ON THE STABILITY OF PLANAR RANDOMLY SWITCHED SYSTEMS ${ }^{1}$

By Michel Benaïm, Stéphane Le Borgne, Florent Malrieu and Pierre-André Zitt
Université de Neuchâtel, Université de Rennes 1, Université de Rennes 1 and Université de Bourgogne

Abstract

Consider the random process $\left(X_{t}\right)_{t \geq 0}$ solution of $\dot{X}_{t}=A_{I_{t}} X_{t}$, where $\left(I_{t}\right)_{t \geq 0}$ is a Markov process on $\{0,1\}$, and A_{0} and A_{1} are real Hurwitz matrices on \mathbb{R}^{2}. Assuming that there exists $\lambda \in(0,1)$ such that $(1-\lambda) A_{0}+\lambda A_{1}$ has a positive eigenvalue, we establish that $\left\|X_{t}\right\|$ may converge to 0 or $+\infty$ depending on the jump rate of the process I. An application to product of random matrices is studied. This paper can be viewed as a probabilistic counterpart of the paper [Internat. J. Control 82 (2009) 1882-1888] by Balde, Boscain and Mason.

1. Introduction. The aim of the present paper is twofold. First, this work answers a question by Charlot about the stochastic counterpart of the work [2]. Second, the piecewise deterministic Markov processes (PDMP) under study may present a surprising blow-up when time goes to infinity.

Let $A_{0}, A_{1} \in \mathbb{R}^{2 \times 2}$ be two real matrices which admit two eigenvalues with negative real parts: A_{0} and A_{1} are said to be Hurwitz matrices. In [2], the authors deal with the stability problem for the planar linear switching system $\dot{x}_{t}=\left(1-u_{t}\right) A_{0} x_{t}+u_{t} A_{1} x_{t}$, where $u:[0, \infty) \rightarrow\{0,1\}$ is a measurable function. They provide necessary and sufficient conditions on A_{0} and A_{1} for the system to be asymptotically stable for arbitrary switching function u. The main hypothesis that ensures the existence of a control u such that the system is not asymptotically stable is the following.

ASSUMPTION 1.1. There exists $\lambda \in(0,1)$ such that the matrix A_{λ} given by $(1-\lambda) A_{0}+\lambda A_{1}$ has two real eigenvalues $-\lambda_{-}<0<\lambda_{+}$with opposite signs. Let us denote by u_{-}, u_{+}two associated (real, unit) eigenvectors.

[^0]REmARK 1.2. It is shown in [2] that Assumption 1.1 is equivalent to the relation

$$
\begin{equation*}
\operatorname{Tr}\left(A_{0}\right) \operatorname{Tr}\left(A_{1}\right)-\operatorname{Tr}\left(A_{0} A_{1}\right)<-2 \sqrt{\operatorname{det}\left(A_{0}\right) \operatorname{det}\left(A_{1}\right)} . \tag{1}
\end{equation*}
$$

Assumption 1.1 may hold in many different cases as is illustrated by Examples 1.3 and 1.4. The complete description of the different cases is postponed to Section 2.3.

Example 1.3. Let us define A_{0} and A_{1} by

$$
A_{0}=\left(\begin{array}{cc}
-1 & 2 b \\
0 & -1
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{cc}
-1 & 0 \\
2 b & -1
\end{array}\right)
$$

with $b>0$. Then A_{0} and A_{1} are two Jordan matrices, and the eigenvalues of $A_{1 / 2}$ are given by $-1 \pm b$.

Example 1.4. Let us define A_{0} and A_{1} by

$$
A_{0}=\left(\begin{array}{cc}
-1 & a b \\
-a / b & -1
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{cc}
-1 & -a / b \\
a b & -1
\end{array}\right)
$$

with $a, b>0$. Then A_{0} and A_{1} have conjugate complex eigenvalues, and the eigenvalues of $A_{1 / 2}$ are $-1 \pm a(b-1 / b) / 2$.

In the sequel, we suppose that Assumption 1.1 holds. Let us define $\lambda_{0}=\lambda$ and $\lambda_{1}=1-\lambda$. For any $\beta>0$, consider the Markov process (X, I) on $\mathbb{R}^{2} \times\{0,1\}$ driven by the generator \mathcal{L}_{β},

$$
\mathcal{L}_{\beta} f(x, i)=\mathcal{L}_{C} f(x, i)+\beta \mathcal{L}_{J} f(x, i)
$$

where

$$
\mathcal{L}_{C} f(x, i)=A_{i} \nabla f(x, i) \quad \text { and } \quad \mathcal{L}_{J} f(x, i)=\lambda_{i}(f(x, 1-i)-f(x, i)) .
$$

The operator \mathcal{L}_{C} corresponds to the "continuous" part (the first component x evolves along the flow of the vector field $x \mapsto A_{i} x$), and $\beta \mathcal{L}_{J}$ gives the jumps on the second component. If v is a probability measure on $\mathbb{R}^{2} \times\{0,1\}$, we denote by \mathbb{P}_{v} the law of the process (X, I) when the law of $\left(X_{0}, I_{0}\right)$ is ν.

REMARK 1.5. One can easily construct the process (X, I) as follows. The process $\left(I_{t}\right)_{t \geq 0}$ is the Markov process on $\{0,1\}$ with jump rates $\left(\beta \lambda_{i}\right)_{i \in\{0,1\}}$. Then $\left(X_{t}\right)_{t \geq 0}$ is the solution of

$$
X_{t}=X_{0}+\int_{0}^{t} A_{I_{s}} X_{s} d s \quad(t \geq 0)
$$

Notice that $\left(I_{t}\right)_{t \geq 0}$ is a Markov process with invariant measure

$$
\frac{\beta \lambda_{1}}{\beta \lambda_{0}+\beta \lambda_{1}} \delta_{0}+\frac{\beta \lambda_{1}}{\beta \lambda_{0}+\beta \lambda_{1}} \delta_{1}=(1-\lambda) \delta_{0}+\lambda \delta_{1}
$$

Our main result ensures that under Assumption 1.1 the norm of the continuous component X goes to zero if the jumps are rare and to $+\infty$ if the jumps are sufficiently numerous (and $X_{0} \neq 0$).

THEOREM 1.6. Under Assumption 1.1, there exists $\chi(\beta) \in \mathbb{R}$ such that, for any initial measure v such that $v(\{0\} \times\{0,1\})=0$,

$$
\begin{equation*}
\frac{1}{t} \log \left\|X_{t}\right\| \xrightarrow[t \rightarrow \infty]{\mathbb{P}_{\nu} \text {-a.s. }} \chi(\beta) . \tag{2}
\end{equation*}
$$

Moreover, there exist two constants $0<\beta_{1} \leq \beta_{2}<\infty$ such that:

- if $\beta<\beta_{1}$, then $\chi(\beta)$ is negative and $\left\|X_{t}\right\| \xrightarrow[t \rightarrow \infty]{\mathbb{P}_{v} \text {-a.s. }} 0$;
- if $\beta>\beta_{2}$, then $\chi(\beta)$ is positive and $\left\|X_{t}\right\| \xrightarrow[t \rightarrow \infty]{\mathbb{P}_{v} \text {-a.s. }} \infty$.

REmARK 1.7. The process $\left(\left(X_{t}, I_{t}\right)\right)_{t \geq 0}$ is what is called a piecewise deterministic Markov process on $\mathbb{R}^{2} \times\{0,1\}$ (see [4, 6] for details) where the continuous part is driven by two vectors fields that admit a unique stable point and are exponentially stable. In [1] it is proved that if the process is recurrent, its invariant measure is often absolutely continuous. The previous theorem shows that the recurrence may not be so easy to establish (it can depend on the jump rates).

REMARK 1.8. A similar model of switching linear evolutions is studied in [9], Chapter 8. In Section 8.4, stability results are established on a certain timescale; that is, the process is studied for high β on a time interval that depends on β. In Section 8.5 the existence of the "Lyapunov exponent" $\chi(\beta)$ is proved when the angular process defined below is ergodic. The general case and the fact that $\chi(\beta)$ may change sign with β is not considered in that work.

