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VIRAL PROCESSES BY RANDOM WALKS ON RANDOM
REGULAR GRAPHS
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We study the SIR epidemic model with infections carried by k particles
making independent random walks on a random regular graph. Here we as-
sume k ≤ nε , where n is the number of vertices in the random graph, and
ε is some sufficiently small constant. We give an edge-weighted graph re-
duction of the dynamics of the process that allows us to apply standard re-
sults of Erdős–Rényi random graphs on the particle set. In particular, we
show how the parameters of the model give two thresholds: In the subcrit-
ical regime, O(lnk) particles are infected. In the supercritical regime, for a
constant β ∈ (0,1) determined by the parameters of the model, βk get in-
fected with probability β, and O(lnk) get infected with probability (1 − β).
Finally, there is a regime in which all k particles are infected. Furthermore,
the edge weights give information about when a particle becomes infected.
We exploit this to give a completion time of the process for the SI case.

1. Introduction. The spread of an infection throughout a population, often
referred to loosely as an epidemic, has come to be modeled in various ways in the
literature, spurred by the richness of domains in which the notion of a virus has
gone beyond the traditional biological phenomenon. Electronic viruses over com-
puter networks are not the only extension; others include rumour spreading [21] or
broadcasting [5] and viral marketing [3]. Models may vary over domains, but the
underlying principle is one of spread of some unit of information or state through
interaction between individuals.

In much of the literature on the spread of epidemics as well as the dissemination
of information, individuals reside at fixed vertices of a graph and the evolution
of the state of an individual depends on the state of its neighbours in the graph.
In particular if the graph is complete, mean-field (homogeneous mixing) models
have been exploited to study the outcome of diffusion process [10]. More recently,
there has been an increasing interest in understanding the impact of the network
topology on the spread of epidemics in networks with fixed nodes; see [14] for a
review of such results. There has, however, been little analytical work to date on
models where the possible interactions between the nodes are dynamic; that is, the
underlying network structure evolves in time.
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We explore a particular instance of dynamic interaction by assuming that in-
dividuals are mobile particles and can only infect each other if they are in suffi-
ciently close proximity. The model is motivated both by certain kinds of biological
epidemics, whose transmission may be dominated by sites at which individuals
gather in close proximity (e.g., workplaces or public transport for a disease like
SARS, cattle markets for foot-and-mouth disease, etc.) and by malware. Further-
more, it is relevant to studying the dissemination of information in opportunistic
networks [6] where the information is transmitted between users who happen to be
in each other’s range. As in the case of static networks [21] one may be interested
in the time it takes for the rumour to be known to all users.

In our model (elaborated upon below) there are k particles making indepen-
dent, discrete-time, synchronous random walks on an n-vertex r-regular random
graph G. Each particle is in one of three states: susceptible (S), infected (I), or
recovered (R). An infected particle can infect a susceptible particle, which re-
mains infected for a fixed infectious period ξ before recovering permanently. This
is known as the SIR epidemic model and is extensively studied in the literature.
When ξ = ∞ (the SI model) particles never go from I to R.

Two questions can be asked: (1) When ξ < ∞, how many particles ever get
infected? (2) When ξ = ∞, what is the completion time of the process? That is,
how long till the last infection? We address both of these questions by reducing the
dynamics of the process to what we term an interaction graph. This turns out to
have the structure of an Erdős–Rényi (E–R) random graph Gk,q̂ on the set of par-
ticles, where the edge probability q̂ is a function of the parameters of the model.
Infected particles are connected components in Gk,q̂ , and so well-known results
from the literature on E–R random graphs can be applied using our reduction to
answer question (1). In particular, we show how the parameters of the model pro-
duce two thresholds: In the subcritical regime, O(lnk) particles are infected with
high probability (w.h.p.), that is, with probability tending to 1 as n → ∞. In the su-
percritical regime, for a constant β determined by the parameters of the model, βk

get infected with probability β , and O(lnk) get infected with probability (1 − β).
Finally, there is a regime in which all k particles are infected w.h.p.

Furthermore, the interaction graph reduction assigns weights on the edges that
give information about when a particle becomes infected. This information can be
used for addressing question (2), which we do by giving a convergence in proba-
bility. This is detailed in Theorem 2.

While the metaphor of an epidemic is a motivating and illustrative one, this
work is part of the more general scope of interacting particle systems; see, for
example, [2], Chapter 14.

2. Model. Let r ≥ 3 be fixed. Let Gr denote the set of r-regular graphs with
vertex set VG = {1,2, . . . , n} and the uniform measure. Let G = (VG,EG) be cho-
sen uniformly at random (u.a.r.) from Gr . The results in this paper are always
asymptotic in n = |VG|. The notation O,o,�,� have their usual meanings with
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respect to n. We denote by �+(1) a quantity that can be replaced by an arbitrar-
ily large constant. In some contexts where the sign does not matter, we may write
+o(1) instead of −o(1), so as not to lend any significance to the sign. It will be
obvious when this is the case.

Denote the set of particles in the system by P . At step t , let S(t),I(t),R(t) be
the set of susceptible, infected, and recovered particles, respectively. Since a given
particle is in precisely one of these sets at a given time, they form a partition of P .

When two particles x and y meet at some vertex v ∈ G, we call that an xy

meeting, or say x and y are incident. When there is an xy meeting at some time
step t , an interaction takes place between them at that time step with probability
ρ ∈ (0,1], which is a fixed constant parameter of the model. We term such an event
an xy interaction and call ρ the interaction probability. If one of the particles is
infected and the other is susceptible, the infection takes place upon interaction.
The infectious period ξ is not restricted to being finite or constant; it is permitted
to be ∞ or some function of n, for example.

Consider that the time step counter has just changed from t − 1 to t : every
particle x makes an independent move in its random walk. Subsequently, the rules
are as follows:

(1) If x, y are on the same vertex v, there is an xy interaction with proba-
bility ρ; if they are on different vertices, they cannot interact; each particle pair
(non)interaction is independent of every other particle pair (non)interaction.

(2) If x ∈ S(t − 1), then x ∈ S(t), unless there was an xy interaction with at
least one particle y ∈ I(t − 1). In the latter case, we say x was infected at time
t − 1 and write t (x) = t − 1.

(3) If x was infected at time t (x), then x ∈ I(t) for t = t (x) + 1, t (x) +
2, . . . , t (x) + ξ . Subsequently, x ∈ R(t) for all t > t (x) + ξ .

[Note, we assume that R(0) = ∅, and so a particle could only be in R(t) if it had
been infected at some time previous to t .]

Observe two things from the above rules. Firstly, infections are not transitive
in a single time step. For example, suppose x ∈ I(t − 1) meets y, z ∈ S(t − 1) at
vertex v at time step t . If x interacts with y but not z, then y does not pass on the
infection to z at that time step, regardless of whether or not they interact.

Secondly, the rules allow, in principle, for infections to be passed on even with
infectious period ξ = 1; there could be a chain of infections with x infecting y,
which in turn infects z, etc.

A note on notation and terminology: We write [t1, t2] or [t1, t1 + 1, . . . , t2] to
denote the set of time steps {t1, t1 +1, t1 +2, . . . , t2}, and we call these periods. We
may have infinite periods, for example, [T ,T + 1, . . .]. When we refer to “time t”
we are referring to step t on the counter—this is a discrete-time process. The first
time step is t = 1, and t = 0 is not a time step, but a useful convention to express
the initial condition.
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3. Assumptions. We first specify some assumptions of the model.
If each particle is at distance at least ω(k,n) ≡ �(ln lnn + lnk) from every

other, then we say the particles are in general position (g.p.).
We assume the following: (i) G is typical (“typical” is defined in Section 7.1).

(ii) The number of particles k ≤ nε where ε > 0 is some sufficiently small constant.
(iii) Particles start in general position. (iv) I(0) = {x0}, and we refer to x0 as the
initial infective. Of course we also assume |R(0)| = 0.

A graph G is typical if it satisfies certain conditions. The definition will be
given in following sections, but for now it suffices to say that most graphs in Gr

are typical; that is, a graph G picked u.a.r. from Gr will be typical w.h.p.
Assumption (iii) is also not unreasonable; it is straightforward to verify that if

the positions of each of the k particles are chosen u.a.r. from the vertices of G,
then w.h.p. they will be in g.p. with respect to each other if ε is small enough.

It is not difficult to extend our results to a greater number of initially infected
particles, but we make assumption (iv) for convenience and clarity.

4. Results. Let Mk be the total number of particles that ever get infected in
the course of the process, and let Tk be the completion time of the process, the time
step at which the last infection takes place. Define

θr = r − 1

r − 2
(1)

and

ψ = ρ(r − 1)

r − 2 + ρ
(2)

(observe that ρ ≤ ψ ≤ 1).

THEOREM 1. Assume the conditions of Section 3, and suppose k → ∞ as
n → ∞. Let

� = k

(
1 −

(
1 − ψ

θrn

)ξ)
.(3)

(i) If � < 1, then w.h.p., Mk = O(lnk).
(ii) If � → c for any constant c > 1, then with probability (1 + o(1))β , Mk =

(1 + o(1))βk, otherwise Mk = O(lnk). β is the unique solution in (0,1) of the
equation 1 − x = e−cx .

(iii) If � > (1 + ε) lnk where ε > 0 is a constant, then w.h.p. Mk = k (i.e., all
the particles get infected).

Theorem 1 is for finite ξ , but observe that taking the convention that x∞ = 0
for |x| < 1 means that part (iii) is consistent with the SI model, for which all
particles get infected almost surely. The theorem effectively gives conditions for
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transitions between different possible “regimes” of behaviour. The most interesting
is the regime of part (ii), which is entered as � transitions from � < 1 to � > 1.
Roughly speaking, in this transition the number of infected particles goes from
very few (O(lnk)) w.h.p., to a constant fraction βk with probability β , or O(lnk)

with probability 1 − β .
Concerning the completion times, we shall demonstrate that for ξ = ∞, (i.e., the

SI model) how the edge weightings can be exploited by application of a theorem
of [15] to get the following.

THEOREM 2. Assume the conditions of Section 3, and suppose k → ∞ as
n → ∞. When ξ = ∞, we have the following convergence in probability:

Tk

n lnk/k

p→2
θr

ψ
,(4)

where Tk is the completion time for k particles, that is, the time at which the final
particle is infected.

5. Related work. In this section, we briefly describe some of the relevant
related work on diffusion processes like epidemic spreading and the dissemination
of information in mobile environments.

There has recently been a growing body of work in the interacting particle sys-
tems community analysing epidemic models with mobile particles. In [11] the
authors provide a review of the results, techniques and conjectures when the graph
is an infinite lattice. In [22], the authors explore by means of mean-field approxi-
mations the evolution of the number of infected individuals when individuals per-
form random motions on the plane. Recent papers by Peres et al. [19], Pettarin et
al. [20] and Lam et al. [17] analyse mobile networks modeled as multiple random
walks; as Brownian motion on R

d in [19], as walks on a 2-dimensional grid in
[20] and as walks on a grids of dimension 3 and above in [17]. In each case, there
is a parameter r within which distance a pair of walks can communicate, produc-
ing a communication graph (which is disconnected below a certain threshold rc).
Peres et al. [19] study various aspects of the communication graph, such as how
long it takes a particular point to become part of the giant component. Pettarin et
al. [20] study the broadcast time TB of a piece of information and originating in
one agent in relation to r . Setting r = 0 means information is passed only when
particles are coincident. In this case, TB is equivalent to our completion time, and
the authors of [20] give, for k ≥ 2, TB = �̃(n/

√
k) w.h.p.2 In [17] r = 1 and the

results they have show a significant difference to the 2-dimensional case of [20].
We state their results for the 3-dimensional case: There exists a constant c such

2The tilde notation hides polylogarithmic factors. For example, Õ(f (n)) = O(f (n) logc n) for
some constant c.
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that if cn1/3 log2 n1/3 < k < n, then TB = �̃(n5/6/
√

k); if k < cn1/3 log−2 n1/3,
then TB = �̃(n/k). Statements are w.h.p.

Of closer relevance to this work are [12] and [13]. In both of these papers, the
authors study infections carried by random walks on graphs. In particular, Dim-
itriou, Nikoletseas, and Spirakis [12] analyse an SI model similar to ours; mul-
tiple random walks on a graph G that carry a virus, and the quantity of interest
is the completion time. They give a general upper bound E[Tk] = O(m∗ lnk) for
any graph G, where m∗ is the expected meeting time of a pair of random walks
maximised over all pairs of starting vertices. Special cases are analysed too. In par-
ticular, they give an upper bound of E[Tk] = O(nr

k
lnk lnn) for random r-regular

graphs. This is a factor lnn larger than the precise value of the process considered
in this paper.

Finally, in [5], Baumann, Crescenzi, and Fraigniaud study flooding on dynamic
random networks. A fixed set of n vertices is part of a dynamic random graph pro-
cess where each edge is an independent two-state Markov chain, either existing or
not existing. A single initial vertex initially holds a message, and any vertex which
receives this message broadcasts it on existing edges for the next k steps. Although
flooding is a different process to multiple random walks, the authors develop a re-
duction to a weighted random graph with some similarity to the interaction graphs
we present. It allows them to derive relations between the edge-Markov proba-
bilities and state asymptotic bounds on the number of vertices that receive the
message, as well as the broadcast (equivalently, completion) time.

6. Overview. Section 7 addresses the behavior of (multiple) random walks on
a graph, drawing on established results from the literature. It introduces the prod-
uct graph framework, used for mapping multiple walks on G to a single walk on
the product graph H . Thus, analysis of the multiple walks can be done by anal-
ysis of the single walk on H . After the background theory is given, the first visit
lemma is presented. This lemma, first established in [7], then subsequently refined
in other papers, gives the probability of a walk visiting a vertex v for the first time
(after mixing) at step t . It is used to establish new lemmas, created specifically
for the analysis of the problem in this paper. The culmination is Lemma 9, which
calculates probabilities of meetings of particle pairs. This lemma is the main tool
of Section 7 that is used in subsequent sections.

