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1. Introduction

In the last decade, networks have arisen in numerous domains such as social
sciences and biology. They provide an attractive graphical representation of
complex data. However, the increasing size of networks and their great number
of connections have made it difficult to interpret network representations of data
in a satisfactory way. This has strengthened the need for statistical analysis of
such networks, which could raise latent patterns in the data.

Interpreting networks as realizations of random graphs, unsupervised classi-
fication (clustering) of the vertices of the graph has received much attention. It
is based on the idea that vertices with a similar connectivity can be gathered
in the same class. The initial graph can be replaced by a simpler one without
loosing too much information. This idea has been successfully applied to social
(Nowicki and Snijders, 2001) and biological (Picard et al., 2009) networks. It is
out of the scope of the present work to review all of them.

Mixture models are a convenient and classical tool to perform unsupervised
classification in usual statistical settings. Mixture models for random graphs
were first proposed by Holland et al. (1983) who defined the so-called stochastic
block model (SBM), in reference to an older non stochastic block model widely
used in social science. Assuming each vertex belongs to only one class, a latent
variable (called the label) assigns every vertex to its corresponding class. SBM
is a versatile means to infer underlying structures of the graph. Subsequently,
several versions of SBM have been studied and it is necessary to formally dis-
tinguish between them. Three binary distinctions can be made to this end:

1. The graph can be directed or undirected.

2. The graph can be binary or weighted.

3. The model can (i) rely on latent random wvariables (the labels), or (i)
assume the labels are unknown parameters:
(i) SBM is a usual mixture model with random multinomial latent vari-
ables (Ambroise and Matias, 2012; Daudin et al., 2008; Nowicki and Sni-
jders, 2001). In this model, vertices are sampled in a population and the
concern is on the population parameters, that is the frequency of each
class and their connectivity parameters.
(i) An alternative conditional version of SBM (called CSBM) has been
studied (Bickel and Chen, 2009). In CSBM, former latent random variables
(the labels) are considered as fized parameters. The main concerns are
then the estimation of between- and within-class connectivity parameters
as well as of the unknown label associated to every vertex (see Choi et al.,
2012; Rohe et al., 2011).

The present work deals with directed (and undirected) binary edges in random
graphs drawn from SBM.

The main interest of SBM is that it provides a more realistic and versatile
model than the famous Erddos-Rényi graph while remaining easily interpretable.
However unlike usual statistical settings where independence is assumed, one
specificity of SBM is that vertices are mot independent. Numerous approaches
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have been developed to overcome this challenging problem, but most of them
suffer some high computational cost. For instance Snijders and Nowicki (1997)
study maximum-likelihood estimators of SBM with only two classes and binary
undirected graphs, while Nowicki and Snijders (2001) perform Gibbs sampling
for more than two classes at the price of a large computational cost. Other strate-
gies also exist relying for instance on profile-likelihood optimization in CSBM
(Bickel and Chen, 2009), on a spectral clustering algorithm in CSBM (Rohe
et al., 2011), or on moment estimation in a particular instance of SBM called
affiliation model (Ambroise and Matias, 2012, and also Example 1 in the present
paper).

A wariational approach has been proposed by Daudin et al. (2008) to rem-
edy this computational burden. It can be used with binary directed SBM and
avoids the algorithmic complexity of the likelihood and Bayesian approaches
(see Mixnet (2009) and also Mariadassou et al. (2010) for weighted undirected
SBM analyzed with a variational approach). However even if its practical per-
formance shows a great improvement, variational approach remains poorly un-
derstood from a theoretical point of view. For instance, no consistency result
does already exist for maximum likelihood or wvariational estimators of SBM
parameters. Note however that consistency results for maximum likelihood es-
timators in the CSBM have been derived recently by Choi et al. (2012) where
the number of groups is allowed to grow with the number of vertices. Nonethe-
less, empirical clues (Gazal et al., 2011) have already supported the consistency
of variational estimators in SBM. Establishing such asymptotic properties is
precisely the purpose of the present work.

In this paper the identifiability of binary directed SBM is proved under very
mild assumptions for the first time to our knowledge. Note that identifiability
of directed SBM is really challenging since existing strategies such as that of
Allman et al. (2009) cannot be extended easily. The asymptotics of mazimum-
likelihood and wvariational estimators is also addressed by use of concentration
inequalities. In particular, variational estimators are shown to be asymptoti-
cally equivalent to maximum-likelihood ones, and consistent for estimating the
probability 7 of an edge between two vertices. When estimating the group pro-
portions «, an additional assumption on the convergence rate of 7 is required
to derive consistency. The present framework assumes the number @ of classes
to be known and independent of the number of vertices. Some attempts exist
to provide a data-driven choice of @ (see Daudin et al., 2008), but this question
is out of the scope of the present work.

The rest of the paper is organized as follows. The main notation and as-
sumptions are introduced in Section 2 where identifiability of SBM is settled.
Section 3 is devoted to the consistency of the maximum-likelihood estimators
(MLE), and Section 4 to the asymptotic equivalence between variational and
maximum-likelihood estimators. In particular, the consistency of variational es-
timators (VE) is proved. Some concluding remarks are provided in Section 5
with some further important questions.
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2. Model definition and identifiability

Let Q = (V, X) be the set of infinite random graphs where V = N denotes the

set of countable vertices and X = {0, 1}Nz the corresponding set of adjacency
matrices. The random adjacency matrix, denoted by X = {Xj ; }” o 18 given
by: for i # j, X; ; = 1 if an edge exists from vertex i to vertex j and X;; = 0
otherwise, and X, ; = 0 (no loop). Let P denote a probability measure on €.

2.1. Stochastic Block Model (SBM)

Let us consider a random graph with n vertices {v;}
assumed to be split into @ classes {C},_,
properties.

Set a = (a1,...,aq) with 0 < ay < 1 and }° ag = 1. For every ¢, a4
denotes the probability for a given vertex to belong to the class C,. For any
vertex v;, its label Z; is generated as follows

i—1.. n- These vertices are
0 depending on their structural

.....

i.4.d.

{Zi}i<icn M(n;a,...,0qQ)
where M (n;a1,...,aq) denotes the multinomial distribution. Let Zp,; =
(Z1,...,Zy,) denote the random label vector of (vy,...,v,).

The observation consists of an adjacency matrix Xp,) = {X;;}, ., i<n> where
X, =0 for every i and o
ji.d. S,
XijlZi=q,Z;=1 "% B(mg), Vi#j,
where B(mg,;) denotes the Bernoulli distribution with parameter 0 < m,; < 1

for every (q,1).
The log-likelihood is given by

Lo(Xpps o, m) =log | Y e Em=m™P [ 7, = 2] | (1)

Z[n]

where

Ly(Xpups 20 m) = > _{Xijlogme, o+ (1= Xij)log(l — . 2)}  (2)
i#j

and P [ Zj, = 21| = Pa [ Zn) = 2] = [1i-; @z,. In the following, let 6 =
(a, ) denote the parameter and 6* = (a*, 7*) be the true parameter value. No-
tice that the X; ;s are not independent. However, conditioning on Z; = ¢, Z; =1
yields independence.

Recall that the number @ of classes is assumed to be known and the purpose
of the present work is to efficiently estimate the parameters of SBM.
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2.2. Assumptions

In the present section, several assumptions are discussed, which will be used all
along the paper.

Assumption 1. For every q # ¢, there exists 1 € {1,...,Q} such that

Tq,l 75 g1 O T ¢ # Tl,q" - (A].)

Following (A1), the matrix 7 cannot have two columns equal and the cor-
responding rows also equal. This constraint is consistent with the goal of SBM
which is to define @) classes C1,...,Cqg with different structural properties. For
instance, the connectivity properties of vertices in C; must be different from
that of vertices in C; with ¢ # [. Therefore, settings where this assumption is
violated correspond to ill-specified models with too many classes.

Assumption 2. There exists ( > 0 such that

Y(g,l) € {1,...,Q}, muu€l0,1] = muel,1-¢ . (A2)

SBM can deal with null probabilities of connection between vertices. However,
the use of log m4,; implies a special treatment for 7,; € {0,1}. Note that all along
the present paper, (A2) is always assumed to hold with ¢ not depending on n.

Assumption 3. There exists 0 < v < 1/Q such that

Vged{l,...,Q}, as€[v,1—7]. (A3)

This assumption implies that no class is drained. Actually the identifiability
of SBM (Theorem 2.1) requires every oy € (0,1) for ¢ € {1,...,Q}, which is
implied by (A3). In this paper, it is assumed that v does not depend on n.

Assumption 4. There exist 0 < v < 1/Q and ng € N* such that any realization
of SBM (Section 2.1) with label vector 2, = (21, ..., 2,) satisfies

Nq(z[tl]) S

py )

Vg e{l,...,Q},Yn > no, (A4)

n
where Nq(z1,) = {1 <i<n|z =g}

Note that (A4) is the empirical version of (A3). By definition of SBM, 2y I8
the realization of a multinomial random variable with parameters (o, ..., ag).