We prove Theorem 1.6 in Section 2. We do not know if $\beta_{1}=\beta_{2}$ under Assumption 1.1. Nevertheless, Section 3 is dedicated to the study of Examples 1.3 and 1.4 where this "phase transition" can be established. The exponential rate of growth of the process is given by an expression analogous to Furstenberg's formula [5]. Generally it is difficult to compute the element entering the Furstenberg formula; see examples in [3, 8]. For the example of Section 3 one obtains an explicit expression of the "Lyapunov" exponent of $\left(X_{t}\right)_{t \geq 0}$. Finally, in Section 4, we remark that our results can be interpreted in terms of products of random matrices. We obtain examples of products of random independent matrices, with eigenvalues of modulus less than one, with a positive Lyapunov exponent (we are not in the frame of unimodular matrices studied in $[3,8]$).
2. The general case. The proofs of the two parts of Theorem 1.6 use different techniques. The easy part, when β is small, follows from a martingale argument explained in Section 2.1. To study the process for large β, we use a polar decomposition, detailed in Section 2.2. The angular process is studied in Sections 2.3 and 2.4. In Section 2.5 we give the main line of the proof of Theorem 1.6; the proof of a key lemma is postponed to Section 2.6.
2.1. Few jumps: Convergence to zero. In this subsection, we suppose that β is small: the i component rarely jumps. The two flows associated to A_{0} and A_{1} being linear and attractive, there exists $\rho>0$ and two norms V_{0} and V_{1}, given by two positive symmetric matrices M_{0} and M_{1}, such that, for $V_{i}(x)=\left\langle x, M_{i} x\right\rangle$,

$$
\mathcal{L}_{C} V_{i}(x, i) \leq-\rho V_{i}(x)
$$

Define, $V(x, i)=V_{i}(x)$. Since $\left|\mathcal{L}_{J} f(x, i)\right| \leq K(|f(x, 0)|+|f(x, 1)|)$, we get

$$
\begin{aligned}
\mathcal{L}_{\beta} V(x, i) & =\mathcal{L}_{C} V_{i}(x, i)+\beta \mathcal{L}_{J} V_{i}(x, i) \\
& \leq-\rho V_{i}(x)+\beta K\left(V_{0}(x)+V_{1}(x)\right) \\
& \leq-\rho V_{i}(x)+\beta K^{\prime} V_{i}(x)
\end{aligned}
$$

by the equivalence of the norms. Therefore there exist a $\rho^{\prime}>0$ and a $\beta_{1}>0$ such that, for $\beta<\beta_{1}$,

$$
\forall(x, i) \in \mathbb{R}^{2} \times\{0,1\} \quad \mathcal{L}_{\beta} V(x, i) \leq-\rho^{\prime} V(x, i) .
$$

Consequently, the process $\left(M_{t}\right)_{t \geq 0}$ defined by $M_{t}=e^{\rho^{\prime} t} V\left(X_{t}, I_{t}\right)$ is a positive supermartingale. It converges almost surely to a random variable which is almost surely finite. Therefore $V\left(X_{t}, I_{t}\right)$ converges almost surely to zero, and $\left\|X_{t}\right\|$ itself converges to zero almost surely (exponentially fast).
2.2. A polar decomposition. We begin by decomposing the deterministic dynamics. Let A be a matrix on \mathbb{R}^{2} and $x \in \mathbb{R}^{2} \backslash\{0\}$. Consider $\left(x_{t}\right)_{t \geq 0}$ the solution of

$$
\left\{\begin{array}{l}
\dot{x}_{t}=A x_{t}, \\
x_{0}=x .
\end{array}\right.
$$

First of all, since x is not 0 , then, for any $t \geq 0, x_{t}$ is not equal to 0 . Therefore it is possible to define the polar coordinates $\left(r_{t}, \theta_{t}\right)$ of x_{t}. Call e_{θ} the unit vector $(\cos \theta, \sin \theta)$ and define $u_{t}=e_{\theta_{t}}: x_{t}$ may be written $r_{t} u_{t}$. Since $r_{t}^{2}=\left\langle x_{t}, x_{t}\right\rangle$, we have

$$
\begin{aligned}
r_{t} \dot{r}_{t} & =\left\langle x_{t}, A x_{t}\right\rangle, \\
A\left(r_{t} u_{t}\right) & =\dot{x}_{t}=\dot{r}_{t} u_{t}+r_{t} \dot{u}_{t} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\dot{r}_{t} & =r_{t}\left\langle u_{t}, A u_{t}\right\rangle, \tag{3}\\
\dot{u}_{t} & =A u_{t}-\left\langle u_{t}, A u_{t}\right\rangle u_{t} . \tag{4}
\end{align*}
$$

The evolution of u_{t} on the circle is autonomous. The derivative \dot{u}_{t} vanishes when $A u_{t}=\left\langle u_{t}, A u_{t}\right\rangle u_{t}$, that is, when u_{t} is a eigenvector of A. As a consequence, equation (4) has:

- four stationary points if and only if A admits two different eigenvalues,
- two stationary points if and only if A is a Jordan matrix as in Example 1.3,
- no stationary points if and only if the eigenvalues of A are not real.

Let us write equation (4) in terms of the angles θ_{t}. Since $\dot{u}_{t}=\dot{\theta}_{t} e_{\theta_{t}+\pi / 2}$, the scalar product of (4) with $e_{\theta_{t}+\pi / 2}$ gives

$$
\begin{align*}
\dot{\theta}_{t} & =\left\langle A e_{\theta_{t}}, e_{\theta_{t}+\pi / 2}\right\rangle \\
& =\left(A_{22}-A_{11}\right) \sin \left(\theta_{t}\right) \cos \left(\theta_{t}\right)+A_{21} \cos ^{2}\left(\theta_{t}\right)-A_{12} \sin ^{2}\left(\theta_{t}\right) \tag{5}
\end{align*}
$$

The critical points of this differential equation are related to the eigenvector of A as it is pointed out in the following lemma.

Lemma 2.1. For any matrix A, the function

$$
d: \theta \mapsto d(\theta)=\left\langle A e_{\theta}, e_{\theta+\pi / 2}\right\rangle
$$

given by (5) is π-periodic and $d(\theta)=0$ if and only if e_{θ} is an eigenvector of A. Finally, the function d is constant and equal to zero if and only if $A=\lambda \mathrm{I}_{2}$.

Proof. If θ is changed to $\theta+\pi$, then both e_{θ} and $e_{\theta+\pi / 2}$ are changed to their opposite, so that $\left\langle A e_{\theta}, e_{\theta+\pi / 2}\right\rangle$ remains unchanged. We have already seen that $d(\theta)=0$ if and only if e_{θ} is an eignevector of A.
2.3. The angular process. Let us use the polar decomposition to study the process $\left(\left(X_{t}, I_{t}\right)\right)_{t \geq 0}$. Between jumps, the process follows the deterministic dynamics described above, with $A \in\left\{A_{0}, A_{1}\right\}$. Since the evolution of the angle θ is autonomous for each dynamics, the process (Θ, I) is a Markov process on $\mathbb{R} \times\{0,1\}$. The evolution of $\left(R_{t}\right)_{t \geq 0}$ is determined by the one of the process $\left(\left(\Theta_{t}, I_{t}\right)\right)_{t \geq 0}$, by solving equation (3) between the jumps. If we call $\mathcal{A}(\theta, i)=\left\langle A_{i} e_{\theta}, e_{\theta}\right\rangle$, then

$$
\begin{equation*}
R_{t}=R_{0} \exp \left(\int_{0}^{t} \mathcal{A}\left(\Theta_{s}, I_{s}\right) d s\right) \tag{6}
\end{equation*}
$$

and R_{t} appears as a multiplicative functional of $\left(\left(\Theta_{s}, I_{s}\right)\right)_{0 \leq s \leq t}$.
The proof of Theorem 1.6 relies on the study of the long time behavior of (Θ, I). We will see in the sequel that this process may be ergodic (i.e., it admits a unique invariant measure) or not. Let us define, for $i \in\{0,1\}$ and $\lambda \in(0,1)$,

$$
\begin{aligned}
d_{i}(\theta) & =\left\langle A_{i} e_{\theta}, e_{\theta+\pi / 2}\right\rangle \\
d_{\lambda}(\theta) & =(1-\lambda) d_{0}(\theta)+\lambda d_{1}(\theta)
\end{aligned}
$$

