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NECESSARY CONDITION FOR NULL CONTROLLABILITY IN
MANY-SERVER HEAVY TRAFFIC

BY GENNADY SHAIKHET1

Carleton University

Throughput sub-optimality (TSO), introduced in Atar and Shaikhet [Ann.
Appl. Probab. 19 (2009) 521–555] for static fluid models of parallel queue-
ing networks, corresponds to the existence of a resource allocation, under
which the total service rate becomes greater than the total arrival rate. As
shown in Atar, Mandelbaum and Shaikhet [Ann. Appl. Probab. 16 (2006)
1764–1804] and Atar and Shaikhet (2009), in the many server Halfin–Whitt
regime, TSO implies null controllability (NC), the existence of a routing pol-
icy under which, for every finite T , the measure of the set of times prior to T ,
at which at least one customer is in the buffer, converges to zero in probability
at the scaling limit. The present paper investigates the question whether the
converse relation is also true and TSO is both sufficient and necessary for the
NC behavior.

In what follows we do get the affirmation for systems with either two
customer classes (and possibly more service pools) or vice-versa and state a
condition on the underlying static fluid model that allows the extension of the
result to general structures.

1. Introduction. In this paper we consider many-server parallel queueing net-
works in heavy traffic regime. Despite the criticality, as shown in [5, 6], there may
exist a scheduling rule, with high probability maintaining the system without wait-
ing customers, for “most of the time.” Called null controllability, such unusual
phenomena occurs under the throughput sub-optimality of the underlying (criti-
cally loaded in a standard sense), fluid model. In the current work we try to un-
derstand if the effect can still be achieved when the underlying fluid is throughput
optimal, and conclude that it is not possible and throughput sub-optimality is in-
deed required.

Our model of interest consists of multiple customer classes, indexed by I , and
several service pools, indexed by J , each consisting of many i.i.d. exponential
servers. The servers rates depend on both the station and the class. A system ad-
ministrator dynamically controls all scheduling and routing in the system; see Fig-
ure 1. The model is considered in the heavy traffic parametric regime, first pro-
posed by Halfin and Whitt [9], in which the number of servers at each station and
the arrival rates grow without bound, proportionally to some n ↑ ∞.
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FIG. 1. A queueing model with four customer classes and three service pools.

Typically, when analyzing such systems, one looks at the underlying static fluid
model, obtained in the law of large numbers limit of the processes involved. Ac-
cording to [10, 13], the so-called static fluid allocation problem (see Section 2.2
for the details) should then be formulated to determine whether the model (hence,
the original system) is under, over or critically loaded; the latter being the proper
foundation for the heavy traffic analysis. What one gets is a deterministic ma-
trix ξ∗, where for (i, j) ∈ I × J , the entry ξ∗

ij represents the fraction of station-j
work dedicated to class-i customers on the fluid level. Consequently, the original
network is called critically loaded if the optimized fluid takes 100% of system ca-
pacity; that is,

∑
i ξ

∗
ij = 1 for each j ∈ J . The class-station pairs (i, j) ∈ I × J ,

along which the service is possible, are called activities. The activities (i, j) for
which ξ∗

ij > 0 (resp., ξij = 0) are regarded as basic (resp., nonbasic). In both [10,
13] the set ξ∗ was assumed to be unique as well as to satisfy the complete resource
pooling condition, requiring all vertices in the class-station graph to be connected
via basic activities. Under the uniqueness assumption, the latter was shown to be
equivalent for the graph of basic activities being a tree. The above set of conditions
on the underlying fluid model has become standard for considerable amount of
works in the conventional (e.g., [10, 11, 13], etc.) and Halfin–Whitt (e.g., [1, 2, 4],
etc.) heavy traffic regimes, as well as in the more recent, nondegenerate-slowdown
(NDS) regime [3].

With the static fluid model set, an attempt is then made to prove that appropri-
ately scaled (Halfin–Whitt regime) fluctuations of the queueing model about the
fluid model converge to a diffusion. Assuming no use of nonbasic activities, the
pioneering papers [1, 2, 4] were able to represent the scaled system dynamics as
a controlled diffusion with a drift control, thus being able to determine asymptot-
ically optimal scheduling policies for the fairly large class of operational costs. It
is a general understanding (see Theorem 2.1 in [5] and Theorem 3.3 in this pa-
per) that by including the nonbasic activities one gets additional controls, this time
singular controls, but the augmented controlled diffusion still remains to be fully
analyzed.

Yet, some partial results had been obtained. One of them, called null controlla-
bility will be the focus of our attention. In particular, in [5], Theorems 2.3, 2.4, it
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was shown that in the presence of nonbasic activities, some models are prone to a
fairly unusual effect when a critically loaded system starts to behave like an under-
loaded system. More exactly, one can construct a policy, under which for any given
0 < ε < T < ∞ all queues in the system are kept empty on the time interval [ε, T ],
with probability approaching one (a finiteness of the interval in [5] is crucial, and
was later supported by the results from [12] indicating that the phenomenon is not
possible in the long run). It is also worth noting that null controllability seems to be
the feature of the Halfin–Whitt regime only—by its nature, it cannot happen in the
conventional single server asymptotics—and the conventional-like NDS regime is
not expected to have it either.

The results of [5] were generalized and better explained in [6], attributing the
null controllability to what was called throughput sub-optimality of the underlying
static fluid model, a situation, when (static) resources can be rearranged so that the
total service rate becomes greater than the total arrival rate; see Section 2.3 for the
exact definition. Throughput sub-optimality, it appears, may occur in wider class
of fluid models and, even when the null controllability is impossible, can result in
its weaker (though still efficient) version. Namely (Theorem 1 of [6]), for every
finite T , the measure of the set of times prior to T , at which at least one customer
is in the buffer, converges to zero in probability at the scaling limit.

This brings us to the main objective, to understand the converse relation be-
tween throughput sub-optimality and (weak) null controllability (Theorem 2.4).
We show that the desired property is rooted in a simply formulated determinis-
tic result (Theorem 3.4) stating that a throughput optimal static fluid model does
not become sub-optimal if its fluid amounts are modified along the so-called zero
paths, simple paths p from [6] with signed weight μ(p) = 0. This gives a new
interesting perspective on zero paths, normally not associated with abrupt changes
of fluid material; in contrast with “unwelcome” positive paths μ(p) > 0 that in-
crease the material, or negative paths μ(p) < 0, the existence of which, as shown
in Theorem 2 of [6], is equivalent to throughput sub-optimality. Both Theorem 3.4
and its dynamic version Lemma 3.6 are proven for systems with either two cus-
tomer classes (and possibly more service pools) or vice-versa. Although the full
version of Theorem 3.4 still remains unresolved, its simplistic nature [checkable
relations (3.13)–(3.14)] allows us to partially generalize the results for arbitrary I

and J (Theorem 4.3).
The organization of the paper is rather straightforward, with the main result

(Theorem 2.4) followed by its proof (Section 3). Sections 2.1–2.2 provide all the
prerequisites, while Section 3.1 is the roadmap for the proof. After that, Theo-
rem 4.3 of Section 4 discusses possible extensions of our findings.