Any multinomial random variable will satisfy the requirement of (A4) with high
probability. This assumption will be used in particular in Theorem 3.1.

2.3. Identifiability

The identifiability of the parameters in SBM have been first obtained by Allman
et al. (2009) for undirected graphs (m is symmetric): if Q = 2, n > 16, and the
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coefficients of 7 are all different, the parameters are identifiable up to label
switching. Allman et al. (2011) also established that for @ > 2, if n is even and

n>(Q—-1+ %)2 (with a similar condition if n is odd), the parameters of
SBM are generically identifiable, that is identifiable except on a set with null
Lebesgue measure.

First generic identifiability (up to label switching) of the SBM parameters is
proved for directed (or undirected) graphs as long as n > 2Q).

Theorem 2.1. Let n > 2Q and assume that for any 1 < ¢ < Q, ag > 0 and
the coordinates of r = m.cv are distinct. Then, SBM parameters are identifiable.

The assumption on vector 7.« is not strongly restrictive since the set of
vectors violating this assumption is of Lebesgue measure 0. Therefore, Theo-
rem 2.1 actually asserts the generic identifiability of SBM (see Allman et al.,
2009). Moreover, Theorem 2.1 also holds with 7’ = w'.« (instead of r = m.a),
and with vectors r” given by r’q’ = > Tqumqoq for every 1 < ¢ < Q. Let us
also emphasize that Assumption (A1) is implied by assuming either 7.a or 7t.x
has distinct coordinates (which leads to identifiability). Note that Bickel et al.
(2011, Theorem 2, Section 3.1) also recently derived an identifiability result for
“block models” in terms of “wheel motifs”.

Let us further illustrate the assumption on 7.av through two examples. The
first one is a particular instance of SBM called Affiliation Model (Allman et al.,
2011) restricted to the setting where @ = 2.

Example 1 (Affiliation model). From a general point of view, affiliation model
is used with @) populations of vertices and considers undirected graphs (7 sym-
metric). The present example focuses on a particular instance where @ = 2.
In this model, the matrix 7 is only parametrized by two coefficients m; and
mo (m1 # ma), which respectively correspond to within-class and between-class
connectivities between edges. With ) = 2, the matrix 7 is given by

T T2
’]T:
T2 T

Then, requiring (ma); = m o1 + meas is not equal to (ma), = may + mas
amounts to impose that a; # as. Indeed since within- and between-class connec-
tivities are the same for the two classes, distinguishing between them therefore
requires a different proportion of edges in these classes (a1 # aw).

Note that Allman et al. (2011) have derived a result on identifiability for
affiliation models with equal group proportions.

The second example describes a more general setting than Example 1 in
which the assumption on the coordinates of r can be more deeply understood.

Example 2 (Permutation-invariant matrices). For some matrices , there exist
permutations o : {1,...,Q} — {1,...,Q} such that 7 remains unchanged if one
permutes both its rows and columns according to o. More precisely, let 77 denote
the matrix defined by

o _
Tql = To(a),o(l) >

for every 1 < ¢,l < Q. Then, 77 = 7.
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For a given matrix 7, let us define the set of permutations letting 7 invariant
by

G6"={o: {1,...,Q} = {1,...,Q} | n7 =7}

The matrix 7 is said permutation-invariant if &™ # {Id}, where Id denotes
the identity permutation. For instance in the affiliation model (Example 1), 7 is
permutation-invariant since &™ is the whole set of permutations on {1,...,Q}.

Let us first notice that “label-switching” translates into the following prop-
erty. For any permutation o of {1,...,Q},

7o’ =1, (3)

where af = a,(g) for every ¢g. The main point is that label-switching arises
whatever the choice of (a, 7), and for every o.

By contrast, only permutation-invariant matrices satisfy the more specific
following equality. For any permutation-invariant matrix 7, let 6™ € &™ denote
one permutation whose support is of maximum cardinality. (Such a permutation
is not necessarily unique, for instance with the affiliation model.) Then,

™

(r)? =7a . (4)

Equation (4) amounts to impose equalities of the coordinates of wa in the sup-
port of o™. Let us recall that the support of 6™ corresponds to rows and columns
of m that can be permuted without changing 7. Then, assuming all coordinates
of ma distinct leads to impose that classes with the same connectivity proper-
ties have different respective proportions (o) to be distinguished between one
another.

Proof of Theorem 2.1. First, let P, denote the probability distribution func-
tion of the adjacency matrix X(,,; of SBM. Let us show that there exists a unique
(o, ) corresponding to P

Up to reordering, let r; < rp < --- < rg denote the coordinates of the vector
r in the increasing order: r, is equal to the probability of an edge from a given
vertex in the class Cj.

Let R denote the Van der Monde matrix defined by R;, =i, for 0 <i < Q
and 1 < ¢ < Q. R is invertible since the coordinates of r are all different. For
i > 1, R; 4 is the probability that ¢ given vertices in C; have an edge.

Let us also define

uU; = Z ozkr};, 1=0,...,2Q -1 .

1<k<Q

For i > 1, u; denotes the probability that the first ¢ coefficients of the first row
of X, are equal to 1. Note that n > 2@Q) is a necessary requirement on n since
X = 0 by assumption. Hence given P}, up = 1 and uy, ..., uzg-1 are known.

Furthermore, set M the (Q + 1) x @ matrix given by M, ; = u;+; for every
0<i<@and0<j <@, and let M; denote the square matrix obtained by
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removing the row ¢ from M. The coefficients of Mg are

Mm:uiﬂ: Z r};akri ,  with OSi,j<Q .
1<k<Q

Defining the diagonal matrix A = Diag(«), it comes that Mgy = RAR", where
R and A are invertible, but unknown at this stage. With Dy, = det(M},) and
the polynomial B(x) = Zgzo(—l)k+QDk ok, it yields Do = det(Mg) # 0 and
the degree of B is equal to Q.

Set Vi = (1,714, .. ,r?)t and let us notice that B(r;) is the determinant of
the square matrix produced when appending V; as last column to M. The @ +1
columns of this matrix are linearly dependent, since they are all linear com-
binations of the @ vectors V1, Va, ..., V. Hence B(r;) = 0 and r; is a root
of B for every 1 < i < Q. This proves that B = Dg H?Zl(:t — ;). Then, one
knows r = (r1,...,7q) (as the roots of B defined from M) and R. It results
that A= R™1M (R*)™", which yields a unique (as,..., aQ).

It only remains to determine m. For 0 < 4,5 < @, let us introduce U; ; the
probability that the first row of X|,; begins with i + 1 occurrences of 1, and
the second row of X ends up with j occurrences of 1 (i + 1+ j <n — 1 implies
n > 2Q). _

Then, U;; = > rhaxmyiour], for 0 < i,j < Q, and the @ x @ matrix

U = RATAR!. The conclusion results from 7 = A~'R-1U(R") " A=, O

The assumption of Theorem 2.1 on 7 (v or r”’), leading to generic identifia-
bility, can be further relaxed in the particular case where n =4 and Q = 2.

Theorem 2.2. Set n = 4, Q = 2 and let us assume that ag > 0 for every
1 < q < Q, and the coefficients of w are not all equal. Then, SBM is identifiable.

The proof of this result is deferred to Appendix A.
Note that when @ =2, (A1) implies the coefficients of 7 are not all equal.

3. Maximume-likelihood estimation of SBM parameters
3.1. Asymptotics of P (Z[n] =] X[n])

In this section we study the a posteriori probability distribution function of
Zn), P (Z[n] =X [n]), which is a random variable depending on X,

3.1.1. Equivalence classes between label sequences

Let us consider a realization of the SBM random graph generated with the
sequence of true labels Z = 2*, where z* = {27}, ..
Since a given matrix m can be permutation-invariant (see Example 2 Sec-

tion 2.3), the mapping z +— {ﬂ'ziyz]. }l jen- can be non injective. To remedy this
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problem, let us introduce an equivalence relation between two sequences of labels
z and 2':

2Ry & Fo0e6 | Z=o0(z), VieN'.

Then z ~ 2’ is equivalent to [2]_ = [z']_, where [2]_ denotes the equivalence
class of 2. As a consequence, any vectors z|,,) and an] in the same class have the

same conditional likelihood (2):
L1(Xn; 2n)> ) = L1(X ) 20 T) -

From now on, square-brackets in the equivalence class notation will be re-
moved to simplify the reading as long as no confusion can be made. In such
cases, z will be understood as the equivalence class of the label sequence.