The generator of the Markov process (Θ, I) is given by

$$
L_{\beta} f(\theta, i)=L_{C} f(\theta, i)+\beta L_{J} f(\theta, i)
$$

where

$$
\begin{equation*}
L_{C} f(\theta, i)=d_{i}(\theta) \partial_{\theta} f(\theta, i) \quad \text { and } \quad L_{J} f(\theta, i)=\lambda_{i}(f(\theta, 1-i)-f(\theta, i)) \tag{7}
\end{equation*}
$$

Once again, L_{C} is the continuous drift and βL_{J} is the jump part. Let us also introduce the averaged (deterministic) dynamic

$$
\begin{equation*}
L_{A} f(\theta, i)=d_{\lambda}(\theta) \partial_{\theta} f(\theta, i) \tag{8}
\end{equation*}
$$

Under Assumption 1.1, Lemma 2.1 ensures that the vector field $F^{\lambda}=d_{\lambda} \partial_{\theta}$ has exactly four critical points on $[0,2 \pi)$. As d_{λ} is π-periodic it suffices to describe it only on an interval of length π connecting two zeros of d_{λ} corresponding to the negative eigenvalues of A_{λ}. Let $\left[\theta_{-}, \theta_{-}+\pi\right)$ this interval. The function d_{λ} vanishes only once on $\left(\theta_{-}, \theta_{-}+\pi\right)$ at a point θ_{+}corresponding to the positive eigenvalues of A_{λ}. We have

$$
d_{\lambda}(\theta) \begin{cases}>0, & \text { if } \theta \in\left(\theta_{-}, \theta_{+}\right) \tag{9}\\ <0, & \text { if } \theta \in\left(\theta_{+}, \theta_{-}+\pi\right)\end{cases}
$$

Let us first notice that, under Assumption 1.1, the critical points d_{0}, d_{1} and d_{λ} are different.

Lemma 2.2. Under Assumption 1.1 if θ is a critical point of d_{λ}, then $d_{0}(\theta) d_{1}(\theta)<0$. In particular, θ is not a critical point of $d_{i}, i \in\{0,1\}$.

Proof. Assume that there exists θ such that $d_{\lambda}(\theta)=0=d_{0}(\lambda)$. Then $d_{1}(\theta)=0$. As a consequence, u_{θ} is an eigenvector for A_{0}, A_{1} and A_{λ} associated to the respective eigenvalues η_{0}, η_{1} and $\eta_{\lambda}=(1-\lambda) \eta_{0}+\lambda \eta_{1}$. This implies that the second eigenvalue of A_{λ} is also a convex combination of two complex numbers with negative real part [consider the relation $\left.\operatorname{Tr}\left(A_{\lambda}\right)=(1-\lambda) \operatorname{Tr}\left(A_{0}\right)+\lambda \operatorname{Tr}\left(A_{0}\right)\right]$. This cannot hold under Assumption 1.1. As a consequence, $d_{0}(\theta) d_{1}(\theta) \neq 0$. Since $d_{\lambda}(\theta)=0$, we get that $d_{0}(\theta)$ and $d_{1}(\theta)$ have opposite signs.

Without loss of generality we can assume that $d_{0}\left(\theta_{+}\right)<0$ and $d_{1}\left(\theta_{+}\right)>0$. Because of the equality $d_{\lambda}=(1-\lambda) d_{0}(\theta)+\lambda d_{1}(\theta)$ we have constraints on the signs of the d_{i}. Let us list all the possibilities:
(a) d_{0} vanishes 0,1 or 2 times on $\left(\theta_{-}, \theta_{+}\right)$, and d_{1} does not vanish at all;
(b) d_{1} vanishes 0,1 or 2 times on $\left(\theta_{+}, \theta_{-}+\pi\right)$, and d_{0} does not vanish at all;
(c) d_{1} vanishes 2 times on $\left(\theta_{+}, \theta_{-}+\pi\right)$ at points $\theta_{1 m}<\theta_{1 M}$, and d_{0} vanishes

1 or 2 times on ($\theta_{1 m}, \theta_{1 M}$);
(d) d_{0} vanishes 2 times on $\left(\theta_{-}, \theta_{+}\right)$at points $\theta_{0 m}<\theta_{0 M}$, and d_{1} vanishes 1 or 2 times on $\left(\theta_{0 m}, \theta_{0 M}\right)$;

Fig. 1. The three flows in cases (e) and (f). The outer arrows, in red, represent the flow of d_{1}. The middle ones, in blue, represent d_{0} and the inner ones the averaged flow d_{λ}. In the two cases, there is a region around θ_{+}, that is, left invariant by both flows. The regions on each side are unstable and lead back to the invariant region.
(e) d_{1} vanishes 1 or 2 times on $\left(\theta_{+}, \theta_{-}+\pi\right)$ at points $\theta_{1 m} \leq \theta_{1 M}$, and d_{0} vanishes 1 or 2 times on $\left(\theta_{-}, \theta_{+}\right)$at points $\theta_{0 m} \leq \theta_{0 M}$;
(f) d_{0} vanishes 2 times at points $\theta_{0 m}<\theta_{0 M}$ and d_{1} vanishes 2 times at points $\theta_{1 m}<\theta_{1 M}$ such that $\theta_{1 m}<\theta_{0 m}<\theta_{+}<\theta_{1 M}<\theta_{0 M}$.

In the last two cases we have a subinterval of $\left(\theta_{-}, \theta_{-}+\pi\right)$, that is, invariant for both of the systems $\dot{\theta}_{t}=d_{i}\left(\theta_{t}\right):\left(\theta_{0 M}, \theta_{1 m}\right)$ in case (e), $\left(\theta_{0 m}, \theta_{1 M}\right)$ in case (f); see Figure 1.
2.4. Ergodic properties of the angular process. Since the asymptotic behavior of $R_{t}=\left\|X_{t}\right\|$ depends on the long time behavior of the process $(U, I)=\left(e_{\Theta}, I\right)$,
let us briefly study its ergodicity (recurrent and transient points, number of invariant measures...).

First, we remark that when Assumption 1.1 is satisfied, there exists $\varepsilon>0$ such that:

- the points $\left\{(\theta, i): \theta \in\left(\theta_{-}-\varepsilon, \theta_{-}+\varepsilon\right), i=0,1\right\}$ lead with positive probability to $\left(\theta_{+}, j\right)$ and $\left(\theta_{+}-\pi, j\right), j=0,1$;
- the points $\left\{(\theta, i): \theta \in\left(\theta_{-}+\pi-\varepsilon, \theta_{-}+\pi+\varepsilon\right), i=0,1\right\}$ lead with positive probability to $\left(\theta_{+}, j\right)$ and $\left(\theta_{+}+\pi, j\right), j=0,1$.

Thus if one of the sets $\left(\theta_{-}-\varepsilon, \theta_{-}+\varepsilon\right) \times\{0,1\}$ or $\left(\theta_{-}+\pi-\varepsilon, \theta_{-}+\pi+\varepsilon\right) \times\{0,1\}$ is attained with positive probability starting from $\left(\theta_{+}, 0\right)$, then the Markov process (U_{t}, I_{t}) on the circle is recurrent. This is the case in situations (a), (b), (c), (d) described above. In these situations the process $\left(U_{t}, I_{t}\right)$ is irreducible and has a unique invariant measure.

