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We model the problem of managing capacity in a build-to-order
environment as a Brownian drift control problem. We formulate a
structured linear program that models a practical discretization of
the problem and exploit a strong relationship between relative value
functions and dual solutions to develop a functional lower bound for
the continuous problem from a dual solution to the discrete problem.
Refining the discretization proves a functional strong duality for the
continuous problem. The linear programming formulation is so badly
scaled, however, that solving it is beyond the capabilities of standard
solvers. By demonstrating the equivalence between strongly feasible
bases and deterministic unichain policies, we combinatorialize the
pivoting process and by exploiting the relationship between dual so-
lutions and relative value functions, develop a mechanism for solving
the LP without ever computing its coefficients. Finally, we exploit
the relationship between relative value functions and dual solutions
to develop a scheme analogous to column generation for refining the
discretization so as to drive the gap between the discrete approxima-
tion and the continuous problem to zero quickly while keeping the LP
small. Computational studies show our scheme is much faster than
simply solving a regular discretization of the problem both in terms
of finding a policy with a low average cost and in terms of providing
a lower bound on the optimal average cost.

1. Introduction. Consider the problem of managing capacity in a
build-to-order environment modeled as a Brownian drift control problem
with the objective of minimizing the long-term average cost. Assume the
controller can, at some cost, shift the processing rate among a finite set of
alternatives by, for example, adding or removing staff, increasing or reducing
the number of shifts or opening or closing production lines. The controller
incurs a cost for capacity per unit time and a delay cost that reflects the
opportunity cost of revenue waiting to be recognized or the customer ser-
vice impacts of delaying delivery of orders. Furthermore he incurs a cost per
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unit to reject orders or idle resources as necessary to keep the workload of
waiting orders within a prescribed range. Ormeci Matoglu and Vande Vate
(2011) address this problem by introducing a practical restriction, which
allows the controller to change the capacity only when the workload in the
order queue is a value in a given finite set S (e.g., all the integer values up
to some constant). They call this the S-restricted Brownian control prob-
lem and formulate a linear programming model to solve it. They show that
when the costs for changing the processing rate satisfy a triangle inequal-
ity, an optimal solution to the S-restricted problem can be found among
a special class of policies called deterministic non-overlapping control band
policies. The simplicity of these policies greatly facilitates their application
in industrial settings.

In this paper we address the S-restricted problem with a new LP formu-
lation that enjoys the important properties (e.g., pre-Leontief structure with
a single scaling constraint, strong relationship between complementary dual
solutions and relative value functions) of the original formulation in Ormeci
Matoglu and Vande Vate (2011) and prove a cleaner and more satisfying
strong duality theory for the restricted and unrestricted problems. Ormeci
Matoglu and Vande Vate (2011) show how to construct a sequence of policies
whose average costs converge to a lower bound on the average cost of any
non-anticipating policy. They do not however state a strong duality theory
for the problem because their approach never constructs a pair (γ, f) satisfy-
ing all the lower bound conditions (i.e. a feasible dual solution) for the unre-
stricted problem. We provide a constructive proof of the strong duality theo-
rem by showing how to compute a sequence of policies and lower bounds (i.e.
feasible dual solutions) whose values converge proving that the lower bound
is tight. Theorem 3.1 proves that strong duality, namely that the infimum
of the average cost over all non-anticipating policies is equal to the supre-
mum of γ over all pairs (γ, f) satisfying the lower bound conditions for the
unrestricted problem. In fact, we extend this result to the non-overlapping
control band policies and show (without requiring that the transition costs
satisfy a triangle inequality) that the infimum of the average cost over all
non-overlapping control band policies is equal to the supremum of γ over all
pairs (γ, f) satisfying the same lower bound conditions (Corollary 3.1).

The original linear programming formulation of Ormeci Matoglu and
Vande Vate (2011) and indeed the new formulation we study here are ex-
tremely poorly scaled and solutions are so sensitive to small errors in the
problem coefficients that completing pivots algebraically is difficult and stan-
dard solvers are not up for the task. To help bridge the gap between the
theory and its practical application, we exploit the properties of the LP
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formulation and the strong relationship between dual solutions and relative
value functions to develop a largely combinatorial approach that allows us
to solve the problem without ever computing the problem coefficients.

Our combinatorial pivoting scheme focuses on “strongly feasible bases”,
initially used by Cunningham (1976) and then by Orlin (1985) to solve
network problems via simple combinatorial modifications to the simplex
method. The main idea behind these modifications is to keep the basis
“strongly feasible” via a rule for choosing the leaving basic variable at each
iteration. Applying the notion of strongly feasible bases to the the drift con-
trol problem allows us to exploit the combinatorial nature of the problem
and yields significant computational advantages. As a consequence, we can
restrict our attention to the structure of the bases rather than the values of
the primal variables and so combinatorialize much of the pivoting process,
reducing the computational burden significantly. The relationship between
complementary dual solutions and relative value functions allows computing
the reduced costs directly without computing the dual solution (or for that
matter the problem coefficients).

Using the techniques developed in Ormeci Matoglu and Vande Vate (2011)
we can obtain a lower bound on the average cost of an optimal policy for the
unrestricted problem from our solution to the S-restricted problem. Refin-
ing the discretization, the obvious method for closing the gap between the
solution to the S-restricted problem and this lower bound, makes the LP
large. By exploiting the relationship between complementary dual solutions
and relative value functions we show how to choose the points of S so as
to drive this gap to zero quickly. This allows us to produce an ε-optimal
solution by adding only a relatively small number of points to S.

Drift control problems were studied in the literature in different contexts
with different cost structures and solution approaches. See, for example,
(Ata, Harrison and Shepp, 2005; Avram and Karaesmen, 1996; Chernoff
and Petkau, 1978; Ghosh and Weerasinghe, 2007; Liao, 1984; Perry and Bar-
Lev, 1989; Rath, 1977). While (Avram and Karaesmen, 1996; Chernoff and
Petkau, 1978; Perry and Bar-Lev, 1989; Rath, 1977) restrict the controller
to only two drift rates, Ata, Harrison and Shepp (2005) confine the drift rate
in a finite range with more general processing costs, but do not address the
holding or delay costs and changeover costs and the cost of displacement at
the lower boundary. (Ghosh and Weerasinghe, 2007, 2010) include a con-
gestion cost similar to a holding cost but do not include changeover costs.
Ormeci Matoglu and Vande Vate (2011) and this paper deal with the more
general problem of selecting from many rates when the process incurs the
cost of lost production whenever the lines are idled and the cost of rejecting
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orders whenever the upper boundary is reached, reflecting both the imme-
diate lost revenue and the potential impact on future sales to the customer.

The use of linear programming to reformulate long-term average stochas-
tic control problems began with Manne (1960) in the context of a discrete
time, finite state controlled Markov chain and now has become standard
(e.g., Feldman and Valdez-Flores (1996)). In generalizing from discrete time
and finite state space to continuous time and continuous state, different ap-
proaches have been developed. Infinite dimensional linear programming has
been one of the tools employed (e.g., Anderson and Nash, 1989; Anderson,
Nash and Perold, 1983; Hernández-Lerma and González-Hernández, 1998;
Hernández-Hernández and Hernández-Lerma, 1994; Hernández-Lerma and
Lasserre, 1998; Klabjan and Adelman, 2006; Taksar, 1997). By their nature
these problems are in general difficult to solve and the main challenge has
been to show the absence of a duality gap between the primal and the dual
programs (strong duality). Strong duality results are generally developed
with varying restrictions on the problems and the sets involved. Klabjan
and Adelman (2006) develop infinite-dimensional linear programming theory
for semi-Markov decision processes on Borel spaces with average cost crite-
rion in which the state transitions are deterministic. Hernández-Hernández,
Hernández-Lerma and Taksar (1996) employ infinite-dimensional linear pro-
gramming methods to study deterministic continuous-time control problems
and discrete-time Markov decision processes with discounted cost. They give
conditions for solvability and strong duality. Taksar (1997) employs linear
programming techniques to a singular diffusion control problem and shows
that the dual program is equivalent to finding the maximal solution to a
variational inequality. Another common approach used to solve the infinite
dimensional problems has been discretization. Kushner and Dupuis (2001)
approximate a stochastic control problem in continuous time and continuous
state via a Markov Chain on a finite state discretization of the original state
space and apply numerical methods to find a solution to the Markov Chain
problem that optimizes an analogue of the original cost function. Kumar
and Muthuraman (2004) develop a discretization scheme using finite element
methods for certain singular control diffusion problems. Helmes and Stock-
bridge (2000) and Helmes and Stockbridge (2008) develop linear program-
ming based approaches to solve diffusion control problems. These methods
generate constraints on a finite set of moments to develop an approximate
solution. In the infinite dimensional LP problem discretizing time converts
the problem to an approximating LP (e.g., Buie and Abrham, 1973; Pullan,
1993). However this has some drawbacks as the LP problem becomes quite
large, the solution is only approximate and the discretization may obscure
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important features of the optimal solution. Another line of work involves
extending the simplex method for finite dimensional linear programs to the
continuous-time or infinite-dimensional problem (see Weiss, 2008).

In some sense we address the problem in both ways, but avoid some of
the complications. We introduce a discretization on the state space (the
S-restricted problem), use this discretization to construct an LP and pro-
vide a mechanism to complete the simplex pivots. In doing so we restrict our
attention to the structure of the bases rather than the values of the primal
variables and so combinatorialize much of the pivoting process, reducing the
computational burden significantly. We also obtain a lower bound on the av-
erage cost of an optimal policy for the unrestricted problem from our solution
to the S-restricted problem. Exploiting the relationship between complemen-
tary dual solutions and relative value functions, we also develop an intelligent
mechanism for adding points to S and so variables or columns to the LP
formulation (as in column generation) so as to quickly close the gap between
the average cost of an optimal solution to the S-restricted problem and a
lower bound on the cost of an optimal solution to the unrestricted problem.

Thus our contributions are: (1) We formulate a structured linear program
that models a practical discretization of the problem and exploit a strong
relationship between relative value functions and dual solutions to develop
a functional lower bound for the continuous problem from a dual solution to
the discrete problem. Refining the discretization proves a functional strong
duality for the continuous problem (Theorem 3.1). (2) We observe that this
LP is poorly scaled and that standard algorithms and solvers fail to solve it.
By demonstrating the equivalence between strongly feasible bases and deter-
ministic unichain policies, we combinatorialize the pivoting process and by
exploiting the relationship between dual solutions and relative value func-
tions, develop a mechanism for solving the LP without ever computing its
coefficients. (3) We develop a scheme analogous to column generation for
refining the discretization so as to drive the gap between the discrete ap-
proximation and the continuous problem to zero quickly while keeping the
LP small. (4) We present computational studies showing that our “column
generation” scheme is much faster than simply solving a regular discretiza-
tion of the problem.

The rest of the paper is organized as follows: In §2 we describe the Brow-
nian drift control problem. In §3 we present our strong duality result, The-
orem 3.1, and summarize the main results of this paper. In §4 we introduce
a controlled random walk approximation and provide a linear programming
formulation of the controlled random walk. In §5 we establish the correspon-
dence between a relative value function and a dual solution, provide a lower



SOLVING THE DRIFT CONTROL PROBLEM 329

bound on the average cost of any non-anticipating policy, and prove Theo-
rem 3.1. In §6 we introduce the notion of a strongly feasible basis. Theorem
6.1 establishes the equivalence of strongly feasible bases and deterministic
unichain policies, which allows us to combinatorialize the pivoting process
of the LP. In §7 we provide a mechanism to add points to the set S so as to
reduce the gap between the S-restricted problem and the lower bound on the
optimal solution to the unrestricted problem quickly. In §8 we briefly address
implementation issues and present computational studies that demonstrate
that the column generation algorithm shrinks the duality gap rapidly and
consistently on a range of problems that have three to eight drift rates.

2. The Brownian drift control problem. Let

W (T ) = W (0) +

∫ T

0
μ(t)dt+

∫ T

0
σ(μ(t))dB(t), T ≥ 0,

be a diffusion process with drift μ(t) in some fixed finite set Λ for each t ≥ 0,
variance σ2(μ) > 0 for each μ ∈ Λ and initial level W (0) on some filtered
space {Ω, F , P;Ft, t ≥ 0}. To simplify notation we consider the special case
in which σ2(μ) = σ2. The results we present apply in the more general setting
in which the variance σ2 is a function of the drift rate μ. The process W (T )
describes the difference between the cumulative work to have arrived and
the cumulative work processed by time T , i.e. the netput process Harrison
(1985). The drift rate {μ(t), t ≥ 0}, which is adapted to the Brownian motion
{B(t) : t ≥ 0}, is the difference between the average arrival rate and the
rate λ(t) at which work is completed. We assume the arrival process is time
homogeneous with average rate μ0 and that the controller can, at some
cost, shift the processing rate among a finite set of alternatives. Further, the
controller must exert the minimal instantaneous control required to keep the
process within the allowed range [0,Θ]. We let A(t) denote the cumulative
increases in work and R(t) the cumulative decreases in work up to time t
exerted by the controller at 0 and Θ, respectively. The resulting controlled
process is

(2.1) X(T ) = X(0) +

∫ T

0
μ(t)dt+ σB(T ) +A(T )−R(T ), T ≥ 0,

where X(0) = W (0). X(t) lives in the bounded region [0,Θ], and the con-
troller may only adjust the drift rate by choosing from among the possi-
ble values in the finite set Λ. We assume, without loss of generality, that
W (0) ∈ [0,Θ]. To avoid tedious case analysis, we also assume that 0 �∈ Λ.
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The special case μ = 0 requires different formulas for computing the coef-
ficients of our LP formulation and a special formula for the relative value
function. All of our arguments also work for these special formulas, but the
tedious case analysis would not be illuminating. See Appendix B for these
coefficients and the relative value function when μ = 0.