In Section 8 we introduce the interaction graph I, a complete grah on the particle
set P with edge weights determined by the outcome of the process. I can therefore
be represented by a random

(k
2

)
-vector, some entries of which will be ∞ if their

associated particles were never infected. The edge weights give timing information
on particle infection times, encoding which particles get infected and when those
infections occurred.

Our approach is to analyse special cases and build upon them until reaching
the full general case. We start in Section 9 with the SI model with ρ = 1, then
generalise that in Section 10 to the SI(R), keeping ρ = 1. Finally, in Section 11,
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we give the most general case, SI(R) with ρ ≤ 1. We reiterate that whilst ξ is
permitted to be ∞ or take any positive integer value (which may vary with n), ρ is
a constant.

A simple algorithm can be used to construct I from the unfolding of the pro-
cess, but to actually calculate the probability of a particular realisation of I, we
will employ the tools of Section 7, in particular, Lemma 9. This lemma gives the
probability of a first meeting time of a pair of particles being at time t , but t is
required to be at least  = �(T 3), where T is the mixing time of the walks. It
cannot account for what happens in the first  steps. As such, rather than calculate
the weights of I, we will couple the process to a slightly modified version of it that
demands that the interaction probability ρ is temporarily switched to zero in the
“blind” periods—those length- periods which cannot be accounted for—before
being switched back. When I is constructed under the new process, it may turn out
differently to what it would have been under the original process. Therefore, for
the ρ = 1 case, we will use I′ to specify the interaction graph under the modified
process.

In Section 9, where ξ = ∞, it will be shown that the edge weights of I′ (which
will all be finite, almost surely) are “almost” independent, being well approxi-
mated by independent and identically distributed (i.i.d.) random variables having
geometric distribution with parameter 1/(θrn), denoted Geom(1/(θrn)). Thus, I′
can be modeled by �, a complete graph with i.i.d. random edge weights having
that distribution. We can use � to calculate distances and relate these to I′. We then
need to show I′ is a good approximation for I. We do so by showing that w.h.p.,
the two graphs, constructed under their respective processes, will give the same
edge weights when the processes are coupled.

Section 9 concludes with the proof of Theorem 2 for the special case ρ = ψ = 1.
This is done in Section 9.3 by an application of a result of Janson [15] on distances
in randomly edge-weighted graphs. The theorem is applied to � and transfers by
the above arguments to I.

In Section 10, where we address ξ < ∞ (but keep ρ = 1), we try to quantify the
size of the outbreak. A particle x is infected if and only if there is a ξ -path in I from
the initial infective x0 to x. A ξ -path is one in which all edge weights in the path
are at most ξ . Equivalently, the infected particles form the connected component
x0 belongs to when we delete all edges in I with weights exceeding ξ . Referring to
this connected component as Cfξ (I), we relate Cfξ (I) to Cfξ (�), the equivalent in �.
The function fξ (F ) takes a graph F and returns the same graph, but with edges
weighing more than ξ deleted. Ignoring edge weights, fξ (�) is an Erdős–Rényi
random graph on k vertices Gk,q̂ with edge probability q̂ = 1 − (1 − 1

θrn
)ξ . Conse-

quently, standard results on Erdős–Rényi random graphs give characterisations of
the size of Cfξ (�), which in turn transfer to Cfξ (I′) and subsequently to Cfξ (I). Thus,
we can determine how many particles get infected as a function of the parameters
of the model. This will give us Theorem 1 for the special case ρ = 1.



484 M. ABDULLAH, C. COOPER AND M. DRAIEF

We then move on to Section 11, where we deal with ρ < 1. We begin in Sec-
tion 11.1 with a heuristic treatment of a two particle system, consisting of the initial
infective x0 and another particle, which is susceptible. This will allow us to outline
the techniques in a clear and concise way without being hindered by detail. Sub-
sequently, in Section 11.2, we will formalise the arguments given in Section 11.1,
extended to all k particles. The core of this section will be Lemma 23. This lemma
is essentially a generalisation of Lemma 9. It will allow us to determine probabil-
ities of having a first interaction at some time t , while allowing for the possibility
that there may have been meetings of particles prior to t where no interaction took
place. Section 11.2 builds on and generalises the previous ones where ρ = 1, and
we will detail how Theorems 1 and 2 are justified in their full generality by the
results in this section.

Finally, in Section 12, we make concluding remarks, including possible exten-
sions.

7. Random walks on graphs: Tools and techniques. In this section we de-
tail key concepts and lemmas that we use to analyse the viral process. In Sec-
tion 7.1 we give a formal definition of typical graphs. Knowing the properties of
typical graphs, we can make statements about how walks behave on them. In Sec-
tion 7.2 we describe how the long-term behaviour of a random walk—specifically
its convergence to the stationary distribution—relates to the eigenvalues of its tran-
sition matrix. We also show how to map the k multiple walks on G on to a single
walk on another graph, the product graph H . Much of the analysis of meeting
times between walks is done through the framework of the product graph. A par-
ticular pair of particles meeting in G maps to the single walk on H being at a set
of vertices of H . Such a set of vertices is contracted to a single vertex, resulting in
a derived graph � upon which a single walk moves. Thus calculations of particle
meeting times in G are done by calculating the hitting times of a single walk to a
contracted vertex in �.

Lemma 4 shows that for each of the graphs G,H,�, the walks are rapidly mix-
ing, meaning that they converge to their respective stationary distributions quickly.
This is a crucial component of the proofs and the behaviour of the processes. In
Section 7.3 we introduce a key lemma, Lemma 6, which allows us to make pre-
cise calculations of ft (u → v), the probability that a walk starting at u visits v for
the first time (after mixing) at time t . When this lemma is applied to contracted
vertices in �, it gives us probabilities of meeting times of particles walking on G.
Lemma 5 in Section 7.3 gives formal justification for the use of vertex contraction
to reason about visits to sets, and Section 7.4 investigates the probability that a
particular vertex v was visited when a set of vertices S with v ∈ S has been visited.

Lemma 6, in conjunction with Lemmas 5, 7, and 8 culminate in Lemma 9 in
Section 7.5. This lemma gives probabilities for a particular pair of particles meet-
ing at time t and no other pair meeting before hand. It is the main tool used in
Section 9.
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7.1. Typical graphs. Let

L1 = �ε1 logr n�,(5)

where ε1 > 0 is a sufficiently small constant.
A vertex v is treelike if there is no cycle in the subgraph G[v,L1] induced by

the set of vertices within (graph) distance L1 of v.
A cycle C is small if |C| ≤ L1.

P1. G is connected and not bipartite.
P2. The second eigenvalue of the adjacency matrix of G is at most 2

√
r − 1+ε,

where ε > 0 is an arbitrarily small constant.
P3. There are at most n2ε1 vertices on small cycles.
P4. No pair of cycles C1,C2 with |C1|, |C2| ≤ 100L1 are within distance 100L1

of each other.

We say an r-regular graph G is typical if it satisfies properties P1–P4.
Note that P3 implies that at most nεC vertices of a typical r-regular graph are

not treelike, where

nεC = O
(
rL1n2ε1

) = O
(
n3ε1

)
.(6)

LEMMA 3 ([9]). Let G′
r ⊆ Gr be the set of typical r-regular graphs. Then

|G′
r |/|Gr | → 1 as n → ∞.

P1 implies that a random walk will converge to a stationary distribution π on
the vertex set. Because the graph is regular, π will be the uniform distribution. P2
implies that a random walk will converge quickly to the stationary distribution; it
will be rapidly mixing. In fact, for all the graphs we consider, O(k lnn) steps is
sufficient for our results. A typical graph also has mostly treelike vertices.

7.2. Convergence to stationarity and product graph formulation. Let G be a
connected graph with n vertices and m edges. For random walk Wu starting at a
vertex u of G, let Wu(t) be the vertex reached at step t . Let P = P(G) be the
matrix of transition probabilities of the walk, and let P t

u(v) = Pr(Wu(t) = v). If
the random walk Wu on G is ergodic, it will converge to stationary distribution π .
Here π(v) = d(v)/(2m), where d(v) is the degree of vertex v. We often write
π(v) as πv . The eigenvalues of P(G) are λ0 = 1 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −1. Let
λmax = max(λ1, |λn−1|). The rate of convergence of the walk is given by∣∣P t

u(x) − πx

∣∣ ≤ (πx/πu)
1/2λt

max.(7)

For a proof of this, see, for example, Lovász [18].
To ensure that the walk is both ergodic and that λmax = λ1, we make the chain

lazy; that is, the walk only moves to a neighbour with probability 1/2. Otherwise
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it stays where it is. This shifts each eigenvalue up by 1, and so λ1 ≥ λn−1 = 0,
and (7) still holds.

Now define the product graph H = H(G,k) = (VH ,EH ) to have vertex set
VH = V k and edge set EH = Ek . The vertices v of H consist of k-tuples
v = (v1, v2, . . . , vk) of vertices vi ∈ VG, i = 1, . . . , k, with repeats allowed. Two
vertices v,w are adjacent if (v1,w1), . . . , (vk,wk) are edges of G. The purpose of
defining the graph H is that we can replace the k random walks Wui

(t) on G with
current positions vi and starting positions ui by a single walk WH

u (t). Note that
because G is assumed to be simple, no vertex in VG has a loop. Consequently, no
edge e = ((v1,w1), . . . , (vk,wk)) in EH has vi = wi for any 1 ≤ i ≤ k. This is the
case despite the actual walk on the graph being “lazy” for part of the time, as will
be described below.

We introduce some extra notation: for a graph F = (VF ,EF ), a vertex v ∈ VF ,
and a set of vertices S ⊆ VF , let dF (v) be the degree of vertex v in F , and let
dF (S) = ∑

v∈S dF (v).
Now, if S ⊆ VH , then � = �(S) is obtained from H by contracting S to a single

vertex γ (S). All edges, including loops and parallel edges are retained, producing
a multigraph. Thus d�(γ ) = dH (S) = rk|S|. Moreover � and H have the same
total degree (nr)k , and the degree of any vertex of �, except γ , is rk .

DEFINITION 1 (Mixing time, maximal mixing time). For F ∈ {G,H,�}, let
WF

u be a lazy random walk starting at u ∈ VF . The mixing time TF is the smallest
t such that, for graph F = (VF ,EF ) and t ≥ TF ,

max
u,x∈VF

∣∣P t
u(x) − πx

∣∣ ≤ minx∈VF
(πx)

n3 .(8)

A maximal mixing time T is defined as

T = max
{
T�(S) :S ⊆ VHdH (S) ≤ k2nk−1rk}.

Observe that the mixing time T� depends on the particular set of vertices S that
gets contracted. The maximal mixing time is defined for convenience; if there is
ambiguity about what the mixing time is, or a single mixing time is stated for a
number of contractions of sets S, then it is safe to assume the maximal mixing
time.

The following is a slightly modified version of a lemma proved in [9].

LEMMA 4 ([9]). Let G be typical, and let S ⊆ VH be such that dH (S) ≤
k2nk−1rk .

For k ≤ n,

TG = O(lnn), TH = O(lnn) and T� = O(k lnn).
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As a consequence, a maximal mixing time T has T = O(k lnn).
We analyse our walks in the product graph and assume that we keep the chain

lazy for the duration of the mixing time. At this point it is mixed, and we can
stop being lazy. A lazy walk in the product graph maps to a process where all
the walks move or do not move together. That is, with probability 1/2, each walk
independently takes a random step, and with probability 1/2 none of them do.
Consider the following two conditions: (i) interactions can only take place upon
moving to a new vertex, and (ii) ξ can only be decreased (by 1) upon moving to a
new vertex. It is not difficult to see (e.g., through coupling) that the laziness of the
walk cannot affect the infection outcomes. Laziness affects time, but only during
mixing periods since we do not keep the chain lazy thereafter.

The following lemma formalises the notion that we can deal with a first visit
(after the mixing time) to a member of a set S of vertices of a graph H by con-
tracting S into a single vertex γ = γ (S) and instead deal with a first visit to γ on
this altered graph.

LEMMA 5 ([8]). Let G be typical, S ⊆ VH be such that dH (S) ≤ k2nk−1rk ,
and let k ≤ nε for sufficiently small ε.

Let WH
u be a random walk in H starting at u /∈ S, and let W�

u be a random
walk in � starting at the same vertex u �= γ . Let T be a mixing time satisfying (8)
in both H and �. Let Aw(t) be the event that no visit was made to w in the period
[T ,T + 1, . . . , t]. Then

Pr
(
Aγ (t);�) = Pr

(∧
v∈S

Av(t);H
)(

1 + O

(
1

n3

))
,

where the probabilities are those derived from the walk in the given graph.

7.3. First visit lemma. In this section, we introduce existing results about
“first visit” behaviours for random walks on graphs. For the graphs we consider,
Lemma 6 below, the first visit lemma was proved in [9]. It was initially presented
in [7] then refined and applied in a series of subsequent papers, amongst them [8,
9].

Below, for some ε > 0, we denote by the term �+(1) a quantity that is at least
some positive constant C(ε), which can be made arbitrarily large by making ε

sufficiently small.

LEMMA 6 (First visit lemma [7, 9]). Let G be typical, S ⊆ VH be such that
dH (S) ≤ k2nk−1rk , and let k ≤ nε for sufficiently small ε.

For F ∈ {G,H,�} let T = TF and WF
u be a walk started at u ∈ VF . Let ft =

ft (u → v) be the probability that the first visit of WF
u to v ∈ VF in the period

[T ,T + 1, . . .] occurs at step t , and let Av(t) be the event that Wu does not visit v

in the period [T ,T + 1, . . . , t].