Notation. For a positive integer d and x ∈ R
d , let ‖x‖ = ∑d

i=1 |xi |. For v,u ∈
R

d let v · u = ∑d
i=1 uivi . The symbols ei denote the unit coordinate vectors and

e = (1, . . . ,1). The dimension of e may change from one expression to another.
Thus, for x = (x1, . . . , xd) ∈ R

d , we have e · x = ∑d
i=1 xi . For an event A we use
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1{A} for the indicator of A. Denote by D(Rd) the space of all cadlag functions
(i.e., right continuous and having finite left limits) from R+ to R

d . Denote |X|∗t =
sup0≤u≤t |X(u)| for X ∈ D(R), ‖X‖∗

t = sup0≤u≤t ‖X(u)‖ for X ∈ D(Rd) and f (t :
s) = f (t) − f (s).

2. The model and the main result.

2.1. Original model. The setting is standard; see, for example, [2, 4–6].
A complete probability space (�,F,P) is given, supporting all stochastic pro-
cesses defined below. There is a sequence of systems indexed by n ∈ N, each hav-
ing I customer classes and J service stations. Station j has Nn

j identical servers.
The classes are labeled as 1, . . . , I and the stations as I + 1, . . . , I + J . We set
I = {1, . . . , I },J = {I + 1, . . . , I + J }. The arrival and service processes, all mu-
tually independent, are denoted by {An

i , i ∈ I} and {Sn
ij , (i, j) ∈ I ×J }. Each An

i

is a renewal process whose inter-arrival times have finite second moment and an
inverse mean (or rate) equal to λn

i > 0. Each service process Sn
ij is a Poisson pro-

cess with rate μn
ij ≥ 0. We also allow a possibility for μn

ij = 0, in which case we
say that class-i customers cannot be served at station j .

Denote the set of all class-station pairs by E := I × J , let Ea = {(i, j) ∈ I ×
J :μn

ij > 0}, and, throughout, assume that Ea does not depend on n. A class-station
pair (i, j) ∈ Ea is said to be an activity. The set of class-station pairs that are not
activities is denoted by Ec

a ≡ E \ Ea.
The number of service completions of class-i customers by all servers of station

j by time t is therefore (see, e.g., [2, 4–6]), given by Sn
ij (

∫ t
0 �n

ij (s) ds), where
for every (i, j) ∈ Ea, we denote by �n

ij (t) the number of class-i customers being
served in station j at time t . Denote by Xn

i (t) the number of class-i customers in
the system at time t . By definition,

Xn
i (t) = Xn

i (0) + An
i (t) − ∑

j∈J
Sn

ij

(∫ t

0
�n

ij (s) ds

)
, i ∈ I;(2.1)

∑
j∈J

�n
ij (t) ≤ Xn

i (t), i ∈ I; ∑
i∈I

�n
ij (t) ≤ Nn

j , j ∈ J .(2.2)

The processes �n = (�n
ij )(i,j)∈I×J are regarded as scheduling control policy

(SCP) and assumed to be right-continuous, taking values in Z+. Thus

�n
ij (t) ≥ 0, (i, j) ∈ Ea; �n

ij (t) = 0, (i, j) ∈ Ec
a .(2.3)

Note that the above definition of SCP is very general and does not include the
standard requirements; see, for example, [2–4, 6].

2.2. Static fluid model and throughout sub-optimality. The paper deals with
certain properties of an underlying fluid model, to be introduced in this section.
We start with the first order approximations of the parameters.



410 G. SHAIKHET

ASSUMPTION 2.1. There exist constants λi, νj ∈ (0,∞), i ∈ I , j ∈ J and
μij ∈ (0,∞), (i, j) ∈ Ea, such that n−1λn

i → λi, n
−1Nn

j → νj ,μ
n
ij → μij . Let

μij = 0 for (i, j) ∈ Ec
a .

The above assumption allows one to imagine a model where arrival and ser-
vice processes are deterministic flows with rates λi and μij . There are J service
stations, processing I classes of incoming fluid. Station j has capacity to hold νj

units of fluid. Since routing/scheduling is an important part of managing the net-
work, an allocation of work among the stations is pivotal element of the model.
The static fluid model uses a fixed allocation for all times (hence “static”). Let �

be the set of allocation matrices

� =
{
ξij , (i, j) ∈ E, such that ξij ≥ 0, and

∑
i∈I

ξij ≤ 1,∀j ∈ J
}
,

where each entry ξij represents the fraction of station’s j capacity allocated to
process class-i. When station j contains ψij := ξij νj units of class-i fluid, the rate
at which this fluid is processed is μijψij = μ̄ij ξij , where we set μ̄ij = μijνj . The
allocation matrix ξ∗ to our model will be chosen according to the following rule.

ASSUMPTION 2.2. Consider the following static allocation problem [10]:

min
ξ∈�,ρ

ρ, subject to
∑
j∈J

μ̄ij ξij = λi,∀i,
∑
i∈I

ξij ≤ ρ,∀j,(2.4)

and assume it has a unique solution (ξ∗, ρ∗), satisfying:

(1) ρ∗ = 1 and
∑

i∈I ξ∗
ij = 1 for all j ∈ J ;

(2) the set of activities (edges) (i, j) ∈ Ea , for which ξ∗
ij > 0, form a connected

tree in a graph with the set of vertices I ∪J .

For convenience, we choose to keep this standard set of assumptions throughout
the paper, but, in fact, neither the uniqueness, nor the tree-like structure is crucial.
See more explanation in Section 5. For the solution ξ∗ from Assumption 2.2 we
denote

ψ∗
ij = ξ∗

ij νj , x∗
i = ∑

j

ψ∗
ij , i ∈ I, j ∈ J .(2.5)

Thus x∗ represents the mass of material of each class being processed in all ser-
vice stations. The introduced deterministic model, with parameters {λ, ν,μ} and
allocation matrix {ψ∗}, satisfying Assumption 2.2, will be referred to as the static
fluid model. Following [10, 13], an activity (i, j) ∈ Ea is said to be basic (resp.,
nonbasic) if ψ∗

ij > 0 (resp., ψ∗
ij = 0).
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Throughput sub-optimality. For x̄ ∈ R
I+ and ν̄ ∈R

J+, define

�(x̄, ν̄) :=
{
ψij , (i, j) ∈ E :ψij ≥ 0,

∑
i∈I

ψij ≤ ν̄j ,∀j ∈ J

(2.6)

and
∑
j∈J

ψij ≤ x̄i ,∀i ∈ I
}
.

Note that from (2.5) we have ψ∗ ∈ �(x∗, ν). Assumption 2.2 expresses the critical
load on the system, but does not discard the possibility that the total processing
rate can exceed the total arrival rate. For a static fluid model we will say that it is
throughput optimal if the following holds:

Whenever ψ ∈ �
(
x∗, ν

)
,one has

∑
(i,j)∈E

μijψij ≤ ∑
i∈I

λi.(2.7)

The model is said to be throughput sub-optimal if it is not throughput optimal.

2.3. The main result. The following assumption regards the second order be-
havior of the parameters and initial condition.

ASSUMPTION 2.3. There exist c ∈ (0,∞), independent of n, such that for
n ≥ 1, ∥∥n−1λn − λ

∥∥ + ∥∥μn − μ
∥∥ + ∥∥n−1Xn(0) − x∗∥∥ ≤ cn−1/2,

(2.8) ∥∥n−1Nn − νn
∥∥ ≤ (1/2)n−1/2.

THEOREM 2.4. Let Assumptions 2.1–2.3 hold. Assume I = 2 or J = 2. If, for
some T > 0, there exists a sequence of SCPs, under which∫ T

0

{
e · Xn(s) ≥ e · Nn}

ds → 0 in probability,(2.9)

then the underlying static fluid model is throughput sub-optimal.