In cases (e) and (f), (U_{t}, I_{t}) has exactly two distinct recurrent classes and two invariant measures supported by two intervals on the circles corresponding to the invariant interval defined above and its symmetric. Let μ_{β} and $\tilde{\mu}_{\beta}$ be these two ergodic invariant measures. For any initial measure μ on $\mathbb{T} \times\{0,1\}$,

$$
\begin{aligned}
& \frac{1}{t} \int_{0}^{t} f\left(U_{s}, I_{s}\right) d s \\
& \xrightarrow[t \rightarrow \infty]{\mathbb{P}_{\mu} \text {-a.s. }} P \int f(u, i) d \mu_{\beta}(u, i)+(1-P) \int f(u, i) d \tilde{\mu}_{\beta}(u, i)
\end{aligned}
$$

where $P \in\{0,1\}$ is a random variable such that $\mathbb{P}(P=1)$ is the probability that (U, I) reaches the class of $\left(e_{\theta_{+}}, 0\right)$ when the law of $\left(U_{0}, I_{0}\right)$ is μ. Now by symmetry we have

$$
\int f(u, i) d \tilde{\mu}_{\beta}(u, i)=\int f(-u, i) d \mu_{\beta}(u, i)
$$

so that, if $f(-u, i)=f(u, i)$, in all cases, we have

$$
\frac{1}{t} \int_{0}^{t} f\left(U_{s}, I_{s}\right) d s \xrightarrow[t \rightarrow \infty]{\mathbb{P}_{\mu} \text {-a.s. }} \int f(u, i) d \mu_{\beta}(u, i)
$$

Finally notice that the invariant measures are always absolutely continuous with respect to $\lambda_{\mathbb{T}} \otimes\left(\delta_{0}+\delta_{1}\right)$, where $\lambda_{\mathbb{T}}$ is the Lebesgue measure on \mathbb{T}.
2.5. Many jumps: Blow up. In the sequel, μ_{β} stands for any invariant measure of (U, I), and we identify $u=e_{\theta}$ with θ. As $\mathcal{A}(\theta, i)=\left\langle A_{i} e_{\theta}, e_{\theta}\right\rangle=\mathcal{A}(\theta+\pi, i)$ we get [see the expression (6)]

$$
\frac{1}{t} \log \left(R_{t} / R_{0}\right) \xrightarrow[t \rightarrow \infty]{\text { a.s. }} \int \mathcal{A}(\theta, i) d \mu_{\beta}(\theta, i)
$$

As a consequence, for any probability measure v on $\mathbb{R}^{2} \times\{0,1\}$ such that $v(\{0\} \times$ $\{0,1\})=0$, the convergence (2) in Theorem 1.6 holds with

$$
\chi(\beta)=\int \mathcal{A}(\theta, i) d \mu_{\beta}(\theta, i)
$$

In order to prove that $\chi(\beta)$ is positive when β is large we use the following lemma, which will be proved in Section 2.6.

LEMMA 2.3. When β is large, the invariant measures are concentrated around the stable points θ_{+}and $\tilde{\theta}_{+}=\theta_{+}+\pi$ of the averaged dynamical system. More precisely, for any $\epsilon>0$, and any neighborhood $K \subset \mathbb{T}$ of the set $\left\{\theta_{+}, \tilde{\theta}_{+}\right\}$, there exists a $\beta(K, \epsilon)$ such that, for any $\beta \geq \beta(K, \epsilon)$,

$$
\mu_{\beta}(K \times\{0,1\}) \geq 1-\epsilon
$$

Thanks to this result, we can now prove

$$
\int \mathcal{A}(\theta, i) d \mu_{\beta}(\theta, i)>0
$$

for β large enough. For $\theta=\theta_{+}$or $\theta=\tilde{\theta}_{+}$, we know that

$$
\int \mathcal{A}\left(\theta_{+}, i\right) d \mu_{\beta}(\theta, i)=\left\langle A_{\lambda} e_{\theta_{+}}, e_{\theta_{+}}\right\rangle=\lambda_{+}>0
$$

Moreover $\mathcal{A}(\cdot, i)$ is continuous for $i=0,1$. Choose K, a neighborhood of $\theta_{+}, \tilde{\theta}_{+}$, such that

$$
\forall(\theta, i) \in K \times\{0,1\} \quad \mathcal{A}(\theta, i) \geq \frac{2 \lambda_{+}}{3} .
$$

Thanks to Lemma 2.3, for β large enough,

$$
\mu_{\beta}(K \times\{0,1\}) \geq 1-\frac{\lambda_{+}}{6\|\mathcal{A}\|_{\infty}}
$$

Therefore,

$$
\begin{aligned}
\left|\int \mathcal{A}(\theta, i) d \mu_{\beta}(\theta, i)-\lambda_{+}\right| \leq & \int\left|\mathcal{A}(\theta, i)-\mathcal{A}\left(\theta_{+}, i\right)\right| \mathbb{1}_{\theta \in K} d \mu_{\beta} \\
& +\int\left|\mathcal{A}(\theta, i)-\mathcal{A}\left(\theta_{+}, i\right)\right| \mathbb{1}_{\theta \notin K} d \mu_{\beta} \\
\leq & \frac{\lambda_{+}}{3}+2\|\mathcal{A}\|_{\infty} \mu_{\beta}(\bar{K} \times\{0,1\}) \\
\leq & \frac{2 \lambda_{+}}{3}
\end{aligned}
$$

This shows that $\chi(\beta) \geq \frac{\lambda_{+}}{3}>0$. Hence R_{t} converges a.s. to infinity; this completes the proof of Theorem 1.6.
2.6. The invariant measures concentrate near the attractive points. This section is devoted to the proof of Lemma 2.3. The idea is that the averaged system gets back quickly to the stable points, so most of the mass of the invariant measure μ_{β} should be located near these stable points. To quantify this attraction to the stable points, we find a Lyapunov function, in the following sense.

Lemma 2.4. Suppose that there exists a function $(\theta, i) \mapsto f_{\beta}(\theta, i)$ that satisfies

$$
\begin{align*}
f_{\beta}(\theta, i) & \geq a>0, \tag{10}\\
L_{\beta} f_{\beta}(\theta, i) & \leq-\rho f_{\beta}(\theta, i)+C \mathbb{1}_{\{\theta \in K\}} .
\end{align*}
$$

Then $\mu_{\beta}(K) \geq a \rho / C$.
Proof. Integrating (10) with respect to the invariant measure μ_{β}, we get

$$
0=\int L_{\beta} f_{\beta} d \mu_{\beta} \leq-\rho \int f_{\beta} d \mu_{\beta}+C \mu_{\beta}(K)
$$

which proves the result.
The Lyapunov function f_{β} will be constructed by the classical "perturbation" method; for details, see, for example, [7]. We start from a test function f (depending only on θ) adapted to the averaged dynamical system driven by d_{λ}, and build a perturbation $f_{\beta}=f-\beta^{-1} g$ of this function such that $L_{\beta} f_{\beta} \approx L_{A} f$; this perturbed function will satisfy the hypotheses of Lemma 2.4 with appropriate constants.

Let K be a small neighborhood of the stable points $\theta_{+}, \tilde{\theta}_{+}$and $\epsilon>0$. There exists a 2π-periodic function f that satisfies the following properties:
(1) f is $\mathcal{C}^{2}(\mathbb{R})$;
(2) $f\left(\theta_{-}\right)=f\left(\tilde{\theta}_{-}\right)=2, f\left(\theta_{+}\right)=f\left(\tilde{\theta}_{+}\right)=1$;
(3) $f^{\prime}\left(\theta_{-}\right)=f^{\prime}\left(\theta_{+}\right)=f^{\prime}\left(\tilde{\theta}_{+}\right)=f^{\prime}\left(\tilde{\theta}_{-}\right)=0$;
(4) $f^{\prime \prime}\left(\theta_{-}\right)=-1, f^{\prime \prime}\left(\theta_{+}\right)=\epsilon$;
(5) f is monotonous between its critical points.

Notice that, by design, f decreases along the trajectories of the averaged system,

$$
\begin{equation*}
\forall \theta \in[0,2 \pi] \quad L_{A} f(\theta)=d_{\lambda}(\theta) f^{\prime}(\theta) \leq 0 \tag{11}
\end{equation*}
$$

In the sequel, we still denote by f the function $(\theta, i) \in \mathbb{T} \times\{0,1\} \mapsto f(\theta)$. Let us define g and f_{β} on $\mathbb{T} \times\{0,1\}$ by

$$
\begin{aligned}
g(\theta, i) & =L_{A} f(\theta)-L_{C} f(\theta, i) \\
f_{\beta}(\theta, i) & =f(\theta)-\frac{1}{\beta} g(\theta, i)
\end{aligned}
$$

where L_{C} is the continuous part of L_{β} defined in (7), and L_{A} is given by (8). A straightforward computation ensures that, for any $\theta \in \mathbb{T}, i \mapsto g(\theta, i)$ is solution of

$$
\begin{equation*}
L_{J} g(\theta, \cdot)=L_{C} f(\theta, \cdot)-L_{A} f(\theta)=-g(\theta, \cdot) \tag{12}
\end{equation*}
$$