488 M. ABDULLAH, C. COOPER AND M. DRAIEF

Let

λ = 1

KT
(9)

for some sufficiently large constant K . Then, for all t ≥ T ,

ft (u → v) = (
1 + O(T πv)

) pv

(1 + pv)t+1 + O
(
T πve

−λt/2)
(10)

and

Pr
(
Av(t)

) = (1 + O(T πv))

(1 + (1 + O(T πv))πv/Rv)
t + O

(
T 2πve

−λt/2)
,(11)

where

pv = πv

Rv(1 + O(T πv))
(12)

and

Rv = θr + O
(
k2n−�(1) + (k lnn)−�+(1)).(13)

We briefly discuss the terms Rv in (12) and �+(1). For a given graph, Rv is the
expected number of returns in the mixing time to a vertex v, for a walk that starts
at v. The initial placement of the walk at v at time t = 0 is counted. To usefully
apply the lemma, one needs to calculate (or approximate) Rv . Consider the case
where v is a vertex of a r-regular random graph G. The walk is rapidly mixing
[the mixing time T being O(lnn)], and for most vertices v, the local structure
is a tree. Because of this, the quantity θr = r−1

r−2 , the expected number of returns
(ever) to the root of an r-regular infinite tree, provides a close approximation to Rv

on G. For Rγ(S), the expected number of returns in the mixing time to a contracted
vertex γ (S) in the product graph, our bound on the mixing time T� is O(k lnn).
However, it turns out that θr also provides a good approximation for Rγ(S). This
was determined in [9], and our statement of the first visit lemma incorporates both
the general statement introduced in [7], as well as the bound on Rγ(S) given in
[9]. The fact that the �+(1) term in (13) can be an arbitrarily large constant is
demonstrated in the derivation of Rv in [9], Lemma 19.

A consequence of the condition dH (S) ≤ k2nk−1rk is that d(γ (S)) ≤ k2nk−1rk ,
so πγ (S) ≤ k2/n. Since Rγ(S) = (1 + o(1))θr , we have pγ (S) = O(πγ (S)/Rγ (S)) =
O(πγ (S)) = O(k2/n). Therefore, T πγ (S) = O(k3 lnn/n) = o(1), if k ≤ nε and ε

is small enough.
We will rewrite (10) and (11) in a form that is more natural in the context of this

paper, in particular, a form that resembles that of a geometric distribution. First
note that (

(1 − pv)(1 + pv)
)t = (

1 − p2
v

)t = 1 − O
(
p2

vt
)
,
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so

1

(1 + pv)t
= (1 − pv)

t

1 − O(p2
vt)

= (
1 + O

(
p2

vt
))

(1 − pv)
t

= (
1 + O

(
π2

v t
))

(1 − pv)
t .

In the above we have used the fact that pv = �(πv) since Rv = (1 + o(1))θr for
the graphs in this paper.

We re-write 10 as follows:

ft (u → v) = (
1 + O(T πv)

) pv

(1 + pv)t+1 + O
(
T πve

−λt/2)
= (

1 + O(T πv)
)(

1 − O(pv)
)(

1 + O
(
π2

v t
))

pv(1 − pv)
t

+ O
(
T πve

−λt/2)
= [

1 + O(T πv) + O
(
π2

v t
) + O

(
T e−λt/2(1 − pv)

−t )]pv(1 − pv)
t .

Now

e−λt/2(1 − pv)
−t = (

e1/(2KT )(1 − pv)
)−t

≤ (
e1/(2KT )e−2pv

)−t
,

and 1
2KT

− 2pv = �(1/T ) since, as discussed above, T πv = o(1).
Thus, we can write (10) in the form

ft (u → v) = [
1 + O(T πv) + O

(
k4t/n2) + O

(
T 2e−�(t/T ))]pv(1 − pv)

t .(14)

Similarly, (11) can be written as

Pr
(
Av(t)

) = [
1 + O(T πv) + O

(
k4t/n2) + O

(
T 2e−�(t/T ))](1 − pv)

t .(15)

7.4. Which vertex in the set S was visited? For a set of vertices S, the follow-
ing lemma gives the probability that a particular vertex v ∈ S is visited when S is
visited for the first time after the mixing time.

LEMMA 7. Let G be typical, S ⊆ VH be such that dH (S) ≤ k2nk−1rk and let
k ≤ nε for sufficiently small ε.

Let γ be the contraction of S in H , and for v ∈ S, let δ be the contraction
of S \ {v} in H , resulting in graphs �(S) and �(S \ {v}), respectively. Let T be
the mixing time satisfying (8) in both �(S) and �(S \ {v}). Let pv,pγ and pδ be
as given by (12) for v, γ, δ in their respective graphs. Let εv be the solution to
pγ − pδ = pv(1 + εv).



490 M. ABDULLAH, C. COOPER AND M. DRAIEF

For t ≥ 2(T + L) where L = T 3, let Bv = Bv(t) be the event that the first visit
to S in the period [T ,T + 1, . . .] occurs at step t and that the visit is to node v ∈ S.
Then

Pr(Bv) =
(

1 + (
1 + o(1)

)
εv + O(Lπγ ) + O

(
k4t

n2

))
pv(1 − pγ )t .(16)

Note that when v is connected only to other vertices in S, it must be that
Pr(Bv) = 0. The RHS of (16) is consistent with this since in such a case, εv =
−1 ± o(1).

PROOF OF LEMMA 7. It is enough to prove the lemma for a two-vertex set
S = {u, v}, as one vertex can always be a contraction of a set. Let t be expressed
as t = 2T + L + s, where s ≥ L. Divide [0, t] into successive intervals of length
T , s, T ,L, respectively, that is, [0, T −1], [T , s +T −1], [s +T , s +2T −1], [s +
2T , t].

Let A be the event that W(σ ) /∈ {u, v} for σ ∈ [T , s +T −1] and that W(t) = u,
but W(σ ) �= u for σ ∈ [s + 2T , t − 1]. Contract S to make γ = γ (S) in [T ,T +
s − 1]. Applying (15) to the period [T , s + T − 1], that is, letting t = s + T − 1,
and noting that T = O(k lnn) and s ≥ L = T 3

Pr
(
Aγ (s + T − 1)

)
=

(
1 + O(T πγ ) + O

(
k4s

n2

)
+ O

(
T 2e−�(T 2)))(1 − pγ )s+T −1

=
(

1 + O(T πγ ) + O

(
k4s

n2

))
(1 − pγ )s+T −1.

Now, starting from some vertex x at time s + T , we apply (14) for u to not be
visited in the period [s + 2T , t − 1] then be visited at t ,

ft−s−T (x → u)

=
(

1 + O(T πu) + O

(
k4t

n2

)
+ O

(
T 2e−�((t−s−T )/T )))(1 − pu)

t−s−T pu.

Noting t − s − T = L + T ≥ T 3,

ft−s−T (x → u) =
(

1 + O(T πu) + O

(
k4t

n2

))
(1 − pu)

L+T pu.

Multiplying them together,

Pr(A) = Pr
(
Aγ (s + T − 1)

)
ft−s−T (x → u)

=
(

1 + O(T πγ ) + O

(
k4t

n2

))
(1 − pγ )s+T −1(1 − pu)

L+T pu

≤
(

1 + O(T πγ ) + O

(
k4t

n2

))
(1 − pγ )s(1 − pu)

Lpu.
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Now,

(1 − pγ )s(1 − pu)
L = (1 − pγ )t

(
1 − pu

1 − pγ

)L

(1 − pγ )−2T

= (1 − pγ )t
(

1 + pγ − pu

1 − pγ

)L(
1 + O(T πγ )

)
= (1 − pγ )t

(
1 + O(Lπγ )

)(
1 + O(T πγ )

)
= (1 − pγ )t

(
1 + O(Lπγ )

)
.

Let Bu be the event that W(t) = u and W(σ ) /∈ {u, v} for σ ∈ [T , t − 1]. Then
Bu ⊆ A and so Pr(Bu) ≤ Pr(A). It follows that

Pr(Bu) ≤ pu(1 − pγ )t
(

1 + O(Lπγ ) + O

(
k4t

n2

))
.(17)

However, by contracting S we have that

Pr(Bu ∪Bv) = (
1 + O(T πγ ) + O

(
k4t/n2))

pγ (1 − pγ )t ,

and so

Pr(Bv) ≥ Pr(Bu ∪ Bv) − Pr(Bu)

≥ (
1 + O(Lπγ ) + O

(
k4t/n2))

(pγ − pu)(1 − pγ )t(18)

= (
1 + (

1 + o(1)
)
εv + O(Lπγ ) + O

(
k4t/n2))

pv(1 − pγ )t .

The result follows from (17) and (18). �

7.5. Particle pair meetings. Consider the (unordered) pair of particles (x, y),
x, y = 1, . . . , k. Particles x and y being at the same vertex in G maps in the prod-
uct graph to a set of vertices S = {v = (v1, v2, . . . , vk) :vx = vy} ⊂ VH . We can,
therefore, calculate the probability of an xy meeting in G at time t by calculating
the probability of the single random walk WH

u on H visiting S at time t . This in
turn is done by the contraction described above, and calculating the probability of
the walk W�

u on � visiting γ (S) at time t . These two times are asymptotically
equal by Lemma 5.

More generally, let A ⊆ {(x, y) :x, y ∈ P, x �= y} be a set of particle pairs. Con-
sider the event {for some (x, y) ∈ A there is an xy meeting at time t}. In the prod-
uct graph this maps to the event {WH

u (t) ∈ S} where S = {v = (v1, v2, . . . , vk) :
vx = vy for some (x, y) ∈ A}.

To use Lemma 6 for the walk W�
u on � visiting γ (S), we need to calculate the

relevant pv as per (12).

LEMMA 8. Let G be typical and let k ≤ nε for sufficiently small ε.
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For a set of particle pairs A, let S(A) ⊂ VH be such that v = (v1, v2, . . . , vk) ∈
S if and only if, for some pair (x, y) ∈ A, vx = vy where vx (resp., vy ) is the
position of particle x (resp., y) in G. Then in � = �(S(A)),

pγ = |A|
θrn

(
1 − O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
,(19)

where γ = γ (S(A)).

PROOF. Let N = |S(A)|. A particular pair (x, y) ∈ A can be on n possible
different vertices in G, and for each one, the other particles can be on nk−2. Thus
N ≤ |A|nk−1. Further, N ≥ N ′ where N ′ is the number of v ∈ H such that only
one of the particle pairs occupy the same node of the graph, and

N ′ ≥ |A|nk−1 − |A|2nk−2 = |A|nk−1
(

1 − O

(
k2

n

))
.

Thus, N = |A|nk−1(1 − O(k2

n
)) and since each vertex of H has degree rk and

contraction preserves degree,

πγ = |A|rknk−1

nkrk

(
1 − O

(
k2

n

))
= |A|

n

(
1 − O

(
k2

n

))

and

T πγ = O

( |A|k lnn

n

)(
1 − O

(
k2

n

))
= O

(
k3 lnn

n

)

since |A| ≤ (k
2

)
.

Hence (12) becomes

pγ = (|A|/n)(1 − O(k2/n))

(θr + O(k2n−�(1) + (k lnn)−�+(1))(1 + O(k3 lnn/n))

= |A|
θrn

(
1 − O

(
k3 lnn

n�(1)
+ 1

(k lnn)�
+(1)

))

= |A|
θrn

(
1 − O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))

when ε is small enough. �

LEMMA 9. Let G be typical, and let k ≤ nε for sufficiently small ε.
Let  = 2(T +T 3) where T is a maximal mixing time. For t ≥ , a set of particle

pairs A and (x, y) ∈ A, let B(x,y)(t) denote the following event: There is no ab

meeting for any (a, b) ∈ A in the period [, t − 1], and only xy meet at time t .
Then

Pr
(
B(x,y)(t)

) =
(

1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

+ k4t

n2

))
p

(
1 − |A|p)t

,(20)
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where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
.(21)

PROOF. Let S ⊂ VH be the set of vertices in H which correspond to x and
y being incident in G, but no other pair (a, b) ∈ A being incident. |S| ≤ nk−1

and |S| ≥ nk−1 − |A|2nk−2 = nk−1(1 − O(k4

n
)). By similar calculations as in

Lemma 8, we get

pv = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
,

where v = γ (S).
We use Lemma 7 with Lemma 8. Referring to (16), Lπγ = O(k5(lnn)3/n) and

εv = O

(
k2

n�(1)
+ k2

(k lnn)�
+(1)

)
= O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

)
.

Subsequently, (16) gives us (20). �

Thus far, we have presented a set of lemmas that allow us to calculate probabil-
ities for meetings between subset of the k particles. This was done via the product
graph framework, that allowed us to map the state of the k walks on G to a single
walk on H , then analyse meetings between walks on G in terms of the single walk
on H visiting specific vertices. From here on, we can largely forget about H , and
just use the lemmas we have established through it, in particular, Lemma 9, which
will be the main tool used to calculate probabilities of outcomes of the process.

In the next section, we will describe the interaction graph framework, which
allows us to map the unfolding of the process into a set of edge weights that capture
timing and outbreak information. We will then use the tools from this section to
calculate probabilities of particular interaction graphs being realised.

8. Interaction graph. The interaction graph I = (P,EI) is a weighted com-
plete graph on the particle set P , thus EI = {(x, y) :x, y ∈ P, x �= y}. For a parti-
cle x, let t (x) be the time at which x is infected, or ∞ if it never gets infected. For
an interaction edge e = (x, y) ∈ EI, let t (e) = min{t (x), t (y)} [meaning t (e) = ∞
if neither x nor y gets infected]. Then the weight wI(e) of the edge is a random
variable defined as

wI(e) =
{

min
{
t − t (e) : t > t (e), xy interaction at t

}
, if t (e) < ∞,

∞, otherwise.
(22)

In the particular case that ρ = 1, an interaction happens with every meeting, in
which case the edge weight represents the time elapsed between the infection and
the next meeting.
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For the SI model, that is, ξ = ∞, every particle will get infected almost surely,
and so no edge of I will have weight ∞. This will not, in general, be the case for
the SIR model.

