 that does not depend on β . Since Rf is
bounded,

Lβfβ ≤ −ρ

2
for β large enough. Then (16) also holds when β is large.

Third region. Since θ+ is a critical point of dλ and an extremum of f ,
LAf (θ+) = 0 and from (13),

Lβfβ(θ+, i) = β−1Rf (θ+, i) = β−1 di(θ+)2f ′′(θ+) ≤ β−1cdε,

where

cd = max
(
d0(θ+)2, d1(θ+)2)

.(17)

By continuity, we can find l+ > 0 such that, for any θ ∈ [θ+ − l+, θ+],
0 ≤ Rf (θ, i) ≤ 2cdε and 1 ≤ f (θ, i) ≤ 1 + ε.

Notice that l+ does not depend on β . Without loss of generality, one can assume
that K contains [θ+ − l+, θ+]. We use (11) once more to get, for θ ∈ [θ+ − l+, θ+],

Lβfβ(θ, i) ≤ 2cdεβ−1

≤ −cu

6
β−1fβ(θ, i) + cu

6
β−1fβ(θ, i) + 2cdεβ−1

≤ −cu

6
β−1fβ(θ, i) + β−1

(
(1 + ε)

cu

6
+ 2cdε

)
.
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Conclusion. Gathering the three estimates provides (10) with

a = min
θ,i

fβ(θ, i), ρ = cu

6
β−1 and C = β−1

(
(1 + ε)

cu

6
+ 2cdε

)
.

By (11), a ≥ 1 − ε when β is large. By Lemma 2.4,

μ(K) ≥ (1 − ε)ρ

C
= 1 − ε

1 + ε + 12(cd/cu)ε
.

This can be arbitrarily close to 1 if we choose ε small enough.

3. Two explicit examples with a phase transition. In this section we per-
form a detail study of Examples 1.3 and 1.4. It has been pointed out in Section 2.4
that the angular processes associated to these two examples are of different types.
The first one has two recurrent classes whereas the second one is ergodic. Never-
theless, we are able to get a perfect picture of the asymptotic of ‖Xt‖ as a function
of β for these two examples. As the studies are similar we present precisely the
analysis of Example 1.4, and we provide more briefly the key expressions for Ex-
ample 1.3.

3.1. Example 1.4. Let a and b be two positive real numbers, λ = 1/2, and set

A0 =
( −1 ab

−a/b −1

)
, A1 =

(−1 −a/b

ab −1

)

and

A1/2 = A1 + A0

2
=

( −1 a(b − 1/b)/2
a(b − 1/b)/2 −1

)
.

The eigenvalues of A0 and A1 are equal to −1 ± ia, whereas the eigenvalues of
A1/2 are −1±a(b−1/b)/2. If a(b−1/b) > 2, that is, b > 1+√

1 + a2, the matrix
A1/2 admits a positive and a negative eigenvalue. The associated eigenvectors are
(1,1) and (1,−1). The generator of the process (
t , It ) is given by

Lβf (θ, i) = di(θ)∂θf (θ, i) + β

2

(
f (θ,1 − i) − f (θ, i)

)
,

where

d0(θ) = −a/b cos2(θ) − ab sin2(θ) < 0,

d1(θ) = ab cos2(θ) + a/b sin2(θ) > 0.

LEMMA 3.1. The invariant measure μβ of the angular process is given by

μβ(dθ, i) = 1

C(β)

1

|di(θ)|e
βv(θ)1[0,2π ](θ) dθ,
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where

v(θ) =
⎧⎨
⎩

1

2a

(
arctan

(
b tan(θ)

) − arctan
(
b−1 tan(θ)

))
, if θ 	= ±π

2
,

0, otherwise,
(18)

and

C(β) =
∫ 2π

0

[
1

d1(θ)
− 1

d0(θ)

]
eβv(θ) dθ.

REMARK 3.2. Notice that v belongs to C∞(T) and is π -periodic. Moreover,
v′(θ) = 0 if and only if θ = ±π/4 + kπ . Finally, the function v reaches its maxi-
mum at π/4 + kπ and its minimum at −π/4 + kπ .

PROOF OF LEMMA 3.1. If μβ is an invariant measure for (
, I), then, for any
smooth function f on T× {0,1}, one has∫

T×{0,1}
Lβf (θ, i) dμβ(θ, i) = 0.