3.1.2. Main asymptotic result
Let P*:=P(-| Z = 2*) = P;. . denote the true conditional distribution given
the (equivalence class of the) whole label sequence, the notation emphasizing
that P* depends on (o, 7*).

The following Theorem 3.1 provides the convergence rate of ]P’(Z[n] = z[*n] |
X[n]) = Pos n= (Z[n] = z[*n] | X[n]) towards 1 with respect to P*, that is given
Z = z*. It is an important result that will be repeatedly used along the paper.

Theorem 3.1. Let us assume that assumptions (A1l)—(A4) hold. For every
t>0,

Py P (Zpn = 200 [ X)) _ | _ (ne=m) |
2[n]F 2 P (Z[n] = Z[*n] | X[ﬂ])

where k > 0 is a constant depending on 7 but not on z*, and the O (ne™"") is
uniform with respect to z*.
Furthermore, the same result holds with P* replaced by P under (A1)—(A3).

The proof of Theorem 3.1 is deferred to Appendix B.

A noticeable feature of this result is that the convergence rate does not depend
on z*. This point turns out to be crucial when deriving consistency for the MLE
and the variational estimator (respectively Section 3.2 and Section 4.2). Besides,
the exponential bound of Theorem 3.1 allows the use of Borel-Cantelli’s lemma
to get the P—almost sure convergence.

Corollary 3.2. With the same notation as Theorem 3.1,

P—a.s. .

3 P (Zn) = 21 | X))

ok n—4o0o
2[n] # 2 P (Z[n] = %) | X[n]) -
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Moreover,

P (Z{n] = Z[*n] | X[n]> — 1, P—a.s. ,

n—-+o0o

and for every zp, # z[*;l],

]P(Z[n] = Z[n] | X[n]) ——F— 0, P—a.s. .

n—-+o0o

As a consequence of previous Corollary 3.2, one can also understand the
above phenomenon in terms of the conditional distribution of the equivalence
class Zp,) given X[,

Corollary 3.3.

D(Zpn) | Xp)) —=— 6, P—a.s. |

n—-+oo
where D(Zpy,) | Xpn)) denotes the distribution of Zp,) given X, % refers
n—-+0oo

to the weak convergence in My (Z), the set of probability measures on € (Z) the

set of equivalence classes on Z = {1,..., Q}N* and .« is the Dirac measure at
the equivalence class z*.

Proof of Corollary 3.5. For every n € N*| let us define Z,, = {1,...,Q}" and
€ (Z,,) the corresponding set of equivalence classes. Let us further introduce a
metric space (€ (Z,),d,), where the distance d,, is given by

Vz,2' € £(2,), dn(z,2)= min ZZik]l(ukivk) )
k=1

u€z,vez’
Similarly for Z = {1,..., Q}N*, (€ (2),d) denotes a metric space with

V2,2 € £(2), d(z7)= mi 27 2oy -
2,z (2) (2,2) ueg}lvnez,I; (unvr)

Then, € (Z,) can be embedded into £ (£), so that £ (Z,,) is identified to a subset
of £(2).

Let us introduce B the Borel o—algebra on £ (Z), and B,, the c—algebra
induced by B on € (Z,). Let also P" = P [ - | X[, | denote a probability measure
on B, and E, [-] is the expectation with respect to P™.

Set h € Cy (Z) (continuous bounded functions on £ (Z)) such that [|h|| < M
for M > 0. By continuity at point z*, for every € > 0, there exists n > 0 such
that

d(z,z")<n = |h(z") —h(z)| <€ .
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Then

3

B [2(Zin) | = h(z)| < D | (2n)) = PGB (Zin) = 20n)

Z[n]
e+2M Y P (Zyn) = o)
zm1€(By)°

e+op(l) P—a.s. ,

IN

IN

by use of Corollary 3.2, where B; = B(z*,n) denotes the ball in & (Z) with
radius ) with respect to d. In the last inequality, op(1) results from Corollary 3.2,
which yields the result. (]

3.2. MLFE consistency

The main focus of this section is to settle the consistency of the MLE of (a*, 7*).
Let us start by recalling the SBM log-likelihood (1):

Lo(Xppsa,m) = log | 3 S0 MP [ 71, = 2] |

Z[n]

where P [Z[n] = z[n]] = [I., a-,, and (a,m) are the SBM parameters. Note
that Lo(X (]} @, ) is an involved expression to deal with.

First, the X; ;s are not independent, which strongly differs from usual sta-
tistical settings. For this reason, no theoretical result has ever been derived for
the MLE of SBM parameters.

Second, another non standard feature of £; is the number of random variables
which is n(n — 1) (and not n as usual). More precisely, there are n(n — 1) edges
X ;s but only n vertices. This unusual scaling difference implies a refined treat-
ment of the normalizing constants n and n(n — 1), depending on the estimated
parameter o and 7 respectively. As a consequence, the MLE consistency proof
has been split into two parts: (¢) the consistency of the 7 estimator is addressed
by use of an approach based on M-estimators, (i7) a result similar to Theo-
rem 3.1 is combined with a “deconditioning” argument to get the consistency
of the o* estimator (Theorem 3.9) at the price of an additional assumption on
the rate of convergence of the estimator 7 of 7*.

The consistency of the MLE of 7 strongly relies on a general theorem which
is inspired from that for M-estimators (van der Vaart and Wellner, 1996).

Theorem 3.4. Let (©,d) and (¥,d') denote metric spaces, and let M, : © x
¥ — R be a random function and Ml : © — R a deterministic one such that for
every € > 0,

sup M (0) <M () , (5)
d(0,00)>¢
P
sup Mo (6,4) - MO)|i= [ My~ Ml —20 . (©

(0,)EOXT
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~ o~

Moreover, set (0,1) = Argmaxy ,M,, (0,1). Then,
~ P
1(5.00) —2—r0
n— 400

One important difference between Theorem 3.4 and its usual counterpart
for M-estimators (van der Vaart and Wellner, 1996) is that M,, and M do not
depend on the same number of arguments. Our consistency result for the MLE
of 7 strongly relies on this point.

Proof of Theorem 3.4. For every n > 0, there exists ¢ > 0 such that

P {d (5, 90) > n} <P [M(é) < M(6) — 35}
Since ||M;,, — M||g g % 0, it comes that for large enough values of n,
n—r+00

P |d(8.60) 2| < P M8, 9) < Mo(B0,%0) = 8 | +o(1)
<o(1) .

O

The leading idea in what follows is to check the assumptions of Theorem 3.4.
The main point of our approach consists in using P* = P* (Section 3.1.2)

a* m*
as a reference probability measure, that is working as if Z,,) = z[*n] were known.
In this setting, a key quantity is

El(X[n];z[n],w) = Z {Xw- log7, -, + (1 — X; ;) log(1l — Wziyzj)} ,
i#]
where (z[n],w) are interpreted as parameters. For any (z[n],w), let us introduce

o
n(n—1)

(I)n (Z[n],ﬂ) =E [¢n (Z[n],ﬂ') | Z[n] = Z[*n]} s

On (2n)s ) = L1 (Xpns 2[5 7)

where the expectation is computed with respect to P* = P;. .. Actually our
strategy (using Theorem 3.4) only requires to prove ¢, and ®,, are uniformly
close to each other on a subset of parameters denoted by P (see also the proof

of Theorem 3.6 for more details) and defined as follows
P = {(2),m) | (A1), (A2), |y (2[),7)| < 00} . (7)

Showing this uniform convergence between ¢,, and ®, over P is precisely the
purpose of Proposition 3.5. Its proof, which is deferred to Appendix C, strongly
relies on Talagrand’s concentration inequality (Massart, 2007).
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Proposition 3.5. With the above notation, let us assume (A1) and (A2) hold
true. Then,

P
s%p ‘¢n(2[n],7r) — @n(z[n],w)| —0 .

n—-+oo

Actually Proposition 3.5 is crucial to prove the following theorem which set-
tles the desired properties for Lo(X7,; a, ), that is (5) (uniform convergence)
and (6) (well-identifiability).

Theorem 3.6. Let us assume that (A1), (A2), and (A3) hold, and for every
(a, ), set My(o,7) = [n(n—1)]"" Lo( Xy o,m) , and
M(r)

T maféA Z agap Z [agqaiymy,logmg v+ (1 —mg ) log(l =7y )] o
Qi j

q,l q/ql/
where (a*, @) denotes the true parameter of SBM, and A = { A = (a; ;)

agq 20, D agq = 1} € Mo(R).
Then for any n > 0,

1<i,j<@Q |

sup  M(m) < M(7¥) ,
d(m,m*)>n

sup | M, (a, ) — M(r)] —— 0

o, n—-+4oo

where d denotes a distance.

The proof of Theorem 3.6 is given in Appendix D. Its uniform convergence
part exploits the connection between ¢y (2[,),7) and Lo(X,;a,m) (Proposi-
tion 3.5).