Indeed, keeping in mind that $L_{A} f$ does not depend on i, we have for any $(\theta, i) \in$ $\mathbb{T} \times\{0,1\}$,

$$
\begin{aligned}
L_{J} g(\theta, i) & =\lambda_{i}(g(\theta, 1-i)-g(\theta, i)) \\
& =\lambda_{i}\left(-L_{C} f(\theta, 1-i)+L_{C} f(\theta, i)\right) \\
& =L_{C} f(\theta, i)-\left(\lambda_{i} L_{C} f(\theta, 1-i)+\left(1-\lambda_{i}\right) L_{C} f(\theta, i)\right) \\
& =L_{C} f(\theta, i)-\left(\lambda_{i} d_{1-i}(\theta) f^{\prime}(\theta)+\lambda_{1-i} d_{i}(\theta) f^{\prime}(\theta)\right) \\
& =L_{C} f(\theta, i)-L_{A} f(\theta) .
\end{aligned}
$$

Thus, we get from equation (12) that

$$
\begin{aligned}
L_{\beta} f_{\beta}(\theta, i) & =L_{C} f(\theta, i)-\beta^{-1} L_{C} g(\theta, i)+\beta L_{J} f(\theta, i)-L_{J} g(\theta, i) \\
& =L_{A} f(\theta)-\beta^{-1} L_{C} g(\theta, i)
\end{aligned}
$$

since $L_{J} f(\theta, i)=0$ according to the fact that f does not depend on $i \in\{0,1\}$. The definition of g ensures that

$$
\begin{equation*}
L_{\beta} f_{\beta}(\theta, i)=L_{A} f(\theta)+\beta^{-1} R f(\theta, i) \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
R f(\theta, i) & =L_{C} L_{C} f(\theta, i)-L_{C} L_{A} f(\theta, i), \\
L_{C} L_{C} f(\theta, i) & =d_{i}(\theta)^{2} f^{\prime \prime}(\theta)+d_{i}(\theta) d_{i}^{\prime}(\theta) f^{\prime}(\theta) \\
L_{C} L_{A} f(\theta, i) & =d_{i}(\theta) d_{\lambda}(\theta) f^{\prime \prime}(\theta)+d_{i}(\theta) d_{\lambda}^{\prime}(\theta) f^{\prime}(\theta)
\end{aligned}
$$

Thus there exists \bar{R}_{ϵ} such that for any $(\theta, i) \in \mathbb{R} \times\{0,1\},|R f(\theta, i)| \leq \bar{R}_{\epsilon}$. In particular, if β is sufficiently large, one can assume that

$$
\begin{equation*}
\frac{1}{2} \leq 1-\epsilon \leq f_{\beta}(\theta, i) \leq 3 \tag{14}
\end{equation*}
$$

Let us prove (10) between two critical points $\theta_{-}<\theta_{+}$, splitting the interval [θ_{-}, θ_{+}] in three regions,

$$
\left[\theta_{-}, \theta_{-}+l_{-}\right], \quad\left[\theta_{-}+l_{-}, \theta_{+}-l_{+}\right] \quad \text { and } \quad\left[\theta_{+}-l_{+}, \theta_{+}\right]
$$

where l_{-}and l_{+}depend on f, ε and K (but not on β).

First region. Since θ_{-}is a critical point of d_{λ}, one has $L_{A} f\left(\theta_{-}\right)=0$. Moreover $f^{\prime}\left(\theta_{-}\right)$is equal to 0 since f reaches its minimum at θ_{-}. From (13), the expressions of $L_{C} L_{C} f$ and $L_{C} L_{A} f$, we get that

$$
L_{\beta} f_{\beta}\left(\theta_{-}, i\right)=\beta^{-1} R f\left(\theta_{-}, i\right)=\beta^{-1} d_{i}\left(\theta_{-}\right)^{2} f^{\prime \prime}\left(\theta_{-}\right) \leq-\beta^{-1} c_{u}
$$

where

$$
\begin{equation*}
c_{u}=\min \left(d_{0}\left(\theta_{-}\right)^{2}, d_{1}\left(\theta_{-}\right)^{2}\right)>0 \tag{15}
\end{equation*}
$$

By continuity, we can find $l_{-}>0$ (that does not depend on β) such that $R f(\theta, i) \leq$ $-c_{u} / 2$ for $\theta \in\left[\theta_{-}, \theta_{-}+l_{-}\right]$. Remembering (11), we obtain

$$
\begin{align*}
L_{\beta} f_{\beta}(\theta, i) & \leq \beta^{-1} R f(\theta, i) \\
& \leq-\frac{c_{u}}{2} \beta^{-1} \tag{16}\\
& \leq-\frac{c_{u}}{6} \beta^{-1} f_{\beta}(\theta, i)
\end{align*}
$$

where the last line follows from (14).
Second region. For $\theta \in\left[\theta_{-}+l_{-}, \theta_{+}-l_{+}\right],\left|d_{\lambda}(\theta)\right|$ and $\left|f^{\prime}(\theta)\right|$ are bounded below, so $L_{A} f(\theta) \leq-\rho$ for some $\rho>0$ that does not depend on β. Since $R f$ is bounded,

$$
L_{\beta} f_{\beta} \leq-\frac{\rho}{2}
$$

for β large enough. Then (16) also holds when β is large.
Third region. Since θ_{+}is a critical point of d_{λ} and an extremum of f, $L_{A} f\left(\theta_{+}\right)=0$ and from (13),

$$
L_{\beta} f_{\beta}\left(\theta_{+}, i\right)=\beta^{-1} R f\left(\theta_{+}, i\right)=\beta^{-1} d_{i}\left(\theta_{+}\right)^{2} f^{\prime \prime}\left(\theta_{+}\right) \leq \beta^{-1} c_{d} \epsilon
$$

where

$$
\begin{equation*}
c_{d}=\max \left(d_{0}\left(\theta_{+}\right)^{2}, d_{1}\left(\theta_{+}\right)^{2}\right) \tag{17}
\end{equation*}
$$

By continuity, we can find $l_{+}>0$ such that, for any $\theta \in\left[\theta_{+}-l_{+}, \theta_{+}\right]$,

$$
0 \leq R f(\theta, i) \leq 2 c_{d} \epsilon \quad \text { and } \quad 1 \leq f(\theta, i) \leq 1+\epsilon
$$

Notice that l_{+}does not depend on β. Without loss of generality, one can assume that K contains $\left[\theta_{+}-l_{+}, \theta_{+}\right]$. We use (11) once more to get, for $\theta \in\left[\theta_{+}-l_{+}, \theta_{+}\right]$,

$$
\begin{aligned}
L_{\beta} f_{\beta}(\theta, i) & \leq 2 c_{d} \epsilon \beta^{-1} \\
& \leq-\frac{c_{u}}{6} \beta^{-1} f_{\beta}(\theta, i)+\frac{c_{u}}{6} \beta^{-1} f_{\beta}(\theta, i)+2 c_{d} \epsilon \beta^{-1} \\
& \leq-\frac{c_{u}}{6} \beta^{-1} f_{\beta}(\theta, i)+\beta^{-1}\left((1+\epsilon) \frac{c_{u}}{6}+2 c_{d} \epsilon\right) .
\end{aligned}
$$

Conclusion. Gathering the three estimates provides (10) with

$$
a=\min _{\theta, i} f_{\beta}(\theta, i), \quad \rho=\frac{c_{u}}{6} \beta^{-1} \quad \text { and } \quad C=\beta^{-1}\left((1+\epsilon) \frac{c_{u}}{6}+2 c_{d} \epsilon\right)
$$

By (11), $a \geq 1-\epsilon$ when β is large. By Lemma 2.4,

$$
\mu(K) \geq \frac{(1-\epsilon) \rho}{C}=\frac{1-\epsilon}{1+\epsilon+12\left(c_{d} / c_{u}\right) \epsilon}
$$

This can be arbitrarily close to 1 if we choose ϵ small enough.
3. Two explicit examples with a phase transition. In this section we perform a detail study of Examples 1.3 and 1.4. It has been pointed out in Section 2.4 that the angular processes associated to these two examples are of different types. The first one has two recurrent classes whereas the second one is ergodic. Nevertheless, we are able to get a perfect picture of the asymptotic of $\left\|X_{t}\right\|$ as a function of β for these two examples. As the studies are similar we present precisely the analysis of Example 1.4, and we provide more briefly the key expressions for Example 1.3.
3.1. Example 1.4. Let a and b be two positive real numbers, $\lambda=1 / 2$, and set

$$
A_{0}=\left(\begin{array}{cc}
-1 & a b \\
-a / b & -1
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-1 & -a / b \\
a b & -1
\end{array}\right)
$$

and

$$
A_{1 / 2}=\frac{A_{1}+A_{0}}{2}=\left(\begin{array}{cc}
-1 & a(b-1 / b) / 2 \\
a(b-1 / b) / 2 & -1
\end{array}\right)
$$