We can think of a timer or clock associated with each interaction edge e =
(x, y). The clock becomes active when either x or y becomes infected, and stops
when they next interact. Hence, when a particle x gets infected, one clock stops
being active, and generally, some number become active simultaneously. The ex-
ception to the latter is when all other particles became infected before x, in which
case, the clocks associated with x had already become active previously.

Thus, the weighted complete graph I can be represented by a random
(k
2

)
-

dimensional vector (wI(ei))i=1,...,(k
2)

where the edges are labelled in some ar-

bitrary order. A realisation of the graph I is a specific set of values z =
(z1, z2, . . . , z(k

2)
) for each random variable wI(ei).

9. The SI model with ρ = 1. This section deals with the special case ξ = ∞,
ρ = 1.

Two key ideas we use are that (1) the meeting times between pairs of particles
are almost independent, and that (2) the meeting time for a pair of particles (x, y)

is roughly distributed as Geom( 1
θrn

), that is, as the geometric distribution with

parameter 1
θrn

. We formalise (1) and (2) in Section 9.2.
Let F be a weighted graph on P . For a particle x ∈ P , denote by dF (x) the

weighted distance (i.e., shortest weighted path length) from the initial infective
x0 to x. Furthermore, for an edge (i.e., particle pair) e = (x, y), let dF (e) =
min{dF (x), dF (y)}. The interaction graph allows us to relate weighted distance
to infection time. Lemma 10 below holds for ρ ≤ 1.

LEMMA 10. For a particle x, t (x) = dI(x), and for an edge e ∈ EI, t (e) =
dI(e).

PROOF. For a particle x, let P = (p0 = x0,p1,p2, . . . , pl = x) be a shortest
path from x0 to x in I. For 0 ≤ i ≤ l − 1, observe t (pi+1) ≤ t (pi) + wI(pi,pi+1),
thus, iterating, t (x) ≤ ∑l−1

i=0 wI(pi,pi+1) = dI(x).
Now, for x to get infected, there must be a chain of infections Q = (x0 =

q0, q1, . . . , ql′ = x) from one particle to another starting from x0. For 0 ≤ j ≤
l′ −1, since qj+1 is infected by qj , we have t (qj+1) = t (qj )+wI(qj , qj+1). Thus,

iterating, we have t (x) = ∑l′−1
j=0 wI(qj , qj+1) ≥ dI(x). �

In subsequent sections, this reduction is used to determine a completion time for
the process and to derive another graph that gives the number of infected particles
in the case ξ < ∞.
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9.1. (Almost) building an interaction graph. One can build I simply by ob-
serving the process unfolding and starting and stopping clocks as it does so to
determine edge weights. To calculate the probability of I taking a particular value
[represented as a

(k
2

)
-vector of edge weights], we will use Lemma 9. However, this

lemma only allows us to calculate the meeting times at values of t ≥  = 2(T +T 3)

where T = O(k lnn) is the mixing time. As such, we couple the process to a
slightly modified version of it, and construct the interaction graph under the new
process. We shall refer to this interaction graph as I′.

Recall the role of clocks in determining edge weights of I; the clock associated
with e = (x, y), clock(e), is active precisely in the period [t (e), t ′ − 1], where
t (e) = min{t (x), t (y)}, and t ′ is the first time after t (e) that x and y interact.
We describe the edge e as being active while clock(e) is active. Thus there is a
sequence of at most

(k
2

)
times τ0, τ1, τ2, . . . , τj , in which the set of active edges

changes. We call these times epochs. We let τ0 = 0, since at this point, x0 has
active edges with each of the other k − 1 particles.

We parameterise the interaction probability so that ρ(t) is the probability of
interaction at time t , universally for all particle pairs. The new process makes the
following modifications to the original one:

(i) set ρ(t) = 0 for t ∈ [1, ];
(ii) if at time τ there was an interaction between an active pair (x, y), set ρ(t) =

0 for t ∈ [τ + 1, τ + ].
These are the only differences; at all other times, we keep ρ(t) = 1. Fur-

thermore, the definition of active edge remains the same for I′; an edge (parti-
cle pair) e = (x, y) is active precisely in the period [t (e), t ′ − 1], where t (e) =
min{t (x), t (y)} and t ′ is the first time after t (e) that x and y interact.

In the periods where ρ(t) = 0, the set of active edges does not change, and
infections are not passed on, even if there were meetings between infected and
susceptible particles. We call these blind periods, because setting ρ(t) = 0 is like
ignoring interactions that may have otherwise occurred during those times. We can
think of  as an extended mixing time.

Now we define a weighted complete graph I′ = (P,EI′): this is exactly I but
with edge weights determined in the modified process. That is, for an edge e =
(x, y), the weight wI′(e) of the edge is a random variable defined by the RHS
of (22), but now t (x) and t (y) are the infection times assuming blind periods.
Observe wI′(e) >  because we still start the clock associated with it at time t (e),
but due to the blind periods, we will not stop it until the first time after t (e) + 

that they interact.
The modifications mean that in the sequence of epochs τ0, τ1, τ2, . . . , τj in

which the set of active edges changes, we have τi+1 − τi > , and for each
i ∈ {0,1, . . . , j} we set ρ(t) = 0 for t ∈ [τi + 1, τi + ].

The initial stages of the construction of I′ for the SI model with ρ = 1 is de-
scribed as follows: We set ρ(t) = 0 for the first  steps and then set ρ(t) = 1,
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waiting until x0 interacts with some particle. Suppose this happens with x1 at
time τ1. We label the edge (x0, x1) ∈ I′ with τ1. We then ρ(t) = 0 at steps
τ1 + 1, . . . , (τ1 + ), then resume ρ(t) = 1, waiting for the next interaction to
take place, either between x0 and one of the remaining k − 2 particles, or x1 and
the remaining k − 2 particles. Suppose x2 is the next amongst the remaining par-
ticles to interact, and this happens at time τ2. If it happens with x0, then the edge
(x0, x1) ∈ I′ has weight τ2. If it is with x1, then the edge (x1, x2) ∈ I′ has weight
τ2 −τ1. We then ρ(t) = 0 for the following  steps then resume ρ(t) = 1 thereafter,
waiting for the next relevant interaction.

Thus, the partial construction of I′ at τ2 in the former case has I′ = {wI′(x0,

x1) = τ1,wI′(x0, x2) = τ2}, and in the latter case, it is I′ = {wI′(x0, x1) =
τ1,wI′(x1, x2) = τ2 − τ1}. At time τ2, in the former case, x0 has active clocks
with k − 3 other particles, and each of x1 and x2 with k − 2 others (including
each other). Suppose in this scenario, that the next interaction after τ2 +  oc-
curs between x1 and x2, at τ3. Then I′ at this point will be I′ = {wI′(x0, x1) =
τ1,wI′(x0, x2) = τ2,wI′(x1, x2) = τ3 − τ1}.

Continuing in this manner, we will eventually build the complete edge-weighted
graph I′. This will be exactly the same as I if, in the original process, there were
no active pair interactions when ρ(t) = 0 in the modified process. If, in fact, there
were active pair interactions at those time steps, then I will be different to I′ de-
scribed above. However, we will show that, w.h.p., this will not be the case. That
is, w.h.p., the graph I′, we construct in this modified process, is the same as I that
would have been constructed had we kept ρ(t) = 1 throughout.

9.2. Interaction graph approximation. We define a complete graph � =
(V�,E�) on the particle set P with i.i.d. random edge weights. The weight w�(e)

of each edge e ∈ E� has distribution Geom(q), where q = ψ
θrn

. In this section,
ψ = 1 since ρ = 1.

� can be specified by a
(k
2

)
-vector; labelling the edges in � as ei with

1 ≤ i ≤ (k
2

)
, let zi denote the realised weight of ei , and let � = z where z =

(z1, z2, . . . , z(k
2)

) denote this particular realisation of �. Then

Pr(� = z) = Pr

((k
2)∧

i=1

w�(ei) = zi

)
=

(k
2)∏

i=1

q(1 − q)zi−1.(23)

Our strategy will be as follows: We shall calculate the probability Pr(I′ = z)
of a particular realisation z of I′ by repeated application of Lemma 9. We shall
show that this probability is well approximated by Pr(� = z); that is, � serves
as an “idealised” version of I′ (and, in turn, I). Hence, w.h.p. results in � can be
transferred to I′, and in turn transferred to I if the latter two are the same. Thus, to
complete this proof strategy, we will show that I and I′ are the same w.h.p.
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Assume the edges of I′ and � are labelled in the same order. We shall show
that for a class of z defined below as good, Pr(� = z) is a close approximation for
Pr(I′ = z).

DEFINITION 2 (Good). Let T be a maximal mixing time and let  = 2(T +
T 3). We say z is good when all of the components of z are finite and it satisfies the
following:

(a) if I = z, then none of the interactions that form the edges of I occur within
 steps of each other;

(b)
∑(k

2)
i=1 zi ≤ k2n lnn.

We shall also refer to a graph F as good if F = z and z is good.

Part (a) of the above implies that when an infection occurs, no other infection
takes place at that time step, nor during the following . We require this condition
because we wish to apply Lemma 9, which only gives probabilities for meetings
that occur after  steps. Therefore, we can only use Lemma 9 to calculate proba-
bilities for interaction graphs in which all relevant interactions are separated by 

steps.
Part (b) is a technical condition. We require it because if weights zi are too big,

then our approximations will cease to hold.
As will be seen in Lemma 14, the probability of I having weights violating this

condition goes to zero asymptotically.
We remind that in the context of I′, the notation t (x) for a particle x refers to the

time at which x is infected when we set ρ(t) = 0 in blind periods. Similarly, for
an edge (particle pair) e = (x, y), t (e) = min{t (x), t (y)}. We may set t (x) = ∞
for a particle that never gets infected. In the present case where the infectious
period ξ = ∞ (i.e., an SI model), every particle will get infected almost surely, but
when we address ξ < ∞, this may not be the case, and the convention of setting
“infection times” to ∞ will be convenient.

We shall use graph notation with vectors z: For an edge ei , wz(ei) = zi ; for
a particle y, dz(y) is the weighted distance under z of y from x0; for an edge
e = (x, y), dz(e) = dz(x, y) = min{dz(x), dz(y)}.

Lemma 11 below holds for the SI model; when we consider the case ξ < ∞ we
will give a generalisation of it.

LEMMA 11. For good z, consider the following:

(i) I′ = z;
(ii) for each particle pair (edge) e = (x, y), there is no xy interaction in the

period, [dz(e)+, dz(e)+wz(e)−1], and there is an xy interaction at time τ(e) =
dz(e) + wz(e).
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Then (i) holds if and only if (ii) holds.

PROOF. I′ = z can be restated as: For each e = (x, y), the first xy interaction
after time t (e)+  is at time t (e)+wz(e). Hence, if we show that for each particle
x, t (x) = dz(x), then we are done.

(i) ⇒ (ii) An equivalent to Lemma 10 holds for I′. The implication follows.
(ii) ⇒ (i) Order particles by their distance from x0 in z: x0 = x(0), x(1), . . . ,

x(k−1) where i < j ⇒ dz(x(i)) ≤ dz(x(j)). We shall prove that t (x(i)) = dz(x(i)).
Clearly this proposition holds for x(0). Suppose for all i ≤ N − 1, t (x(i)) =

dz(x(i)). If N = k, we are done. Otherwise N < k. Let x(M) be a neighbour of x(N)

on a shortest path from x0 to x(N). Since dz(x(M)) < dz(x(N)), M < N , so by the
induction hypothesis, t (x(M)) = dz(x(M)) = dz(e) where e = (x(M), x(N)). By (ii)
this implies t (x(N)) ≤ dz(e) + wz(e) = dz(x(N)).

Now consider the chain of infections starting at x0 that led to x(N) being in-
fected. Let x(j) be the first in the chain where j > N −1 and suppose it got infected
by x(i), i ≤ N − 1. Then by (ii), t (x(j)) = dz(x(i)) + wz(x(i), x(j)) ≥ dz(x(j)) ≥
dz(x(N)), implying t (x(N)) ≥ dz(x(N)).

Hence t (x(N)) = dz(x(N)) and the lemma follows. �

Lemma 12 below holds for the SI model; when we consider the case ξ < ∞,
we will give a generalisation of it.

LEMMA 12. Assume the conditions of Section 3.
For good z,

Pr
(
I′ = z

) = (
1 + o(1)

)
Pr(� = z).(24)

PROOF. By Lemma 11, I′ = z defines, for each edge e = (x, y), a time τ(e) =
dz(e)+wz(e). Letting τ0 = t (x0) = 0, since z is good, we get a sequence of epochs
τ0 < τ1 < τ2 < · · · < τ(k

2)
that are at least  apart.

An edge e is active precisely in the period [dz(e), dz(e) + wz(e) − 1] (and at
no other time). Let Ai denote the set of active edges in the period [τi, τi+1 − 1].
This defines a sequence (Ai) = (A0,A1, . . . ,A(k

2)−1) of active edge sets associated

with epochs τ0, τ1, . . . , τ(k
2)−1, respectively, and which remain constant between

epochs. The active set changes at each epoch, when an active edge is removed
from the set, and possibly new ones are added. In general, an edge e will be a
member of a number of active edge sets Ai .

Let σ(z) = ((e(1), τ1), (e(2), τ2), . . . , (e(
(k

2)
), τ(k

2)
)) be defined by the above,

where e(i) is the particle pair that interact at time τi . We shall use σ(z) and (Ai) to
calculate Pr(I′ = z). In particular, I′ = z if and only if both of the following hold:

(1) if (x, y) ∈ Ai , there is no xy interaction in the period [τi + , τi+1 − 1];
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(2) the particle pair e(i) interact at time τi , and this is the only pair in Ai that
does.