Let us look for an invariant measure μβ on T× {0,1} that can be written as

μβ(dθ, i) = ρ0(θ)10(i) dθ + ρ1(θ)11(i) dθ,

where ρ0 and ρ1 are two smooth and 2π -periodic functions. If f does not depend
on the discrete variable i ∈ {0,1}, that is, f (θ, i) = f (θ), then∫

T×{0,1}
Lβf (θ) dμβ(θ, i)

=
∫
T

∂θf (θ)(d0ρ0)(θ) dθ +
∫
T

∂θf (θ)(d1ρ1)(θ) dθ

and an integration by parts leads to∫
T×{0,1}

Lβf (θ) dμβ(θ, i) = −
∫
T

f (θ)[d0ρ0 + d1ρ1]′(θ) dθ.

This ensures that d0ρ0 + d1ρ1 must be constant. Let us assume that one can find
ρ0 and ρ1 such that d0ρ0 + d1ρ1 = 0. Now, if f is such that f (θ,0) = f (θ) et
f (θ,1) = 0, we get∫

T×{0,1}
Lβf (θ, i) dμβ(θ, i)

=
∫
T

[
d0(θ)∂θf (θ) − β

2
f (θ)

]
ρ0(θ) dθ +

∫
T

β

2
f (θ)ρ1(θ) dθ

and after an integration by parts,∫
T×{0,1}

Lβf (θ, i) dμβ(θ, i)

=
∫
T

f (θ)

[
−(d0ρ0)

′(θ) + β

2

(
ρ1(θ) − ρ0(θ)

)]
dθ.



306 BENAÏM, LE BORGNE, MALRIEU AND ZITT

Let us define φ = d0ρ0. Then ρ0 = φ
d0

and ρ1 = − φ
d1

. The function φ is solution of
the following ordinary differential equation

φ′ = −β

2

(
1

d1
+ 1

d0

)
φ.(19)

This equation admits a solution on T (i.e., 2π -periodic) since the integral of
1
d1

+ 1
d0

on [−π,π ] is equal to 0. In fact this is already true on [−π/2, π/2]. Since
d0 and d1 are explicit trigonometric functions, one can find an explicit expression
for φ. Notice that

[
arctan

(
b−1 tan(θ)

)]′ = 1

b
· 1 + tan2(θ)

1 + tan2(θ)/b2 = 1

b cos2(θ) + 1/b sin2(θ)
= a

d1(θ)
,

[
arctan

(
b tan(θ)

)]′ = − a

d0(θ)
.

The differential equation (19) becomes φ′ = βv′φ, where v is given by (18) and
its solutions are given by

φ = K exp(βv).

This relation provides the expression of ρ0 and ρ1 up to the multiplicative con-
stant K . Since we are looking for probability measures, K is such that

K

∫
T

(
1

d0(θ)
− 1

d1(θ)

)
φ(θ) dθ = 1.

Conversely, it is easy to check that the measure given in Lemma 3.1 is invariant
for Lβ . �

Let us now consider the function χ given by

χ(β) =
∫

A(θ, i) dμβ(θ, i).

LEMMA 3.3. The function β �→ χ(β) is a C1 and monotonous map on
[0,+∞) such that χ ′ has the sign of b2 − 1 and

χ(0) = −1, lim
β→∞χ(β) = a(b2 − 1)

2b
− 1.

PROOF. From the definition of Ai and A, we get that, for i ∈ {0,1},

A(θ, i) = 〈Aieθ , eθ 〉 = a(b2 − 1)

2b
sin(2θ) − 1.

For sake of simplicity, A(θ) stands for A(θ,0) = A(θ,1). Thus, χ(β) is given by

χ(β) =
∫ 2π

0
A(θ)μ̃β(dθ),
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where

μ̃β(dθ) = 1

C(β)

(
1

d1(θ)
− 1

d0(θ)

)
eβv(θ)1[0,2π ] dθ.

Its derivative is given by

χ ′(β) =
∫ 2π

0
A(θ)v(θ)μ̃β(dθ) − C′(β)

C(β)

∫ 2π

0
A(θ)μ̃β(dθ)

=
∫ 2π

0
A(θ)v(θ)μ̃β(dθ) −

∫ 2π

0
v(θ)μ̃β(dθ)

∫ 2π

0
A(θ)μ̃β(dθ).

In other words, one has

χ ′(β) = Covμ̃β

(
A(·), v(·))

= a(b2 − 1)

2b
Covμ̃β

(
sin(2·), v(·)).