Let us now deduce the Corollary 3.7, which asserts the consistency of the
MLE of 7*.

Corollary 3.7. Under the same assumptions as Theorem 3.6, let us define the
MLE of (a*,7*)
(@,7) := Argmax(am)ﬁg(X[n];a,w) )

Then for any distance d(-,-) on the set of parameters m,

dF 1) ——0 .
n—-+oo

Proof of Corollary 3.7. This is a straightforward consequence of Theorem 3.4
and Theorem 3.6. O

A quick inspection of the proof of uniform convergence in Theorem 3.6 shows
that the asymptotic behavior of the log-likelihood Lo does not depend on «a.
Roughly speaking, this results from the expression of L5 in which the number of
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terms involving 7 is of order n? whereas only n terms involve a. This difference
of scaling with respect to n between m and « justifies to some extent a different
approach for the MLE of o*.

Our proof heavily relies on an analogous result to Theorem 3.1, where the
true value (a*,7*) of SBM parameters is replaced by an estimator (&, 7). In
what follows, p (Z[n] = Z[n] | X[n]) =Par (Z[n] = Z[n | X ) (Section 3.1.2 and
Lemma E.2) denotes the same quantity as P (Zp,] = z[, | X[n]) where (a*, ")
has been replaced by (&, 7). Let us state this result in a general framework since
it will be successively used in proofs of Theorems 3.9 and 4.4.

Proposition 3.8. Let us assume that assumptions (A1l)—(A4) hold, and
that there exists an estimator T such that |7 — 7% = op(vyn), with v, =
0 (\/log n/n) Let also & denote any estimator of o*. Then for every e > 0,

P (Z) = #(n) | X(u) g 053
sy P (Z[nl—z |X[n1)

P >e| <wkme R +P |7 =7 oo >vn]
for n large enough, where k1,k2 > 0 are constants independent of z*, and

P(Z[n]:z |X)
P (Z = 24, | Xpn
Az-Z' 1_ ZiZ
= X; jlog [ =222 1—X; ;)1 e log =
;{ J Og(wz;«,z;>+( ,J)Og(l_ﬁzz>}+zi:0gaz

Moreover, the same result holds replacing P* by P under (A1)-(A3).

log

The proof of Proposition 3.8 is given in Appendix E.

In the same way as in Theorem 3.1, one crucial point in Proposition 3.8 is the
independence of the convergence rate with respect to z*n]. Note that the novelty
of Proposition 3.8 compared to Theorem 3.1 lies in the convergence rate which
depends on the behavior of 7. This is the reliable price for estimating rather
than knowing 7*.

We assume v,, = o (v/Iogn/n), which arises from the proof as a necessary
requirement for consistency. However, we do not know whether this is a necessary
or only a sufficient condition. Furthermore there is still empirical evidence (see
Gazal et al., 2011) that the rate of convergence of 7 is of order 1/n, but this
property is assumed and not proved in the present paper.

Let us now settle the consistency of the MLE of a* on the basis of previous
Proposition 3.8.

Theorem 3.9. Let (&, 7) denote the MLE of (o*,7*) and assume |7 — 7*|| , =
op (\/log n/n) With the same assumptions as Theorem 3.6, and the notation of
Corollary 3.7, then

d@,a*) —— 0 ,

n—-+o0o

where d denotes any distance between vectors in R9.
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Note that the rate 1/n would be reached in “classical” parametric models
with n? independent random variables.

Proof of Theorem 3.9. In the mixture model framework of SBM, Lemma E.2
shows the MLE of « is given for any ¢ by

1G5
aq:ﬁZP(ZiZMX[n])-
=1

First, let us work with respect to P*, that is given Zp,,) = z[*n]. Setting Ny(2pn)) =
> 1(z=g), it comes

&y — Ny(zfy)/n| <

_l’_
< %Z: (1=P(Zi =2 | Xp)) Tsi=g
"rﬁ (Z{n] 75 Z[tl] |X[n])
< %i_l (ﬁ (Zi # 2 | X[n])) Leoreg) + P (Z[n] # 2y | X[n])

<2p (Z[n] # 20y | X [n])

Note the last inequality results from

1 D * D *
;ZP(Zi;ézi | Xp) < max P (Zi# 2 | Xp))

.....

< PULi(Zi # 5) | X ] = P (Zy # 2 | Xiu))

Second, let us now use a “deconditioning argument” replacing P* by P. Let
Ny = Ny(Zj)) denote a binomial random variable B(n, a;) for every g. Then
for every € > 0,

P[|ag — ag| > ]
< P[|ag — No/n| > €/2]+ P [|Ny/n —a}| > €/2]
< P[[@, — Ny/n > ¢/2] +o(1) |
by use of LLG. Finally, a straightforward use of Proposition 3.8 leads to
Pl|aq — Ng/n| > €/2]
= Ez[n] [P (|(32q - Nq/n| >e€/2 | Z[n])]
< P | P(Zy # 21 | Xpu) > /41 Ziny = 210y | P[ Zio) = 23]

Z[n]

=o(1) .
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4. Variational estimators of SBM parameters

In Section 3, consistency has been proved for the maximum likelihood estima-
tors. However this result is essentially theoretical since in practice the MLE can
only be computed for very small graphs (with less than 20 vertices). Neverthe-
less, such results for the MLE are useful in at least two respects. First from a
general point of view, they provide a new strategy to derive consistency of esti-
mators obtained from likelihoods in non-i.i.d. settings. Second in the framework
of the present paper, these results are exploited to settle the consistency of the
variational estimators.

The main interest of variational estimators in SBM is that unlike the MLE
ones, they are useful in practice since they enable to deal with very huge graphs
(several thousands of vertices). Indeed the log-likelihood Lo (X (n]} @ ﬂ') involves
a sum over Q" terms, which is intractable except for very small and unrealistic
values of n:

Lo (X[n] Q 7T) = 10g Z ezi?fj bij (zi’zj)PZ[n] (Z[n]) , (8)
Z[n]€EZn

with b (z;,25) = Xijlogm., ., + (1 — X; ;) log(1l — 7, 2,). To circumvent this
problem, alternatives are for instance Markov chain Monte Carlo (MCMC) al-
gorithms (Andrieu and Atchadé, 2007) and variational approximation (Jordan
et al., 1999). However, MCMC algorithms suffer a high computational cost,
which makes them unattractive compared to variational approximation. Actu-
ally the variational method can deal with thousands of vertices in a reasonable
computation time thanks to its complexity in O(n?). For instance, Mixnet (2009)
package (based on variational approximation) deals with up to several thousands
of vertices, whereas STOCNET package (see Boer et al., 2006) (Gibbs sampling)
only deals with a few hundreds of vertices. Note that other approaches based
on profile-likelihood have been recently developed and studied for instance by
Bickel and Chen (2009).

The purpose of the present section is to prove that the variational approxi-
mation yields consistent estimators of the SBM parameters. The resulting esti-
mators will be called variational estimators (VE).

4.1. Variational approximation

To the best of our knowledge, the first use of variational approximation for

SBM has been made by Daudin et al. (2008). The variational method consists

in approximating PXm = P (Z[n] =-| X[n]) by a product of n multinomial

distributions (see (9)). The computational virtue of this trick is to replace an

intractable sum over Q™ terms (see (8)) by a sum over only n? terms (Eq. (11)).
Let us define D,, as a set of product multinomial distributions

D, = {DT[n] = HM(l,TiJ,...,Ti)Q) | Tin) € Sn} , (9)
=1
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where

Q
S, = {T[n] =(T,...,Tn) € ([0, 1]Q)n | Vi, 7o = (Ti1, - TiQ) s ZTM = 1}
qg=1

For any D. , € Dy, the variational log-likelihood, J (5+,+,-) is defined by

T (Xpn): Tpnpy o, 1) = Lo(Xppps o0, 1) = K (Dyy,,, P9 (10)

(n)’
where K(.,.) denotes the Kullback-Leibler divergence, and PXin =
P (Z[n] =] X[n]). With this choice of Dy, J(X[p; Tjnj» @, 7) has the following
expression (see Daudin et al. (2008) and the proof of Lemma F.3):

J(X[n];T[n],Oé,W) = Zzbij(QaZ)Tz’,qu,l - ZTi,q (logTi,q — log 04:1) ) (11)

i#j gl iq

where b;;(q,1) = X; jlog g+ (1 —X; ;) log(l — mg). The main improvement of
Eq. (11) upon Eq. (8) is that J(X[,; 7[n)» @, 7) can be fully computed for every
(Tn), @, ). The variational approximation R X[, tO PX is given by solving the
minimization problem over D,,;:

Rx, € Argminp_cp K (DT,PX["])

as long as such a minimizer exists, which amounts to maximizing
T (X(n]; Tn]» @, ) as follows
Tin] = Ty (T, @) = Argmaxy, | T (Xjn]; Tln), @, 7) -

[n]

The variational estimators (VE) of (a*,7*) are
(aa %) = Argmaxa,ﬂ'j(X[n] 5 7/:[71] y (s 7T> . (12)

Note that in practice, the variational algorithm maximizes J(X,; 7, a, m) al-
ternatively with respect to 7 and (o, m) (see Daudin et al., 2008). Furthermore
since (a, m) + J(X[n); T, @, ) is not concave, this variational algorithm can
lead to local optima in the same way as for likelihood optimization.