The probability of the above will be determined by repeated application of
Lemma 9 and the strong Markov property. Consider the process up until epoch τ1;
(1) dictates no interaction between any (x0, y) ∈ A0 = {(x0, y) :y ∈ P, y �= x0} in
the period [, τ1], and (2) dictates only an e(1) = (x0, x1) interaction at τ1. Apply-
ing Lemma 9:

Pr
(
Be(1)

(τ1)
) =

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

+ k4τ1

n2

))
p

(
1 − |A0|p)τ1 .(25)

Now if we consider the next period [τ1, τ2 − 1], the set of active edges are
A1 = {(x0, y) :y ∈ P, y �= x0, x1} ∪ {(x1, y) :y ∈ P, y �= x0, x1}. (1) dictates no
interaction between any pair in A1, and (2) dictates only an e(2) interaction at τ2.
Thus we can apply Lemma 9 for this period and active edge set to get

Pr
(
Be(2)

(τ2)
)

=
(

1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

+ k4(τ2 − τ1)

n2

))
p

(
1 − |A1|p)τ2−τ1 .

Because z is good, (τj+1 − τj ) is such that k4(τj+1 − τj )/n2 = n−�(1), which
can be absorbed into the correcting factor of p, which has form (21). Therefore, we
can write Pr(Be(1)

(τ1)) = p(1 − |A0|p)τ1 and Pr(Be(2)
(τ2)) = p(1 − |A1|p)τ2−τ1 .

We can continue in similar fashion for each epoch, and by the strong Markov
property, we can multiply these probabilities to get

Pr
(
I′ = z

) =
(k

2)−1∏
j=0

p
(
1 − |Aj |p)τj+1−τj ,(26)

where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
.

Letting �j = τj+1 − τj , (26) can be written

Pr
(
I′ = z

) = p(k
2)

(k
2)−1∏
j=0

exp
{−(

1 + O(|Aj |p)
)|Aj |p�j

}

= p(k
2) exp

{
−(

1 + O
(
k2p

))
p

(k
2)−1∑
j=0

|Aj |�j

}
.
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Furthermore,

(k
2)−1∑
j=0

|Aj |�j =
(k

2)−1∑
j=0

∑
e

1{e∈Aj }�j = ∑
e

(k
2)−1∑
j=0

1{e∈Aj }�j

and

(k
2)−1∑
j=0

1{e∈Aj }�j =
(k

2)−1∑
j=0

1{e∈Aj }(τj+1 − τj ) = ze

because this sums over all intervals [τj , τj+1 − 1] in which edge e is active, that

sum being ze. Hence,
∑(k

2)−1
j=0 |Aj |�j = ∑

e ze = ∑(k
2)

i=1 zi .
Thus

Pr
(
I′ = z

) = p(k
2) exp

{
−(

1 + O
(
k2p

))
p

(k
2)∑

i=1

zi

}
.

From (23), we have

Pr(� = z) =
(k

2)∏
i=1

q(1 − q)zi−1 = q(k
2)(1 − q)−(k

2) exp

{
−(

1 + O(q)
)
q

(k
2)∑

i=1

zi

}
.

Therefore,

Pr(I′ = z)
Pr(� = z)

=
(

p(1 − q)

q

)(k
2)

exp

{((
1 + O(q)

)
q − (

1 + O
(
k2p

))
p

) (k
2)∑

i=1

zi

}
,

(
p(1 − q)

q

(k
2)

)
=

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))(k
2)

(27)

= 1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

)
,

where we have used the fact that k ≤ nε for ε small enough.
Since (

1 + O
(
k2p

))
p − (

1 + O(q)
)
q = O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

)
1

n
,

then by part (b) of the definition of good z,

(
1

n�(1)
+ 1

(k lnn)�
+(1)

)
1

n

(k
2)∑

i=1

zi <
k2 lnn

n�(1)
+ k2 lnn

(k lnn)�
+(1)

.(28)
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Since the �+(1) term in (27) and (28) is an arbitrarily large constant, they are
1 + o(1) and o(1), respectively, when k ≤ nε for sufficiently small ε. Thus, we
conclude Pr(I′ = z)/Pr(� = z) = 1 + o(1). �

To prove Lemma 14 below, we require the following minor adaptation of
Lemma 20 in [9]:

LEMMA 13 ([9]). Let G be typical, and let k ≤ nε for sufficiently small ε.
Suppose that particles start with minimum separation at least d = α(ln lnn +

lnk) where α is a constant. Let τ = O(T 3) where T = O(k lnn). Then

Pr(a given pair of particles x, y meet during τ ) = O
(
τ 2/(r − 1)d/6)

.(29)

It should be noted that the α in Lemma 13 can be made as large as required by
making ε sufficiently small.

Lemma 14 below holds for general ξ and ρ ≤ 1.

LEMMA 14. Let G be typical, and let k ≤ nε for sufficiently small ε.
With high probability:

(a) none of the interactions that form the finitely-weighted edges of I occur
within  steps of each other;

(b) the sum of the finite edge weights of I is at most k2n lnn.

PROOF. It will be convenient to prove part (b) of the lemma first.
(b) Consider an active pair of particles (x, y). The expected number of meetings

they have before interacting is 1/ρ. The expected time between meetings is O(n).
Since walks and interactions are independent, we can multiply these quantities
together to give a bound on the expected time till an interaction. Since ρ is assumed
to be constant, this is O(n).

The result now follows by linearity of expectation and Markov’s inequality.
(a) Let A be a set of active particle pairs. We let them mix for  steps,

and suppose the first interaction occurs at some (random) time t ≥ . Let
S ⊂ VH correspond to a meeting of at least one pair in A. Let S′ ⊂ S cor-
respond to more than one pair being within distance d of each other. We
wish to calculate Pr(WH

u (t) ∈ S′ | WH
u (t) ∈ S ∧ WH

u (τ ) /∈ S for τ ∈ [, t −
1]).

Let γ = γ (S) and γ ′ = γ (S′). By Lemma 8, πγ = (1+o(1)|A|/n. Furthermore,
since |S′| ≤ (|A|

2

)
r2dnk−2, pγ ′ = O(|A|2r2d/n2).
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Applying Lemma 7,3

Pr
(
WH

u (t) ∈ S′ ∧WH
u (τ ) /∈ S for τ ∈ [, t − 1])

=
(

1 + O(Lπγ ) + O(εγ ′) + O

(
k4t

n2

))
pγ ′(1 − pγ )t(30)

= (
1 + o(1)

)
pγ ′(1 − pγ )t .

The correcting factor in the last line holds because t ≤ k2n lnn by part (b), and it
is straightforward to show εγ ′ = o(1).

Pr
(
WH

u (t) ∈ S ∧WH
u (τ ) /∈ S for τ ∈ [, t − 1])

(31)
= (

1 + o(1)
)
pγ (1 − pγ )t ,

so dividing (30) by (31) gives

Pr
(
WH

u (t) ∈ S′ | WH
u (t) ∈ S ∧WH

u (τ ) /∈ S for τ ∈ [, t − 1]) = O

( |A|r2d

n

)

= O

(
1

n�(1)

)
.

There are at most
(k
2

)
interactions determining the edge weights of I; taking the

union bound over all of them, this is o(1) if ε is small enough.
The RHS of (29) is O(1/(k lnn)�

+(1)). Consequently, we can apply Lemma 13
across all [at most

(k
2

)
] particles pairs across all [at most

(k
2

)
] interactions. We thus

conclude that w.h.p., at most one pair interact at any time and there are no interac-
tions in any of the following length  blind periods. �

COROLLARY 15. With high probability:

(i) for general ξ , I = I′;
(ii) when ξ = ∞, I and I′ are good;

(iii) when ρ = 1, � is good.

Part (iii) of Corollary 15 is a corollary of Lemmas 12 and 14 together: observe
1 − o(1) = ∑

z good Pr(I′ = z) = (1 + o(1))
∑

z good Pr(� = z).
In conjunction with Lemma 12, Corollary 15 will allow us to say that events in

� and I have roughly the same probability.
Events in I, I′, and �, are subsets of �k , the set of all possible weightings on

the
(k
2

)
edges. Thus �k is the set of all

(k
2

)
-vectors with nonnegative entries. An

3Note, although the lemma is stated for a visit to a vertex v, v can also be a contraction of a subset
of S.
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event E ⊆ �k in I occurs if and only if I = z where z ∈ E , indicated by 1E(z) and
similarly with I′ and �.

Recall � depends on n. Lemma 16 below holds for the SI model; when we
consider the case ξ < 1, we will give a generalisation of it.

LEMMA 16. Assume the conditions in Section 3.
Suppose there is a sequence of events (En)n≥1 and a constant pc such that in �,

Pr(En) → pc as n → ∞. Then in I, Pr(En) → pc as n → ∞.

PROOF. Let 1En(z) be the indicator that z ∈ En. By Lemma 12 and (ii) and (iii)
of Corollary 15,

Pr(En) = ∑
z

Pr(� = z)1En(z)

= o(1) + ∑
z good

Pr(� = z)1En(z)

= o(1) + (
1 − o(1)

) ∑
z good

Pr
(
I′ = z

)
1En(z)

= o(1) + (
1 − o(1)

)∑
z

Pr
(
I′ = z

)
1En(z).

Hence in I′, Pr(En) → pc as n → ∞. Consequently, by part (i) of Corollary 15,
Pr(En) → pc as n → ∞ in I. �

9.3. Completion time. In [9] an expectation of 2θrn
k

ln k was determined for
the completion time of a broadcasting model on k particles that is equivalent to
the SI model with ρ = 1. In Section 11 the role of ψ will be made clear. Subse-
quently, the generalisation of the expectation to 2θrn

ψk
lnk for ρ ≤ 1 will be seen to

be straightforward. In this section, we shall get a convergence in probability to the
same value, for the case ρ = ψ = 1. Subsequent to the treatment in Section 11, it
will be clear how the result extends to the general case.

We make use of a theorem from [15]: Assign each edge (i, j) of a complete
graph on k vertices a random weight Yij . The weights are assumed to be indepen-
dent and identically distributed, nonnegative and satisfying Pr(Yij ≤ t) = t + o(t)

as t → 0. Let Xij be the minimal total weight of a path between a given pair of
vertices i, j .

THEOREM 17 ([15]). Under the assumptions above, for any fixed i, as k →
∞,

maxj Xij

lnk/k

p→2.(32)
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We apply this below.

PROOF OF THEOREM 2 FOR ρ = 1. If a random variable Y ∼ Exp(λ), that is,
has exponential distribution with parameter λ, then λY ∼ Exp(1), which is valid
for Theorem 17. Hence consider a complete graph F on the particle set with i.i.d.
edge weights Yij ∼ Exp(λ), and let Xij be the minimal total weight of a path
between a given pair of vertices (particles) i, j in F . By the above, as k → ∞,

maxj λXx0j

lnk/k

p→2.(33)

Let λ = 1/(θrn), so w�(i, j) ∼ Geom(λ) for an edge e = (i, j) in �. For each
particle pair e = (i, j), let Uij be i.i.d. random variables uniform on [0,1]. We use

Uij to determine both Yij in F and w�(i, j) in �. Specifically, let Yij = − ln(Uij )

λ
,

and let w�(i, j) = � ln(Uij )

ln(1−λ)
� = � − ln(Uij )

(1+O(1/n))λ
�. Hence |Yij − w�(i, j)| ≤ 1 for all

pairs i, j when n is large enough, in which case, |Xx0j − d�(j)| < k2. Thus

maxj λ(Xx0j − k2)

lnk/k
≤ maxj λd�(j)

lnk/k
≤ maxj λ(Xx0j + k2)

lnk/k
,

but λk3/ lnk = O(k3/n). Hence, since k ≤ nε , when ε is small enough,

maxj d�(j)

n lnk/k

p→2θr .

By Lemmas 16 and 10, the lemma follows. �

10. The SI(R) model with ρ = 1. Now we allow ξ < ∞, thus generalising
the previous section. We create I and I′ exactly as before, and we will get particular
realisations of each. As before, for a particular realisation I = z (or I′ = z), z is a(k
2

)
-vector; however, recalling the definitions from Section 8, we see that now some

of the entries may be ∞, whereas before in the SI case, they were all finite almost
surely.

We define the function fξ (F ) that takes as input a weighted graph F and returns
the same graph but with all edges with weights exceeding ξ deleted. We may also
write fξ (z), interpreting the argument as some graph weighted by z.

For a graph F = (P,EF ), denote by CF the connected component in F that x0
belongs to. For example, take a complete graph on P weighted with z, and apply
fξ (z) to delete edges with weight exceeding ξ . The connected component that x0
belongs to in this graph is denoted by Cfξ (z).

The following lemma tells us which particles ever get infected.

LEMMA 18. Let F ∈ {I, I′}. A particle y becomes infected if and only if y ∈
Cfξ (F ).
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PROOF. If y ∈ Cfξ (F ), then there is a path from x0 to y with each edge having
weight at most ξ . Each such edge can only exist because one of the ends was in-
fected, and they subsequently interacted within ξ steps after the infection, meaning
that the other will be infected after the interaction. Hence, y got infected.

Conversely, suppose y got infected. Then there was a chain of infections from
x0 to y. This would define a path with each edge weight at most ξ . Hence it would
be in Cfξ (F ). �

By Lemma 18, we can determine the size of the outbreak via Cfξ (I) (of course,
for the SI case, we did not need to consider Cfξ (I) since all edge weights would be
finite and so none would get deleted). As before, we use the blind periods in order
to apply the tools of Section 7. Thus we work with I′.