A policy defines the times at which and amounts by which we adjust the
drift rate. We restrict attention to the space P of all non-anticipating policies
Φ = {(Ti, ui) : i ≥ 0}, where (i) 0 ≤ T0 < T1 < T2 < · · · < Ti < Ti+1, . . . is a
sequence of stopping times and (ii) Each ui ∈ Λ is a random variable adapted
to FTi indicating the rate to which we change the drift at time Ti. Under
the policy Φ = {(Ti, ui) : i ≥ 0}, the drift rate μ(t) = ui for Ti ≤ t < Ti+1.

With each policy {(Ti, ui) : i ≥ 0} = {μ(t) : t ≥ 0}, the associated
Skorokhod problem: (a) X(t) ∈ [0,Θ], t ≥ 0, (b) A(·), R(·) are nonde-

creasing and continuous with A(0) = 0, R(0) = 0, (c)
∫ T
0 1{X(t)>0}dA(t) =∫ T

0 1{X(t)<Θ}dR(t) = 0, t ≥ 0, where the continuous process {X(t) : t ≥ 0}
is defined by (2.1), uniquely defines {X,A,R} (See Section 2.4 of Harrison
(1985)). Note that since the drift rate controls uniquely determine the in-
stantaneous controls exerted at the boundaries, we do not include the latter
in our specification of a policy.

To change the drift from rate u to rate v, the controller must pay a fixed
cost, K(u, v) > 0, for u �= v. To simplify notation, we let K(u, u) = 0 for all
u ∈ Λ.

There is a cost c(u) per unit time for the capacity to process work that
depends on the drift rate u and when X(t) > 0 there is a backlog of orders,
which incurs a linear delay cost at rate h per unit per unit time. The instan-
taneous controls exerted at 0 (Θ) to adjust the workload up (down) incurs
a unit cost of U (M).

We consider the Average Cost Brownian Control Problem, which is to find
a non-anticipating policy that minimizes the long run average cost:

AC(Φ) = lim sup
T→∞

1

T
E[

∫ T

0
c(μ(t)) + hX(t)dt+ UA(T ) +MR(T )

+

N(T )∑
i=1

K(ui−1, ui)],

where μ(t) denotes the drift rate at time t and, for each T ≥ 0, N(T ) =
sup{n ≥ 0 : Tn ≤ T} denotes the number of changes in the drift rate by
time T .

A control band ψ = (u, s, S) is defined by a rate u ∈ Λ and an interval
(s, S). Given μ(t) = u and X(t) ∈ (s, S), a policy implementing the control
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band ψ = (u, s, S) maintains the drift rate u until X first reaches {s, S}. If
s < 0, a policy implementing the control band (u, s, S) maintains the drift
rate u until X(t) first reaches S and relies on instantaneous controls at 0 to
keep the process non-negative. Similarly, if S > Θ, a policy implementing the
control band (u, s, S) maintains the drift rate u until X(t) first reaches s and
relies on instantaneous controls at Θ to keep the process below that bound.

We say that two bands (u, s, S) and (u′, s′, S′) overlap if u = u′ and
the intervals (s, S) and (s′, S′) overlap, i.e., (s, S) ∩ (s′, S′) �= ∅. Otherwise,
the bands are non-overlapping. We say that a collection of bands is non-
overlapping if no two of its members overlap.

A control band policy is defined by a collection of control bands Ψ = {ψi :
i ∈ I} such that each point x ∈ [0,Θ] is contained in some band ψi together
with a rule for switching from one control band to the next. Such a policy
maintains the drift rate of the current control band (u, s, S) until X(t) first
reaches s or S at which point it changes to a new band by changing the drift
rate as dictated by the switching rule.

We say the switching rule for a band (u, s, S) is deterministic if the rule
associates with each endpoint s and S a unique band to switch to. A deter-
ministic control band policy is a control band policy in which the switching
rule from each band is deterministic. Deterministic policies are simple to
describe and implement.

We consider the S-restricted Brownian control problem introduced in
Ormeci Matoglu and Vande Vate (2011) in which the controller may only
change the drift rate when X(t) is in a given finite set S = {si : i =
1, 2, . . . , n}, where 0 = s0 < s1 < s2 . . . < sn < sn+1 = Θ. We define the
subset P(S) ⊂ P to be those non-anticipating policies {(Ti, ui) : i ≥ 0} in
which each Ti is a hitting time for some subset of S.

Ormeci Matoglu and Vande Vate (2011) formulate a linear program LP(Λ,
S) to find a minimum average cost control band policy in P(S) and prove
that there is an optimal solution to LP(Λ,S) that corresponds to a deter-
ministic non-overlapping control band policy. They show that an optimal so-
lution to LP(Λ,S) is an optimal policy for the S-restricted Brownian control
problem and so, the S-restricted Brownian control problem admits an opti-
mal policy that is a deterministic non-overlapping control band policy under
the assumption that the transition costs K(u, v) satisfy a triangle inequality.

Note that when considering a function f defined on a subset of R × Λ
we treat f as a family of functions {f(·, u) : u ∈ Λ} each defined on the
corresponding subset of R and so, for example, use f ′ and f ′′ to represent
derivatives with respect to the first argument. For a function f we define
the following smoothness conditions.
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Smoothness conditions: We say that a function f satisfies the smoothness
conditions if f (i) can be written as the difference of two convex functions,
(ii) is differentiable at all but a finite set of points and (iii) has bounded first
and second derivatives.

Ormeci Matoglu and Vande Vate (2011) prove:

Proposition 2.1. Suppose that for each u ∈ Λ, f(·, u) : [0,Θ] → R

satisfies the smoothness conditions and that γ is a scalar. Further, suppose
that for each u ∈ Λ the function f(·, u) and the scalar γ satisfy:

σ2

2
f ′′(a, u) + uf ′(a, u) + c(u) + ha ≥ γ for almost all a ∈ [0,Θ],(2.2)

f(a, v)− f(a, u) ≥ −K(u, v) for all a ∈ [0,Θ] and v ∈ Λ,(2.3)

f ′(0, u) ≥ −U,(2.4)

f ′(Θ, u) ≤ M,(2.5)

ρ(a, u) ≡ f ′(a+, u)− f ′(a−, u) ≥ 0 for all a ∈ (0,Θ).(2.6)

Then γ ≤ AC(Φ) for each policy Φ ∈ P and each initial state.

A pair (γ, f) is said to satisfy the lower bound conditions if f(·, u) satis-
fies the smoothness conditions and γ and f(·, u) satisfy (2.2)–(2.6) for each
u ∈ Λ.

3. Main results. One of the main contributions of this paper is The-
orem 3.1, which extends Proposition 2.1 to prove that the lower bound is
tight. Ormeci Matoglu and Vande Vate (2011) show how to construct a se-
quence of policies whose average costs converge to a lower bound on the
average cost of any non-anticipating policy. That paper does not however
state a strong duality theory for the problem because the approach never
constructs a pair (γ, f) satisfying all the lower bound conditions. We in-
troduce a modest modification of this original approach that allows us to
prove Theorem 3.1 and along the way, provides a stronger result about the
optimality of non-overlapping policies.

Theorem 3.1. The infimum of AC(Φ) over all non-anticipating policies
Φ ∈ P is equal to the supremum of γ over all pairs (γ, f) satisfying the lower
bound conditions.

We further generalize the result of Ormeci Matoglu and Vande Vate (2011)
by proving Corollary 3.1 without requiring that the transitions costs satisfy
a triangle inequality.
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Corollary 3.1. The infimum of AC(Φ) over all non-overlapping con-
trol band policies Φ ∈ P is equal to the supremum of γ over all pairs (γ, f)
satisfying the lower bound conditions.

Theorem 3.1 relies on formulating a structured linear program (LP) that
models a practical discretization of the problem (originating from the S-
restricted Brownian control problem) and exploiting a strong relationship
between relative value functions and dual solutions to develop a functional
lower bound for the continuous problem from a dual solution to the discrete
problem. Refining the discretization (e.g., selecting states uniformly from the
continuous state space) proves a functional strong duality for the continuous
problem, thus proving Theorem 3.1.

The second result of this paper is developing a symbolic pivoting method-
ology that makes it possible to solve the LP without calculating its coeffi-
cients. We observe that this LP is so poorly scaled that standard algorithms
and solvers fail to solve it. In §6, we demonstrate the equivalence between
strongly feasible bases and deterministic unichain policies, and combinato-
rialize the pivoting process. We exploit the relationship between dual so-
lutions and relative value functions to develop a mechanism for solving the
LP without ever computing its coefficients. This symbolic pivoting algorithm
(Lemma 6.4) allows us to solve the LP despite the poor scaling.

Third, we develop a scheme analogous to column generation for refining
the discretization so as to drive the gap between the discrete approximation
and the continuous problem to zero quickly while keeping the LP small. In
Lemma 7.3 we describe how to add new states to the discretization for this
purpose.

Finally, we provide a computational study that demonstrates that the de-
veloped “column generation” approach is much faster than solving a regular
discretization of the problem.

4. A controlled random walk approximation and its LP formu-
lation. We define a controlled random walk on the lattice S × Λ that ap-
proximates the controlled diffusion process. We often refer to a state (sj , u)
simply by (j, u). Upon entering a state (j, u), the controller may instan-
taneously move the process to a new state (j, v) with v ∈ Λ at the cost
K(u, v). If the controller does not change the drift rate, the system wanders
from state to state, changing from state (j, u), 1 < j < n to state (j + 1, u)
with probability

p+(j, u) =
e

2u
σ2 (sj−1−sj) − 1

e
2u
σ2 (sj−1−sj+1) − 1

=
e−

2u
σ2 sj − e−

2u
σ2 sj−1

e−
2u
σ2 sj+1 − e−

2u
σ2 sj−1

,
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and to state (j−1, u) with probability p−(j, u) = 1−p+(j, u). If the controller
does not change the drift rate, the process moves from state (1, u) to state
(2, u) and from state (n, u) to state (n− 1, u) with probability 1.

We let ET[j, u] denote the expected sojourn time in state (j, u) if the
policy does not change the drift rate, where ET[j, u] is defined through the
solution to the basic adjoint equations provided as in Lemma 1 of Ormeci
Matoglu and Vande Vate (2011). We provide this Lemma with our notation
and the explicit expression ET[j, u] in the Appendix. To see the relationship
to the diffusion process, observe that p+(j, u) is the probability that starting
at sj , X(t) reaches sj+1 before reaching sj−1, and ET[j, u] is the expected
time before X(t), starting at sj hits {sj−1, sj+1} when the drift rate is u.
The term p−(j, u) = 1− p+(j, u) is the probability that starting at sj , X(t)
reaches sj−1 before reaching sj+1.

To reflect the costs of maintaining the drift rates, each time the process
drifts out of state (j, u) the controller is charged c(u)ET[j, u]. To reflect
the costs of instantaneous controls required to keep the process in [0,Θ],
each time the process drifts out of state (1, u) the controller is charged
UEA[u]ET[1, u], and each time the process drifts out of state (n, u) the con-
troller is charged MER[u]ET[n, u]. To reflect the costs of holding inventory,
we also charge the controller hET[j, u]EX[j, u] each time the system drifts
out of state (j, u). EA[u], ER[u] and EX[j, u] are defined as in Lemma 1 of
Ormeci Matoglu and Vande Vate (2011), and the explicit expressions are
provided in the Appendix.

Next we formulate a linear program that finds an optimal policy for
the controlled random walk defined earlier in this section. For each j =
1, 2, . . . , n and u, v ∈ Λ, we let y(j, u, v) denote the rate or transitions per
unit time at which the controller changes the drift rate from u to v when
the random walk is in state (j, u). If the controller does not change to a
new drift rate in state (j, u), the system transitions to state (j− 1, u) (when
j > 1) or (j +1, u), (when j < n). In this case we let r(j, u) denote the rate
at which the system transitions out of state (j, u).