In the sequel, the same notation as in Section 3 is used. In particular it is as-
sumed that a realization of SBM is observed, which has been generated from the
sequence of true labels Z = 2*. In this setting, P* = P;. . (Section 3.1.2) de-
notes the conditional distribution P (- | Z = z*) given the whole label sequence.
The first result provides some assurance about the reliability of the variational
approximation to PXin = Po« v [ Zp =+ | X[y | (Section 3.1.2).

Proposition 4.1. For every n, let D, denote the set defined by (9), and
PXtn) (-) be the distribution of Z,) given X(y). Then, assuming (A1)~(A3) hold,

K(Rx,,,PX") = inf K(D,P¥m)——0 P* —a.s. .

D, n—oo
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Note that this convergence result is given with respect to P* (and not to ).
Stronger results can be obtained (see Section 4.1) thanks to fast convergence
rates. Proposition 4.1 yields some confidence in the reliability of the variational
approximation, which gets closer to PXi as n tends to +o0o0. However, it does
not provide any warranty about the good behavior of variational estimators,
which is precisely the goal of following Section 4.2.

Proof of Proposition 4.1. By definition of the variational approximation,

K(RXM’PXM]) < K((Ssz , PX) |

n]

where 52[2] = [li<i<p 92r € Dy. Then,

K(Rxy,, P*") < K (0 , PX1") = —log [P (Z[n] = %o | Xm” )

[n
since

Xin]) —
K(8z , PY) =) 6. (21)) log

Z[n]

= tog [ P (%) = 5 | X0

Oz (Zn))
PX[n] (Z[n] )

The conclusion results from Theorem 3.1, and Corollary 3.2 since P(Z [n] = z[*n ] |

X[n]) —— 1 P"— a.s.. O

n—oo

4.2. Consistency of the variational estimators

Since the variational log-likelihood J(+;-,-,-) (10) is defined from the log-
likelihood La(;-,-), the properties of J(X{,); Tn, @, w) are strongly connected
to those of Lo (X{,; a, m). Therefore, the strategy followed in the present section
is very similar to that of Section 3. In particular, the consistency of @ (VE of
7*, see (12)) is addressed first. The consistency of the VE of a* (a, see (12)) is
handled in a second step and depends on the convergence rate of the estimator
of 7.

The first step consists in applying Theorem 3.4 to settle the 7 consistency.
Following results aim at justifying the use of Theorem 3.4 by checking its as-
sumptions.

Theorem 4.2 states that Lo and J are asymptotically equivalent uniformly
with respect to o and .

Theorem 4.2. With the same notation as Theorem 3.6 and Section 4.1, let us
define

1

Jn (a,w) = m

J (X['n,] ) %\[n] ) O 7T)
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Then, (A2) and (A3) lead to
sup {|J, (a, 1) — Mp(a, )|} =0(1), P—a.s.

where the supremum is computed over sets fulfilling (A2) and (A3).

This statement is stronger than Proposition 4.1 in several respects. On the
one hand, convergence applies almost surely with respect to P and not P*. On
the other hand, Theorem 4.2 exhibits the convergence rate toward 0, which is
not faster than n(n — 1).

Proof of Theorem 4.2. From the definitions of £, L2, and J (respectively
given by Eq. (2), Eq. (1), and Eq. (10)) and recalling Zj,) = Zpj(7) =
Argmaxz[n]ﬁl (X[n); 2[n]> 7), Lemma F.1 leads to

T (Xin)i Tingpy 6 T) < Lo(Xppps @, ) < L1(X )5 2y T) -

Then applying (A3) and Lemma F.2, there exists 0 < v < 1 independent of
(av, ) such that

|T (X Ty @ ™) = L1(X ()i 2y )| < mlog(1/7) -
The conclusion results straightforwardly. (]

The consistency of 7 is provided by the following result, which is a simple
consequence of Theorem 4.2, Proposition 3.5, and Theorem 3.4.

Corollary 4.3. With the notation of Theorem 4.2 and assuming (A1), (A2),
and (A3) hold, let us define the VE of (a*,7*)

(@, 7) = Argmax,, . Jn(a, ) .

Then for any distance d(-,-) on the set of ™ parameters,

(7, 7)) ———0 .
n—-+o0o

The proof is completely similar to that of Corollary 3.7 and is therefore not
reproduced here.

Finally, the consistency for the VE of a* is derived from the same decondition-
ing argument as that one used for the MLE (proof of Theorem 3.9). Consistency
for & is stated by the following result where a convergence rate of 1/n is assumed
for 7. Note that at least some empirical evidence and heuristics exist (see Gazal
et al., 2011) in favour of this rate.

Theorem 4.4. Let us assume the VE T converges at rate 1/n to w*. With the
same assumptions as Theorem 4.2 and assuming (A1), (A2), and (A3) hold,
then

d@ a") ———0 ,
n—-+oo

where d denotes any distance between vectors in R<.
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The crux of the proof is the use of Proposition 3.8.

Proof of Theorem 4.4. Let us show that given Z,) = z[*n],

P*
— 0.

n—roo

ag = Ny(2[,) /1

For every g,

1l

Qg = " ZTi,qv
i=1
where 7; 4 = Ti,q (&, 7) (see (12)). Introducing z}, it comes that
1< 1<
aq = _Z;ﬁzﬂ(z::q) + _Z;ﬁq]kz#q) :

1= 1=

From (9), let us consider the a posteriori distribution of Z[n] = (21, ces Zn)
denoted by

Dy (21u)) = P | Zio) = 2o | X | = [] T -
i=1

Then,
_ . 1o~ 1 -
Qg — Nq(z[n])/n’ == (Tier = 1) Lzrzg) + - ZTi,qﬂ(z#q)
=1 i=1
1 — _ 1
<= (=T Umg + = Y Fialierzg)
=1 =1

< (1_/7\:1’,4*) )

S|

i=1

using that when 2} # ¢, Tig < 32, 4.« Tig = 1 — Ti»;. Hence,
~ * 1 - — * *
&g = No(zf)/n| < = 3P [ Ziy # 2y | Xpuy | = 1= Dy (57) -
i=1

It remains to show Dz (= ]) ", 1 at a rate which does not depend of

) o
z[*n]. Let P = P5 (Z[n] =-| X[n]) denote the a posteriori distribution of Z|,
with parameters (&, ) (Section 3.1.2). Since Lemma F.4 provides

1 D %
< \/—510g {P(Z[n])} )
the conclusion results from another use of Proposition 3.8 applied with 7 = 7
and v, = 1/n. O

| Dz, ) = Pl
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5. Conclusion

This paper provides theoretical (asymptotic) results about the stochastic block
model (SBM) inference. Identifiability of SBM parameters has been proved for
directed (and undirected) graphs. This is typically the setting of real applications
such as biological networks.

In particular, asymptotic equivalence between maximum-likelihood and vari-
ational estimators is proved, as well as the consistency of resulting estimators
(up to an additional assumption for the group proportions). To the best of our
knowledge, these are the first results of this type for variational estimators of the
SBM parameters. Such theoretical properties are essential since they validate
the empirical practice which uses variational approaches as a reliable means to
deal with up to several thousands of vertices.

Besides, this work can be seen as a preliminary step toward a deeper anal-
ysis of maximum-likelihood and variational estimators of SBM parameters. In
particular a further interesting question is the choice of the number @ of classes
in the mixture model. Indeed it is crucial to develop a data-driven strategy to
choose @ in order to make the variational approach fully applicable in practice
and validate the empirical practice.

Appendix A: Proof of Theorem 2.2

Proof of Theorem 2.2. Let us just assume @Q = 2, n = 4, and that no element
of « is zero.

If the coordinates of r = wa are distinct, then Theorem 2.1 applies and the
desired result follows.

Otherwise, the two coordinates are r, v’ and r” are not distinct. Set r; =
ro = a and u; = a1t + agrh, for i > 0. Let us also define b = 7 = r}, and
¢ =r{ =Y. Then, the following equalities hold:

a = T110q + TaQy = M1 + o202
b=mio1 + mar0p = 20 + Ta2002

2 2
C=Ty101 + o1 M1oe = M12M21 (¥ + Too Vg .