For a weighted graph F = (P,EF ) and a partition A,B of P , denote by EF (A)

and EF (B) the (weighted) edges induced by A and B , respectively. Denote by
E(A : B) the (weighted) edges with one end in A and the other in B . The weights
are explicitly part of the notation. Thus, for example, if we write EI′(A) = Ez(A)

for some subset A of the particles, we equate both the set of edges induced, as well
as their weights.

In I′, let A and B be the infected and noninfected particles, respectively. Ob-
serve that all weights in EI′(B) are infinite, all in EI′(A : B) are finite but larger
than ξ , and all weights in EI′(A) are finite, with some being at most ξ , and possibly
some being greater than ξ .

The key observation is that given edge weights EI′(A) and EI′(A : B), we know
edge weights EI′(B). This is because we have timing information on the edges
that allow us to reconstruct the unfolding of the process. Thus, determining the
probability in I′ of edge weights EI′(A) and EI′(A : B) is all that it required to
determine the rest of the system, in particular, to show that those in A get infected
and those in B do not.

Recall the definition of � from Section 9.2. We reason as follows: Draw a �

and delete all edges e with w�(e) > ξ . The resulting component Cfξ (�) closely
approximates Cfξ (I), informally justified as follows: Call a path an ξ -path if all
edges in it have weight at most ξ . Partition P into A,B where y ∈ A iff there is
a ξ -path from x0 to y in �. Observe in E�(A : B) all weights are greater than ξ ,
and in E�(A) there will be weights at most ξ , and possibly some exceeding ξ . All
weights in these two sets will be finite. EI′(A) and EI′(A : B) will have roughly the
same probability distribution on edge wights as E�(A) and E�(A : B), and since
I = I′ w.h.p., the same will be true of I. Therefore, Cfξ (I) has roughly the same
probability distribution as Cfξ (�). Consequently, probabilistic statements about the
size of Cfξ (�) can be transferred to Cfξ (I).

We proceed to formalise the above. We require the following generalisation of
Lemma 11 (proof in the Appendix). We denote by V (Cfξ (z)) the set of vertices in
Cfξ (z), that is, V (Cfξ (z)) = {x ∈P : under z there is a ξ -path from x0 to x}.
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LEMMA 19. Suppose z is good, and let A = V (Cfξ (z)), B = P \ A. Consider
the following:

(i) I′ has EI′(A) = Ez(A) and EI′(A : B) = Ez(A : B);
(ii) for each particle pair (edge) e = (x, y) such that dfξ (z)(e) < ∞, there is no

xy interaction in the period, [dfξ (z)(e) + , dfξ (z)(e) + wz(e) − 1], and there is an
xy interaction at time τ(e) = dfξ (z)(e) + wz(e).

Then (i) holds if and only if (ii) holds.

Thus, we have established that (ii) implies the set A = Cfξ (z) gets infected and
that for each edge e such that dfξ (z)(e) < ∞, that is, for each edge e ∈ Ez(A) ∪
Ez(A : B), wI′(e) = wz(e). It remains to establish that no particle in B is infected.
If dfξ (z)(x) = ∞, then x could not have been infected since if it was, then there
must have been a chain of infections from x0 to x. In this chain, there must have
been some xb /∈ Cfξ (z) that was infected by some xa ∈ Cfξ (z). But then wz(xa, xb) >

ξ , and by (ii), this is when they first interact after xa is infected. Hence no infection
could have been passed. Thus no particle in B is infected.

The following lemma generalises Lemma 12

LEMMA 20. Assume the conditions of Section 3.
Suppose z is good. Define a partition of the particles into sets A and B where

A = V (Cfξ (z)). Let S = Ez(A) ∪ Ez(A : B). Then

Pr
(
EI′(A) ∪ EI′(A : B) = S

) = (
1 + o(1)

)
Pr

(
E�(A) ∪ E�(A : B) = S

)
.

PROOF. The proof follows the same pattern as that of Lemma 12. Using
Lemma 19, EI′(A) ∪ EI′(A : B) = S defines a sequence of interactions σ(z) =
((e(1), τ1), (e(2), τ2), . . . , (e(

(|S|
2 )

), τ
(|S|

2 )
)) and active edges sets A0,A1, . . . ,A|S|.

We get an equivalent to (26),

Pr
(
EI′(A) ∪ EI′(A : B) = S

) =
(|S|

2 )−1∏
j=0

p
(
1 − |Aj |p)τj+1−τj ,(34)

where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
.

We eventually get

Pr
(
EI′(A) ∪ EI′(A : B) = S

) = p(|S|
2 ) exp

{
−(

1 + O
(
k2p

))
p

∑
e∈S

wz(e)

}
.
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Again, q = ψ
θrn

where here ψ = 1 because ρ = 1.

Pr
(
E�(A) ∪ E�(A : B) = S

) = q |S|(1 − q)
∑

e∈S wz(e)−|S|

= q |S|(1 − q)−|S| exp
{
−(

1 + O(q)
)
q

∑
e∈S

wz(e)

}
.

Then taking the ratio and by the same reasoning as for Lemma 12, the result fol-
lows. �

An event E for Cfξ (�) (or Cfξ (I)) is a subset of the possible realisations of Cfξ (�)

(resp., Cfξ (I)). When we speak of a realisation, we include edge weights as well as
graphical structure. For example, Sg = {Cfξ (z) : z good} is an event.

The following is a generalisation of Lemma 16 (proof in the Appendix).

LEMMA 21. Assume the conditions in Section 3.
Suppose there is a sequence of events (En)n≥1 and a constant pc such that

Pr(Cfξ (�) ∈ En) → pc as n → ∞. Then Pr(Cfξ (I) ∈ En) → pc as n → ∞.

PROOF OF THEOREM 1 WHEN ρ = 1. Since fξ (�) is an Erdős–Rényi random
graph Gk,q̂ where q̂ = 1 − (1 − 1

θrn
)ξ , we can apply standard results (see, e.g., [16,

23]) to determine the size of Cfξ (�). We address cases (i) and (iii) of Theorem 1
first. (i) If kq̂ < 1, then there is a constant α, such that Pr(|Cfξ (�)|/ lnk ≤ α) → 1.
Applying Lemma 21 for the events En = {Cfξ (z) : |Cfξ (z)|/ lnk ≤ α} gives the result.
(iii) If kq̂ > (1+ε) ln k where ε is any positive constant then Pr(|Cfξ (�)| = k) → 1.
Applying Lemma 21 for the events En = {Cfξ (z) : |Cfξ (z)| = k} gives the result.

Case (ii) requires slightly more consideration. We have Gk,q̂ where kq̂ → c for
some constant c > 1. Denote the largest component by C1 and let β = β(c) denote
the unique solution in (0,1) of the equation β + e−βc = 1. Then every ν ∈ (1

2 ,1)

there exists a δ = δ(ν, c) such that Pr(| |C1|
k

− β| ≤ k−ν) = 1 − O(kδ); see, for
example, [23]. With high probability, all other components have size O(ln k). By
the symmetry of �, Pr(Cfξ (�) = C1) = Pr(x0 ∈ C1) = E[|C1|]/k → β as k → ∞.
Hence,

Pr
(∣∣∣∣ |Cfξ (�)|

k
− β

∣∣∣∣ ≤ k−ν

)

= Pr
(∣∣∣∣ |C1|

k
− β

∣∣∣∣ ≤ k−ν ∧ Cfξ (�) = C1

)

+ Pr
(∣∣∣∣ |Cfξ (�)|

k
− β

∣∣∣∣ ≤ k−ν ∧ Cfξ (�) �= C1

)

→ β.

Applying Lemma 21 for the events En = {Cfξ (z) : |Cfξ (z)/k − β| ≤ k−ν}, we get

Pr(| |Cfξ (I)|
k

− β| ≤ k−ν) → β , completing the proof of this case. �
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11. Extending to the general case: SI(R) with ρ ≤ 1 This section deals with
general ξ and ρ ≤ 1.

11.1. A heuristic treatment of a two-particle system. We introduce the ap-
proach we shall use by giving an informal treatment for a system with only two
particles. In subsequent sections, we will give a more rigorous analysis for k parti-
cles, where, as per the assumptions in Section 3, k ≤ nε , for ε a sufficiently small
constant.

Let x and y be the two particles, with x being the initial infective and y being
susceptible. We allow ξ < ∞ and/or ρ < 1. The former conditions means that y

may never get infected, the latter condition means that it may take more than one
meeting between x and y before an interaction takes place. Note that if x and y

were at the same vertex at time t , and happen to move to the same neighbouring
vertex in the next step, then this counts as another meeting, with another coin flip
to determine if an interaction takes place.

Now, suppose x and y have just stepped to the same vertex v. With probability
ρ there will be an interaction. After this, they will move again, either to the same
neighbour of v with probability 1/r or to different neighbours with probability
(r − 1)/r . Let

φ = Pr(No xy interaction before they move apart)

= ∑
i≥1

(1 − ρ)i
(

1

r

)i−1(
1 − 1

r

)
= (1 − ρ)(r − 1)

r − 1 + ρ
.

Recall from Section 7.1 that a vertex v is treelike if there is no cycle in the
subgraph G[v,L1] induced by the set of vertices within (graph) distance L1 =
�ε1 logr n� of v, where ε1 > 0 is a sufficiently small constant. The following lemma
is from [9]:

LEMMA 22 ([9]). Let G be a typical r-regular graph, and let v be a vertex
of G, treelike to depth L1 = �ε1 logr n�. Suppose that at time zero, two independent
random walks (W1,W2) start from v. Let (a, b) denote the position of the particles
at any step. Let S = {(u,u) :u ∈ V }. Let f be the probability of a first return to S

within T = O(k lnn) steps given that the walks leave v by different edges at time
zero. Then

f = 1

(r − 1)2 + O
(
n−�(1)).

Using this lemma, let

φT = Pr(No xy interaction before being apart more than T time steps)
(35)

= ∑
i≥1

φif i−1(1 − f ) = φ(1 − f )

1 − φf
.
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If two sequences An,Bn are such that An/Bn → 1 as n → ∞, we write An ∼
Bn. The rest of this section will be implicitly justified in the detailed treatment in
Section 11.2.

Recall ψ was defined in (2), and observe that ρ ≤ ψ ≤ 1 with ψ = 1 if and only
if ρ = 1. Now, assuming x and y start at the same vertex, then as will be seen from
Lemma 27,

Pr(xy interaction occurs within T time steps)

∼ Pr(xy interaction occurs before x and y have been apart more than T steps)(36)

= 1 − φT = 1 − φ(1 − f )

1 − φf
∼ ρ(r − 1)

r − 2 + ρ
= ψ.

DEFINITION 3 (-distinct). A sequence (t1, t2, . . .) is -distinct if t1 ≥  and
ti+1 − ti ≥ .

Clearly, there can be at most t/ -distinct meetings in [0, t], and assuming
i ≤ t/,

Pr
(
there are i -distinct meetings in [0, t]) ∼

(
t

i

)
pi(1 − p)t−i ,(37)

where p = (1 + o(1)) 1
θrn

is from (21). Hence, it is seen to be approximately dis-

tributed as Binom(t, 1
θrn

). The probability that there are no interactions in any of
the i intervals [tj , tj + T ] where tj is the time of the j th -distinct meeting is
(1 − ψ)i . Thus

Pr
(
there are no interactions in the period [0, t]) ∼

t/∑
i=0

(
t

i

)(
p(1 − ψ)

)i
(1 − p)t−i

∼ (1 − ψp)t .

Hence

Pr(y gets infected within time ξ) ∼ 1 − (1 − ψp)ξ .(38)

When ρ = ψ = 1, (38) looks similar to the bracketed terms in (3). This is, of
course, not a coincidence since the bracketed term in (3) is essentially the prob-
ability that an infection is passed between a pair of particles if one of them had
been infected. Therefore, � is effectively the expected number of other particles
that are infected by a particular particle.

11.2. Allowing ρ < 1. In this section, we formalise some of the ideas of Sec-
tion 11.1, extended to k particles.

Let us first redefine  to be  = 2(T + T 3) + T where T is a maximal mixing
time.



510 M. ABDULLAH, C. COOPER AND M. DRAIEF

Consider a period [0, t]. Let τ = (t1, . . . , ti , ti+1) be a sequence such that (i)∑i+1
s=1 ts = t , (ii) ts ≥  for each s ∈ {1,2, . . . , i}, (iii) ti + ti+1 ≥  + T and (iv)

0 ≤ ti+1 ≤ T .
Let t∗0 = 0 and t∗s = t∗s−1 + ts for s = 1,2, . . . , i. We use τ to represent having

i -distinct meetings in the period [0, t] with a first interaction at step t (recall
definition of T -distinct given in Definition 3). Specifically, let A be a set of active
particle pairs and let (x, y) ∈ A. Denote by C(x,y)(τ ) the following event: (1) at
each time t∗s a single particle pair (a, b)s ∈ A meets and does not interact in the
period [t∗s , t∗s + T ]. (2) At time t∗i , (x, y) meet and interact at some point in the
period [t∗i , t]. (3) No particle pair (a, b) ∈ A meets in the periods [t∗s +, t∗s+1 −1],
s = 0,1, . . . , i.

Note, in (2), we do not specify which particle pair (a, b) meet, only that a single
pair meet. Thus, there are |A|i−1 possible sequences of particles that satisfy this
condition.

Let τ i (t) be the set of all sequences τ = (t1, . . . , ti , ti+1) satisfying the above
conditions, and let τ (t) = ⋃

i τ i (t).
Define the event C(x,y)(t) = ⋃

τ∈τ (t) C(x,y)(τ ). Thus C(x,y)(t) represents, subject
to conditions (i)–(iv), having some number of noninteractive meetings of active
particle pairs, and the first interaction taking place between x and y at time t .

The following lemma is core to this section. The proof is rather long, so we
delay it till later.