The mean of sin(2·) with respect to μ̃β is equal to 0. Besides, θ �→ v(θ) sin(2θ) is
nonnegative (and nonconstant) on T. Thus, χ ′ has the sign of b2 − 1.

If β = 0, one has

χ(0) = 1

C(0)

∫ 2π

0

(
a(b2 − 1)

2b
sin(2θ) − 1

)(
1

d1(θ)
− 1

d0(θ)

)
dθ

= − 1

C(0)

∫ 2π

0

(
1

d1(θ)
− 1

d0(θ)

)
dθ = −1 < 0.

Finally, as β goes to ∞, the probability measure νβ converges to a probability
measure concentrated on the points {π/4,5π/4}, where v reaches its maximum.
We get

lim
β→+∞χ(β) = a(b2 − 1)

2b
− 1.

This completes the proof. �

COROLLARY 3.4. If b > 1 + √
1 + a2, then there exists βc ∈ (0,+∞) such

that χ is negative on (0, βc) and positive on (βc,+∞).

3.2. Example 1.3. Let us define A0 and A1 by

A0 =
(−1 2b

0 −1

)
, A1 =

(−1 0
2b −1

)

with b > 0. Then A0 and A1 are two Jordan matrices, and the eigenvalues of A1/2
are given by −1 ± b. In this case,

d0(θ) = −2b sin2(θ) ≤ 0 and d1(θ) = 2b cos2(θ) ≥ 0
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and (
, I) has two recurrent classes

C1 = {
(θ, i) : θ ∈ (0, π/2), i = 0,1

}
,

C2 = {
(θ, i) : θ ∈ (π,3π/2), i = 0,1

}
.

It can be shown, following the lines of the previous section, that the ergodic invari-
ant measure μβ of the angular process on C1 is given by

μβ(dθ, i) = 1

C(β)
· 1

|di(θ)|e
βv(θ)1(0,π/2)(θ) dθ,

where

v(θ) = − 1

2b sin(2θ)
and C(β) = 2

b

∫ π/2

0

1

sin2(2θ)
eβv(θ) dθ.

Moreover, for any β > 0,

χ(β) = −1 + 1

C(β)

∫ π/2

0

2

sin(2θ)
eβv(θ) dθ.

In particular, the map β �→ χ(β) is a C1 increasing function on [0,+∞) such that

χ(0) = −1, lim
β→∞χ(β) = −1 + b.

COROLLARY 3.5. If b > 1, then there exists βc ∈ (0,+∞) such that χ is
negative on (0, βc) and positive on (βc,+∞).

4. Application to matrix products. The process studied in the preceding sec-
tions is linked to some products of random matrices. Let us consider the embedded
chain of our process defined by the sequence of the positions of the process X at
the times when the second coordinate I changes, that is, the positions at the times
when one changes the flow. The jump times are given by sums of independent
random variables with exponential law of parameters λ0β and λ1β . To study this
embedded chain is to study the linear images of vectors by products of indepen-
dent random matrices which distributions are the image laws of exponential law of
parameter 1 by the two mappings

s �→ exp
(
(s/βλ0)A0

)
and s �→ exp

(
(s/βλ1)A1

)
.

Let us denote (Tk)k≥0 the sequence of the jump times of the second coordinate
(with the convention T0 = 0) and (Zk)k≥0 the sequence of the positions of X at
these times,

Zk = XTk
.

The embedded chain and the process (Xt)t ≥ 0 are linked as follows. For t ∈
]Tk, Tk+1] one has

Xt = exp
(

t − Tk

βλik

Aik

)
Zk,
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where ik is 0 or 1 depending on the evenness of k. Thus

Zk = UkUk−1 · · ·U1X0 where Ul = exp
(

Tl − Tl−1

βλil−1

Ail−1

)
.

For example, we can fix that i0 = 0, which means that at time 0, X is driven by the
vector field x �→ A0x.