3. Proof of Theorem 2.4.

3.1. Intuition and preparations. First, we outline the main ideas of the proof.
Fix n. It would be convenient to rescale the system dynamics with respect to the
static fluid model. Namely, we rewrite (2.1)–(2.3) in the form

X̂n
i (t) = X̂n

i (0) + Ŵn
i (t) − ∑

j∈J
μij

∫ t

0
�̂n

ij (s) ds, i ∈ I,(3.1)

∑
j∈J

�̂n
ij (t) ≤ X̂n

i (t), i ∈ I; ∑
i∈I

�̂n
ij (t) ≤ N̂n

j , j ∈ J ,(3.2)
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where we use

Ân
i (t) = n−1/2(

An
i (t) − λn

i t
)
, Ŝn

ij (t) = n−1/2(
Sn

ij (t) − μn
ij t

)
,

X̂n
i (t) = n−1/2(

Xn
i (t) − nx∗

i

)
, �̂n

ij (t) = n−1/2(
�n

ij (t) − nψ∗
ij

)
,(3.3)

N̂n
j = n−1/2(

Nn
j − nνj

)
and

Ŵn
i (t) = Ân

i (t) − ∑
j∈J

Ŝn
ij

(∫ t

0
�n

ij (s) ds

)
(3.4)

+ n−1/2(
λn

i − nλi

)
t − n−1/2

∑
j∈J

(
μn

ij − μij

) ∫ t

0
�n

ij (s) ds.

The proof will be completed in several steps. The basic principle would be to
show that, once the underlying fluid model is throughput optimal, it is impossible
to quickly eliminate a nonnegligible surplus of customers.

• Our main candidate for a fast unloading of the system will be the last term
of (3.1), since Ŵn is well known to be tight; see, for example, [2, 4, 6]. Now,
due to throughput optimality (2.6), (2.7), since �n ∈ �(Xn,Nn), we have a crude
estimate ∑

ij

μij �̂
n
ij (t) ≤ μmax

(∥∥X̂n(t)
∥∥ + ∥∥N̂n

∥∥)
, t ≥ 0,(3.5)

for μmax = maxij {μij }, which tells us that, in principle, the left-hand side of (3.5)
can be made large by quickly increasing ‖X̂n‖. Of course, stopping the service
(partially or completely) will do the trick, but will not serve our purpose, thus
inviting the question whether, and if so, in what directions, X̂n can be quickly
changed without significant increase of the total mass e · X̂n.

• To answer the above we would need Theorem 3.3 of Section 3.3, namely,
representation (3.10), showing that it can be done by using the nonbasic activi-
ties along the so-called zero simple paths, the objects first introduced in [6], but
with μ(p) = 0. To make this paper self contained we have included Section 3.2,
reminiscing about the basic definitions of simple paths from [6] as well as their
connection to throughput optimality (Theorem 3.2).

• The representation theorem prompts us back to the static fluid model in an at-
tempt to understand whether one can increase the throughput by inflicting changes
along zero paths. The corresponding Theorem 3.4 of Section 3.4 provides the de-
sired negative answer and culminates in its dynamic version (Lemma 3.6 of Sec-
tion 3.5), essentially saying that there is no way to quickly increase

∑
ij μij �̂

n
ij

without increasing e · X̂n, which is quite the opposite of what we are trying to
achieve.

• The details are finalized in Section 3.6.
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3.2. Simple paths. Characterization of throughput sub-optimality. Denote the
index set for all customer classes and service stations by V := I ∪ J . For a
nonempty set V and E ⊆ V × V , we write G = (V ,E) for the graph with vertex
set V and edge set E; see, for example, [8] for standard definitions. A connected
graph that does not contain cycles is called a tree. We denote Ga = (V,Ea) and
refer to it as the graph of activities.

Define the graph of basic activities Gba to be the subgraph of Ga having V as a
vertex set, and the collection

Eba := {
(i, j) ∈ Ea : ξ∗

ij > 0
}

of basic activities as an edge set. By Assumption 2.2, the graph Gba is a tree, and
by construction of it as a subgraph of Ga , all its edges are of the form (i, j) where
i ∈ I and j ∈ J . In the definition below and elsewhere in this section, it will be
convenient to identify (i, j) with (j, i) (where i ∈ I and j ∈ J ) when referring
to an element of the edge set E . Although the notation is abused, there will be no
confusion, since I and J do not intersect.

DEFINITION 3.1. (i) A subgraph q = (Vq,Eq) of Gba is called a basic path if
one has Vq = {i0, j0, . . . , ik, jk} and

Eq = {
(i0, j0), (j0, i1), . . . , (ik, jk)

}
,

where k ≥ 1 and i0, . . . , ik ∈ I , j0, . . . , jk ∈ J are 2k + 2 distinct vertices. Note
that every edge of a basic path is a basic activity (i.e., an element of Eba). Basic
paths are used to define simple paths, as follows:

(ii) Let the leaves i0 and jk of a basic path q be denoted by iq and, respectively,
jq . The pair (iq, jq) could be an activity (an element of Ea), in which case it is
necessarily a nonbasic activity (i.e., an element of Ea \ Eba), and we say that the
graph (Vq,Eq ∪ {(iq, jq)}) is a closed simple path; otherwise (iq, jq) is not an
activity (i.e., it is in Ec

a ), and we say that q itself is an open simple path. We say
that p is a simple path if it is either a closed or an open simple path. Let SP be the
set of simple paths.

EXAMPLE. Consider the following static fluid model, with 2 classes of cus-
tomers and 3 stations:

ν =
(

1
1

)
, λ =

(
8
4

)

and

Case A : μ = μ̄ =
(

3 10 1
1 4 2

)
;

Case B : μ = μ̄ =
(

3 10 1
0 4 2

)
.
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FIG. 2. Simple paths for cases A and B: On the left p is a closed simple path, while on the right p

is open. For case A, μ23 > 0 and (2,3) is a nonbasic activity. For case B, μ23 = 0 and (2,3) is not
an activity.

The resulting optimal static allocation (2.4), (2.5) in both cases is given as

ψ∗ = ξ∗ =
(

1 0.5 0
0 0.5 1

)
and x∗ =

(
1.5
1.5

)
,

and we can visualize the graph of activities on Figure 2. In both cases we
have the same Gba , consisting of vertices {1,2,3,4,5} and edge set Eba =
{(1,3), (1,4), (2,4), (2,5)}. Similarly, both cases have two basic paths [recall, we
identify (i, j) with (j, i)]

q1 = {
(3,1), (1,4), (4,2)

}
and q2 = {

(1,4), (4,2), (2,5)
}
.

The basic path q1, together with the corresponding leaves 3 and 2, defines a path
p = {(3,1), (1,4), (4,2), (2,3)} which will be closed if μ23 > 0 [i.e., (2,3) is an
activity, case A] and open otherwise (case B). The only other possible simple path
{(5,2), (2,4), (4,1), (1,5)} in both cases will be a closed one.