LEMMA 23. Let G be typical, and let k ≤ nε for sufficiently small ε.
Suppose

√
n ≤ t ≤ k2n lnn. For a set of active particle pairs A and (x, y) ∈ A,

Pr
(
C(x,y)(t)

) = ψp(1 − |A|ψp)t ,

where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
(39)

and

ψ = ρ(r − 1)

r − 2 + ρ
.

In the proofs of Lemmas 12 and 20, we dealt with epochs τj and sets Aj of
active edges. We assumed z was good and calculated the probability of a sequence
σ(z). This sequence specified that no particle pair in Aj would interact in the
period [τj , τj+1 − 1] then a particular pair (x, y) interact at time τj+1. Because
ρ = 1, interactions coincided with meetings, and so the sequence σ(z) specified
meetings and nonmeetings. When ρ < 1, there may be some number of noninter-
active meetings of active particle pairs in the period [τj , τj+1 − 1] before the xy

interaction finally takes place at time τj+1, and we will need to take these into
account when calculating the probability of σ(z).
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Recall that the raison d’être of good z, rather than any arbitrary z, was that
having meetings take place  steps apart (i.e., being -distinct) allowed us to
apply Lemma 9. Although this lemma could tell us what happens in the period
[τj + , τj+1], we could not account for what happens in the first  steps after the
epoch τj . We therefore modified the process in Section 9.1 so that ρ(t) = 0 in
these periods we could not account for, thereby guaranteeing that no interaction
occurred and therefore, the probability calculated by Lemma 9 was faithful to the
modified process. Hence we calculated probabilities for I′ rather than I, and we
then related the two by proving they are the same w.h.p. Since Lemma 9 is the
main tool in the proof of Lemma 23, we must do something similar.

In this section, we need to have a slightly different version of the interaction
graph I′, which we shall denote by I∗. To cope with sequences τ satisfying condi-
tions (i)–(iv), we modify the process as follows; cf. Section 9.1:

(i) Set ρ(t) = 0 for t ∈ [1, ].
(ii) If at time τ there was a meeting between one active pair (x, y) ∈ A, do the

following: (a) For (x, y), set ρ(t) = 0 for t ∈ [τ + T , τ + ]. (b) For every other
(a, b) ∈ A, set ρ(t) = 0 for t ∈ [τ + 1, τ + ].
Note, there remains the possibility of more than one active particle pair meeting
at a particular time step. With high probability, this will not happen, as stated in
Lemma 24. However, for completeness, we will include the following component
to the above modification, which represents a “failure”:

(iii) If at time τ there were meetings of more than one active pair in A, then set
I∗ = (−1,−1, . . . ,−1) and terminate the construction.

Note, we did not need (iii) in the ρ = 1 analysis because we calculated meetings
based on z being good, which required that no two pairs of active particles simul-
taneously meet, in accordance with part (a) of the definition of good (Definition 2).
In this section, we consider meetings where no interaction takes places, and mod-
ification (iii) serves as a technical convenience.

The implication of these modifications is that in the application of Lemma 9 in
the proof of Lemma 23, there were no interactions in the periods that we could not
account for.

I∗ is essentially a generalisation of I′. For I′, we did not need to stipulate (ii)(a)
above, since if (x, y) met, they interacted, and further interaction between them
thereafter had no bearing on edge weight wI′(x, y). Hence (ii)(a) would have been
redundant.

The following lemma allows us to say that under these new modifications,
w.h.p., I = I∗. The proof is in the Appendix.

LEMMA 24. Let G be typical, and let k ≤ nε for sufficiently small ε.
With high probability:
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(a) only one pair meet at a time, and no other pair meet within  = 3T + 2T 3

steps;
(b) any active pair that meets at some step τ and does not interact in the period

[τ, τ + T − 1] does not meet in the period [τ + T , τ + ].
COROLLARY 25. With high probability, I = I∗.

Consequently, if for a sequence of events Ek we determine that in I∗, Pr(Ek) →
pc where pc is a constant, then it will also be the case in I that Pr(Ek) → pc.

Observe an assumption in Lemma 23 is
√

n ≤ t ≤ k2n lnn. The RHS inequality
follows from the definition of good (Section 9.2). The LHS inequality is an extra
condition we must impose; thus we redefine Definition 2 part (a) as follows: If
I = z, then none of the

(k
2

)
interactions that form the edges of I took place within√

n steps of each other. Showing that Lemma 14 still holds is straightforward: by
Lemma 6 the probability of any of the at most

(k
2

)
particles meeting within

√
n

steps is O(k2√n/n) = O(k2/
√

n). Taken over all [at most
(k
2

)
] interactions, this is

O(k4/
√

n) = o(1) when k ≤ nε for small enough ε.
We remind the definition of � given in Section 9.2 stipulates i.i.d. edge weights

distributed as Geom(q) where q = ψ/(θrn).

LEMMA 26. Assume the conditions of Section 3.
Suppose z is good. Define a partition of the particles into sets A and B where

A = V (Cfξ (z)). Let S = Ez(A) ∪ Ez(A : B). Then

Pr
(
EI∗(A) ∪ EI∗(A : B) = S

) = (
1 + o(1)

)
Pr

(
E�(A) ∪ E�(A : B) = S

)
.

PROOF. Observe that Lemma 19 holds for I∗ in the same way as it does
for I′. It is stated and proved in terms of interactions; noninteractive meet-
ings are irrelevant. Hence, we can now follow the pattern of the proof of
Lemma 20: EI∗(A) ∪ EI∗(A : B) = S defines a sequence of interactions σ(z) =
((e(1), τ1), (e(2), τ2), . . . , (e(

(|S|
2 )

), τ
(|S|

2 )
)) and active edges sets A0,A1, . . . ,A|S|.

Consider the period between τj and τj+1 for 1 ≤ j ≤ (|S|
2

) − 1. By construction
of I∗, specifically, by the process modifications (i) and (ii) above, meetings in the
period [τj , τj+1] must be of the form τ satisfying conditions (i)–(iv) above, except
those for which ti + ti+1 < +T , that is, those for which t∗i−1 ∈ [t − (+T ), t −].
This window of size T can be ignored since, from the stationary distribution, the
processes has probability O(k2T/n) of falling into it. Taken over all [at most

(k
2

)
]

periods this is still o(1) for k ≤ nε and ε small enough.
We apply Lemma 23 to each period [τj , τj+1] get to get an equivalent to (34):

Pr
(
EI∗(A) ∪ EI∗(A : B) = S

) =
(|S|

2 )−1∏
j=0

ψp
(
1 − |Aj |ψp

)τj+1−τj ,(40)
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where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
.

Recalling q = ψ
θrn

, the rest of the proof follows in the same way as in Lemma 20
(and in turn, Lemma 12). �

Note, without modification (iii), which sets I∗ to a vector of −1’s we would
have to consider sequences which give rise to I∗ = z and in which more than one
active particle meet. Thus modification (iii) is a technical convenience.

With the proof of Lemma 26, the proofs of Theorems 1 and 2 follow for the
general case ρ ≤ 1 as they did for the special case ρ = 1. We address Theorem 2
first.

PROOF OF THEOREM 2. Recall that Lemma 14 is general, holding for ξ ≤ ∞
and ρ ≤ 1. Thus, if ξ = ∞, I remains good, w.h.p., when ρ < 1. By Corollary 25,
the same is true for I∗. Consequently, by Lemma 26, � is good w.h.p. Thus, we
have all three components of Corollary 15 holding for ρ ≤ 1. As such, Lemma 16
holds for ξ = ∞ and ρ ≤ 1. Therefore, the proof of Theorem 2 given in Section 9.2
holds with λ = ψ/(θrn). �

PROOF OF THEOREM 1. Observe that the proof of Lemma 21 used Corol-
lary 15 and Lemma 20. We have generalised both of these in this section, so
Lemma 21 holds for the general case ξ ≤ ∞, ρ ≤ 1 in the same way, with the
edges of � being i.i.d. as Geom(ψ/(θrn)). Consequently, the general case of The-
orem 1 is justified in the same was as the special case was in Section 10 [observe
that now fξ (�) is an Erdős–Rényi random graph Gk,q̂ where q̂ = 1 − (1 − ψ

θrn
)ξ ].
�

Before we proceed to prove Lemma 23, we require the following:

LEMMA 27. Let G be typical and let k ≤ nε for sufficiently small ε.
Suppose that at time zero, two particles x, y positioned on a treelike vertex

v interact with probability ρ. Let ψ ′ be the probability of an xy interaction in
[0, T − 1] where T is a mixing time. Then

ψ ′ = ψ
(
1 − O

(
n−�(1))),(41)

where ψ = ρ(r−1)
r−2+ρ

.

PROOF. x and y start at the same vertex at time t = 0, and interact with prob-
ability ρ at time 0. Suppose the first xy interaction occurs at time τ ≥ 0. Now
suppose x and y are incident (i.e., at the same vertex) at times 0 = t0, t1, . . . . Let
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tM be the smallest tr in this sequence such that tM+1 − tM ≥ T . Hence, tM +T −1
is the first time that x and y have been apart T − 1 steps.

We first demonstrate that Pr(τ < T ) = Pr(τ < tM + T ) + o(1). Observe

Pr(τ ≥ tM + T ) ≤ Pr(τ ≥ T ) ≤ Pr(τ ≥ tM + T ) + Pr
({

x, y meet in [T ,2T ]}).
Using (11),

Pr
(
x, y meet in [T ,2T ]) = 1 − (1 + O(T πγ ))

(1 + (1 + O(T πγ ))πγ /Rγ )2T
− O

(
T 2πγ e−λT )

= O
(
T 2πγ

)
= O

(
(k lnn)2/n

)
.

Thus

Pr(τ ≥ tM + T ) ≤ Pr(τ ≥ T ) ≤ Pr(τ ≥ tM + T ) + O
(
(k lnn)2/n

)
,

that is, Pr(τ < tM + T ) = Pr(τ < T ) + O((k lnn)2/n).
Recall Section 11.1. To get the correcting factor in (35), observe that the sum∑
i≥1 φif i−1(1 − f ) assumes every vertex at which the particles part is tree-like.

Let W(t) be the walks on G, and let X (t) be a walk on an infinite r-regular tree T
rooted at the start vertex v, which is assumed to be tree-like. We couple W and X
until time L1. Since G and T have the same structure out to L1, the two processes
are identical until t = L1. Let Yt = dist(x, y) in G. It is shown in [9], proof of
Lemma 17, that Pr(YL1 ≤ L1/2) = O(n−�+(1)) where the �+(1) is an arbitrarily
large constant. It is also shown that, subject to k ≤ nε for a sufficiently small ε,
Pr(the walks meet in [L1, T ] and YL1 > L1/2) = O(n−�(1)). Thus

φT = φ(1 − f )

1 − φf
+ O

(
n−�(1)).

Now we include the error term for the asymptotic equality in line (36).

1 − φT = ρ(r − 1)

r − 2 + ρ

(
1 + O

(
n−�(1)))

(42)
= ψ

(
1 + O

(
n−�(1))) = Pr(τ < tM + T ).

Note in (42) we have used the assumption that ρ is a constant to absorb (functions
of) it into the O term. Thus

Pr(τ < T ) = Pr(τ < tM + T ) − O

(
(k lnn)2

n

)

= ψ
(
1 + O

(
n−�(1))) − O

(
(k lnn)2

n

)
.
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ρ is a constant, which means ψ is a constant, and so defining ψ ′ = Pr(τ < T ),

ψ ′ = ψ

(
1 − O

(
1

n�(1)

))
. �

PROOF OF LEMMA 23. Writing

Pr
(
C(x,y)

(
τ i (t)

)) = ∑
τ∈τ i (t)

Pr
(
C(x,y)(τ )

)
,

we have

Pr
(
C(x,y)(t)

) = ∑
i≥1

Pr
(
C(x,y)

(
τ i (t)

))
(43)

=
(k lnn)5∑

i=1

Pr
(
C(x,y)

(
τ i (t)

)) + ∑
i≥(k lnn)5+1

Pr
(
C(x,y)

(
τ i (t)

))
.

We shall focus on the first sum, returning to the second later.
We can write ψ ′ = ∑T −1

i=0 ρi where ρi is the probability that the first interaction
happens at step i. So, for example, ρ0 = ρ. For a given τ , let ρτ = ρti+1 .

We shall calculate Pr(C(x,y)(τ )). By Lemma 9, the probability that no pair in
A meet in the period [t∗s−1 + , t∗s − 1], then some particular pair (a, b) ∈ A meet
(and no others do) at time t∗s is given by

Pr
(
B(a,b)(ts)

) =
(

1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

+ k4ts

n2

))
p

(
1 − |A|p)ts ,

where

p = 1

θrn

(
1 + O

(
1

n�(1)
+ 1

(k lnn)�
+(1)

))
.

Since ts ≤ t ≤ k2n lnn, we can write Pr(B(a,b)(ts)) = p(1 − |A|p)ts . Taking the
product over all i -distinct meetings, we get

i∏
s=1

p
(
1 − |A|p)ts .(44)

In the first i − 1 of these the pair do not interact in the following T steps, so
we multiply (44) by (1 − ψ ′)i−1, and the interaction happens at time t , which is
ti+1 ≤ T after t∗1 , so we multiply by ρti+1 . Thus we get

ρτ
(
1 − ψ ′)i−1

i∏
s=1

p
(
1 − |A|p)ts .(45)
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In the above expression, a particular pair is specified at each -distinct meeting.
We wish to fix only the final pair, giving a total of |A|i−1 possible cases. Each case
has the above probability, so in total, we get

Pr
(
C(x,y)(τ )

) = |A|i−1ρτ
(
1 − ψ ′)i−1

i∏
s=1

p
(
1 − |A|p)ts

= p
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t

ρτ
(
1 − |A|p)−ti+1 .