The eigenvalues of A_{0} and A_{1} are equal to $-1 \pm i a$, whereas the eigenvalues of $A_{1 / 2}$ are $-1 \pm a(b-1 / b) / 2$. If $a(b-1 / b)>2$, that is, $b>1+\sqrt{1+a^{2}}$, the matrix $A_{1 / 2}$ admits a positive and a negative eigenvalue. The associated eigenvectors are $(1,1)$ and $(1,-1)$. The generator of the process $\left(\Theta_{t}, I_{t}\right)$ is given by

$$
L_{\beta} f(\theta, i)=d_{i}(\theta) \partial_{\theta} f(\theta, i)+\frac{\beta}{2}(f(\theta, 1-i)-f(\theta, i)),
$$

where

$$
\begin{aligned}
d_{0}(\theta) & =-a / b \cos ^{2}(\theta)-a b \sin ^{2}(\theta)<0, \\
d_{1}(\theta) & =a b \cos ^{2}(\theta)+a / b \sin ^{2}(\theta)>0 .
\end{aligned}
$$

Lemma 3.1. The invariant measure μ_{β} of the angular process is given by

$$
\mu_{\beta}(d \theta, i)=\frac{1}{C(\beta)} \frac{1}{\left|d_{i}(\theta)\right|} e^{\beta v(\theta)} \mathbb{1}_{[0,2 \pi]}(\theta) d \theta
$$

where

$$
v(\theta)= \begin{cases}\frac{1}{2 a}\left(\arctan (b \tan (\theta))-\arctan \left(b^{-1} \tan (\theta)\right)\right), & \text { if } \theta \neq \pm \frac{\pi}{2} \tag{18}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
C(\beta)=\int_{0}^{2 \pi}\left[\frac{1}{d_{1}(\theta)}-\frac{1}{d_{0}(\theta)}\right] e^{\beta v(\theta)} d \theta
$$

REMARK 3.2. Notice that v belongs to $\mathcal{C}^{\infty}(\mathbb{T})$ and is π-periodic. Moreover, $v^{\prime}(\theta)=0$ if and only if $\theta= \pm \pi / 4+k \pi$. Finally, the function v reaches its maximum at $\pi / 4+k \pi$ and its minimum at $-\pi / 4+k \pi$.

Proof of Lemma 3.1. If μ_{β} is an invariant measure for (Θ, I), then, for any smooth function f on $\mathbb{T} \times\{0,1\}$, one has

$$
\int_{\mathbb{T} \times\{0,1\}} L_{\beta} f(\theta, i) d \mu_{\beta}(\theta, i)=0 .
$$

Let us look for an invariant measure μ_{β} on $\mathbb{T} \times\{0,1\}$ that can be written as

$$
\mu_{\beta}(d \theta, i)=\rho_{0}(\theta) \mathbb{1}_{0}(i) d \theta+\rho_{1}(\theta) \mathbb{1}_{1}(i) d \theta
$$

where ρ_{0} and ρ_{1} are two smooth and 2π-periodic functions. If f does not depend on the discrete variable $i \in\{0,1\}$, that is, $f(\theta, i)=f(\theta)$, then

$$
\begin{aligned}
\int_{\mathbb{T} \times\{0,1\}} & L_{\beta} f(\theta) d \mu_{\beta}(\theta, i) \\
= & \int_{\mathbb{T}} \partial_{\theta} f(\theta)\left(d_{0} \rho_{0}\right)(\theta) d \theta+\int_{\mathbb{T}} \partial_{\theta} f(\theta)\left(d_{1} \rho_{1}\right)(\theta) d \theta
\end{aligned}
$$

and an integration by parts leads to

$$
\int_{\mathbb{T} \times\{0,1\}} L_{\beta} f(\theta) d \mu_{\beta}(\theta, i)=-\int_{\mathbb{T}} f(\theta)\left[d_{0} \rho_{0}+d_{1} \rho_{1}\right]^{\prime}(\theta) d \theta
$$

This ensures that $d_{0} \rho_{0}+d_{1} \rho_{1}$ must be constant. Let us assume that one can find ρ_{0} and ρ_{1} such that $d_{0} \rho_{0}+d_{1} \rho_{1}=0$. Now, if f is such that $f(\theta, 0)=f(\theta)$ et $f(\theta, 1)=0$, we get

$$
\begin{aligned}
& \int_{\mathbb{T} \times\{0,1\}} L_{\beta} f(\theta, i) d \mu_{\beta}(\theta, i) \\
& \quad=\int_{\mathbb{T}}\left[d_{0}(\theta) \partial_{\theta} f(\theta)-\frac{\beta}{2} f(\theta)\right] \rho_{0}(\theta) d \theta+\int_{\mathbb{T}} \frac{\beta}{2} f(\theta) \rho_{1}(\theta) d \theta
\end{aligned}
$$

and after an integration by parts,

$$
\begin{aligned}
& \int_{\mathbb{T} \times\{0,1\}} L_{\beta} f(\theta, i) d \mu_{\beta}(\theta, i) \\
& \quad=\int_{\mathbb{T}} f(\theta)\left[-\left(d_{0} \rho_{0}\right)^{\prime}(\theta)+\frac{\beta}{2}\left(\rho_{1}(\theta)-\rho_{0}(\theta)\right)\right] d \theta
\end{aligned}
$$

Let us define $\phi=d_{0} \rho_{0}$. Then $\rho_{0}=\frac{\phi}{d_{0}}$ and $\rho_{1}=-\frac{\phi}{d_{1}}$. The function ϕ is solution of the following ordinary differential equation

$$
\begin{equation*}
\phi^{\prime}=-\frac{\beta}{2}\left(\frac{1}{d_{1}}+\frac{1}{d_{0}}\right) \phi \tag{19}
\end{equation*}
$$

This equation admits a solution on \mathbb{T} (i.e., 2π-periodic) since the integral of $\frac{1}{d_{1}}+\frac{1}{d_{0}}$ on $[-\pi, \pi]$ is equal to 0 . In fact this is already true on $[-\pi / 2, \pi / 2]$. Since d_{0} and d_{1} are explicit trigonometric functions, one can find an explicit expression for ϕ. Notice that

$$
\begin{aligned}
{\left[\arctan \left(b^{-1} \tan (\theta)\right)\right]^{\prime} } & =\frac{1}{b} \cdot \frac{1+\tan ^{2}(\theta)}{1+\tan ^{2}(\theta) / b^{2}}=\frac{1}{b \cos ^{2}(\theta)+1 / b \sin ^{2}(\theta)}=\frac{a}{d_{1}(\theta)} \\
{[\arctan (b \tan (\theta))]^{\prime} } & =-\frac{a}{d_{0}(\theta)}
\end{aligned}
$$

The differential equation (19) becomes $\phi^{\prime}=\beta v^{\prime} \phi$, where v is given by (18) and its solutions are given by

$$
\phi=K \exp (\beta v)
$$

This relation provides the expression of ρ_{0} and ρ_{1} up to the multiplicative constant K. Since we are looking for probability measures, K is such that

$$
K \int_{\mathbb{T}}\left(\frac{1}{d_{0}(\theta)}-\frac{1}{d_{1}(\theta)}\right) \phi(\theta) d \theta=1
$$

Conversely, it is easy to check that the measure given in Lemma 3.1 is invariant for L_{β}.