Next, we associate directions with edges of simple paths. Let p be a sim-
ple path, and let q = qp = (Vq,Eq) be the corresponding basic path with Eq =
{(i0, j0), . . . , (ik, jk)}, where i0, . . . , ik ∈ I and j0, . . . , jk ∈ J . The direction that
will be associated with the edges in Eq , when considered as edges of p, is as fol-
lows: jk → ik → jk−1 → ik−1 → ·· · → j0 → i0. In the case of an open simple
path, this exhausts all edges of p. In the case of a closed simple path, the direction
of (i0, jk) is i0 → jk . We note that an edge (corresponding to a basic activity) may
have different directions when considered as an edge of different simple paths. We
signify the directions along simple paths by s(p, i, j), defined for i ∈ I , j ∈ J ,
(i, j) ∈ Ep , p ∈ SP, as

s(p, i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, if (i, j), considered as an edge of p,
is directed from i to j,

1, if (i, j), considered as an edge of p,
is directed from j to i.

(3.6)

Set

mi,p = ∑
j :(i,j)∈p

s(p, i, j)μij , i ∈ I, mp = (mi,p, i ∈ I)(3.7)



NECESSARY CONDITION FOR NULL CONTROLLABILITY 415

and

μ(p) = ∑
i:(i,j)∈p

mi,p = ∑
(i,j)∈Ep

s(p, i, j)μij , i ∈ I.(3.8)

EXAMPLE (cont.). Referring to the simple path p, for case A we have μ(p) =
−7 + 3 = −4 since

m1,p = s(p,1,3)μ13 + s(p,1,4)μ14 = μ13 − μ14 = −7,

m2,p = s(p,2,3)μ23 + s(p,2,4)μ24 = −μ23 + μ24 = 3.

Similarly, for the case B we have m1,p = −7, m2,p = 4 (since μ23 = 0) and
μ(p) = −3.

THEOREM 3.2 (Theorem 2, [6]). Let Assumptions 2.2 and 2.3 hold. Then the
following statements are equivalent:

(1) the static fluid model is throughput sub-optimal;
(2) there exists a simple path p ∈ SP such that μ(p) < 0.

EXAMPLE (cont.). Both cases have a path with μ(p) < 0, hence both are
throughput sub-optimal. To see that, for example, the fluid model in case A is
throughput sub-optimal, let β > 0 be sufficiently small, and consider the alloca-
tion matrix

ξ̂ =
(

1 − β 0.5 + β 0
β 0.5 − β 1

)
.

Clearly, we have
∑

j ξ̂ij νj = x∗
i for every i. However,

∑
(i,j)∈E ξ̂ij μ̄ij > λ1 + λ2.

3.3. Representation.

THEOREM 3.3. Let Xn and �n satisfy (2.1)–(2.3). Then there exist processes
�n, Mn and ϒn, satisfying:

(1) �n(t) ∈ �(Xn(t),Nn) for t ≥ 0 and �n
ij ≡ 0 for (i, j) /∈ Eba ;

(2) ‖�̂n(t)‖ ≤ cF (‖X̂n(t)‖+‖N̂n‖) for some constant cF , independent of t, n;
(3) Mn ∈ D(R|SP|), ϒn ∈ D(R|I|), are component-wise nondecreasing, ini-

tially zero, so that the following holds for the scaled processes2 for t ≥ 0, i ∈ .I

X̂n
i (t) = X̂n

i (0) + Ŵn
i (t) − ∑

j :(i,j)∈Ea

μij

∫ t

0
�̂n

ij (s) ds

(3.9)
+ ∑

p∈SP

mi,pM̂n
p(t) + ϒ̂n

i (t).

2We use �̂n
ij := n−1/2(�n

ij − nψ∗
ij ), M̂n := n−1/2Mn and ϒ̂n := n−1/2ϒn.
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The proof is relegated to the Appendix. Together with inequality (2), which is
obviously stronger than (3.5), the theorem indicates that the last two terms of (3.9)
are the only possible reasons for the abrupt change of ‖X̂n‖. The summation term
is associated with simple paths, while the last term corresponds to direct nonwork
conservation; see the proof for more details. The theorem can be viewed as a gen-
eralization of Theorem 2.1 from [5] where only closed simple paths (called cycles)
were considered.

For a simple path p ∈ SP, we say p ∈ P0, (resp., p ∈ P−; or p ∈ P+) if
μ(p) = 0, [resp., μ(p) < 0; or μ(p) > 0 ]. Depending on the subscript sign of
P the paths will be called, respectively, zero, negative or positive paths.

If the static fluid model is throughput optimal (in which case Theorem 3.2 im-
plies P− = ∅ ), we rewrite (3.9) as

X̂n
i (t) = X̂n

i (0) + Ŵn
i (t) − ∑

j :(i,j)∈Eba

μij

∫ t

0
�̂n

ij (s) ds + ζ̂ n
i (t) + η̂n

i (t),

(3.10)
i ∈ I,

where

ζ̂ n
i (t) = ∑

p∈P0

mi,pM̂n
p(t), η̂n

i (t) = ∑
p∈P+

mi,pM̂n
p(t) + ϒ̂n

i (t).(3.11)

Notice that ζ̂ n and η̂n satisfy [due to (3.8) and nonnegativity of ϒn
i ]

e · ζ̂ n(t) ≡ 0, e · η̂n(t) ≥ 0.(3.12)

3.4. Discarding zero paths. From (3.10)–(3.12) we see that both ζ̂ n and η̂n

can lead to abrupt increase of ‖X̂n‖, though only η̂n that can do such for e · X̂n.
The next deterministic (key!) result, viewed as a prelude to estimate (3.27) of
Lemma 3.6, discards any significant influence of zero paths (represented by ζ̂ n)
on system’s drift.

THEOREM 3.4. Assume that the static fluid model, (as defined in Section 2.2),
is throughput optimal. Take an arbitrary vector M ∈ R

|P0|+ , with ‖M‖ small
enough, and set

x = x∗ + ∑
p∈P0

mpMp.(3.13)

Then, if either I = 2 or J = 2, the following inequality is true:∑
ij

μijψij ≤ ∑
ij

μijψ
∗
ij(3.14)

for all ψ ∈ �(x, ν).

Before proving the theorem, we point out an important corollary.



NECESSARY CONDITION FOR NULL CONTROLLABILITY 417

COROLLARY 3.5. Let the static fluid model be throughput optimal. Assume
we are given some x0 ∈ R

I+, ν̃ ∈ R
J+, γ ∈ R

I+ and a set of numbers {Mp ≥ 0,p ∈
P0 ∪P+} with ‖M‖ sufficiently small. Define x̃ = x0 + ζ + η, where

ζi = ∑
p∈P0

mi,pMp, ηi := ∑
p∈P+

mi,pMp + γi ∀i ∈ I.(3.15)

Then, if either I = 2 or J = 2, for all ψ ∈ �(x̃, ν̃), we have∑
ij

μij

(
ψij − ψ∗

ij

) ≤ cμ

(∥∥x0 − x∗∥∥ + ‖ν̃ − ν‖ + e · η)
,(3.16)

where cμ is a constant, independent of ξ , η, M .

PROOF. Just note that x̃ = x∗ + ζ + (x0 − x∗) + η = x + (x0 − x∗) + η for x

from (3.13), together with (3.14) yielding
∑

ij μij (ψij −ψ∗
ij ) ≤ μmax(‖x0 −x∗‖+

‖ν̃ − ν‖ + ‖η‖) and the corollary follows since μ(p) > 0 for each p ∈ P+, and

μmax‖η‖ ≤ μmax

( ∑
p∈P+

‖mp‖Mp + e · γi

)
(3.17)

≤ cμ

( ∑
p∈P+

μ(p)Mp + e · γi

)
= cμ(e · η)

for cμ = μmax(1 + min{c ≥ 0 :‖mp‖ ≤ cμ(p), for allp ∈P+}). �

PROOF OF THEOREM 3.4. We will start with a basic case when I = J = 2
then extend it to more general systems.