From a—b = (712 —mo1)ae = —(m12 — m21)1 we deduce w12 = w21 and a = b.
Then,
oo (T — 71'12)2 = (a1 + 042)(0417Tfl + 042ng) — (11 + 04271'12)2
_ 2
= c—a
= c—1?

= 041042(7T22 - 7T12)2

If ¢ = a?, then w11 = T2 = M1 = T2 = a and « cannot be found.

If ¢ 7§ CL2, then |7T11 - 7T12| = |7T22 - 7T12| 7§ 0. But 041(71'11 - 7T12) = a — T2 =
b—7T12 = ag(ﬂ'gg—ﬂ'lg) leads to |041| = |042| and Q] = Qg = 1/2 Hence T11 = T22.
Then, 711 and 72 are the roots of the polynomial 22 — 2az + 242 — c.
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At this stage, we need to distinguish between 11 and 712. Let us introduce
the probability d that X, fits the pattern

1

Then, d = (73, +3m11735) /4 and one can compute e = v/d — a3 = (711 — m12)/2.
This leads to m1 = Ty = a + e and ms = w1 = a — e, which yields the
conclusion. O

Appendix B: Proof of Theorem 3.1
B.1. Preliminaries

Assuming (A1) holds true, 7* can be permutation-invariant (see Section 3.1.1).
For this reason, we will consider equivalence classes denoted by [z[n] ] = [z[n] Lr*
for the label vector 2.

Let us define PXi (2n)) = P [Z[n] = 2y | X[nﬂ for every label vector zp,,
and PXt) ([z1)]) = P ([Zjn)] = [2}n]] | X[n)) for corresponding class [z(,)]. Since
every z(, € [ 2[n) | satisfies P (20) = PX1n1(zp,), it results that

PX["]([Z[nﬂ): > PRI = (]| PX (zy) (13)
G[Z[n]

where |[z[,)]| denotes the cardinality of [z(,].

P [Zi] =12 X ]

« >t|Z=2z*
217120 P[[Z[nl]=[2fn]]|X[n]} |

B.2. Upper bounding P [Z[

Using P* instead of P[- | Z = z*] for simplicity, let us first notice

X(n

S PXid ([z)]) 5 2o ele P ()
PXti([z*]) PXim (20

[z #l2 ] ([Z["]]) [z(n)]#[2 n]lz n]e[[ ] (2 ])

[n
< T Y ey

[[n]]#[ n]]zn] [ n]] [77,

Z[n]g[zrn]] [n]
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by (13) applied to [z,,]. Partitioning according to the number l|2(n) — ) Ho =r
of differences between z[,,; and z[*;l], it comes

PXo (o)) & PXnl (2))
) -3 § et ol )y 14)
PX[" * PX[n) * (
P () s L [n]] (]
Z[n] — =T

Note that the number of vectors z,) such that z(, € [z[*;l]] and Hz[n] — z[*n] Ho =r
is roughly upper bounded by (?) (Q —1)", this upper bound being reached for

instance when 7* is such that 7, # 7, for every (¢,l) # (¢',I'). Then, a
straightforward union bound leads to

. PXinl ([z1)))
PO )

[n]

=D S SRS

PXn]( [ ]) - t
PXn]( ["]) n’l‘-‘rl(Q_ 1)r ?

by use of (’:) < n", which is tight enough for our purpose.

. P (200)) t %
B.3. Upper bounding P [Px[n] o) > oo | Z == ]
Let us first notice that for every vectors z(,,; and z[*n L
PXn (Z[n]) M Xn) (Z[n]
1 M) _EZ7F |1
og (PX["] (Zfﬂn]) 0g X(n] (Z[ ]

)
)
Tz ( — T *)
= > (x —W:37z;)log . (15)
i#£] 2] (1 - zl,zj)

Note that for any vector z, such that #Z, . € {0,1} and T s ;é k

X n
1 g(;%zzin];) = —oo and PX11(z),) = 0. Then such vector z(,] can be removed
Zln)
from the sum in Eq. (14).
Second for any vectors z[,) and an]v let us further define

D(Z[n]uz[/n]):{(zuj)|l7éj, zl,zj#ﬂ-’ /} 5

where z; and 2/ respectively refer to the i—th (resp. j—th) coordinate of vector

Z[n) (resp. z{,;). Note that D(z[,, 2(,) remains unchanged if 2, and z, are
replaced by any representatives of their respective classes.
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If Np(zp)) = |D(z[n],z[*n])‘ denotes the number of terms in the sum of
Eq. (15), then

pe | P20 ) t
PXui(zry) ~ W@ - 1)
PXtn (21) t
= P" |1 > 1
EPReG) T (wﬂ(@— 1>r>

1 PXn] (Z[n]) pa PXin (Z[n])
=P 1 —E“7* |log ———= >
{Nr(z[n]) (Og PXm (2f) & pXi (2(,)
1 t _* PX["] (Z[n])
1 —E7=* |1
AE) ( OB — 1) &Pz
Finally, Hoeffding’s inequality (Proposition B.1) applied with a;; = —b;; =
log[ (1 — )2 (2] (see Lemma B.2 and (A2)), and L = 2(b; ; — a; ;) provides
for any s > 0,
1 PXn] (Z[n]) A PXin (Z[n])
pPr 1 —E“7* |log ———= >
Ny (2[n)) <Og PXm (2f) & pXi (2) ’

_Nr n 2
< exp (#)

B.J. Conclusion

One then apply this last inequality with a particular choice of s:

1 t e PX0(z1))
— 1 _ Ezfz 1 R e I P ,
* T Nelem) < & T Q — 1) 8 PY ()
which leads to
g logt—(r+1)log(n) —rlog(@—1) 1 7. log PXinl (20))
Nr(z[n]) NT(Z[n]) PXm (Z[*n])

With Lemma B.3, it is not difficult to show that for large enough values of n,

2
PX[n](Z[ ]) 3
1 n > 2 *\ 2
PG |) T4 )"

3 1 e
52 2 e EZ_Z
4 <NT(Z[n])

and that
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Using Proposition B.4, it results that

2 2
i * g
Ni(2n)) > 5 ‘ Znl = 2|, = G
and
PX['ﬂ] ([Z[n]]) n n 3(70*)2
P Z —— >t <Z( )(Q—l)rexp(—inr>
P ([ - 8L2
[Z[n]]i[szn]] ([Z[n]]) r=1 r
n n .
=3 (1) 1@
r
r=1
where u,, = exp(—%n)

Finally for every t > 0, log(1 4+ ) < x for every x > 0 implies

Bl

[zm)]# 2]

PX[M([Z[”]]) . .
PR, - 1A= = 0@ et

<e@Dmua

n—-+o0o

since nu, — 0 as n — +oo. Further noticing that the upper bound does not
depend on z[*;l], the same result holds with P* replaced by P.

B.5. Hoeffding’s inequality and related lemmas

Proposition B.1 (Hoeffding’s inequality). Let {Yi;}, <, ;<,, independent ran-
dom wvariables such that for every i # j, Y;; € |a;;,b; ;] almost surely. Then,
for any t >0,

P im,j—Emmw Sexp( - )

oy > iz (bij — aij)?

Lemma B.2 (Values of a; ; and b; ;). Assuming (A2) holds for m* with ¢ > 0,
it comes for every 1 <i# j <n,

ﬂ-:i,z]' (1 - ﬂ-:?‘.z’f) 1—
X, ;log - < 2log { <—<) ]
m (1-7s) ¢
i1%5 ir%j
Lemma B.3 (Bounding the conditional expectation). Let us assume (A1),
(A2), (A3), and (A4) hold true. Then for every label vectors z,) and 2, such
that ||z, — z[*n]HO =r (1 <r <n), there exist positive constants ¢* = c(m*) and

C* = C(n*) such that

0<ct<— EZ:z* PXin (Z[n]) <o
—_ PX["] (Z[tl]) — ?

log
Ny (2[n))

where Ny(zp,)) = H(Z,]) |i#J, 7%, # W:;,z;}’.
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Proof of Lemma B.3. First,

1 PXm (Z[n>
8 PXi Gy

[n]

X 1—m o
:EZ:z 1 Zis2j Y ZisZj T Zi
{ e (2 ) >( Vs
i#] Zio%j 2 Z;

z zj 1- ﬂ-,: zj

1—7TZ_*7Zf

i#]

- 1—7ml .
v lw g <_> (-2 ) log <7>

ko 0% 1—m7%

i£] 24,25 24,25
Note that the first sum in the above expression is actually taken over (i, j) such
that 7%, . # 71':;72;.
Second, let us introduce

C* :=max {2k (7 ;. 1) } and ¢ =min{k (), 70 1) /2}

EZ:Z

where mazimum and minimum are taken over {((q,l),(¢’,!')) | T F w;‘,J,},
and k(z,y) = zlog(x/y) + (1 — z)log[(1 —xz)/(1 —y)] for every =,y € (0,1).
Then for every (i, j) such that 7 . # 7%, .,