We obtain the following constraints on y and r. First, each arrival to
state (j, u) must be accompanied by a departure from the state. The rate of
departures from state (j, u) is simply r(j, u) +

∑
v∈Λ y(j, u, v), namely the

rate at which the process transitions out of state (j, u) plus the rate at which
the controller changes the drift rate from state (j, u). The rate of arrivals to
state (j, u), on the other hand, is simply

p+(j − 1, u)r(j − 1, u) + p−(j + 1, u)r(j + 1, u) +
∑
v∈Λ

y(j, v, u),

the sum of the rates at which the system transitions into state (j, u) from
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neighboring states and the rate at which the the controller moves the system
to state (j, u) by changing the drift rates. Combining these expressions we
obtain the Flow Conservation Constraint for each j = 1, 2, . . . , n and u ∈ Λ:

r(j, u)− p+(j − 1, u)r(j − 1, u)− p−(j + 1, u)r(j + 1, u)
(4.1)

+
∑
v∈Λ

(y(j, u, v)− y(j, v, u)) = 0,

where we adopt the convention that p+(0, u) = p−(n + 1, u) = 0 and
p+(1, u) = p−(n, u) = 1. It is convenient to scale the solutions so that

(4.2)
∑
u∈Λ

n∑
j=1

r(j, u)ET[j, u] = 1.

In this way r(j, u)ET[j, u] is the fraction of time the system spends in state
(j, u).

We next present the linear program formulation, SLP (Λ,S), of the con-
trolled random walk approximation of the S-restricted problem:

min
∑
u∈Λ

n∑
j=1

r(j, u) (ET[j, u]EX[j, u]h+ ET[j, u]c(u))

(4.3)
+

∑
u∈Λ

(UEA[u]ET[1, u]r(1, u) +MER[u]ET[n, u]r(n, u))

+
∑
u,v∈Λ

n∑
j=1

K(u, v)y(j, u, v)

s.t. Flow Conservation Constraint for each j = 1, 2, . . . , n and u ∈ Λ:

r(j, u)− p+(j − 1, u)r(j − 1, u)− p−(j + 1, u)r(j + 1, u)
(4.4)

+
∑
v∈Λ

(y(j, u, v)− y(j, v, u)) = 0

s.t. Scale Constraint:

∑
u∈Λ

n∑
j=1

r(j, u)ET[j, u] = 1.(4.5)

(4.6) non-negativity: r, y ≥ 0
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Then using the dual variables α(j, u) for j = 1, . . . , n and u ∈ Λ for flow con-
servation constraints and γ for the scale constraint the dual of this problem is

max γ(4.7)

s.t. Dual Constraint for r(1, u) for each u ∈ Λ:

α(1, u)− p+(1, u)α(2, u) + γET[1, u]
(4.8)

≤ hEX[1, u]ET[1, u] + c(u)ET[1, u] + UEA[u]ET[1, u]

s.t. Dual Constraint for r(j, u) for each j = 2, 3, . . . , n− 1 and u ∈ Λ:

γET[j, u] + α(j, u)− p+(j, u)α(j + 1, u)− p−(j, u)α(j − 1, u)
(4.9)

≤ hET[j, u]EX[j, u] + c(u)ET[j, u]

s.t. Dual Constraint for r(n, u) for u ∈ Λ:

α(n, u)− p−(n, u)α(n− 1, u) + γET[n, u]
(4.10)

≤ hET[n, u]EX[n, u] + c(u)ET[n, u] +MER[u]ET[n, u]

s.t. Dual Constraint for y(j, u, v) for each j = 1, 2, . . . , n and u ∈ Λ:

α(j, u)− α(j, v) ≤ K(u, v)(4.11)

Our primal model is similar to the semi-Markov decision process (SMDP)
formulation of Tijms (2003) where the variables are a scaled version of the
traditional MDP formulation. In the SMDP model the variables represent
the number of visits to each state per unit time rather than the probabilities
of being in each state. Just as in the original formulation of Ormeci Matoglu
and Vande Vate (2011) each variable has exactly one positive coefficient
in the Flow Conservation Constraints of the primal formulation SLP (Λ,S)
and the coefficients for each variable on these constraints sum to 0. Thus,
the Flow Conservation Constraints form a pre-Leontief system (see Veinott
(1968)) and so, together with the Scale Constraint (4.5), SLP (Λ,S) is a
scaled, pre-Leontief linear program like the original formulation of Ormeci
Matoglu and Vande Vate (2011).

In a linear program with m linearly independent constraints, a set of m
linearly independent columns is called a basis and the variables associated
with those columns are referred to as the corresponding basic variables, any
remaining variables are referred to as the non-basic variables. Each basis
uniquely defines a basic solution that satisfies the constraints with each
non-basic variable fixed at a boundary value (either its lower bound or its
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upper bound if it has one). If the resulting values for the basic variables
also satisfy any bounds on their values the basis is called feasible and the
solution is called a basic feasible solution. In our primal linear program, each
variable is constrained to be non-negative and so a basic solution is feasible
if all the basic variables are non-negative. In the dual of this linear program,
the dual variables are unconstrained – only the slack variables representing
the reduced costs of the primal variables are constrained to be non-negative.
A variable is said to represent the Flow Conservation constraint on which
it has its positive coefficient. We say that a Flow Conservation constraint
is active under a basic feasible solution of SLP (Λ,S) if it is represented by
a positive basic variable. To ensure feasibility, it is clear that each positive
basic variable must have all its non-zero coefficients on active rows. Thus,
Lemma 2 of Ormeci Matoglu and Vande Vate (2011) reduces to:

Lemma 4.1. Each basic feasible solution (r∗, y∗) of SLP (Λ,S) has ex-
actly one positive basic variable representing each active row.

We exploit this property in §6 to speed and simplify the pivots.
In §5 we use the dual of our LP to derive a relative value function that sat-

isfies the lower bound conditions. We show that nonnegative reduced costs
of the y(j, u, v) and r(j, u) variables imply two of the lower bound condi-
tions are satisfied. Furthermore, our LP model conforms naturally with the
discretization of the policy space, which in §7 will be instrumental to identi-
fying attractive points to add to the discretization. Thus, instead of a naive
uniformly spaced discretization in §7 we propose a formal column generation
approach that provides both a series of increasingly good policies and a series
of lower bounds and guarantees that the average costs of the policies and the
values of the lower bounds converge to the average cost of an optimal policy.

5. Relative value functions. In this section we exploit the strong
relation between complementary dual solutions and relative value functions
established in the Technical Lemma (Lemma 3) of Ormeci Matoglu and
Vande Vate (2011). We restate a version of that result here as it applies
to the dual problem (4.7)–(4.11). Given a control band Φ = (u, s, S) and
a starting a point z ∈ (s, S), let ET[z,Φ] denote the expected time for the
process X(t) to hit s or S when it is in control band Φ starting at a point
z and maintaining drift rate u and let EX[z,Φ] denote the average value of
X(t) over this time. Let p(z,Φ, S) denote the probability that starting at
z and maintaining the drift rate u, X(t) first reaches S. Then p(z,Φ, s) =
1 − p(z,Φ, S). Note that the notation we use for sojourn times, expected
value of X and transition probabilities in SLP (Λ,S) is a special case of the
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above notation where a control band Φ = (u, s, S) always follows the form
(u, sj−1, sj+1) so that ET[j, u] is equal to ET[z,Φ] where sj = z, sj−1 = s
and sj+1 = S. Similarly p+(z, u) = p(z,Φ, S) and p−(z, u) = p(z,Φ, s).

Lemma 5.1 (Technical Lemma of Ormeci Matoglu and Vande Vate (2011)).
Consider a control band Φ = (u, s, S). A continuous function f : [s, S] → R

satisfies

ET[z,Φ]γ + f(z)− p(z,Φ, S)f(S)− p(z,Φ, s)f(s)

= (hEX[z,Φ] + c(u) + UEA[u]1{s=0} +MER[u]1{S=Θ})ET[z,Φ]

where

p(z,Φ, S) =
e−

2u
σ2 z − e−

2u
σ2 s

e−
2u
σ2 S − e−

2u
σ2 s

= 1− p(z,Φ, s)

if and only if

f(z) = − h

2u
z2 +

(
γ

u
+

hσ2

2u2
− c(u)

u

)
z + Ce−

2u
σ2 z + F

for some constants C and F .

One immediate consequence of Lemma 5.1 is that we can extend a dual
solution (γ, α) from the points of S to the entire range [0,Θ] in a natural
way. In fact, we exploit the strong relationship between complementary dual
solutions and relative value functions to solve the SLP(Λ,S) without ever
computing the values of p+(j, u), p−(j, u), ET[j, u], EA[u], ER[u] or EX[j, u].
This relationship allows us to rely on the relative value functions to deter-
mine the entering variables (i.e. a nonbasic variable with negative reduced
cost, so that it’s inclusion in the basis results with same or lower average
cost) when solving SLP (Λ,S) and to identify points to add to S so as to
reduce the gap between the optimal solution to the S-restricted problem
and the lower bound for the unrestricted problem.

In a manner similar to Ormeci Matoglu and Vande Vate (2011), given
an optimal solution (γ, α) to the dual problem (4.7)–(4.11), we construct
continuous functions f(·, u) such that (γ, f) satisfies all but condition (2.3)
of the lower bound conditions.

Lemma 5.2. Given an optimal solution (γ, α) to the problem (4.7)–
(4.11), for each u ∈ Λ define

f(a, u) = C(j, u)e−
2u
σ2 a + F (j, u)− h

2u
a2 +

(
γ

u
+

hσ2

2u2
− c(u)

u

)
a(5.1)
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for sj ≤ a ≤ sj+1, where C(j, u) and F (j, u) are constants satisfying:

C(0, u) =
σ2

2u

(
U +

γ

u
+

hσ2

2u2
− c(u)

u

)
(5.2)

C(n, u) =
σ2

2u
e

2u
σ2Θ

(
−M − h

u
Θ+

γ

u
+

hσ2

2u2
− c(u)

u

)
(5.3)

and for j = 1, 2, 3, . . . , n

− h

2u
s2j +

(
γ

u
+

hσ2

2u2
− c(u)

u

)
sj +C(j− 1, u)e−

2u
σ2 sj +F (j− 1, u) = α(j, u)

(5.4)

and

− h

2u
s2j +

(
γ

u
+

hσ2

2u2
− c(u)

u

)
sj + C(j, u)e−

2u
σ2 sj + F (j, u) = α(j, u).

(5.5)

Then (γ, f) satisfies all but condition (2.3) of the lower bound conditions.

Proof. Since the system (5.2)–(5.5) is non-singular, it uniquely defines
C and F . The fact that C(0, u) satisfies (5.2) and C(n, u) satisfies (5.3)
ensures that f(·, u) satisfies (2.4) and (2.5) with equality.

It is easy to see that for each u ∈ Λ, f(a, u) satisfies (2.2) with equality
for each a ∈ (0,Θ) \ S. Next we define

fi(a, u) = C(i, u)e−
2u
σ2 a + F (i, u)− h

2u
a2 +

(
γ

u
+

hσ2

2u2
− c(u)

u

)
a.

Since α satisfies (4.9) substituting (5.4) and (5.5) we obtain

ET[j, u]γ + fj(j, u)− p+(j, u)fi−1(sj+1, u)− p−(j, u)f(sj−1, u)

= (hEX[j, u] + c(u))ET[j, u].

and by the Technical Lemma we have

ET[j, u]γ + fj−1(sj , u)− p+(j, u)fj−1(sj+1, u)− p−(j, u)fj−1(sj−1, u)

= (hEX[j, u] + c(u))ET[j, u].

Subtracting these expressions we obtain

p+(j, u) (fj−1(sj+1, u)− fj(sj+1, u))

(5.6)
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= p+(j, u)
(
[C(j − 1, u)− C(j, u)]e−

2u
σ2 sj+1 + F (j − 1, u)− F (j, u)

)
≤ 0.

By (5.4) and (5.5)

C(j, u)e−
2u
σ2 sj + F (j, u) = C(j − 1, u)e−

2u
σ2 sj + F (j − 1, u)

which yields F (j − 1, u) − F (j, u) = (C(j, u)− C(j − 1, u)) e−
2u
σ2 sj . Substi-

tuting this in (5.6) we obtain that (4.9) is equivalent to

p+(j, u) [C(j, u)− C(j − 1, u)]
(
e−

2u
σ2 sj − e−

2u
σ2 sj+1

)
≤ 0.