Let us now consider the function χ given by

$$
\chi(\beta)=\int \mathcal{A}(\theta, i) d \mu_{\beta}(\theta, i)
$$

Lemma 3.3. The function $\beta \mapsto \chi(\beta)$ is a \mathcal{C}^{1} and monotonous map on $[0,+\infty)$ such that χ^{\prime} has the sign of $b^{2}-1$ and

$$
\chi(0)=-1, \quad \lim _{\beta \rightarrow \infty} \chi(\beta)=\frac{a\left(b^{2}-1\right)}{2 b}-1
$$

Proof. From the definition of A_{i} and \mathcal{A}, we get that, for $i \in\{0,1\}$,

$$
\mathcal{A}(\theta, i)=\left\langle A_{i} e_{\theta}, e_{\theta}\right\rangle=\frac{a\left(b^{2}-1\right)}{2 b} \sin (2 \theta)-1 .
$$

For sake of simplicity, $\mathcal{A}(\theta)$ stands for $\mathcal{A}(\theta, 0)=\mathcal{A}(\theta, 1)$. Thus, $\chi(\beta)$ is given by

$$
\chi(\beta)=\int_{0}^{2 \pi} \mathcal{A}(\theta) \tilde{\mu}_{\beta}(d \theta)
$$

where

$$
\tilde{\mu}_{\beta}(d \theta)=\frac{1}{C(\beta)}\left(\frac{1}{d_{1}(\theta)}-\frac{1}{d_{0}(\theta)}\right) e^{\beta v(\theta)} \mathbb{1}_{[0,2 \pi]} d \theta
$$

Its derivative is given by

$$
\begin{aligned}
\chi^{\prime}(\beta) & =\int_{0}^{2 \pi} \mathcal{A}(\theta) v(\theta) \tilde{\mu}_{\beta}(d \theta)-\frac{C^{\prime}(\beta)}{C(\beta)} \int_{0}^{2 \pi} \mathcal{A}(\theta) \tilde{\mu}_{\beta}(d \theta) \\
& =\int_{0}^{2 \pi} \mathcal{A}(\theta) v(\theta) \tilde{\mu}_{\beta}(d \theta)-\int_{0}^{2 \pi} v(\theta) \tilde{\mu}_{\beta}(d \theta) \int_{0}^{2 \pi} \mathcal{A}(\theta) \tilde{\mu}_{\beta}(d \theta)
\end{aligned}
$$

In other words, one has

$$
\begin{aligned}
\chi^{\prime}(\beta) & =\operatorname{Cov}_{\tilde{\mu}_{\beta}}(\mathcal{A}(\cdot), v(\cdot)) \\
& =\frac{a\left(b^{2}-1\right)}{2 b} \operatorname{Cov}_{\tilde{\mu}_{\beta}}(\sin (2 \cdot), v(\cdot))
\end{aligned}
$$

The mean of $\sin (2 \cdot)$ with respect to $\tilde{\mu}_{\beta}$ is equal to 0 . Besides, $\theta \mapsto v(\theta) \sin (2 \theta)$ is nonnegative (and nonconstant) on \mathbb{T}. Thus, χ^{\prime} has the sign of $b^{2}-1$.

If $\beta=0$, one has

$$
\begin{aligned}
\chi(0) & =\frac{1}{C(0)} \int_{0}^{2 \pi}\left(\frac{a\left(b^{2}-1\right)}{2 b} \sin (2 \theta)-1\right)\left(\frac{1}{d_{1}(\theta)}-\frac{1}{d_{0}(\theta)}\right) d \theta \\
& =-\frac{1}{C(0)} \int_{0}^{2 \pi}\left(\frac{1}{d_{1}(\theta)}-\frac{1}{d_{0}(\theta)}\right) d \theta=-1<0
\end{aligned}
$$

Finally, as β goes to ∞, the probability measure ν_{β} converges to a probability measure concentrated on the points $\{\pi / 4,5 \pi / 4\}$, where v reaches its maximum. We get

$$
\lim _{\beta \rightarrow+\infty} \chi(\beta)=\frac{a\left(b^{2}-1\right)}{2 b}-1
$$

This completes the proof.
COROLLARY 3.4. If $b>1+\sqrt{1+a^{2}}$, then there exists $\beta_{c} \in(0,+\infty)$ such that χ is negative on $\left(0, \beta_{c}\right)$ and positive on $\left(\beta_{c},+\infty\right)$.
3.2. Example 1.3. Let us define A_{0} and A_{1} by

$$
A_{0}=\left(\begin{array}{cc}
-1 & 2 b \\
0 & -1
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-1 & 0 \\
2 b & -1
\end{array}\right)
$$

with $b>0$. Then A_{0} and A_{1} are two Jordan matrices, and the eigenvalues of $A_{1 / 2}$ are given by $-1 \pm b$. In this case,

$$
d_{0}(\theta)=-2 b \sin ^{2}(\theta) \leq 0 \quad \text { and } \quad d_{1}(\theta)=2 b \cos ^{2}(\theta) \geq 0
$$

and (Θ, I) has two recurrent classes

$$
\begin{aligned}
& C_{1}=\{(\theta, i): \theta \in(0, \pi / 2), i=0,1\} \\
& C_{2}=\{(\theta, i): \theta \in(\pi, 3 \pi / 2), i=0,1\} .
\end{aligned}
$$

It can be shown, following the lines of the previous section, that the ergodic invariant measure μ_{β} of the angular process on C_{1} is given by

$$
\mu_{\beta}(d \theta, i)=\frac{1}{C(\beta)} \cdot \frac{1}{\left|d_{i}(\theta)\right|} e^{\beta v(\theta)} \mathbb{1}_{(0, \pi / 2)}(\theta) d \theta
$$

where

$$
v(\theta)=-\frac{1}{2 b \sin (2 \theta)} \quad \text { and } \quad C(\beta)=\frac{2}{b} \int_{0}^{\pi / 2} \frac{1}{\sin ^{2}(2 \theta)} e^{\beta v(\theta)} d \theta
$$

Moreover, for any $\beta>0$,

$$
\chi(\beta)=-1+\frac{1}{C(\beta)} \int_{0}^{\pi / 2} \frac{2}{\sin (2 \theta)} e^{\beta v(\theta)} d \theta
$$

In particular, the map $\beta \mapsto \chi(\beta)$ is a \mathcal{C}^{1} increasing function on $[0,+\infty)$ such that

$$
\chi(0)=-1, \quad \lim _{\beta \rightarrow \infty} \chi(\beta)=-1+b
$$

Corollary 3.5. If $b>1$, then there exists $\beta_{c} \in(0,+\infty)$ such that χ is negative on $\left(0, \beta_{c}\right)$ and positive on $\left(\beta_{c},+\infty\right)$.
4. Application to matrix products. The process studied in the preceding sections is linked to some products of random matrices. Let us consider the embedded chain of our process defined by the sequence of the positions of the process X at the times when the second coordinate I changes, that is, the positions at the times when one changes the flow. The jump times are given by sums of independent random variables with exponential law of parameters $\lambda_{0} \beta$ and $\lambda_{1} \beta$. To study this embedded chain is to study the linear images of vectors by products of independent random matrices which distributions are the image laws of exponential law of parameter 1 by the two mappings

$$
s \mapsto \exp \left(\left(s / \beta \lambda_{0}\right) A_{0}\right) \quad \text { and } \quad s \mapsto \exp \left(\left(s / \beta \lambda_{1}\right) A_{1}\right)
$$

Let us denote $\left(T_{k}\right)_{k \geq 0}$ the sequence of the jump times of the second coordinate (with the convention $T_{0}=0$) and $\left(Z_{k}\right)_{k \geq 0}$ the sequence of the positions of X at these times,

$$
Z_{k}=X_{T_{k}} .
$$

The embedded chain and the process $\left(X_{t}\right) t \geq 0$ are linked as follows. For $t \in$ $\left.] T_{k}, T_{k+1}\right]$ one has

$$
X_{t}=\exp \left(\frac{t-T_{k}}{\beta \lambda_{i_{k}}} A_{i_{k}}\right) Z_{k}
$$

where i_{k} is 0 or 1 depending on the evenness of k. Thus

$$
Z_{k}=U_{k} U_{k-1} \cdots U_{1} X_{0} \quad \text { where } U_{l}=\exp \left(\frac{T_{l}-T_{l-1}}{\beta \lambda_{i_{l-1}}} A_{i_{l-1}}\right)
$$

For example, we can fix that $i_{0}=0$, which means that at time $0, X$ is driven by the vector field $x \mapsto A_{0} x$.