0<c*<k(ﬂ'z*z*, )<O*

< log 1777 Therefore (A4) and Proposi-

Third, (A3) implies that |log Zfi
tion B.4 entail

O

Proposition B.4. Let 2, and 2], denote two label vectors. If (A1) and (A4)

hold true, then
2

>ln
-2

)

2~ 2l

where D (2], 2[,)) = {G,45) i +# 7, T, F T }. v >0 is the constant given
1%

by (A4)7 and Hz[n] o an]HO = Z?:l ]l(zﬁézé)'
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Proof of Proposition B.J. Since one assumes (A1) holds true, 7 can be permu-
tation-invariant (see Example 2). Then, let us define 77 = (7,(9),0(1))1<q.1<Q
with o a permutation on {1, ..., Q}. Note that for permutation-invariant matrix
, there exists a permutation o # Id on {1,...,Q} such that 7 = 7. Then, the
following equalities hold

D(Z[n],zfn]) =D (U(Z[n]), an]) =D (z[n],a(z'n])> 5

with o(z[,)) = (0(21),0(22),...,0(2,)). Furthermore, neither ’D(z[n],z[*n])’ nor

Hz[n] will change if the same permutation is applied to the coordinates of

[n] HO
vectors z[,,) and z[ - Then, computing |D z[n])‘ can be made by reordering
2[p) and z[*n].

Assumption (A4) implies that the number of coordinates of 2], that are

equal to 1 is at least ny := [ny], where [ny] denotes the first integer larger
than nvy. The same property holds for every 1 < ¢ < Q. Let us use a permutation
of the coordinates of z[*n] such that

Z[*n] :(1727'"7Q71727'"7Q7"'71727'"7Q722{2nw+1725n7+27"'72’:,) 9

and apply the same permutation to z,). For each block k of @ coordinates
(1,...,Q) of 2, let us introduce a mapping oy (-) where k denotes the number
of the block in z[*n] such that

Ve, Q+1<i<(k+1)Q, ox(2f)=2 .
Then it comes

2] = (01(1),01(2),...,01(Q),02(1),02(2),...,02(Q), ..., 00, (1),...,00,(Q),

Zan—i-lu ZQn7+27 ceey Z’ﬂ) .

Note that this reorganization of z[*n] is not unique. For instance, it is pos-
sible to exchange o1(3) with 04(3). Each oy is a function from {1,...,Q} to
{1,...,Q}, which is a permutation provided it is injective. Let us choose a reor-
ganization of the coordinates of z* which minimizes the number of injective oys.

Besides,

‘D(z[n], )’ HZ] |i#j, 1,5 < Qny mle ;éw;‘zj}‘
Z‘{Zj |7’¢]5 ZEIk,]EIk/ 7T* *#W:iyzj}} y
Kk

where I}, denotes the k—th block of coordinates of z[*n]. If k # k', the requirement
that ¢ # j is fulfilled. Otherwise for k = &/, it is necessary to require that z;* # z;
since every values in I}, are different. Let us denote by B(k, k') }{ q,1) | Lo 75

k(q)_’gkl(l)HandbyB |{ q,1) | q#1, Tad & Mo (@)on () }|.Then it comes
that
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1D (o) | 2 S Gy i # 5 i € Bj € T, we s #7,}

k'

=> H(qvl) | 71 # Wl‘—k(q),ok/(l)}’

k#k!

+Z {@ola#L l#mk@,%(l)}‘
= ZBk k) +ZB

kK

Therefore, lower bounding ’D(z[n],szn])} amounts to assess the cardinality of
B(k,k') and B(k), for 1 <k # k' <n,.

Let us now distinguish between two cases:

1. either for every k, k' € {1,...,n,}, B(k, k') + B(k’, k) > 0 and B(k) > 0.
2. or there exist k, k' such that B(k, k') + B(k',k) =0 or B(k) = 0.

First case: In this setting, let ||z[n] z[*n] Ho = r. Then,
DGy, )| 2 D2 Bk K +ZB
£k
=" [B(k,K)+ Bk k +ZB
k<k'
Ny (ny — 1) n~(n +1)
> % = %
2 2.2
> & > ny > l
-2 - 2 T 2

since ny, > ny and n > r.

Second case: Let us assume that there exist k,k’ such that B(k,k') +
B(k',k) = 0. (The B(k)s will be lower bounded by 0.)
Then for every such k,k’, o, and oy are permutations. Indeed such k, &’

lead to Ty = Toy(q),00 (1) = Toy (q),0x(1)> 10T every q,l € {1,...,Q}. Assume
furthermore that oi(q) = ox(q¢’) for some ¢,¢" € {1,...,Q}. Then for every
L e {L,...,Q}, Tgi = Tou(q)op () = Tow(d)ow () = Tq.i- Hence, for every

le{l1,...,Q}, mgy = mq, which implies ¢ = ¢’ using (A1). Therefore, oy,
is injective and thus a permutation of {1,...,@Q}. The same property holds for

o which is also a permutation of {1,..., Q}.
Furthermore for any such k, k’, o0, = o4» = 0 and 7% = 7, where o denotes a
permutation of {1,...,Q}. Indeed if one assumes oy, # oy, then there exists ¢ €

{1,...,Q} such that o4 (¢q) # o;(¢). If it holds, one can interchange coordinates
of z(,): ok(q) and o4 (g). This results in new mappings o3 and o3 between z[*n]
and z[,}, which are no longer injective. Then, the number of injective mappings
o) in the writing of z,) decreases by 2 and is no longer minimal as earlier
assumed. This yields o = o and thus 77 = 7. Note that the existence of
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such a unique permutation o results from the fact that for every i > Qn,,
z; = 0% (2}). Indeed if this was not true, the same reasoning as before applies:
An interchange between z; and o4 (z}) would decrease the number of injective
oxs in (16), which contradicts our assumption. As consequences, it also comes
that 77 = 7 and that for every i > Qn,, z, = o(2}).

Let m denote the number of non-injective mappings oy. Note that for any
non-injective mapping o (1 < k < n), there exists at least one difference
between zp,,; and z[*n] in the corresponding block k. Then, the number r of
differences satisfies

m

r<mxQ & > (17)

Ql =

r

The conclusion results from

‘D(z[n],zf‘n]) > 5" BkK)+ S Bk = Y BlkK)
k! % k!
> ny(ny —1) — (ny —m) [ny —m —1]
- 2
_ 2mny—m*—m _ mny,+mln, —m—1]
B 2 B 2

Finally, let us notice that m < n., and that n, —1 > m = n., amounts to say
that no injective mapping oy, exists in (16). However with the same reasoning
as before, it means that for every 1 < k, k"’ < n., B(k,k") + B(k', k) > 0, which
contradicts the assumption. Then, n, — (m + 1) > 0 and

nym _ynm  ynrm _ ynr _ y*nr
D ) > 1> =
(Zm)s 2) 2 5= =2 5 2 T 2Q T 2
by use of (17) and v < 1/Q (see Assumption (A4)). O

Appendix C: Proof of Proposition 3.5

Proof of Proposition 8.5. Let us first recall that
1
n(n—1)

bn (2n), ) = L1 (Xpn)i 2 )

Then,

|¢n (Z[n]vTr) -, (Z[n]aﬂ-)} = Pn Z (Xl}j - ﬂ-:j,z;‘) log |:7Tzi7zj/(1 - ﬂ-zi-,zj)} )
i#£]

= pn Zgijg(ﬂziazj) ’

i#]
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where p, = [n(n—1)]7", &; = X;j — ke ., and g(t) = log(t/(1 - 1)), t €]0,1].

25 ,7]

With ¢g;; =g (wziyz].), let us introduce

Su(9) =D &5 9|
i#]
where g = {gi;},,,j<,- Note that on the parameter set P defined by (7),
€7 gij| < +oo a.s. for every 1 <i# j <n.
The expected control will result from the use of Talagrand’s inequality (The-
orem C.1). For every zp,; and € > 0, let us introduce the set

Plzp) = {7 | (2jn), ™) € P},
and define the event
Qn(& 2[) = { sup pnSn (9) <(1+€)y/pnA+ v/ pul %z, + (1/e+1/3) pnl“:vn},
P(z(n))

where I' and A are constants respectively defined in Lemmas C.2 and C.3,
and {z,}, is a sequence of positive real numbers to be chosen later. Then
Theorem C.1 implies for any 2|,

P [Qn(E;Z[n])C} <e o,

pP* {sgp\% (211, 7) = P (2, )| > 77]

<y P
Z[n]

< ZP* [(1—|—e)\/p_nA—|— pnl2x, + (1/e4+1/3) pul x> 77} —|—Ze*1n .