Since (e−
2u
σ2 sj − e−

2u
σ2 sj+1) has the same sign as 2u

σ2 e
− 2u

σ2 sj , this implies

(C(j, u)− C(j − 1, u))
2u

σ2
e−

2u
σ2 sj ≤ 0, and so

ρ(sj , u) = f ′(sj+, u)− f ′(sj−, u) = −2u

σ2
e−

2u
σ2 sj (C(j, u)− C(j − 1, u)) ≥ 0

proving that f(·, u) satisfies (2.6) for a ∈ (s1, sn).
Since α satisfies (4.8) ((4.10)), one can similarly show that ρ(a, u) ≥ 0 for

a ∈ (0, s1] (ρ(a, u) ≥ 0 for a ∈ [sn,Θ)).
Note that (5.4)–(5.5) ensure that for each u ∈ Λ, the function f(·, u) is

continuous. It remains to show that for each u ∈ Λ, f(·, u) can be written as
the difference of two convex functions. This argument is identical to the one
used in the proof of Theorem 2 of Ormeci Matoglu and Vande Vate (2011)
(see Ormeci Matoglu and Vande Vate (2010) for details).

An interpretation of the relative value function f for a policy Φ is that
it represents the total expected cost so that f(x, u)− f(x, v) represents the
difference in total expected costs over an infinitely long period of time by
starting with drift rate u rather than with drift rate v. Lemma 5.1 stipulates
the form of the relative value function. Equations (5.2) and (5.3) ensure the
choice of C(0, u) and C(n, u) satisfy (2.4) and (2.5) with equality at the
boundaries 0 and Θ, f ′ at the boundaries is equal to the rate cost is incurred
at the boundaries as instantaneous boundary control is exerted. Equations
(5.4) and (5.5) ensure that the relative value functions are continuous and
coincide with α at the points of S.

Observation 1. Note that if r(j, u) is basic in an optimal solution to
SLP (Λ,S), then (γ, α) satisfies the corresponding dual constraint (4.9) with
equality and so C(j, u) = C(j − 1, u) and hence F (j, u) = F (j − 1, u).
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Similarly, if y(j, u, v) is basic, then f(sj , u) = f(sj , v) + K(u, v). In fact,
we can use the relative value functions f to determine reduced costs: The
reduced cost of y(j, u, v) is simply

K(u, v)− α(j, u) + α(j, v) = K(u, v) + f(sj , v)− f(sj , u)

and the reduced cost of r(j, u) is

hET[j, u]EX[j, u] + c(u)ET[j, u]− (γET[j, u] + α(j, u)

− p+(j, u)α(j + 1, u)− p−(j, u)α(j − 1, u))

= p+(j, u)
(
e−

2u
σ2 sj+1 − e−

2u
σ2 sj

)
(C(j, u)− C(j − 1, u))

which has the same sign as ρ(sj , u).

Observation 2. Observe that since α satisfies (4.11), f satisfies (2.3)
for each a ∈ S and u, v ∈ Λ. However, f need not satisfy (2.3) between the
points of S. In fact, the Technical Lemma (Lemma 5.1) allows us to extend
the dual solution α beyond the points in S and hence extend Observation 1
to describe the reduced cost of new primal variables y(a, u, v) and r(a, u)
for each point a ∈ (0,Θ) \ S. In particular, the reduced cost of y(a, u, v) is
simply K(u, v) + f(a, v) − f(a, u) and the reduced cost of r(a, u) has the
same sign as ρ(a, u) = f ′(a+, u)− f ′(a−, u).

Observation 3. Observation 1 suggests the fundamental insight that
knowing only which primal variables are basic, i.e., the structure of the
policy, we can compute the average cost γ and the relative value functions f
and so the (signs of) the reduced costs directly without computing the dual
solution α. In particular, we can replace the conditions (5.4)–(5.5) with the
conditions:

C(j − 1, u)e−
2u
σ2 sj + F (j − 1, u) = C(j, u)e−

2u
σ2 sj + F (j, u)(5.7)

for each j = 1, 2, . . . , n ensuring f(·, u) is continuous for each u ∈ Λ,

C(j − 1, u) = C(j, u) and F (j − 1, u) = F (j, u) when r(j, u) is basic
(5.8)

ensuring the dual solution satisfies the complementary slackness conditions
with respect to r,

f(sj , u) = f(sj , v) +K(u, v) when y(j, u, v) is basic(5.9)
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ensuring the dual solution satisfies the complementary slackness conditions
with respect to y and F (0, u∗) = 0 for some arbitrary distinguished drift rate
u∗ since adding a constant to each F has no impact on the constraints (5.7)–
(5.9). The unique solution to this system gives γ, the average cost of the
policy, and the relative value functions f , which allow us to compute reduced
costs. In §6 we exploit this observation to develop a solution procedure that
does not require the values of parameters such as p+(j, u), ET[j, u], EX[j, u],
EA[u] and ER[u].

Before continuing with the proof of Theorem 3.1 we prove Lemma 5.3,
a restatement Proposition 1 of Ormeci Matoglu and Vande Vate (2011) to
facilitate our proof of Theorem 3.1.

Lemma 5.3. Suppose that for each u ∈ Λ, f(·, u) : [0,Θ] → R satisfies
the smoothness conditions. Further, suppose that for each u ∈ Λ the function
f(·, u) satisfies (2.2) for some scalar γε, and (2.4)–(2.6),

f(a, v)− f(a, u) ≥ −K(u, v) + ε for a ∈ [0,Θ] and v ∈ Λ

for some scalar ε. Then

γε + lim
T→∞

N(T )

T
ε ≤ AC(Φ)(5.10)

for each policy Φ ∈ P and each initial state (a, u).

Proof. The proof is analogous to that of Proposition (2.1). Consider
a policy Φ = {(Ti, ui), i ≥ 0} ∈ P . Then by a simple adaptation of the
Meyer–Ito formula (see for example Theorem 70 of Protter (2004)) we have

E[f(X(T ), μ(T ))]− f(X(0), μ(0))

= E

[ ∫ T

0

(
σ2

2
f ′′(X(t), μ(t)) + μ(t)f ′(X(t), μ(t))

)
dt

+

∫ T

0
f ′(X(t), μ(t))dA(t)−

∫ T

0
f ′(X(t), μ(t))dR(t)

+

N(T )∑
i=1

(f (X (Ti) , ui)− f (X (Ti−) , ui−1)

+
1

2

∑
u∈Λ

∫ Θ

0
L(T, a, u)ρ(da, u)

]
,
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where L is the local time. Using (2.2), (2.4)–(2.6) and (5.10) we see that

E[f(X(T ), μ(T ))]− f(X(0), μ(0))

(5.11)

≥ E

[∫ T

0
γε − c(μ(t))− hX(t)dt− UA(t)−MR(t)−

N(T )∑
i=1

(K(ui−1, ui)− ε)

]
.

Dividing both sides by T and taking the limit yields

lim sup
T→∞

1

T
E[f(X(T ), μ(T ))− f(X(0), μ(0))]

≥ γε − lim sup
T→∞

1

T
E

[ ∫ T

0
c(μ(t)) + hX(t)dt+ UA(t) +MR(t)

+

N(T )∑
i=1

(K(ui−1, ui)− ε)

]

= γε + lim
T→∞

(N(T )/T )ε−AC(Φ).

Since f(X(t), μ(t)) is bounded

lim sup
T→∞

E[f(X(T ), μ(T ))]− f(X(0), μ(0))

T
= 0

and so,

AC(Φ) ≥ γε + lim sup
T→∞

(N(T )/T )ε.(5.12)

Corollary 5.1. Let (γε, αε) be an optimal solution to (4.7)–(4.11) where
K(u, v) is replaced with K(u, v)−ε in (4.11) and let Φε be the corresponding
policy. Then

AC(Φε) = γε + lim
T→∞

N(T )

T
ε = γε +

∑
s∈S,u,v∈Λ

y(s, u, v)ε,

where y(s, u, v) is the rate of transition under policy Φε.

Proof. Construct (γε, fε) from (γε, αε) as defined in (5.1)–(5.5). By Ob-
servation 1, (5.12) are satisfied with equality in this case.
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Note that a pair (γ, f) obtained from a dual solution (γ, α) will satisfy
(2.3) at the points in S but not necessarily for the whole range [0,Θ]. The
extent to which it violates the constraint (i.e. ε) can be controlled by the
level of discretization. It can be made arbitrarily small by choosing a fine
enough discretization. The proof of Theorem 3.1 relies on this.

Since EX[j, u], EA[u], ER[u] and c(u) are all bounded, we can derive a
lower bound AC on the average cost of any policy ignoring the transition
costs. And since K∗ = min{K(u, v), u �= v} > 0, we can use the the aver-
age cost of any policy in Φ ∈ P(S) together with the lower bound AC to

bound limT→∞
N(T )
T =

∑
s∈S,u,v∈Λ y(s, u, v). In particular, an optimal pol-

icy Φ∗ ∈ P(S) must satisfy AC +K∗ limT→∞N(T )/T ≤ AC(Φ∗) ≤ AC(Φ).
So limT→∞N(T )/T ≤ (AC(Φ)−AC)/K∗ ≡ H.

We are now ready to prove Theorem 3.1. Our approach is to construct,
for each ε > 0 sufficiently small, a non-overlapping control band policy
Φε ∈ P and a pair (γε, fε) satisfying the lower bound conditions, such that
γε ≤ AC(Φε) ≤ γε + εH. Taking ε → 0 proves the result.

Proof of Theorem 3.1. Let d be the supremum of γ over all pairs
(γ, f) satisfying the lower bound conditions and let p be the infimum of
AC(Φ) over all policies Φ ∈ P . Then γε ≤ d ≤ p ≤ AC(Φε) ≤ γε+ εH, where
the first inequality follows because (γε, fε) satisfies the lower bound condi-
tions, the second inequality follows from weak duality, i.e. Proposition 2.1,
and the third inequality follows from the fact that Φε ∈ P . Taking ε → 0
proves p = d.

It remains to construct a pair (γε, fε) satisfying the lower bound conditions
and a policy Φε satisfying γε ≤ AC(Φε) ≤ γε+ εH. By Theorem 3 of Ormeci
Matoglu and Vande Vate (2011) if we choose S so that δ ≥ si+1 − si, where

(max{f ′
(u), 0}−min{f ′(v), 0})δ ≤ ε for each pair of rates u and v in Λ and

f
′
(u) =

{
e

2u
σ2Θ

(
hΘ
u +M + U

)
− c(u)

u if u > 0

−hΘ
u + hσ2

2u2 +M if u < 0

f ′(u) =

{
−hΘ

u − U if u > 0

(hσ
2

2u2 − c(u)
u + U)(1− e−

2u
σ2Θ)− U if u < 0

and solve the LP withK(u, v) replaced by K(u, v)−ε, then the relative value
function fε constructed as in (5.1)–(5.5) from an optimal solution (γε, α) to
the dual satisfies (2.2)–(2.6). Note that, fε satisfies (5.10) for a ∈ S, by the
choice of discretization we ensure fε satisfies (2.3) for all a ∈ [0,Θ]. A policy
Φε corresponding to an optimal solution to the primal is in P(S) ⊆ P and
satisfies γε ≤ AC(Φε) ≤ γε + εH by Lemma 5.3 and Corollary 5.1.
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Observe that in the proof of Theorem 3.1, for each ε > 0, Φε is a non-
overlapping control band policy. Hence, we can restrict P to only the non-
overlapping control band policies proving Corollary 3.1.

6. Strongly feasible bases and deterministic unichain policies.
SLP (Λ,S) is so poorly scaled that completing pivots is algebraically dif-
ficult and beyond the capability of standard solvers. Furthermore, as we
drive the points of S close together, the problem grows quite large. To help
resolve this issue, we follow a classic path forged by Cunningham (1976),
Orlin (1985) and others who applied the notion of strongly feasible bases to
network flow problems, a special case of pre-Leontief systems, but with the
added complication of bounds on the variables. Strongly feasible bases ex-
tend the unique representation property of Lemma 4.1 to inactive rows and
provide a combinatorial characterization of feasible bases, i.e. rather than
relying on algebraic computations involving the coefficients of the constraint
matrix we can simply check the connectedness properties of a simple directed
graph to determine linear independence. This approach has significant com-
putational advantages and in fact confines all the computational challenges
to the problem of computing reduced costs. In this section we define strongly
feasible bases, prove lemmas about their properties and characterize them in
a number of increasingly combinatorial ways in Theorem 6.1 and Lemma 6.4.
The primal pivoting procedure in Lemma 6.4 together with the method for
computing γ and the relative value functions f , in Observation 3, allow
us to solve SLP(Λ,S) without computing the parameters p+(j, u), ET[j, u],
EX[j, u], EA[u] and ER[u].