Case 1: let I = {1,2} and J = {3,4}, and assume the (unique) basic path is
given as q = {(3,1), (1,4), (4,2)} with (2,3) being either nonbasic activity or not
an activity. The corresponding simple path p belongs to P0, and hence satisfies

m1,p + m2,p = (μ13 − μ14) + (μ24 − μ23) = 0.(3.18)

Take a small enough M > 0, set � := (μ13 −μ14)M = (μ23 −μ24)M and define a
new x = (x1, x2) = (x∗

1 + �,x∗
2 − �). Because of (3.18), an elementary argument

implies that any throughput optimizing allocation matrix ψ is of the form ψ = ψγ(
ψ

γ
13,ψ

γ
14,ψ

γ
23,ψ

γ
24

) = (
ψ∗

13 − γ,ψ∗
14 + � + γ, γ,ψ∗

24 − � − γ
)

(3.19)

for some 0 ≤ γ ≤ min{ψ∗
13,ψ

∗
24 − �}, with the total throughput remaining a con-

stant, independent of γ ,∑
ij

ψ
γ
ijμij ≡ ψ∗

13μ13 + (
ψ∗

14 + �
)
μ14 + (

ψ∗
24 − �

)
μ24.(3.20)

Assume, on the contrary, that
∑

ij ψ
γ
ijμij > λ1 + λ2. Due to (3.20), the latter

inequality will hold for any feasible γ . In particular, take γ0 = Mμ24. It is easy to
check that with such a choice, we have [recall � = M(μ23 − μ24)]

ψ
γ0
23μ23 + ψ

γ0
24μ24 = λ2.(3.21)
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Together with
∑

ij ψ
γ0
ij μij > λ1 + λ2, it means

ψ
γ0
13μ13 + ψ

γ0
14μ14 > λ1,(3.22)

clearly contradicting the static fluid allocation problem; see Assumption 2.2. In-
deed, (3.21)–(3.22) means there is a static fluid allocation (ψ̃13, ψ

γ0
14 , ψ

γ0
23 , ψ

γ0
24),

with ψ̃13 < ψ
γ0
13 , that fully serves each of the two incoming classes without using

all the capacity.
Case 2: now consider the case I = 2 or J = 2. An important property of such

systems is that each simple path consists of four vertices and three or four edges,
depending whether or not it is open or closed; and the arguments from case 1 will
be very helpful. In particular, we argue that the statement of the theorem remains
true if only one zero path modification is applied, that is, if x = x∗ + mpMp for
some path p ∈ P0, then

∑
ij μijψij ≤ ∑

ij μijψ
∗
ij for any ψ ∈ �(x, ν). Indeed, let,

on the contrary, there exist a throughput maximizing allocation ψ ∈ �(x, ν) sat-
isfying

∑
ij μijψij >

∑
ij μijψ

∗
ij . Let Vp = {i1, i2, j1, j2} with a nonbasic (i2, j1).

Then, again, due to μi1,j1 − μi1,j2 + μi2,j2 − μi2,j1 = 0 [recall (3.8) that p ∈ P0],
we have that the following allocation:

ψo
ij = ψ∗

ij for (i, j) /∈ p,(
ψo

i1,j1
,ψo

i1,j2
,ψo

i2,j1
,ψo

i2,j2

)
(3.23)

= (
ψ∗

i1,j1
− γ,ψ∗

i1,j2
+ � + γ, γ,ψ∗

i2,j2
− � − γ

)
will satisfy

∑
ij μijψ

o
ij = ∑

ij μijψij >
∑

ij μijψ
∗
ij for any feasible γ and � =

Mpmi1,p = −Mpmi2,p , bringing us precisely to the first case and, hence, to a con-
tradiction.

Now we extend the latter to several zero paths. Set k = |P0| > 1. Once again,
assume that there exists a throughput maximizing matrix ψ ∈ �(x, ν) that sat-
isfies

∑
ij μijψij >

∑
ij μijψ

∗
ij . Consider an allocation matrix ψ of the form

ψij = ∑
p∈P0

ψ
(p)
ij , where [slightly abusing the notation and denoting Vp =

{ip1 , i
p
2 , j

p
1 , j

p
2 } with a nonbasic (i

p
2 , j

p
1 ) per each path p],

ψ
(p)
ij = 1

k
ψ∗

ij for (i, j) /∈ Ep,

(
ψ

(p)

i
p
1 ,j

p
1
,ψ

(p)

i
p
1 ,j

p
2
,ψ

(p)

i
p
2 ,j

p
1
,ψ

(p)

i
p
2 ,j

p
2

)
(3.24)

=
(

1

k
ψ∗

i
p
1 ,j

p
1
,

1

k
ψ∗

i
p
1 ,j

p
2

+ �p,0,
1

k
ψ∗

i
p
2 ,j

p
2

− �p

)
,

with �p = Mpmi
p
1 ,p = −Mpmi

p
2 ,p . Once again, since each simple path p belongs

to P0, we have
∑

ij μijψij = ∑
ij μijψij >

∑
ij μijψ

∗
ij . Now consider k com-

pletely separated from each other systems with identical set {μij }, but with arrival
rates and capacities divided by k. Clearly, the values {1

k
ψ∗

ij } will solve the static
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fluid allocation problem in the smaller systems. Let each of the smaller systems
correspond to each of the possible p ∈ P0. To each system apply a modification
along the corresponding path

x(p) = 1

k
x∗ + mpMp.(3.25)

The allocation {ψ(p)
ij } from (3.24) optimizes the throughput in the corresponding

small system and satisfies (since we have already treated the case when only one
p ∈ P0 has been activated)

∑
ij

μijψ
(p)
ij ≤ 1

k

∑
ij

μijψ
∗
ij ,(3.26)

implying overall

∑
ij

μijψij = ∑
ij

μij

( ∑
p∈P0

ψ
(p)
ij

)
= ∑

p∈P0

(∑
ij

μijψ
(p)
ij

)
≤ ∑

ij

μijψ
∗
ij ,

which completes the proof by contradiction. �

3.5. Important estimate. Consider the event �n
w = {‖Ân‖∗

1 + ‖Ŝn‖∗
1 ≤ 5}.

LEMMA 3.6. Let Assumptions 2.1–2.3 hold, assume that the static fluid model
is throughput optimal, and let I = 2 or J = 2. Then, on the event �n

w , for any
scheduling policy, we have, for ε > 0 small enough and t ≤ 2ε,∑

ij

μij �̂
n
ij (t) ≤ ε−2/3(

1 + ∣∣(e · X̂n)+∣∣∗
t

)
.(3.27)

REMARK 3.7. In fact, the above inequality holds for some constant κ , but for
our purposes a crude bound of κ < ε−2/3 will be enough as it saves us the trouble
of adjusting essentially irrelevant constants after each operation.