Since (1 − |A|p)−ti+1 = 1 + O(T k2/n), it can be absorbed into the correcting
factor in p, so we have

Pr
(
C(x,y)(τ )

) = ρτp
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t

.

Observe that for a given t , fixing t1, . . . , ti−1 and allowing ti+1 to vary from 0
to T , determines ti . Letting t

(r)
i = t − (t1 + · · · + ti−1 + r), we have

T∑
r=0

Pr
(
τ = (

t1, . . . , ti−1, t
(r)
i , r

)) = p
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t T∑

r=0

ρr

= ψ ′p
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t

.

Recall τ i (t) is the set of all sequences τ = (t1, . . . , ti , ti+1) satisfying conditions
(i)–(iv). Let τ �

i (t) ⊂ τ i (t) be those for which ti+1 = 0.

Pr
(
C(x,y)

(
τ i (t)

)) = ∑
τ∈τ i (t)

Pr
(
C(x,y)(τ )

)

= ∑
τ∈τ �

i (t)

ψ ′p
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t(46)

= ∣∣τ �
i (t)

∣∣ψ ′p
((

1 − ψ ′)|A|p)i−1(
1 − |A|p)t

.

Let Si be the set of sequences for which ti <  + T , or in which there is some
ts <  for 1 ≤ s ≤ i − 1.

∣∣τ �
i (t)

∣∣ =
(

t

i − 1

)
− |Si |

=
(

t

i − 1

)
− O

((
t

i − 2

)
i

)

=
(

t

i − 1

)(
1 − O

(
i2

t − i

))

=
(

t

i − 1

)(
1 − O

(
(k lnn)13

t

))
.
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The above holds because we are only considering i ≤ (k lnn)5, and by assump-
tion, t ≥ √

n, so when k ≤ nε for small enough ε, we have i = o(t). On the same
basis, we can further reduce the fraction to 1/n�(1), which can be absorbed into
the correcting factor of p.

Thus, continuing from (46),

(k lnn)5∑
i=1

Pr
(
C(x,y)

(
τ i (t)

))

= ψ ′p
(k lnn)5∑

i=1

(
1 − |A|p)i−1

(
t

i − 1

)((
1 − ψ ′)|A|p)i−1(

1 − |A|p)t−i+1

= ψ ′p
(k lnn)5∑

i=1

(
t

i − 1

)((
1 − ψ ′)|A|p)i−1(

1 − |A|p)t−i+1
,

since (1 − |A|p)i−1 = 1 + O(1/n�(1)) when i ≤ (k lnn)5.
Now

t∑
i=1

(
t

i − 1

)((
1 − ψ ′)|A|p)i−1(

1 − |A|p)t−i+1

= (
1 − ψ ′|A|p)t − ((

1 − ψ ′)|A|p)t
.

Since
√

n ≤ t , ((1 − ψ ′)|A|p)t = O((k2/n)
√

n) = O(1/n�(
√

n)).
Hence, putting the above into (43), we have

Pr
(
C(x,y)(t)

)
= ψ ′p

(
1 − ψ ′|A|p)t − O

(
1

n�(
√

n)

)

+ ∑
i≥(k lnn)5+1

Pr
(
C(x,y)

(
τ i(t)

))

− ψ ′p
(

t

i − 1

)((
1 − ψ ′)|A|p)i−1(

1 − |A|p)t−i+1
.

One may think of the sum term to be the error generated by approximating
Pr(C(x,y)(τ i (t))) with the binomial expression. Since Pr(C(x,y)(τ i (t))) ≤ (1 −ρ)i

and (1 − ψ ′) ≤ (1 − ρ), the absolute value of the sum term is at most

(1 − ρ)(k lnn)5

(
1 +

t∑
i=(k lnn)5

(
t

i − 1

)(|A|p)i−1(
1 − |A|p)t−i+1

)
.(47)
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Furthermore, O((1 − ρ)(k lnn)5
) = O(n−�(k5(lnn)4)), and

t∑
i=(k lnn)5

(
t

i − 1

)(|A|p)i−1(
1 − |A|p)t−i+1 ≤

t∑
i=(k lnn)5

(
et

i

i)(|A|p)i

≤
∞∑

i=(k lnn)5

(
et |A|p
(k lnn)5

i)

= O

((
k2t

(k lnn)5n

(k lnn)5))
.

Since t ≤ k2n lnn, we have k2t
(k lnn)5n

≤ 1
k(lnn)4 . Therefore, (47) is O(n−�(k5(lnn)4)).

Hence, when k ≤ nε for small enough ε,

Pr
(
C(x,y)(t)

) = ψ ′p
(
1 − ψ ′|A|p)t − O

(
1

n�(
√

n)

)
+ O

(
1

n�(k5(lnn)4)

)

= ψ ′p
(
1 − ψ ′|A|p)t + O

(
1

n�(k5(lnn)4)

)

=
(

1 + O

(
+(1 − ψ ′|A|p)−t

n�(k5(lnn)4)

))
ψ ′p

(
1 − ψ ′|A|p)t

.

Since t ≤ k2n lnn, we have for some constant C,(
1 − ψ ′|A|p)−t = O

((
1 − Ck2/n

)−k2n lnn) = O
((

1 − Ck2/n
)−(n/(Ck2))k4 lnn)

= nO(k4).

Therefore, we have Pr(C(x,y)(t)) = ψ ′p(1 − ψ ′|A|p)t .
Consider the correcting factor of (41); this can be absorbed in the above cor-

recting factors, as well as into p. We are finally left with

Pr
(
C(x,y)(t)

) = ψp
(
1 − |A|ψp

)t
. �

12. Concluding remarks.

12.1. Comments on proof strategy. In Section 10, one may wonder why we
do not employ the more obvious strategy of simply setting the infectious period
to be infinite (i.e., letting it run as an SI process) then deleting from I edges with
weight exceeding the original infectious period ξ . We could then have continued
where Section 9 left off, proving Theorem 1 without the need for the intervening
material of Section 10. Unfortunately, this approach fails, as can be demonstrated
by the following example: Suppose there are four particles a, b, c, d with a be-
ing the initial infective. Suppose the following (particlepair, timestep) meetings
take place (the repetition of cd is intentional): (ab,9), (ad,11), (bc,18), (cd,22),
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(cd,27), (ac,100), (bd,100). The SI-based interaction graph would have the fol-
lowing edge weights: wI(a, b) = 9, wI(a, c) = 100, wI(a, d) = 11, wI(b, c) = 9,
wI(b, d) = 91, wI(c, d) = 11. Therefore, if ξ = 10 and we had a rule to remove
any edge with weight greater than this, it would leave d isolated, suggesting it does
not get infected. However, it clearly gets infected by the chain a � b � c � d .

In contrast, under the current scheme, we get weights wI(a, b) = 9, wI(a, c) =
100, wI(a, d) = 11, wI(b, c) = 9, wI(b, d) = 91, wI(c, d) = 4. Deleting edges, we
see that all particles are in the connected component of a, meaning they all get
infected.

12.2. Extensions. One obvious extension is generalising Theorem 2 to include
the case ξ < ∞. This would require the maximum weighted distance from x0 to
other vertices in Cfξ (�). For this purpose, it may be possible to exploit recent results
such as [4].

Another obvious extension would be making the infectious period random, in-
dependently for each particle. Of course, we would not be able to use the current
strategy of deleting edges that exceed a particular finite weight, and it would ap-
pear that the techniques in this paper do not readily extend to be able to cope with
this setting. If one were to relax the model to allow infectious periods to be asso-
ciated with particle pairs rather than particles themselves, this would correspond
to i.i.d. random cut-off thresholds on edges. However, it would be difficult to jus-
tify an interpretation of this model. It would probably be more fruitful to aim to
calculate rough bounds on Mk rather than precise values we currently get.

Finally, one may consider other graph models. In particular, random graphs of
a prescribed degree sequence generalise random regular graphs, so would seem an
obvious extension. Such a model was studied in [1], and it would seem that some of
the results and techniques in that paper could find use in a multiple walks setting.

Another setting is d-dimensional grids as per [20] and [17]. Those papers study
the SI model, getting results on broadcast time, which is equivalent to our comple-
tion time Tk . Studying the size of the outbreak in the SIR model is a natural avenue
for investigation. The techniques in this paper would not be amenable to that set-
ting, due to the very different nature of these families of graphs. For a pertinent
example, random regular graphs are mostly locally treelike with short cycles being
far from each other. Grids on the other hand, have many short cycles. Thus local
behaviours of walks in the mixing times, (as well as the mixing times themselves)
will be quite different.

APPENDIX

PROOF OF LEMMA 19. (i) ⇒ (ii) It is straightforward to show that for a
particle y, the infection time t (y) is the weighted distance in fξ (I′) between x0
and y, which will be ∞ if there is no path. Therefore, (i) implies that for an edge
e = (x, y), t (e) = dfξ (z)(e), and by the construction of I′, (ii) follows.
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(ii) ⇒ (i) Order particles in Cfξ (z) by their weighted distance from x0 in
fξ (z): x0 = x(0), x(1), . . . , x(r−1) where r = |Cfξ (z)| and i < j ⇒ dfξ (z)(x(i)) ≤
dfξ (z)(x(j)). We shall prove that t (x(i)) = dfξ (z)(x(i)) for 0 ≤ i ≤ r − 1.

Clearly this proposition holds for x(0). Suppose for all i ≤ N − 1, t (x(i)) =
dfξ (z)(x(i)). If N = r , we are done. Otherwise N < r . Let x(M) be a neighbour of
x(N) on a shortest path from x0 to x(N). Since dfξ (z)(x(M)) < dfξ (z)(x(N)), M <

N , so by the induction hypothesis, t (x(M)) = dfξ (z)(x(M)) = dfξ (z)(e) where e =
(x(M), x(N)). By (ii) this implies t (x(N)) ≤ dfξ (z)(e) + wz(e) = dfξ (z)(x(N)).

Now consider the chain of infections starting at x0 that led to x(N) being in-
fected. Let x(j) be the first in the chain where j > N − 1, and suppose it got in-
fected by x(i), i ≤ N − 1. Then by (ii), t (x(j)) = dfξ (z)(x(i)) + wz(x(i), x(j)) ≥
dfξ (z)(x(j)) ≥ dfξ (z)(x(N)), implying t (x(N)) ≥ dfξ (z)(x(N)). Hence t (x(N)) =
dfξ (z)(x(N)) for 0 ≤ i ≤ r − 1. �

PROOF OF LEMMA 21. Let A(z) = V (Cfξ (z)), B(z) = P \ A(z) and E(z) =
E(A(z)) ∪ E(A(z) :B(z)). Let E�(z) = E�(A(z)) ∪ E�(A(z) :B(z)), and simi-
larly for I′. Since � is good w.h.p., by Lemma 20,

1 − o(1) = ∑
E(z) : z good

Pr
(
E�(z) = E(z)

)

= (
1 − o(1)

) ∑
E(z) : z good

Pr
(
EI′(z) = E(z)

)
.

Observe Cfξ (z) = Cfξ (E(z)). Let 1En(Cfξ (E(z))) be the indicator for Cfξ (E(z)) ∈ En.

Pr(Cfξ (�) ∈ En) = ∑
E(z)

Pr
(
E�(z) = E(z)

)
1En(Cfξ (E(z)))

= o(1) + ∑
E(z) : z good

Pr
(
E�(z) = E(z)

)
1En(Cfξ (E(z)))

= o(1) + (
1 − o(1)

) ∑
E(z) : z good

Pr
(
EI′(z) = E(z)

)
1En(Cfξ (E(z)))

= o(1) + (
1 − o(1)

) ∑
E(z)

Pr
(
EI′(z) = E(z)

)
1En(Cfξ (E(z)))

= o(1) + (
1 − o(1)

)
Pr(Cfξ (I′) ∈ En).

Hence if Pr(Cfξ (�) ∈ En) → pc as n → ∞, then Pr(Cfξ (I′) ∈ En) → pc as n → ∞.
Corollary 15(i) says I = I′ w.h.p., and so Pr(Cfξ (I) ∈ En) → pc as n → ∞ �

PROOF OF LEMMA 24. (a) In the proof of Lemma 14 we derived probabilities
for each of these two types of “failures”: (i) more than one pair of active particles
being within distance d = α(ln lnn+ ln k) of each other when some pair meet after
the (extended) mixing time, and (ii) any pair meeting within  steps when they all
start with distance at least d from each other. These had probabilities O(1/n�(1))
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and O(1/(k lnn)�
+(1)), respectively. Each type of failure was considered over at

most
(k
2

)
particle pairs over at most

(k
2

)
meetings (interactions), so taking the union

bound over all of them, the above probabilities were still o(1).
Now consider the ρ < 1 setting. After the extended mixing time we wait for a

meeting of an active pair. Say the active pair that meets is (x, y). We allow (x, y)

to have T steps to interact, before letting the system mix again for 2(T +T 3) steps,
after which we wait for another active pair meeting. Thus, if there are no failures as
described above, these first meetings after the extended mixing times are -distinct.
Let the random variable X count the total number of such meetings over the course
of the process, over all active particle pairs. The probability of an interaction in the
T -length window is at least ρ. Since ρ is constant, E[X] = O

((k
2

)
/ρ

) = O(k2).
Hence, the expected number of failures over all particle pairs over all X meetings
is bounded by E[X(1/n�(1) + 1/(k lnn)�

+(1))] = o(1).
(b) We can assume τ = 0. Let E1 be the event that x and y interact in the

period [0, T − 1], and let E2 be the event that x and y meet in the period
[T , ]. As per Lemma 27, Pr(E1) = ψ ′. Then Pr(E2|E1) ≤ Pr(E2)/Pr(E1) =
Pr(E2)/(1 − ψ ′).

Thus, since ψ ′ is almost a constant, Pr(E2|E1) is of the same order as Pr(E2).
The rest of the proof is similar to part (a). �
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