Our formulation SLP (Λ,S) is a scaled pre-Leontief linear program of the
form:

Minimize cx(6.1)

subject to the constraints

Ax = 0(6.2)

wx = 1(6.3)

x ≥ 0(6.4)

where c and w are row vectors corresponding to the coefficients of (4.3) and
(4.5), and A = (aij) is an m× n pre-Leontief matrix representing the Flow
Conservation Constraints (4.4) and satisfying:

Assumption 1: Each column has a unique positive entry and that entry
is +1,
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Assumption 2: The coefficients of each column sum to 0, i.e., 1A = 0,
where 1 is the row vector of all ones

The fact in Assumption 1 that the unique positive entry in each column is
+1 only simplifies the arguments slightly. All the results of this section are
true if the unique positive entry on each column is at most 1. Note that
Assumption 2 ensures that the constraints Ax = 0 are linearly dependent
and so we may eliminate any one of these constraints, henceforth called the
root, without affecting the feasible solutions.

6.1. Strongly feasible bases. We say that a feasible basis B for (6.2)–(6.4)
is strongly feasible if for some row i∗, row i∗ is represented by a column of
B and for each row i = 1, 2, . . .m, B is a feasible basis for[

A
w

]
x = em+1 + ε(ei − ei∗)(6.5)

x ≥ 0

for some ε > 0, where ei represents the unit column vector with its one in
row i.

Lemma 6.1. Each strongly feasible basis for (6.2)–(6.4) has exactly one
basic variable representing each row of A.

Proof. Consider a strongly feasible basis B for the system (6.2)–(6.4).
By definition B includes a variable representing the row i∗. Clearly, to be
a feasible basis for (6.5) for each i = 1, 2, . . . ,m, i �= i∗, B must include at
least one variable representing each of the other rows of A. Since A includes
a linearly dependent row, a basis can have at most one variable for each
row of A and so a strongly feasible basis must have exactly one variable
representing each row of A.

We say that the m-vector b is a perturbation if bi > 0 for i = 1, 2, . . . ,m,
i �= i∗, for some index 1 ≤ i∗ ≤ m and

∑m
i=1 bi = 0. We call i∗ the root of

the perturbation b.

Lemma 6.2. A feasible basis B for (6.2)–(6.4) is strongly feasible if and
only if B is feasible for [

A
w

]
x =

(
b
1

)
(6.6)

x ≥ 0
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for some perturbation b and includes a column representing the root of the
perturbation.

Proof. Suppose B is strongly feasible. Then B is a feasible basis for
(6.2)–(6.4), row i∗ is represented in B and for each i = 1, 2, . . . ,m, there
is εi > 0 such that the basic solution xi to (6.5) is feasible. Clearly x =

1
m−1

∑
i �=i∗ x

i ≥ 0 is the corresponding basic solution for (6.6) where bi =
1

m−1εi > 0 for i �= i∗ and bi∗ = −
∑

i �=i∗ bi.
Now suppose B is a feasible basis for (6.2)–(6.4) and for (6.6) for some

perturbation b and includes a column representing the root i∗ of b. We
argue that B is a strongly feasible basis. Let xB be the components of x
corresponding to the basis B. We assume without loss of generality that x1
is a basic variable representing row i∗ and re-write the system

BxB =

(
b
1

)
as

⎡
⎣ a B̃

1 r̃
w1 w̃

⎤
⎦(

x1
x̃

)
=

⎛
⎝ b̃

bi∗

1

⎞
⎠ , where

b̃ > 0 and a ≤ 0. Let x∗B = (x∗1, x̃
∗) ≥ 0 be the unique solution to this system.

Note that B̃ is a square pre-Leontief matrix and x̃∗ ≥ 0 is a feasible so-
lution to the system B̃x = b̃ − x∗1a ≥ b̃ > 0. It follows (See Veinott (1968))
that B̃ is Leontief and so has non-negative inverse.

For an arbitrary choice of i �= i∗, consider the system⎡
⎣ a B̃

1 r̃
w1 w̃

⎤
⎦(

x1
x̃

)
= em+1 + ε(ei − ei∗).

Since each column of A sums to 0, the system[
a B̃
1 r̃

](
x1
x̃

)
= ε(ei − ei∗)

is equivalent to the system ax1 + B̃x̃ = εei and so, for each choice of x1 ≥ 0
and ε ≥ 0, x̃ = B̃−1(εei − ax1) ≥ 0.

In particular, since B is a feasible basis for the unperturbed problem (6.2)–
(6.4) corresponding to ε = 0, there is a value of x∗1 > 0 such that w1x

∗
1+w̃x̃ =

(w1 − w̃B̃−1a)x∗1 = 1 and so (w1 − w̃B̃−1a) = 1
x∗
1
> 0. It follows then that

for each i �= i∗ we can choose εi > 0 and x1 > 0 such that wx1 + w̃x̃ =
(w1 − w̃B̃−1a)x1 + w̃B̃−1eiεi = 1, proving that B is strongly feasible.

Combining the observations of Lemma 4.1 and Lemma 6.1 leads to Lem-
ma 6.3.
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Lemma 6.3. Suppose B is a strongly feasible basis for (6.2)–(6.4) and
let xB = (x+, x0) be the corresponding basic variables with positive basic
variables x+ and degenerate basic variables x0. Then the system BxB can
be written as

(6.7)

⎡
⎣ 0 R

M N
w+ w0

⎤
⎦[

x+

x0

]

where N ≤ 0 and R is Leontief and so has non-negative inverse.

Proof. By Lemma 6.1, B has exactly one variable representing each row
of A and since the non-zero coefficients of the positive basic variables must
all fall on active rows, the system can be written as in (6.7). Observe that
R is square, each row of R has exactly one positive element, and since B is
strongly feasible, the rows of R are non-trivial. Hence, R is Leontief, and so
R is non-singular and R−1 ≥ 0.

6.2. Deterministic unichain policies. A stationary deterministic policy
for the problem (6.2)–(6.4) is defined by a set of columns B with exactly
one column representing each row of A. The column representing row i
defines the action to invoke in state i. We use these notions of a stationary
deterministic policy and the corresponding set of columns interchangeably.

Given a set B of columns of (6.2)–(6.4) we define G(B) to be the directed
graph with a node for each row of A, i.e. for each state, and a directed
edge (i, j) for each ordered pair (i, j) of rows of A such that some column
of B representing row i has a negative coefficient on row j. A directed
graph G is said to be strongly connected if there is a directed path between
each pair of nodes. Otherwise, G contains at least two maximal strongly
connected subgraphs called strongly connected components. If we contract
each strongly connected component to a single node, the resulting graph
is acyclic. So at least one strongly connected component has no out-going
edges. We refer to the set of nodes of a strongly connected component with
no out-going edges as a recurrent class. A recurrent class is non-trivial if it
contains more than one node. A graph G may have one or more recurrent
classes. The remaining nodes form the transient class, T .

Structures in G(B) translate in a natural, though not necessarily unique
way to sets of columns in B. For example, a simple path p = (i1, i2, i3, . . . , it)
corresponds to a set B′ = [Bj1 , Bj2 , . . . , Bjt−1 ] of columns of B, where col-
umn Bjk represents row ik and has a negative coefficient on row ik+1. The
translation is not necessarily unique as B may include several different sets
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of columns matching these requirements. For each choice of B′ meeting these
requirements, however, G(B′) contains the path p.

The stationary deterministic policy B is said to be unichain if G(B) con-
tains exactly one recurrent class R(B) and multi-chain otherwise. We let
T (B) denote the transient class of a policy B.

We characterize strongly feasible bases in a number of increasingly com-
binatorial ways.

Theorem 6.1. The following are equivalent:

i. B is a strongly feasible basis for (6.2)–(6.4).
ii. B is a basis for (6.2)–(6.4) with a unique basic variable representing

each row of A.
iii. The variables of B define a deterministic unichain policy.

Proof. We already proved that i. implies ii. in Lemma 6.1.

ii. implies iii.: Since B has a unique basic variable representing each row
of A, the corresponding policy is deterministic. By Assumption 2, G(B)
contains at least one recurrent class. If G(B) contains exactly one recurrent
class, then the policy is also unichain. To see that G(B) cannot contain more
than one recurrent class, observe that for each recurrent class C, the corre-
sponding Markov chain with transition matrix P , i.e. Pij is the probability
of moving from state i to state j, has a unique stable distribution, i.e. a
unique probability vector π such that P Tπ = π and πi > 0 for each i ∈ C
(Puterman, 2005).

We argue that for each recurrent class C,
∑

i∈C wiπi > 0 and hence z,
where zj = πj/

∑
i∈C wiπi ≥ 0, satisfies wz = 1 and since P T z = z, we see

that it also satisfies Bz = em+1.
To see that

∑
i∈C wiπi > 0, observe that

∑
i∈C wiπi = 0 only if every

transition in the recurrent class C has wi = 0 and so the columns of B
representing rows in C must be linearly dependent, contradicting the fact
that B is a basis.

We now argue that G(B) contains exactly one recurrent class. For if G(B)
contained more than one recurrent class, then with each such class Ci there
would be a distinct solution zi satisfying Bzi = em+1, contradicting the fact
that B is a basis.

iii. implies i.: Let P be the transition matrix corresponding to the unichain
policy defined by B. Since the policy is unichain there is a unique π ≥ 0 such
that P Tπ = π and

∑m
i=1 πi = 1. Further, for each recurrent state i, πi > 0.
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Choose a recurrent state i∗ and re-write the system P Tπ = π as

(6.8)

[
a B̃
1 r̃

](
πi∗

π̃

)
=

(
0
0

)

where a ≤ 0 (since π∗
i represents row i∗) and B̃ is a square pre-Leontief

matrix.
We first argue that B̃ is Leontief and B̃−1 ≥ 0. To see this, consider the

system in which we change the transition probabilities out of state i∗ so that
every other state is reachable in a single transition. In particular, observe
that the system

(6.9)

[
a′ B̃
1 r̃

](
πi∗

π̃

)
=

(
0
0

)

where each entry of a′ is − 1
m−1 , corresponds to a finite state Markov process

that is not only unichain, but in which each state is recurrent. Thus, there
is a unique π′ ≥ 0 such that[

a′ B̃
1 r̃

](
π′
i∗

π̃′

)
=

(
0
0

)

and
∑m

i=1 π
′
i = 1. In fact, since each state of this process is recurrent

π′
i > 0 for each i. Note that since a′π′

i∗ + B̃π̃′ = 0, π̃′ ≥ 0 is a solution
to B̃π̃′ = −a′π′

i∗ > 0 and so again invoking the results of Veinott (1968), we
see that B̃ is Leontief and B̃−1 ≥ 0.

We next argue, returning to the system (6.8), that wi∗ − w̃B̃−1a > 0,
where w̃ represents the components of w corresponding to columns of B
excluding the column representing row i∗. To see this, observe that since
aπi∗+B̃π̃ = 0, π̃ = −B̃−1aπi∗ . So wπ = wi∗πi∗+w̃π̃ = wi∗πi∗−w̃B̃−1aπi∗ =
(wi∗ − w̃B̃−1a)πi∗ . Since w ≥ 0 and π ≥ 0, wπ ≥ 0. So either wπ > 0 and
wi∗ − w̃B̃−1a > 0 as desired, or wπ = 0. But this can only happen if πi > 0
exclusively for columns corrresponding to y variables, which contradicts the
statement that the policy is unichain. To see this, note that if G(B) includes
a recurrent class defined only by y variables indicating changes in the drift
rate, then G(B) is not connected and each connected component of G(B)
must contain a recurrent class, contradicting the assumption that the policy
is unichain. So, wi∗ − w̃B̃−1a > 0 and since πi∗ > 0, wπ > 0.

We use this fact to argue that B is a feasible basis for (6.2)–(6.4). To
see this, observe that v = π/wπ ≥ 0 is a solution to Bv = em+1. We next
argue that v is the unique solution. To see this, suppose there is another so-
lution v′ (not necessarily non-negative) such that Bv′ = em+1. Then, letting
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v′ = (v′i∗ , ṽ
′), we see that av′i∗ + B̃ṽ′ = 0 and so ṽ′ = −B̃−1av′i∗ = ṽ

v′
i∗

vi∗
. It

follows that v′ =
v′
i∗

vi∗
v and since wv = wv′ = 1, v = v′. Thus, B is a feasible

basis for (6.2)–(6.4).
Finally, we argue that B is a strongly feasbile basis. Consider a state

i �= i∗. For each value of xi∗ > 0 and scalar εi > 0, letting x̃ = B̃−1(εiei −
axi∗) yields a vector x = (xi∗ , x̃) ≥ 0 satisfying axi∗ + B̃x̃ = εiei. Further,
since wi∗ − w̃B̃−1a > 0 we can choose values for xi∗ > 0 and εi > 0 such

that wx = wi∗xi∗ + w̃x̃ = wi∗xi∗ + w̃B̃−1(εiei − axi∗) =
(
wi∗ − w̃B̃a

)
xi∗ +

w̃B̃−1eiεi = 1. For these values of xi∗ and εi, x = (xi∗ , x̃) ≥ 0 is a feasible
solution to the perturbed problem Bx = em+1 + εi(e1 − ei∗). Since this is
true for each i �= i∗, it follows that B is strongly feasible.