PROOF OF LEMMA 3.6. We will start by showing the relation∑
ij

μij �̂
n
ij (t) ≤ ε−1/2(

1 + (
e · X̂n(t)

)+ + e · η̂n(t)
)
, t ≥ 0.(3.28)

Recall (3.5) ∑
ij

μij �̂
n
ij (t) ≤ μmax

(∥∥X̂n(t)
∥∥ + ∥∥N̂n

∥∥)
, t ≥ 0.(3.29)

Due to (2.8) and since e · η̂n and is a nondecreasing process starting at zero, in-
equality (3.28) will follow for all t when ‖X̂n(t)‖ ≤ ε−1/3(1 + e · η̂n(t)). Now
consider the case when ‖X̂n(t)‖ > ε−1/3(1 + e · η̂n(t)).
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First, assume there is only one class i with |X̂n
i (t)| > ε−1/3

I
(1 + e · η̂n(t)). If

X̂n
i (t) < 0, relation (3.28) clearly follows from (3.29) since the left-hand side

of (3.28) would only increase if X̂n
i (t) is increased to − ε−1/3

I
(1 + e · η̂n(t)). Oth-

erwise, if X̂n
i (t) > 0, relation (3.28) follows from(

e · X̂n(t)
)+ ≥ e · X̂n(t) ≥ X̂n

i (t) − ε−1/3(
1 + e · η̂n(t)

)
,

because for all other classes j �= i we have X̂n
j (t) ≥ −|X̂n

j (t)| ≥ − ε−1/3

I
(1 + e ·

η̂n(t)).
For the rest of the proof assume that |X̂n

i (t)| > ε−1/3

I
(1 + e · η̂n(t)) for several

different i’s. From (3.9)–(3.12) we have (using the fact t ≤ 2ε)∥∥X̂n
∥∥∗
t ≤ ∥∥X̂n(0)

∥∥ + ∥∥Ŵn
∥∥∗
t + 2εcF

(∥∥X̂n
∥∥∗
t + ∥∥N̂n

∥∥) + ∥∥ζ̂ n(t)
∥∥

(3.30)
+ ∥∥η̂n(t)

∥∥.
Using (3.17), we have ‖ηn(t)‖ ≤ (cμ/μmax)e ·ηn(t). Moreover, due to the lemma’s
assumptions, we have [see (3.4)] ‖X̂n(0)‖ + ‖Ŵn‖∗

ε ≤ ε−1/6 for ε small enough,
altogether implying∥∥X̂n(t)

∥∥ ≤ ∥∥X̂n
∥∥∗
t ≤ ε−1/6(

1 + ∥∥ζ̂ n(t)
∥∥ + e · η̂n(t)

)
.(3.31)

Since ‖X̂n(t)‖ > ε−1/3(1 + e · η̂n(t)), inequality (3.31) would imply∥∥ζ̂ n(t)
∥∥ ≥ (

ε−1/6 − 1
)(

1 + e · η̂n(t)
)
,(3.32)

that is, there is at least one large “zero path” (i.e., p ∈ P0) activity usage and we
are going to apply Corollary 3.5 to “filter out” the effect of such.

First, if I > 2, J = 2, then all vertices i ∈ I , except for one (denote it by k), are
leaves in the tree of basic activities Gba . For each leaf i0 there is a unique simple
path p, going through i0 and k.

Consider the following procedure: Let I0 = I0(t) = {i ∈ I \ {k} : |X̂n
i0
(t)| >

ε−1/3

I
(1 + e · η̂n(t))}. For i ∈ I0(t) define x̂i := X̂n

i (t)

|X̂n
i (t)|

ε−1/3

I
(1 + e · η̂n(t)), and set

x̂k := X̂n
k (t) + ∑

i∈I0(t)
(X̂n

i (t) − x̂i ). Finally, for i /∈ (I0 ∪ {k}), set x̂i = X̂n
i (t).

Viewing vector X̂n as if it has been obtained from x̂ by applying |I0| zero paths
to the latter [as (2.8) we obviously have ‖X̂n‖∗

ε ≤ ‖X̂n(0)‖ + ‖Ân‖∗
1 + 2cn1/2ε ≤

n−1/2

|SP| (nmini,j ψ∗
ij ) on �n

w , so the perturbation is indeed sufficiently small when
viewed on the fluid level], one can use Corollary 3.5 to get∑

ij

μij �̂
n
ij (t) ≤ cμ

(∥∥N̂n
∥∥ + ‖x̂‖ + e · η̂n(t)

)
(3.33)

≤ cμ

(∥∥N̂n
∥∥ + x̂+

k + ε−1/3(
1 + e · η̂n(t)

) + e · η̂n(t)
)
.

In the last inequality we once again use the fact that only strictly positive x̂k was
worth considering [otherwise the left-hand side of (3.33) would only increase if
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x̂k is increased to − ε−1/3

I
(1 + e · η̂n(t))]. A crude estimate x̂+

k ≤ (e · X̂n(t))+ +
ε−1/3(1 + e · η̂n(t)) that follows from the definition of x̂i and the relation x̂k =
e · X̂n(t) − ∑

i∈I0
x̂i completes the proof of (3.28). If I = 2, the same procedure is

applied only once, along any of several possible zero paths. This proves (3.28).
To finalize the lemma, note that �n from (3.9)–(3.12) satisfies �n(t) ∈

�(Xn(t),Nn) for all t in the given range, hence is subject to (3.28) as well. Using
that, we have ∣∣(e · X̂n)+∣∣∗

t ≥ e · X̂n(0) − e · Ŵn(t) + e · η̂n(t)(3.34)

− ε1/2(
1 + ∣∣(e · X̂n)+∣∣∗

t + e · η̂n(t)
)

(3.35)

≥ C + 1
2e · η̂n(t) − ε1/2∣∣(e · X̂n)+∣∣∗

t(3.36)

implying

e · η̂n(t) ≤ ε−1/5(
1 + ∣∣(e · X̂n)+∣∣∗

t

)
,(3.37)

and we complete the proof by substituting (3.37) into (3.28). �

3.6. Finalizing the proof. For arbitrary ε > 0, consider the event

�n
1 = �n

1(ε) = �n
w ∩ {

e · X̂n(0) − e · N̂n + e · Ân(ε) ≥ 4
}

∩ {∥∥Ân(·) − Ân(ε)
∥∥∗
[ε,2ε] ≤ 1/4

}
(3.38)

∩ {∥∥Ŝn
∥∥∗

1 ≤ 1/4
}
.

It is standard (e.g., Theorem 14.6 in [7]) that component-wise both Ân and Ŝn

converge weakly to independent Brownian motion processes. Therefore there exist
constants n1 = n1(ε) ∈ N and δ = δ(ε) > 0, so that P(�n

1) > δ for all n ≥ n1.
Fix ε > 0. Theorem 2.4 guarantees that there exists a sequence of SCPs satisfy-

ing

lim
n→∞P

(
�n

1 ∩
{∫ T

0
1
{
e · Xn(s) ≥ e · Nn}

ds > ε

})
= 0.(3.39)

Let �n = �n
1 ∩ {∫ T

0 1{e · Xn(s) ≥ e · Nn}ds ≤ ε}. Relation (3.39) implies that
there exists a constant n0(ε) ∈ N so that

P
(
�n)

>
δ

2
for all n ≥ n0.(3.40)

In what follows we assume that the static fluid model is throughput optimal and
will come to a conclusion that the event �n is impossible (i.e., �n is an empty set)
for n ≥ n0 and ε small enough, thus contradicting (3.40).