Let $e^{(1)}$ and $e^{(2)}$ be the element of the canonical basis of $\mathbb{R}^{2}, X_{t}^{(1)}$ and $X_{t}^{(2)}$ the processes starting from $e^{(1)}$ and $e^{(2)}$, respectively. From the equality

$$
X_{t}^{(1)}=\exp \left(\frac{t-T_{k}}{\beta \lambda_{i_{k}}} A_{i_{k}}\right) U_{k} U_{k-1} \cdots U_{1} e^{(1)}
$$

we get

$$
\begin{aligned}
\left\|U_{k} U_{k-1} \cdots U_{1}\right\| & \geq\left\|U_{k} U_{k-1} \cdots U_{1} e^{(1)}\right\| \\
& \geq\left\|\exp \left(-\left(\left(t-T_{k}\right) / \beta \lambda_{i_{k}}\right) A_{i_{k}}\right) X_{t}^{(1)}\right\| \\
& \geq\left\|\exp \left(\left(\left(t-T_{k}\right) / \beta \lambda_{i_{k}}\right) A_{i_{k}}\right)\right\|^{-1}\left\|X_{t}^{(1)}\right\| .
\end{aligned}
$$

On the other hand, for $t \in] T_{k}, T_{k+1}$], we have

$$
\begin{aligned}
\left\|U_{k} U_{k-1} \cdots U_{1}\right\| & \leq\left\|U_{k} U_{k-1} \cdots U_{1} e^{(1)}\right\|+\left\|U_{k} U_{k-1} \cdots U_{1} e^{(2)}\right\| \\
& =\sum_{j=1}^{2}\left\|\exp \left(-\left(\left(t-T_{k}\right) / \beta \lambda_{i_{k}}\right) A_{i_{k}}\right)\right\|\left\|X_{t}^{(j)}\right\| \\
& \leq 2\left\|\exp \left(-\left(\left(t-T_{k}\right) / \beta \lambda_{i_{k}}\right) A_{i_{k}}\right)\right\| \max \left(\left\|X_{t}^{(1)}\right\|,\left\|X_{t}^{(2)}\right\|\right)
\end{aligned}
$$

According to Theorem 1.6 almost surely both limits

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left\|X_{t}^{(1)}\right\| \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{1}{t} \log \left\|X_{t}^{(2)}\right\|
$$

exist and are equal to $\chi(\beta)$. Moreover, almost surely, the ratio $\left(t-T_{k}\right) / t$ tends to 0 and, as T_{k} is the sum of independent random variables of parameter $\lambda \beta$ and $(1-\lambda) \beta$, the strong law of large numbers gives

$$
\frac{T_{2 k}}{2 k} \underset{k \rightarrow \infty}{ } \frac{1}{2 \lambda \beta}+\frac{1}{2(1-\lambda) \beta}=\frac{1}{2 \lambda(1-\lambda) \beta}
$$

so that T_{k} / k almost surely tends toward $(2 \lambda(1-\lambda) \beta)^{-1}$. Putting things together we get that, almost surely,

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log \left\|U_{k} U_{k-1} \cdots U_{1}\right\|=\frac{\chi(\beta)}{2 \lambda(1-\lambda) \beta}
$$

In particular this limit has the same sign as $\chi(\beta)$, it is negative for small β and positive for large β.

This does give an example of a product of independent matrices, the eigenvalues of which are of modulus less than one, with a positive Lyapunov exponent, but in this case the matrices $\left(U_{k}\right)_{k}$ do not have the same distribution; it depends on the evenness of k. If we group the U_{k} by 2 we get a product of independent matrices with the same distribution, but their eigenvalues are not always of modulus less than one. Some matrices in the image of

$$
(s, t) \mapsto \exp \left(\frac{t}{\beta \lambda_{1}} A_{1}\right) \exp \left(\frac{s}{\beta \lambda_{0}} A_{0}\right)
$$

are hyperbolic.
So let us slightly modify the process we began with. When the second coordinate is $i \in\{0,1\}$, at each date given by the sum of independent random variables with exponential law of parameter $\lambda_{i} \beta$, one chooses independently with probability $1 / 2$ to keep the flow i or with probability $1 / 2$ to flip to the flow $1-i$. As an independent geometric random sum of exponential independent random variables is still an exponential random variable, in continuous time, this modification is simply a change of parameter β (replaced par $\beta / 2$). The embedded chain defined by the position at times given by (not the changes of flow but) the sums of exponential random variables, also corresponds to a products of independent random matrices, and this time, all matrices considered have eigenvalues of modulus less than one.

Let $\left(D_{k}\right)$ denote the sequence of dates considered in this case. It is a sum of k independent exponential variables of parameters $\beta \lambda_{0}$ and $\beta \lambda_{1}$ and, almost surely, asymptotically, half of them are of parameter $\beta \lambda_{0}$, half of them of parameter $\beta \lambda_{1}$. So that, as before, D_{k} / k almost surely tends to $(2 \lambda(1-\lambda) \beta)^{-1}$. These remarks and the preceding computation give the following proposition.

Proposition 4.1. Let A_{0} and A_{1} two matrices such that Assumption 1.1 is satisfied. Let $\left(V_{k}\right)_{k \geq 1}$ be a sequence of independent matrices with distribution given by the half sum of the image measures of the exponential law of parameter 1 by the two mappings

$$
s \mapsto \exp \left(\frac{s}{\beta \lambda_{0}} A_{0}\right) \quad \text { and } \quad t \mapsto \exp \left(\frac{t}{\beta \lambda_{1}} A_{1}\right) .
$$

Then almost surely, one has

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log \left\|V_{k} V_{k-1} \cdots V_{1}\right\|=\frac{\chi(\beta / 2)}{2 \lambda(1-\lambda) \beta}
$$

and if β is sufficiently large, this limit is positive.
Thus we have obtained examples of product of random independent identically distributed matrices, the eigenvalues of which have modulus less than one, with a positive Lyapounov exponent.

Acknowledgments. Florent Malrieu and Pierre-André Zitt thank Michel Benaïm for his kind hospitality and his coffee breaks. We deeply thank the referee for his/her quick and constructive report.

REFERENCES

[1] Bakhtin, Y. and Hurth, T. (2012). Invariant densities for dynamical systems with random switching. Nonlinearity 25 2937-2952. MR2979976
[2] Balde, M., Boscain, U. and Mason, P. (2009). A note on stability conditions for planar switched systems. Internat. J. Control 82 1882-1888. MR2567235
[3] Chamayou, J.-F. and Letac, G. (1991). Explicit stationary distributions for compositions of random functions and products of random matrices. J. Theoret. Probab. 4 3-36. MR1088391
[4] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 46 353-388. With discussion. MR0790622
[5] Furstenberg, H. (1963). Noncommuting random products. Trans. Amer. Math. Soc. 108 377-428. MR0163345
[6] Jacobsen, M. (2006). Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Birkhäuser, Boston, MA. MR2189574
[7] Kushner, H. J. (1984). Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. MIT Press Series in Signal Processing, Optimization, and Control 6. MIT Press, Cambridge, MA. MR0741469
[8] Marklof, J., Tourigny, Y. and WoŁowski, L. (2008). Explicit invariant measures for products of random matrices. Trans. Amer. Math. Soc. 360 3391-3427. MR2386231
[9] Yin, G. G. and ZHU, C. (2010). Hybrid Switching Diffusions: Properties and Applications. Stochastic Modelling and Applied Probability 63. Springer, New York. MR2559912
M. Benaïm

Institut de Mathématiques
Université de Neuchâtel
11 rue Émile Argand
2000 Neuchâtel
Suisse
E-MAIL: michel.benaim@unine.ch

```
S. Le Borgne
F. Malrieu
UMR 6625 CNRS Institut de Recherche
Mathématique de Rennes (IRMAR)
Université de Rennes 1
Campus de Beaulieu
F-35042 Rennes Cedex
France
E-MAIL: stephane.leborgne@univ-rennes1.fr florent.malrieu@univ-rennes1.fr
```

[^1]
[^0]: Received April 2012; revised September 2012.
 ${ }^{1}$ Supported by Swiss National Foundation Grant FN-200021-138242/1 and the French ANR projects EVOL and ProbaGeo. This work was done while PAZ held a position at Université de Bourgogne.

 MSC2010 subject classifications. Primary 60J75; secondary 60J57, 93E15, 34D23.
 Key words and phrases. Ergodicity, linear differential equations, Lyapunov exponent, planar switched systems, piecewise deterministic Markov process, product of random matrices.

[^1]: P.-A. Zitt

 Laboratoire d'Analyse et de Mathématiques Appliquées
 Université de Marne-La-Vallée 5, boulevard Descartes, Cité Descartes
 Champs-sur-Marne 77454 Marne-La-Vallée Cedex 2
 France
 E-mAIL: Pierre-Andre.Zitt@univ-mlv.fr