Next we look at the pivoting process restricted to strongly feasible bases.
In Lemma 6.4 we identify several ways a pivot can progress. We simplify the
pivoting process by developing combinatorial mechanisms for recognizing
these different ways, for identifying a leaving variable and for constructing
a new strongly feasible solution (if necessary).

Lemma 6.4. Given a strongly feasible basis B for (6.2)–(6.4) and an
entering variable xe, assume without loss of generality that xe represents
row j and that x1 is the current basic variable representing row j.

Case 1: x1 is a positive basic variable

• The pivot is non-degenerate, x1 is a candidate to leave the basis
and

• If we choose x1 to leave the basis, the resulting basis is strongly
feasible.

Case 2: x1 is a degenerate basic variable either (A)

• The pivot is degenerate, x1 is a candidate to leave the basis and

• If we choose x1 to leave the basis, the resulting basis is strongly
feasible,

or (B)

• The pivot is non-degenerate, x1 is not a candidate to leave the
basis and

• The resulting basis is not strongly feasible, but a new strongly
feasible basis representing the new basis can be constructed easily.
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Proof. Let a be the column of the entering variable and re-write the
system

Bd = −a as

⎡
⎣ 0 R

M N
w+ w0

⎤
⎦[

d+

d0

]
= −

⎡
⎣ aR

aM
we

⎤
⎦ ,

where d+ corresponds to the rows for positive basic variables, d0 corresponds
to the rows of degenerate basic variables, N ≤ 0, and R is Leontief.

We first consider Case 1 in which x1 is a positive basic variable. In this
case, row j will have its positive coefficient in M . The entering variable xe
represents the same row as x1, hence aM has a positive element and since A is
pre-leontief aR ≤ 0. Since R is Leontief, Rd0 = −aR has the unique solution
d0 = −R−1aR ≥ 0 and so the degenerate variables will not leave and the
pivot is non-degenerate. If x1 is not a candidate to leave the basis, then after
the pivot, both x1 and xe will be positive basic variables representing row j
in the resulting basic feasible solution, contradicting Lemma 4.1. Thus, we
have showed that if x1 is positive the pivot is non-degenerate.

We next consider Case 2 in which x1 = 0 and so j is an inactive row and
can not have its positive coefficient in M . Since N ≤ 0 row j must have
its positive coefficient in R, and so aR contains a positive coefficient. We
re-write the system Rd0 = −aR as

(6.10) Rd0 =

[
1 k

� R̃

](
d1
d̃

)
=

(
−1
−ãR

)
= −aR,

where ãR ≤ 0, � ≤ 0. Since R is Leontief there is a column vector x =
(x1, x̃) ≥ 0 such that Rx > 0. Then �x1 + R̃x̃ > 0. Since � ≤ 0, R̃x̃ > 0 and
so R̃ is Leontief. Let (d∗1, d̃

∗) be the unique solution to this system. There
are three cases to consider:

Case 2−(A): d∗1 < 0. In this case, the pivot is degenerate, x1 is a candidate
to leave the basis and if we choose x1 to leave, the resulting basis has a
unique representative for each row of A and so is strongly feasible.

Case 2−(B): d∗1 = 0. In this case d̃ = −R̃−1(ãR + �) ≥ 0 and so the
pivot is non- degenerate. Unfortunately, x1 is not a candidate to leave, and
the resulting basis is not strongly feasible. All is not lost, however. Since the
pivot is non-degenerate the new basic feasible solution is strictly better than
its predecessor. We simply construct a strongly feasible basis representing
the new basic feasible solution and continue.

Case 2−(C): d∗1 > 0. In this case, since R̃ is Leontief, d̃ = −R̃−1(ãR+�) ≥ 0,
so the pivot is non-degenerate and after the pivot, both x1 and xe are positive
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basic variables representing row j, contradicting Lemma 4.1. So this case
cannot arise.

In order to make this approach “combinatorial”, we require combinatorial
mechanisms for recognizing Case 2−(B), for identifying a leaving variable
and for constructing a new strongly feasible basis in this case.

A strongly feasible basis corresponds to a deterministic unichain policy B
and so can be recognized by the fact that G(B) has a single recurrent class.
This observation provides a simple combinatorial mechanism for recognizing
Case 2−(B): Let B′ be the deterministic policy obtained by replacing x1,
the current basic variable representing row j, with xe, the entering variable.
If G(B′) has more than one recurrent class, x1 was not a candidate to leave
the basis and so we have Case 2−(B).

We argue that G(B′) has either one recurrent class (corresponding to
Case 2−(A)) or two recurrent classes (corresponding to Case 2−(B)). To
see this, note that G(B) and G(B′) only differ in the edges out of node j
and so any new recurrent class in G(B′) must contain node j. Example 1
illustrates that Case 2−(B) can indeed arise.

Example 6.1. Let Λ = {u1, u2} and S = {s1, s2}. Start with the
strongly feasible basis that changes the drift rate from u2 to u1 at s1 and
maintains the drift rate otherwise. This unichain policy has the unique recur-
rent class {(1, u1), (2, u1)}. Suppose r(1, u2) is to enter the basis. If we choose
y(1, u2, u1) to leave the basis, the new policy maintains the drift rate every-
where and has two recurrent classes: {(1, u1), (2, u1)} and {(1, u2), (2, u2)}.
To resolve this, note that the leaving variable must be either r(1, u1) > 0
or r(2, u1) > 0 and so the pivot must be non-degenerate. That means that
the average cost of the policy with the new recurrent class {(1, u2), (2, u2)}
is lower, so we construct a strongly feasible basis with this recurrent class.
The unichain policy that changes the drift rate from u1 to u2 at s1 is one
example we could choose.

Consider Case 2−(B) in which G(B′) also contains a second recurrent
class R′ with j ∈ R′. In this case, the leaving variable must represent a
state in the original recurrent class R(B) and the basic variables in the new
basic feasible solution x′ must include the basic columns, other than x1,
representing the states of R′. Let p = (i1, i2, . . . , it) be a shortest path in
G(A) from a node in R(B) to a node in R′ and let Y be a set of columns
representing this path. The policy B∗ obtained by replacing the represen-
tatives of {i1, i2, . . . , it−1} in B′ with the corresponding columns of Y is a
unichain policy with the unique recurrent class R′. To see this observe that



354 M. ORMECI MATOGLU, J. VANDE VATE AND H. WANG

R′ is a recurrent class of B∗ and any other recurrent class of B∗ must in-
clude at least one of the nodes of {i1, i2, . . . , it−1}. Since G(B∗) contains a
path from each of these nodes to R′ and no path from R′ to any of these
nodes, it follows that R′ is the unique recurrent class in G(B∗). Thus, B∗ is
a strongly feasible basis representing the new basic feasible solution.

Combining the primal pivoting procedure outlined in Lemma 6.4 with the
method outlined in Observation 3 for computing γ and the relative value
functions f allows us to solve SLP(Λ,S) without computing the parameters
p+(j, u), ET[j, u], EX[j, u], EA[u] and ER[u].

In the next section we show how to keep the LP’s we must solve small.
In particular, we close the gap between the average cost of the S-restricted
Brownian control problem and the lower bound on the average cost of the
unrestricted problem by intelligently adding points to S.

7. Column generation. By selecting the points in S sufficiently close
to each other we can obtain solutions arbitrarily close to a lower bound
on the average cost of the unrestricted problem. However, adding many
equally spaced points increases the size of the LP and the computational
effort required to solve it. It is natural then to ask whether we can instead
judiciously add points where they will have greatest impact, focusing more
points in places where the preformance of the policy is particularly sensitive.
We employ the words “Column Generation” as a convenient shorthand for
this process of intelligently adding points to S and so variables or columns to
the LP formulation to close the gap between the average cost of an optimal
solution to the S-restricted problem, which we henceforth denote by ACS ,
and a lower bound on the cost of an optimal solution to the unrestricted
problem, which we denote by γ. Thus, Column Generation involves two
issues: Upper Bounds: Adding points to S that reduce ACS , the average
cost of an optimal policy for the S-restricted problem, Lower Bounds:
Developing a better lower bound γ on the average cost of an optimal policy
for the unrestricted problem.

Lemma 5.3 provides a potentially powerful tool for developing a lower
bound γ from a solution ACS to the S-restricted problem: take γ = ACS −
εH, where {f(·, u) : u ∈ Λ} are the relative value functions of an opti-
mal policy for the S-restricted problem and ε ≥ maxa∈[0,Θ],u,v∈Λ{f(a, u) −
f(a, v) −K(u, v)}. One difficulty with this approach is that unless consec-
utive points of S are close together, ε is generally large and so yields a
rather weak lower bound on the average cost of an optimal policy for the
unrestricted problem. Further, successively adding to S the points at which
f(a, u)− f(a, v)−K(u, v) achieves a maximum value generally forces us to
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add numerous points to S that have little effect on either the upper bound
ACS or the lower bound γ.

Lemma 7.1 offers alternative strategies for reducing the gap between the
optimal solution to the S-restricted problem and the lower bound on the
optimal solution to the unrestricted problem.

Lemma 7.1. Suppose that for each u ∈ Λ, f(·, u) : [0,Θ] → R satisfies
the smoothness conditions and (2.3)–(2.5),

σ2

2
f ′′(a, u) + uf ′(a, u) + c(u) + ha ≥ γ(1− δ1) for almost all a ∈ [0,Θ]

and

ρ(a, u) ≡ f ′(a+, u)− f ′(a−, u) ≥ −γδ2 for all a ∈ (0,Θ).

for some scalars γ, δ1, δ2. Then γ(1−δ1−δ2) ≤ AC(Φ) for each policy Φ ∈ P
and each initial state (a, u).

Lemma 7.1 suggests approaching the problem of finding a lower bound
through relaxations of (2.2) measured in terms of δ1 and of (2.6) measured
in terms of δ2. These relaxations prove more useful in identifying appro-
priate points to add to S and, as we show in Lemma 7.2, it is relatively
easy to construct functions f that satisfy (2.3)–(2.5) from the relative value
functions defined in §5.

Lemma 7.2. Given an optimal dual solution (α, γ) for the S-restricted
problem, define

f̃(a, u) = min
v∈Λ

{f(a, v) +K(u, v)},(7.1)

where the functions f(·, u) are defined by (5.1)–(5.5). Then the functions
f̃(·, u) satisfy the smoothness conditions and (2.3)–(2.5).

Proof. By definition, the functions f̃(·, u), u ∈ Λ satisfy (2.3). To see
this let f̃(a, u) = minv∈Λ{f(a, v) +K(u, v)} = f(a,w) +K(u,w). Note that
f̃(a, z) = minv∈Λ{f(a, v) + K(z, v)} ≤ f(a, z) + K(z, z) = f(a, z). Then
f̃(a, u)− f̃(a, z) = f(a,w)+K(u,w)− f̃(a, z) ≤ f(a, z)+K(u, z)− f̃(a, z) ≤
f(a, z) + K(u, z) − f(a, z) = K(u, z). Further, since each function f(·, u)
satisfies (2.4) and (2.5), clearly each function f̃(·, u) does as well.

Since each f̃(·, u) is defined as the minimum of continuous functions,
these functions are continuous. It remains to show that f̃(·, u) satisfies the
smoothness conditions. Since each of the functions f(·, u) can be written as
the difference of two convex function their minimum can also be written as
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the difference of two convex functions (see p. 375 of Floudas and Pardalos
(2001)). Thus, it is enough to show that for each pair of drift rates v and v′

the functions f(a, v) +K(u, v) and f(a, v′) +K(u, v′) cross at finitely many
points. Let g(a, u, v, v′) = f(a, v) +K(u, v) − (f(a, v′) +K(u, v′)). Observe
that g′′′ has no roots, hence g′′ can have at most one root and g′ can have
at most 2 roots and g can have at most 3 roots for a ∈ [si, si+1]. Since |S| is
finite, the functions cross finitely many times for each pair of drift rates.

Corollary 7.1. The functions v(a, u) = argminv∈Λ{f(a, v)+K(u, v)}
for each u ∈ Λ are piecewise constant with finitely many pieces.

We can use the functions f̃ to construct an alternative lower bound on
the unrestricted problem: find δ1 and δ2 such that for each u ∈ Λ

Γf̃(a, u) ≡ σ2

2
f̃ ′′(a, u) + uf̃ ′(a, u) + c(u) + ha− γ

(7.2)
≥ −γδ1 for almost all a ∈ [0,Θ],

ρ̃(a, u) ≡ f̃ ′(a+, u)− f̃ ′(a−, u) ≥ −γδ2 for all a ∈ [0,Θ].(7.3)

We show that these two criteria can be used to identify a∗ /∈ S such that
the reduced cost rc(a∗, u, v) of y(a∗, u, v) is strictly negative and that adding
such a∗ to S decreases ACS , thus reducing the gap between ACS and γ.