From (3.1), (3.4), (2.8), Lemma 3.6 and (3.38) on the event �n,

e · X̂n(ε) − e · N̂n ≥ 7/2 − cε − ε1/3(
1 + ∣∣(e · X̂n)+∣∣∗

ε

)
,(3.41)
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which, for ε small enough, yields

e · X̂n(ε) − e · N̂n + ε1/3∣∣(e · X̂n)+∣∣∗
ε ≥ 2,(3.42)

giving us two possible scenarios: e · X̂n(ε)− e · N̂n ≥ ε1/3|(e · X̂n)+|∗ε and ε1/3|(e ·
X̂n)+|∗ε ≥ e · X̂n(ε) − e · N̂n.

Case 1. Assume e · X̂n(ε)− e · N̂n ≥ ε1/3|(e · X̂n)+|∗ε . Together with (3.42), this
implies e ·X̂n(ε)−e ·N̂n ≥ 1. Let τε = inf{t > ε : e ·X̂n(t) = e ·N̂n}. Notice that τε

is well defined since the jumps of e · Xn are of size 1 and, moreover, satisfies τε <

2ε on �n, because the total queueing time does not exceed ε. Using e · X̂n(ε)− e ·
N̂n ≥ 1, (3.1), Lemma 3.6 and (3.38) we can write

0 = e · X̂n(τε) − e · N̂n

≥ e · X̂n(ε) − e · N̂n + e · Ŵn(τε : ε) − ε1/3(
1 + ∣∣(e · X̂n)+∣∣∗

τε

)
≥ 1/8 − ε1/3∣∣(e · X̂n)+∣∣∗

τε
,

implying ∣∣(e · X̂n)+∣∣∗
τε

≥ ε−1/4.(3.43)

In other words, a large queue of at least ε−1/4 has to be eliminated before time τε .
Let α be the last time before τε , satisfying |(e · X̂n)+|∗τε

= e · X̂n(α) ≥ ε−1/4. We
have

0 = e · X̂n(τε) − e · N̂n

≥ e · X̂n(α) − e · N̂n + e · Ŵn(τε :α) − ε1/3(
1 + e · X̂n(α)

)
≥ C + 1

2e · X̂n(α) ≥ C + (1/2)ε−1/4,

for some constant C, which is an obvious contradiction for ε small enough.
Case 2. If ε1/3|(e · X̂n)+|∗ε ≥ e · X̂n(ε) − e · N̂n, then |(e · X̂n)+|∗ε ≥ ε−1/3

by (3.42), and the same considerations as in the previous case can be applied.
Let α be the last time before ε, satisfying |(e · X̂n)+|∗ε = e · X̂n(α) ≥ ε−1/3, and
define τα = inf{t > α : e · X̂n(t) = e · N̂n}. Then

0 = e · X̂n(τα) − e · N̂n

≥ e · X̂n(α) − e · N̂n + e · Ŵn(τα :α) − 2ε1/3(
1 + e · X̂n(α)

)
≥ C + 1

3e · X̂n(α) ≥ C + (1/3)ε−1/3,

for some constant C, giving the contradiction once again. This concludes the proof
of Theorem 2.4.
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4. General structures. Theorem 2.4 shows that null-controllability is impos-
sible if the underlying fluid model is throughput optimal. The result is valid for
the case min{I, J } = 2, and the assumption is crucial for both Theorem 3.4 and
Lemma 3.6. How can Theorem 2.4 be extended for general I and J , especially,
since it is relatively easy to numerically check conditions (3.13)–(3.14) (enough to
check separately for each zero path)? We give a partial answer.

DEFINITION 4.1. A path p ∈ SP is called class-dependent if (3.6)–(3.8)∑
j :(i,j)∈Ep

s(p, i, j)μij = 0, i ∈ I.(4.1)

There are only two summands for each given i in (4.1). Basically, the definition
says that for each i ∈ I , belonging to p, and two (just these two!) adjacent activities
(i, j1) and (i, j2) from the very same path p, we must have μi,j1 = μi,j2 . Similarly,
we have the following:

DEFINITION 4.2. A path p ∈ SP is called pool-dependent if∑
i:(i,j)∈Ep

s(p, i, j)μij = 0, j ∈ J .(4.2)

From (3.6)–(3.8), each of the above two types must be a zero path, that is,
μ(p) = 0.

THEOREM 4.3. Let Assumptions 2.1–2.3 hold, and let I, J ≥ 1. Assume that
the fluid model is throughput optimal and satisfies one of the following:

(1) has no zero paths, that is, P0 = ∅;
(2) each p ∈P0 is either class- or pool-dependent; or, for small κ > 0,∑

ij

μij

(
ψij − ψ∗

ij

)
< 0 whenever ψ ∈ �

(
x∗ + mpκ, ν

)
.(4.3)

Then it is impossible to find T > 0 and a sequence of SCPs, satisfying (2.9); that
is, (weak) null controllability is impossible.

REMARK 4.4. Currently this is as close as we can get to the conclusion that,
in the general case, (3.13)–(3.14) prescinds null controllability (for throughput
optimal fluid models). Apparently, more work is required when (4.3) results in
equality, with path being neither class- nor pool-dependent. We feel, however, that
such situations are very rare, maybe even impossible (and may as well contradict
to uniqueness of the underlying fluid model; see Assumption 2.2).

REMARK 4.5. Theorem 4.3 trivially implies that null-controllability is also
impossible for either one of the following types of the fluid model:
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(1) the service rates depend only on the class type (class-dependent),

μij = μi, i ∈ I, j ∈ J ;(4.4)

(2) the service rates depend only on the station type (pool-dependent),

μij = μj , i ∈ I, j ∈ J .(4.5)

Indeed, in both cases the fluid model is throughput optimal, and all paths are either
class- or pool-dependent.

PROOF OF THEOREM 4.3. It will be enough to show that relation (3.28) of
Lemma 3.6 remains intact, as no other part of the proof of Theorem 2.4 has any
structure constraints.

Case 1. Relation (3.28) trivially follows from the current proof of Lemma 3.6.
Case 2. The argument goes exactly as in the proof of Lemma 3.6, until it gets

to (3.32), stating that at least one “large” zero path has been activated. Some extra
work has to be done at this point.

A. All zero paths are class-dependent: in such case [see (3.6)–(3.8)] we have
‖mp‖ = 0 for each zero path; hence none of these paths has any effect on the
system. Once again, (3.28) follows trivially.