Let e(1) and e(2) be the element of the canonical basis of R2, X
(1)
t and X

(2)
t the

processes starting from e(1) and e(2), respectively. From the equality

X
(1)
t = exp

(
t − Tk

βλik

Aik

)
UkUk−1 · · ·U1e

(1),

we get

‖UkUk−1 · · ·U1‖ ≥ ∥∥UkUk−1 · · ·U1e
(1)

∥∥
≥ ∥∥exp

(−(
(t − Tk)/βλik

)
Aik

)
X

(1)
t

∥∥
≥ ∥∥exp

((
(t − Tk)/βλik

)
Aik

)∥∥−1∥∥X(1)
t

∥∥.
On the other hand, for t ∈]Tk, Tk+1], we have

‖UkUk−1 · · ·U1‖ ≤ ∥∥UkUk−1 · · ·U1e
(1)

∥∥ + ∥∥UkUk−1 · · ·U1e
(2)

∥∥

=
2∑

j=1

∥∥exp
(−(

(t − Tk)/βλik

)
Aik

)∥∥∥∥X(j)
t

∥∥

≤ 2
∥∥exp

(−(
(t − Tk)/βλik

)
Aik

)∥∥ max
(∥∥X(1)

t

∥∥,∥∥X(2)
t

∥∥)
.

According to Theorem 1.6 almost surely both limits

lim
t→∞

1

t
log

∥∥X(1)
t

∥∥ and lim
t→∞

1

t
log

∥∥X(2)
t

∥∥
exist and are equal to χ(β). Moreover, almost surely, the ratio (t − Tk)/t tends
to 0 and, as Tk is the sum of independent random variables of parameter λβ and
(1 − λ)β , the strong law of large numbers gives

T2k

2k
−−−−→
k→∞

1

2λβ
+ 1

2(1 − λ)β
= 1

2λ(1 − λ)β
,

so that Tk/k almost surely tends toward (2λ(1 − λ)β)−1. Putting things together
we get that, almost surely,

lim
k→∞

1

k
log‖UkUk−1 · · ·U1‖ = χ(β)

2λ(1 − λ)β
.

In particular this limit has the same sign as χ(β), it is negative for small β and
positive for large β .
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This does give an example of a product of independent matrices, the eigenvalues
of which are of modulus less than one, with a positive Lyapunov exponent, but in
this case the matrices (Uk)k do not have the same distribution; it depends on the
evenness of k. If we group the Uk by 2 we get a product of independent matrices
with the same distribution, but their eigenvalues are not always of modulus less
than one. Some matrices in the image of

(s, t) �→ exp
(

t

βλ1
A1

)
exp

(
s

βλ0
A0

)

are hyperbolic.
So let us slightly modify the process we began with. When the second coordi-

nate is i ∈ {0,1}, at each date given by the sum of independent random variables
with exponential law of parameter λiβ , one chooses independently with probabil-
ity 1/2 to keep the flow i or with probability 1/2 to flip to the flow 1 − i. As an
independent geometric random sum of exponential independent random variables
is still an exponential random variable, in continuous time, this modification is
simply a change of parameter β (replaced par β/2). The embedded chain defined
by the position at times given by (not the changes of flow but) the sums of expo-
nential random variables, also corresponds to a products of independent random
matrices, and this time, all matrices considered have eigenvalues of modulus less
than one.

Let (Dk) denote the sequence of dates considered in this case. It is a sum of k

independent exponential variables of parameters βλ0 and βλ1 and, almost surely,
asymptotically, half of them are of parameter βλ0, half of them of parameter βλ1.
So that, as before, Dk/k almost surely tends to (2λ(1 − λ)β)−1. These remarks
and the preceding computation give the following proposition.

PROPOSITION 4.1. Let A0 and A1 two matrices such that Assumption 1.1
is satisfied. Let (Vk)k≥1 be a sequence of independent matrices with distribution
given by the half sum of the image measures of the exponential law of parameter 1
by the two mappings

s �→ exp
(

s

βλ0
A0

)
and t �→ exp

(
t

βλ1
A1

)
.

Then almost surely, one has

lim
k→∞

1

k
log‖VkVk−1 · · ·V1‖ = χ(β/2)

2λ(1 − λ)β

and if β is sufficiently large, this limit is positive.

Thus we have obtained examples of product of random independent identically
distributed matrices, the eigenvalues of which have modulus less than one, with a
positive Lyapounov exponent.
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