Lemma 7.3. If (7.2) or (7.3) holds with equality for some δ1 > 0 or
δ2 > 0 for some si ≤ a < si+1 then there exists a point a∗ ∈ (si−1, si+1) and
a variable y(a∗, u, v) with negative reduced cost.

Proof. We handle (7.2) and (7.3) separately. We first look at the case
where ρ̃(z, u) < 0 for some z ∈ [si, si+1).

Case 1: ρ̃(z, u) < 0. First observe that if v(a, u) = v for all a in some
interval (b, d), then ρ̃(a, u) = f ′(a+, v)− f ′(a−, v) ≥ 0 for all a ∈ (b, d). So,
ρ̃(a, u) can only be negative when a is in the finite set Z(u) = {a ∈ [0,Θ] :
v(a+, u) �= v(a−, u)}. Consider a point z ∈ Z(u) such that ρ̃(z, u) < 0 and
suppose

f̃(a, u) =

{
f(a, v) +K(u, v) a ∈ [b, z]
f(a, v′) +K(u, v′) a ∈ [z, d]

where b < z < d and v = v(z−, u) �= v(z+, u) = v′. Then by definition (7.1)
(i) ρ̃(z, u) = f ′(z+, v′) − f ′(z−, v) < 0, (ii) f̃(z, u) = f(z, v) + K(u, v) ≤
f(z, u) and so the reduced cost of y(z, u, v) is non-positive, (iii) f̃(z, u) =
f(z, v′) + K(u, v′) ≤ f(z, u) and so the reduced cost of y(z, u, v′) is non-
positive.
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First consider the case z �∈ S. Then, f ′(z, v′) = f ′(z+, v′) < f ′(z−, v) =
f ′(z, v) and so either f ′(z, u) > f ′(z, v′) or f ′(z, u) < f ′(z, v) or both. If
f ′(z, u) > f ′(z, v′), the reduced cost rc(a, u, v′) ≡ f(a, v′)+K(u, v′)−f(a, u)
of y(a, u, v′) is a non-positive and decreasing function of a on the interval
[z, a∗], where a∗ > z is the first point at which f ′(a∗, u) = f ′(a∗, v′). Observe
that since the reduced cost of y(si+1, u, v

′) is non-negative, it follows that
a∗ exists and satisfies z < a∗ < si+1. Next observe that rc(a∗, u, v′) < 0 is a
local minimum of rc(·, u, v′) and so we add the point a∗ to S.

On the other hand, if f ′(z, u) < f ′(z, v), then with analogous arguments
one can show that there exists a si < a∗ < z where rc(a∗, u, v) < 0 is a local
minimum of rc(·, u, v) and so we add the point a∗ to S.

For the case with z = si ∈ S with analogous analysis one can show that
there is a point a∗ with rc(a∗, u, v) < 0, so we add the point a∗ to S.
Case 2: Γf̃(z, u) < 0. If v(z, u) = v, f̃(z, u) = f(z, v) +K(u, v), and so

Γf̃(z, u) =
σ2

2
f̃ ′′(z, u)+uf̃ ′(z, u)+c(u)+hz−γ = −f ′(z, v)(v−u)−c(v)+c(u).

Observe that between consecutive points of S ∪ Z(u),Γf̃(a, u) =
−f(a, v)(v− u)− c(v) + c(u) for some v ∈ Λ. Thus, the extrema of Γf̃(a, u)
occur only at points of S ∪ Z(u) or at points z ∈ Z ′(u) = {a ∈ (0,Θ) :
f ′′(a, v(a, u)) = 0}. So we need only consider (1) Γf̃(z−, u) ≡ lima↑z Γf̃(a, u)
for z ∈ S ∪ Z(u), (2) Γf̃(z+, u) ≡ lima↓z Γf̃(a, u) for z ∈ S ∪ Z(u) and (3)
Γf̃(z, u) for z ∈ Z ′(u) ≡ {a ∈ (0,Θ) : f ′′(a, v(a, u)) = 0}. We only consider
the case in which Γf̃(z−, u) < 0 for z ∈ Z(u)\S. The other cases are similar.

Consider the case in which Γf̃(z−, u) < 0 for some point z ∈ Z(u) \ S so
that si < z < si+1. Then by (7.1) (i) f̃(z, u) = f(z, v) +K(u, v) ≤ f(z, u),
(ii) f̃(z, u) = f(z, v′) +K(u, v′) ≤ f(z, u), (iii) f ′(z, v) ≥ f ′(z, v′).

If f ′(z, u) > f ′(z, v′) then the arguments of Case 1 imply that there
is z < a∗ < si+1 such that f ′(a∗, u) = f ′(a∗, v′) and the reduced cost
rc(a∗, u, v′) of y(a∗, u, v′) is strictly negative. Similarly if f ′(z, u) < f ′(z, v)
then there is z > a∗ > si such that f ′(a∗, u) = f ′(a∗, v) and the reduced
cost rc(a∗, u, v) of y(a∗, u, v) is strictly negative. We add a∗ to S. Thus, we
need only consider the case in which f ′(z, u) = f ′(z, v) = f ′(z, v′). Since
Γf̃(z−, u) < 0,

σ2

2
f ′′(z−, v) + uf ′(z−, v) + c(u) + hz

< γ =
σ2

2
f ′′(z−, u) + uf ′(z−, u) + c(u) + hz
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and so f ′′(z−, v) < f ′′(z−, u). It follows that there is a point si < a∗ < z
such that f ′(a∗, v) = f ′(a∗, u) and r(a, u, v) = f(a, v) + K(u, v) − f(a, u),
the reduced cost of y(a, u, v), is a non-positive increasing function on (a∗, z).
Thus y(a∗, u, v) has negative reduced cost and we choose a∗ to add to S.

8. Implementation issues and computational experience. In this
section we briefly discuss implementation issues and present computational
results. In our implementation we used several tools to achieve computa-
tional savings, specifically we scaled C and F in the relative value function
to overcome numerical issues, applied the approach described in Observa-
tion 3 and made use of a “restricted basis” as discussed in Ormeci Matoglu
and Vande Vate (2011) to compute ACS .

In an effort to avoid numerical scaling issues in our computations, we
define

C̃(i, μ) = C(i, μ)
(
e−

2μ

σ2 sj − e−
2μ

σ2 si
)
,

where C(i, μ) is the C constant of the band (μ, si, sj) of the policy. If sj is
the first (lowest value) point at which we transition from drift rate μ, the
band is (μ, 0, sj) and we define

C̃(0, μ) = C(0, μ)
(
e−

2μ

σ2 sj − 1
)
.

Similarly, if si is the last (highest value) point at which we transition from
drift rate μ, the band is (μ, si,Θ) and we define

C̃(i, μ) = C(i, μ)
(
e−

2μ

σ2Θ − e−
2μ

σ2 si
)
.

We refer to control bands belonging to a recurrent class as recurrent bands,
and those belonging to a transient class as non-recurrent bands. Working
with C̃ in place of C works well for the recurrent bands, but consider for
example a non-recurrent band (u, 0, s1) where −2u

σ2 s1 is large, e.g., > 50. In
this case, the values of C(0, u) and F (0, u) are defined by:

C(0, u) =
σ2

2u

(
U +

γ

u
+

hσ2

2u2
− c(u)

u

)
, and

C(0, u)e−
2u
σ2 s1 + F (0, u) = α(s1, u)

and so, since its coefficient e−
2u
σ2 s1 in the second constraint is so large, C(0, u)

must be represented with over 20 decimal places of precision to ensure the
(near) continuity of the relative value function f(·, u) at s1. We know of no
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other resolution for this issue than to carry the computations out to the
required level of precision.

A second tool we use to solve the drift control problem involves restricted
bases. The positive basic variables of the LP form a basis of the linear pro-
gram restricted to the active constraints and to the variables whose coeffi-
cients appear only on these constraints. We refer to this as a restricted basis.
As we calculate the average cost of the S-restricted problem after adding
a point a∗ to S we we use only the restricted basis. Thus we solve a linear
system of equalities and obtain ACS and the C and F parameters associ-
ated with the recurrent bands of the policy. In later steps, we compute the
remaining C and F parameters defining the relative value function on the
transient bands. This approach speeds computations in the case of degener-
ate pivots as they only affect the relative value function on transient bands.

As pointed out in Observations 1 and 2 once these parameters, and hence
the relative value functions, are obtained we can identify candidates to enter
via simple tests using the relative value function.

We should also point out here the tools of linear programming that we
did not employ. Our goal was not to reinvent linear programming, but to
apply the basic tools at the required level of precision. For example, we
employed the very straightforward approach of pricing out every non-basic
column and choosing the one with the most negative reduced cost to enter
the basis. We also did not factor the reduced “basis” when computing the
coefficients C and F defining the relative value functions and instead solved
the linear system “from scratch” each time. Finally, we did not exploit the
computational savings available with degenerate pivots.

Another point worth mentioning is the relative importance of variability.
Recall that the variance appears in our equations in the exponential term
2μ/σ2. This exponential term is one of the main sources of numerical issues.
The Brownian model makes sense when variability is high and is less relevant
when it is low. Our method works well in the former case and may run
into numerical issues in the latter case. Put crudely: The Brownian model
focuses on the impacts of variability. If variability is important, our model
helps understand how important it is and how best to address it. If it is not
important, our model is probably not appropriate and is likely to struggle
with numerical issues. In the next section we present results of computational
studies.

8.1. Computational studies. Our approach enables the controller to eval-
uate the impact of opening/closing a line. More lines means both more capac-
ity and more flexibility to respond to variations in demand. It is relatively
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easy to understand the value of more capacity. Solving the drift control
problem provides a quantitative tool for analyzing the marginal value of
additional flexibility. While in the analysis we do not consider the fixed in-
vestment cost of building a line (we only consider the costs of turning on an
idle line and idling an existing line), the savings achieved through having
the flexibility to operate an additional line augment the analysis of whether
additional capacity is worth the investment. In this section we present a
detailed numerical study and consider different numbers of lines to handle
the variability in demand.

We present the results for our approach as applied to the numeric ex-
ample in Ormeci Matoglu and Vande Vate (2010). The average arrival rate
μ0 =26,400 units per day and the standard deviation of the arrival pro-
cess, σ, is 7,348.47 units per day. Each line has a processing rate of 10,560
units per day, so the set of drift rates Λ includes the appropriate mem-
bers of {15840, 5280,−5280,−15840,−26400,−36960,−47520,−58080} cor-
responding to one, two, three up to eight lines operating. Clearly, three lines
provide sufficient capacity, but we explore the value of the added flexibil-
ity of four, six and even eight lines. Starting up a line costs approximately
$20,000 (note this is the cost of starting to run an existing line and does not
include the initial investment cost to build the line) and shutting one down
temporarily costs approximately $2,000, thus K(u, v) is 20,000 times the
number of lines started up and 2,000 times the number of lines shut down.
The delay cost, h, is $2.88 per unit per day, c(μ), the cost of operating at
drift rate μ, is −18.18 ∗ μ, Θ, the maximum queue length is 40,000 units,
U , the cost of idling, is $400 per unit, and M , the cost of rejecting orders,
is $1,000 per unit. In each case, we begin with the initial set of candidate
control points S = {10000, 20000, 30000}.

Figure 1 shows the value of the flexibility additional lines provide by
showing the average cost of an optimal policy with different numbers of
lines available to the policy. As expected, the marginal value of additional
lines decreases. Changing from 6 to 8 lines reduced the average cost of an
optimal policy by less than $5/hour, so it did not make sense to consider
more than 8 lines. In each case we stopped the column generation process
when the policy was within $5/hour of the lower bound.

Figure 2 illustrates the structure our near optimal control band policy
for the three rate case. The policy uses three control bands (μi, si, Si):
(μ1, 0, 13052), (μ2, 5417, 17110), (μ3, 8525, 40000) meaning that when the
queue is small we should run just one line, when it reaches 13,052, we should
start up a second line. If the queue falls to 5,417 we should shut down the
second line, but if it rises to 17,110, we should start up the third line. When
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Fig 1. Average cost with respect to number of lines.

Fig 2. Optimal policy for 3 rates problem, μi > μi+1.

Table 1

The progress of the “Column Generation” approach with 3 drift rates

|S| Cum. Pivots Policy $/hr Lower Bound $/hr Run Time (sec)

3 3 2416.48 −5068.86 2
· · · · ·
8 17 1766.86 −178.97 13
· · · · ·

12 23 1698.76 1258.11 26
· · · · ·

22 44 1693.36 1684.46 89
23 48 1693.36 1689.60 99
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Fig 3. Optimal policy for 8 rates problem, μi > μi+1.

all three lines are running, if the queue falls to 8,525, we should shut down
the third line. The average cost of this policy is $1,693 per hour. Our lower
bounds prove that the average cost of an optimal policy is not less than
$1,689 per hour. The policies for 4,6 and 8 rates exhibit a similar pattern.
Figure 3 displays our near optimal control band policy for the eight rate case.
The policy uses 8 control bands. It is interesting to note that the widths of
the bands get smaller with each additional line, starting with the fourth line.