B. All zero paths are pool-dependent: assume that all zero paths satisfy (4.2).
We start with the case when there is only one zero path p. The following estimate
will be useful. From the exact structure of �n from Theorem 3.3, and (3.10), we
have a crude estimate∣∣X̂n

i (t)
∣∣ ≤ ε−1/3(

1 + (
e · X̂n(t)

)+ + e · η̂n(t)
)
, i /∈ Vp,(4.6)

since no zero paths have been applied to such classes i. Now, for any feasible allo-
cation �n(t) consider a unique, standard, [1, 2] allocation φn(t) ∈ �(Xn(t),Nn)

that is zero for nonbasic activities and is work conserving: min{(e · X̂n(t) − e ·
N̂n), (e · N̂n − ∑

ij φ̂n
ij (t))} = 0. By throughput optimality of the fluid model

[i.e., P− = ∅; see the definitions before (3.10)], we must have
∑

ij μij �̂
n
ij (t) ≤∑

ij μij φ̂
n
ij (t). Using (4.6) and the structure of φn,∣∣φ̂n

ij (t)
∣∣ ≤ ε−1/3(

1 + (
e · X̂n(t)

)+ + e · η̂n(t)
)
, (i, j) /∈ Ep,(4.7)

as well as ∣∣φ̂n
i0,j0

(t)
∣∣ ≤ ε−1/3(

1 + (
e · X̂n(t)

)+ + e · η̂n(t)
)

(4.8)

for the leaf (i0, j0) of the basic simple path, corresponding to p. Together, (4.7),
(4.8) imply that for each station j ∈ J ∩ Vp , connecting exactly two path edges
(i1, j) ∈ Ep and (i2, j) ∈ Ep [this excludes the leaf from (4.8)], we also have

φ̂n
i1,j

(t) + φ̂n
i2,j

(t) ≤ ε−1/3(
1 + (

e · X̂n(t)
)+ + e · η̂n(t)

)
(4.9)
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and due to pool-dependence along the path (4.2) (otherwise it will not hold!), we
get

μi1,j φ̂
n
i1,j

(t) + μi2,j φ̂
n
i2,j

(t) = μi1,j

(
φ̂n

i1,j
(t) + φ̂n

i2,j
(t)

)
(4.10)

≤ μi1,j ε
−1/3(

1 + (
e · X̂n(t)

)+ + e · η̂n(t)
)
.

This proves (3.28). The extension to several pool-dependent paths is
straightforward—the only difference being the inclusion of all pool-dependent
activities (possibly more than two), connected by station j , into the left-hand side
of (4.10). The right-hand side of (4.10) will remain the same.

C. All zero paths satisfy (4.3): by linearity, there exists a constant c > 0, such
that for any feasible set {Mp ≥ 0,p ∈ P0} and ψ ∈ �(x∗ + ∑

p∈P0
mpMp,ν)∑

ij

μij

(
ψij − ψ∗

ij

) ≤ −c
∑

p∈P0

Mp ≤ −ε1/2
∑

p∈P0

‖mp‖Mp.(4.11)

Note that the first inequality in (4.11) becomes an equality if and only if each of the
Mp is zero. Applying (4.11) to processes from (3.10) and using Theorem 3.3(2),
we get for any feasible allocation �n(t),∑

ij

μij �̂
n
ij (t) ≤ −ε1/2∥∥ζ̂ n(t)

∥∥ + εcF

(∥∥X̂n
∥∥∗
t + ∥∥N̂n

∥∥)
(4.12)

+ ε−1/3(
1 + e · η̂n(t)

)
.

Using relation (3.31), we continue∑
ij

μij �̂
n
ij (t) ≤ −ε1/2∥∥ζ̂ n(t)

∥∥ + ε5/6(
1 + ∥∥ζ̂ n(t)

∥∥ + e · η̂n(t)
)

(4.13)
+ ε−1/3(

1 + e · η̂n(t)
) ≤ ε−1/3(

1 + e · η̂n(t)
)
,

where we used ‖ζ̂ n(t)‖(−ε1/2 + ε5/6 + ε5/6ε1/6) ≤ 0 [again, the strict inequality
in (4.3) is crucial for the existence of the “−ε1/2” term!]. And (3.28) follows.

D. Finalizing: we use B and C to complete the theorem. In particular, once
again, the (work-conserving, no nonbasic activities ) allocation φn will be intro-
duced. After that, the sum

∑
ij μij φ̂

n
ij (t) will be decomposed into two different

sums: one will contain all the terms satisfying (4.7)–(4.10) [this will also include
the possible intersections of pool-dependent paths and paths, satisfying (4.3)]; an-
other part of the summation will satisfy (4.13). This completes the proof.

5. Final remarks. The text is an attempt to understand whether a given static
fluid model is throughput optimal; and some words need to be said regarding As-
sumption 2.2, in particular, (a) the treelike structure and (b) the uniqueness of the
solution to (2.4) in general.

(a) To start with, null controllability is clearly impossible if the solution to (2.4)
does not contain a basic path of the length at least 3 (we need to have at least
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two stations and two classes to be connected together by basic activities), so
some kind of connectivity should be assumed. When a connected component con-
tains cycles fully composed by basic activities, one may have trouble defining
weights/directions along simple paths (as was done in Section 3.2), yet one thing
will remain true: a throughput optimal model can only have cycles with weight
zero. Otherwise, a positive path can become negative if applied in the other di-
rection, and vice versa. This brings us back to the very same zero paths, main
ingredients of the current paper.

(b) A mass vector x∗, coming from the solution of (2.4) is a key (!) element due
to Assumption 2.3 about the initial condition. This invites a reasonable question.
What if there is another optimal solution, with the same vector x∗, but a different
graph structure? This is clearly feasible, although both (or, infinite number, in that
case) possible static fluid models would still be either all throughput optimal, or
sub-optimal altogether, since definition (2.7) does not require any special graph
structure.

Now, what if the other solution has a different mass vector, say, x∗∗. Is it possible
that x∗-solution is throughput optimal, while x∗∗ is not? We claim it is not feasible,
at least in the case I = 2 or J = 2, with arguments similar to ones in the proof
of Theorem 3.4 (since e · x∗ = e · x∗∗). The more general structure is still to be
resolved. . . .

APPENDIX: SKETCH OF THE PROOF OF THEOREM 3.3

Using the scaling f̂ = n−1/2f , introduce auxiliary processes Ŷ n
i (t), represent-

ing the scaled number of class-i customers that are in the queue (and not being
served) at time t , and Ẑn

j (t)—the scaled number of servers at station j that are idle
at time t . Clearly, we have the following relations:

Ŷ n
i (t) + ∑

j∈J
�̂n

ij (t) = X̂n
i (t), i ∈ I,(A.1)

Ẑn
j (t) + ∑

i∈I
�̂n

ij (t) = N̂n
j , j ∈ J .(A.2)

The proof can be viewed as generalization of Theorem 2.1 from Atar, Mandelbaum
and Shaikhet [5], whose decomposition used only closed simple paths (called cy-
cles). In particular the set {�̂n

ij , (i, j) ∈ Ea} was decomposed into basic and nonba-
sic activities, respectively, {�̂n

ij , (i, j) ∈ Eba} and {�̂n
ij , (i, j) ∈ Ec

ba}, turning (3.1)
into (see Section 2.3 in [5])

X̂n
i (t) = X̂n

i (0) + Ŵn
i (t) − ∑

j∈J
μij

∫ t

0
Gij

(
X̂n(s) − Ŷ n(s), N̂n − Ẑn(s)

)
ds

+ ∑
p:p-closed simple path

mi,p

∫ t

0
�̂n

p(s) ds,



NECESSARY CONDITION FOR NULL CONTROLLABILITY 427

where �̂n
p corresponds to a unique nonbasic activity, associated with simple path

p and the function G, introduced in [1].
For our purposes, however, that is not enough, since we want to single out

all the terms that can cause an abrupt change of X̂n, and nonwork conservation
is exactly what we are looking for, since, a priori we do not have the relation
e · Ŷ n ∧ e · Ẑn = 0.

The rest of the proof follows the lines of Theorem 2.1 in [5], with an additional
requirement to cover direct nonwork conservation, that is, situations when Ŷ n

i ∧
Ẑn

j > 0 while μij > 0, as well as the open simple paths, corresponding to what we

call an indirect nonwork conservation, that is, situations when Ŷ n
i ∧ Ẑn

j > 0 while
μij = 0. We leave out the details.
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