Table 1 summarizes the progress of the column generation approach. The
“Policy $/hr” column reports the average cost of the policy, the “Lower
Bound $/hr” column reports the lower bound on the average cost of an op-
timal policy, the |S| column reports the number of points in S, the “Pivots”
column reports the cumulative number of pivots and the “Run Time (sec)”
column reports the cumulative run time. Note that the average cost of the
policy and the lower bound converge quickly as we increase the number of
points in S. Each additional point we add to S requires only a few additional
pivots.

To emphasize the importance of the column generation approach’s judi-
cious choice of points in S, we compare this with the average cost ($1701
per hour) and the lower bound ($796 per hour) obtained using a grid of
23 equally spaced points. Table 2 shows the average cost, lower bound and
number of pivots required as we refine the equally spaced grid. As we see in
Figure 4 the policy cost and the lower bound converge much more quickly
using the column generation approach. In this chart the lower bound is
displayed on the left axis, and the policy cost is displayed on the right axis.

Tables 3–5 show the progress of our column generation procedure in the
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Fig 4. Policy Cost and Lower Bound w.r.t |S| in 3 rates problem with Column Generation
Approach and Regular Grid.

Table 2

Optimal solution to the S-restricted problem with |S| equally spaced points, 3 rates

|S| Pivots Policy $/hr Lower Bound $ /hr Run Time (sec)

23 29 1701.16 795.93 13
40 53 1702.49 749.94 45
60 78 1694.18 1294.32 152
80 106 1694.23 1560.22 393

100 132 1694.50 1393.66 826

Table 3

The progress of the “Column Generation” approach with 4 drift rates

|S| Cum. Pivots Policy $/hr Lower Bound $/hr Run Time (sec)

3 11 949.63 −2570.33 4
· · · · ·

19 64 685.69 523.30 180
· · · · ·

30 95 685.23 679.13 507
31 97 685.23 681.91 555

4, 6 and 8 drift rate cases and Table 6 and Table 7 outline comparable
performance for the 4 and 6 drift rate cases using equally spaced grids.

As these tables illustrate, the column generation procedure requires far
fewer points and far fewer pivots to find a policy of comparable average cost
and produce a lower bound of comparable quality. Column generation does,
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Table 4

The progress of the “Column Generation” approach with 6 drift rates

|S| Cum. Pivots Policy $/hr Lower Bound $/hr Run Time(sec)

3 30 949.63 −8685.20 17
· · · · ·

26 150 614.50 503.89 14162
· · · · ·

60 299 613.79 610.22 20369
61 303 613.79 611.17 21552

Table 5

The progress of the “Column Generation” approach with 8 drift rates

|S| Cum. Pivots Policy $/hr Lower Bound $/hr Run Time (sec)

3 40 949.63 −14588.80 49
· · · · ·

39 290 605.11 436.11 14162
· · · · ·

84 535 604.81 601.25 249238
85 545 604.81 602.03 262309

Table 6

Optimal solutions to the S-restricted problem with equally spaced points, 4 Rates

|S| Cum. Pivots Policy $/hr Lower Bound $/hr Run Time (sec)

31 147 686.98 245.89 170
60 288 686.01 390.39 1630

100 488 685.51 452.21 64900

Table 7

Optimal solutions to the S-restricted problem with equally spaced points, 6 Rates

|S| Pivots Policy $/hr Lower Bound $ /hr Run Time (sec)

39 301 614.47 −930.48 3408
79 459 614.22 −930.00 57218

159 796 613.98 −675.36 532359

however, include the extra computation of selecting the points to add to S.
To give a sense of how this added speed in terms of number of points and
pivots compares with the added cost to find those points, Figure 5 shows the
ratio of the running times (regular grid/column generation on a logarithmic
scale) required to produce a policy for the four drift rate policy within a
target percentage of the optimal average cost as the target percentage de-
creases. In this case, the optimal average cost is known. Normally, we do not
know the optimal average cost in advance and must rely on the lower bounds
produced by the procedures to gauge the quality of the policies. It is interest-
ing to compare the ratio of the running times to produce a policy and a lower
bound so that the policy is within a given percentage of the lower bound.
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Fig 5. Ratio of run times (Regular grid/Column generation) to find a solution, 4 rates.

Fig 6. Ratio of run times (Regular grid/Column generation), 6 rates.

This proved problematic for the fixed grid approach since in many cases, the
lower bound it provided was negative. Thus, we used the absolute difference
between the average cost of the policy and the lower bound as our measure
of the quality of the solutions. Figure 5 shows the ratio of the running times
(on a logarithmic scale) to produce a policy and a lower bound of a given
quality using this measure for the four drift rate problem. Figures 6–7 out-
line the same comparison for the 6 and 8 drift rates problems. We observe
that the time to find a policy whose average cost converges to the optimal
cost is significantly lower when the column generation approach is employed.

APPENDIX A: BASIC ADJOINT RELATIONSHIPS AND
CALCULATION OF SOME PERFORMANCE

METRICS

Lemma A.1. For each state (j, u), u �= 0 the following Basic Adjoint
Relationships hold:
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Fig 7. Ratio of run times (Regular grid/Column generation), 8 rates.

If j = 1, then

0 = u+ EA[u] + δ(1, 2, u)(s1 − s2),

0 = 2EX[1, u]u+ σ2 + δ(1, 2, u)
(
s21 − s22

)
,

0 = δ(1, 2, u)
(
e−

2u
σ2 s1 − e−

2u
σ2 s2

)
− 2u

σ2
EA[u], and

ET[1, u] =
1

δ(1, 2, u)
.

If 1 < j < n, then

0 = u+ δ(j, j − 1, u)(sj − sj−1) + δ(j, j + 1, u)(sj − sj+1),

0 = 2EX[j, u]u+ σ2 + δ(j, j − 1, u)
(
s2j − s2j−1

)
+ δ(j, j + 1, u)

(
s2j − s2j+1

)
,

0 = δ(j, j − 1, u)
(
e−

2u
σ2 sj − e−

2u
σ2 sj−1

)
+ δ(j, j + 1, u)

(
e−

2u
σ2 sj − e−

2u
σ2 sj+1

)
,

p−(j, u) =
δ(j, j − 1, u)

δ(j, j − 1, u) + δ(j, j + 1, u)
,

p+(j, u) =
δ(j, j + 1, u)

δ(j, j − 1, u) + δ(j, j + 1, u)
, and

ET[j, u] =
1

δ(j, j − 1, u) + δ(j, j + 1, u)
.

If j = n, then

0 = u− ER[u] + δ(n, n− 1, u)(sn − sn−1),

0 = 2EX[n, u]u+ σ2 − 2ΘER[u] + δ(n, n− 1, u)
(
s2n − s2n−1

)
,

0 =
2u

σ2
e−

2u
σ2ΘER[u] + δ(n, n− 1, u)

(
e−

2u
σ2 sn − e−

2u
σ2 sn−1

)
, and
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ET[n, u] =
1

δ(n, n− 1, u)
.

Here δ(j, k, u) may be interpreted as the frequency with which sk is hit
when in state (j, u). Solving for EX,EA, and ER yields the following expres-
sions:

Lemma A.2.

ET[j, u] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2u(s2−s1)+

(
e
− 2us2

σ2 −e
− 2us1

σ2

)
σ2

2u2 , if j = 1,

−
2u(sn−sn−1)−

(
e
2u(Θ−sn−1)

σ2 −e
2u(Θ−sn)

σ2

)
σ2

2u2 , if j = n,

(
e

2usj−1

σ2 (sj−1−sj)+e

2usj+1

σ2 (sj−sj+1)+e

2u(sj−1+sj+1−sj)

σ2 (sj+1−sj−1)

)
(
e

2usj−1

σ2 −e

2usj+1

σ2

)
u

,

otherwise.

EA[u] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
e
− 2us2

σ2 −e
− 2us1

σ2

)
uσ2

2u(s2−s1)+

(
e
− 2us2

σ2 −e
− 2us1

σ2

)
σ2

, if j = 1,

0, otherwise

and

ER[u] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
2uΘ
σ2

(
−e

−
2usn−1

σ2 +e
− 2usn

σ2

)
uσ2

2u(sn−sn−1)−
(
e
2u(Θ−sn−1)

σ2 −e
2u(Θ−sn)

σ2

)
σ2

, if j = n,

0, otherwise.

EX[j, u] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(s22−s21)

2u(s2−s1)+

(
e
− 2us2

σ2 −e
− 2us1

σ2

)
σ2

− σ2

2u
, if j = 1,

Θ− σ2

2u
− u(sn−sn−1)(2Θ−sn−1−sn)

2u(sn−sn−1)−

⎛
⎝e

2u(Θ−sn−1)

σ2 −e
2u(Θ−sn)

σ2

⎞
⎠σ2

, if j = n,

1
2

(
sj−1 + sj+1 − σ2

u

+

⎛
⎝e

2usj−1

σ2 −e

2usj+1

σ2

⎞
⎠(sj−sj−1)(sj−sj+1)

e

2usj−1

σ2 (sj−sj−1)−e

2usj+1

σ2 (sj−sj+1)+e

2u(sj−1+sj+1−sj)

σ2 (sj−1−sj+1)

)
, ow.
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APPENDIX B: BASIC ADJOINT RELATIONSHIPS, CALCULATION
OF SOME PERFORMANCE METRICS AND
RELATIVE VALUE FUNCTION WHEN μ = 0

Lemma B.1. For each state (j, 0) the following Basic Adjoint Relation-
ships hold:
If j = 1, then

0 = EA[0] + δ(1, 2, 0)(s1 − s2),

0 = σ2 + δ(1, 2, 0)
(
s21 − s22

)
,

0 = 3σ2EX[1, 0] + δ(1, 2, 0)
(
s31 − s32

)
, and

ET[1, 0] =
1

δ(1, 2, 0)
.

If 1 < j < n, then

0 = δ(j, j − 1, 0)(sj − sj−1) + δ(j, j + 1, 0)(sj − sj+1),

0 = σ2 + δ(j, j − 1, 0)
(
s2j − s2j−1

)
+ δ(j, j + 1, 0)

(
s2j − s2j+1

)
,

0 = 3σ2EX[j, 0] + δ(j, j − 1, 0)
(
s3j − s3j−1

)
+ δ(j, j + 1, 0)

(
s3j − s3j+1

)
,

p−(j, 0) =
δ(j, j − 1, 0)

δ(j, j − 1, 0) + δ(j, j + 1, 0)
,

p+(j, 0) =
δ(j, j + 1, 0)

δ(j, j − 1, 0) + δ(j, j + 1, 0)
, and

ET[j, 0] =
1

δ(j, j − 1, 0) + δ(j, j + 1, 0)
.

If j = n, then

0 = −ER[0] + δ(n, n− 1, 0)(sn − sn−1),

0 = σ2 − 2ΘER[0] + δ(n, n− 1, 0)
(
s2n − s2n−1

)
,

0 = 3σ2EX[n, 0]− 3Θ2ER[0] + δ(n, n− 1, 0)
(
sn − s2n−1

)
, and

ET[n, 0] =
1

δ(n, n− 1, 0)
.

Solving for EX,EA, and ER yields the following expressions:

Lemma B.2.

ET[j, 0] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s22−s21
σ2 , if j = 1,

(2Θ−sn−sn−1)(sn−sn−1)
σ2 , if j = n,

(sj+1−sj)(sj−sj−1)
σ2 , otherwise.
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EA[0] =

{
σ2

s1+s2
, if j = 1,

0 otherwise.

and

ER[0] =

{
− σ2

sn+sn−1−2Θ , if j = n,

0, otherwise.

EX[j, 0] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s21+s1s2+s22
3(s1+s2)

, if j = 1,

s2n+snsn−1+s2n−1−2Θ2

3(sn+sn−1−2Θ) , if j = n,

sj+sj−1+sj+1

3 , otherwise.

The relative value function, when μ = 0 is defined as follows: Given an
optimal solution (γ, α) to the problem (4.7)–(4.11)

f(a, 0) = − h

3σ2
a3 +

(c(0)− γ)

σ2
a2 + C(j, 0)a+ F (j, 0),

for sj ≤ a ≤ sj+1, where C(j, 0) and F (j, 0) are constants satisfying:

C(0, 0) = −U,

C(n, 0) =
2γΘ− hΘ2 +Mσ2 − 2Θc(0)

σ2
,

and for j = 1, 2, 3, . . . , n

− h

3σ2
s3j +

(c(0)− γ)

σ2
s2j + C(j − 1, 0)sj + F (j − 1, 0) = α(j, u)

− h

3σ2
s3j +

(c(0)− γ)

σ2
s2j + C(j, 0)sj + F (j, 0) = α(j, u).
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