Z[n] Z[n]

{ sup pnSn(g) > 77} n Qn(€§z[n])

P(2[n)

+ Z e *r

Z[n]

Since z},) belongs to a set of cardinality at most Q", choosing x, = nlog(n)
entails the first sum is equal to 0 for large enough values of n, while the second
sum converges to 0.

Finally, a quick inspection of the proof shows this convergence is uniform
with respect to z[*;l], which provides the expected result. O

Theorem C.1 (Talagrand). Let {Yi;},_, ;. denote independent centered ran-
dom variables, and define o

V9 €G, Salg) =) Yijgi
i#]
where G C R™. Let us further assume that there exist b > 0 and o2 > 0 such

that |Y;jgij| < b for every (i), and supyeg >, Var(Yijgi;) < o?. Then, for
every e >0, and x > 0,

P [supSn(g) >E [supSn(g)] (I+e)+V222+b(l/e+1/3)x | <e ™ .
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Proof. A proof can be found in Massart (2007) (p.170, Eq. (5.50)). O

Lemma C.2. With the same notation as Theorem C.1, Assumption (A2) en-
tails that there exists T'(C) > 0 only depending on ¢ such that

F2
supmax |5 gi;| <T, and supmaxVar (& gij) < —
P i#) P ] 4
Proof. 1t (z[n],w) € P, then

(R €401} = 70 s =) = (905 =0)

Then for every (z},),7) € P, there exists I' = I'(¢) > 0 (Assumption (A2)) such
that

Vi#j, &gl <T
for every (zp,), ) € P. This also leads to
Vi#j, Var(&jgi;) <T?/4 .
(I

Lemma C.3. With the same notation as Proposition 3.5, for every z[,) such
that (z,), ) € P, there exists a constant A = A(() > 0 (Assumption (A2))
such that

E | sup an(XiJ ﬂ'z*z])gij | Z = 2* §A[n(n—1)]—1/2
Plm)) iz

Proof of Lemma C.3. Let E*[-] denote the expectation given Z = z*. Then,

E* sup pn Z(X”-—ﬂ' . *)g”
Plm)) iz

<Exx | swp pn|Y (Xij— X)) 0] |
P(Z[n]) ’L;éj

where the X’ ;8 are independent random variables with the same distribu-
tion as the Xl S A symmetrization argument based on Rademacher variables

{6113}19;&;91 leads to

E* sup pn Z (Xw- — W:37z;) 9ij
P(Z[n]) Z;ﬁj

S 2E* sup ane Zeini,jgi,j )
P(zn)) i#]
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where E[-] denotes the expectation with respect to €; js. Then, Jensen’s inequal-
ity yields

E* sup pn Z (Xw- — W:;x)z;f) 9ij
Plia) iz

S 2E* sup  pPn Varé Z eini,jgij
P(Z[n]) 1;&]

<2E* | sup p, n(n—l)gfj] < AOVpn -

| P(z1))

Appendix D: Theorem 3.6
D.1. Proof of Theorem 3.6
D.1.1. Notation

For any metric space (©,d) and any real-valued function f : © — R, let us
define ||, by

Iflle = sup[f(8)|
)

Let also o and 7* be the true values of a and 7 in SBM (see Section 2.1), A
be the set of stochastic matrices of size @ given by A = {A =

ag, > 0, Z;’il ar,; = 1}.
Furthermore, let us introduce the following quantities

(@rt)1<hicq |

1 ~
(T, 21m)) = mLI(X[n];Z[n]aﬂ-)v Z[n)(m) = Argmax, én (2], )
Dy (T, 2[)) = n D) Zﬂ' - 1ogﬂ'ziyz]. + (1 - wzjz;)log(l —Tz) s
Z;éa
Z[p)(m) = Argmax, @, (2[n), 7)
1
Mn ) = Xn & ’
(OZ 7T) TL(TL— )LQ( [n] 0471')
(71' A a al Zaq q' ai, l’ llogqul/ (1 - 7T )10g(1 — ﬂ-q’l’)] s

q)l /l/

A = Argmax 4 M(mr, A), M(7) = M(m, A;) .

Note that A, is not necessarily unique for every 7. However our analysis only
requires unicity of Ay and Ay = IQ, which is proved in the following rea-
soning. Furthermore M(7*) = >_ ; agajH*q,, where H*g; = 7 log 7y ; + (1 —
72 ) log(1 — 77.).
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D.1.2. Proof

First let us prove Ay is unique and A. = Ig. Let us assume A £ Ig. By
definition of A, it results

0 <M(7*, Az+) — M(7*, Ig)

* 14 * 1_7T*/l/
= S 3o o )l T (1 o
q'l ql

Za o Zaqq Jap () K (7, 7)) <0 .

/l/

Therefore for every (¢,q',1,1'), ag,q (7*)ary (7*)K (7%, 75, ) = 0 by (A3).
Since Y, a(7*) = 1 implies for every 1 <1 < @Q, there exists 1 <1’ < Q
such that @ (7*) > 0, there exists f : {1,...,Q} — {1,...,Q} such that

Tl = Ti(g).p)- Then

e f is a permutation of {1,...,Q} is excluded since we are working up to
label switching,
e otherwise there exist two indices ¢; and g2 (¢1 # g2) such that rows ¢; and

g2 of ™ are equal and so do the corresponding columns, which is excluded
by (A1),

which proves the unicity and that A,. = Ig.
Second, let us prove that: Vi > 0, Supg(; >, M(7) < M(7*). In the

sequel, let (aq,), <q1<q denote coefficients of A,. Without further indication,
Gq, depends on the matrix 7. Then,

Mi(m) — M(7")
— TT, g
—Za af Y aggaln qllog +(1- >1og—;1
qv q,l

= — E O[ O[l E aqqla”/ q,l?ﬂqll/) .

/l/

Since {r | d(m,7*) >n, (A1), (A2)} is a compact set, there exists 7° # 7*
satisfying (A1) and (A2) such that
sup  M(7) — M(r*) = M(7%) = M(7*) < 0 .
d(m,m*)2n

Otherwise for every (q,1), > Gg,q @10 K(m, 4, Wg,l,) = 0 would entail by (A3)
that for every (q,1,¢',1"), ag,q a0 K(7} Wg,l,) = 0. It implies that there exists
fAL...,Q — {_17 .-+, Q} such that 7}, = W?(q),f(l)' The same reasoning as
for the unicity of A« leads to

e if f is a permutation of {1,...,Q}: a contradiction arises since 7° # 7*
up to label switching,
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e otherwise there exist two indices g1 and g2 (q1 # ¢2) such that rows ¢; and
g2 of 7 are equal and so do the corresponding columns, which is excluded

by (A1).
Third, let us prove that sup,, . |M,(a, ) — M(7)| L;r) 0. Set
’ n—-+oo
|My(c,m) =M(m)| < [Myn(a,7) = ¢n(m, 2pn))| (18)
+  [¢n(m, /Z\[n]) — &, (, g[n])l (19)

These three terms are successively controlled in the following.
Upper bound of (18): Lemma F.2 implies that P — a.s.,

~ Lo(Xpnp;o,m) — L1(Xpnl; T Zn)
sup}Mn(a,w) _¢n(7T,Z[n])} = sup ’ [n] [n] [n] ’

«,T o, n(n — 1)

Upper bound of (19): Let us first introduce several quantities. Set
AT, Zn)s Zm)) = \¢n(f73@)—‘1’n(m§[n])!, Ai(m?[n],?[n]) = On(m, Zm)) —

o~

D, (7, Z)), and A7 (7, Zp), 2[n)) = —AT (7, Z})s Zjn))- Then, it comes
P~ |sup A(, Z{n), Zn)) >77} <p {Sup {A_(Tra2[71]7g[n])]lA*(w,E[n],Z[n])>0} > 77}
+ P [Sljrp {A+(7T,f[n],5[n])]1m(7r,z[n],z[n])zo} > 77] :

1. If A~ (777/2\[71]72[71]) > O’

’(bn(ﬂv /Z\[n]) - (I)n(ﬂ, E[n])‘ =

since ¢ (7, 2},)) < én (7, Zjy)). Then, Proposition 3.5 leads to

sup{A*(m?[n],E[n])]lA*(w,z[n],z[n])>o}S sup  A(T, 2] 2[n))
™ (Z[n],ﬂ')ep

n—-+o0o

2. Otherwise A™*(, 2}, Z[n)) > 0,

| (7, Zn)) — P (7, Zn)) | = (70, Zp) — P (70, Zpy) -
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Distinguishing between settings where (2j,,}, m) € P or not, it results

P* {SHP{AJF(?T Zn)s Zin]) LA+ (x 20y iy )20} > 77]

< P* sup {A+(7T7/Z\[n]7 g[n])]lA+(7r,2[n],E[n])ZO} > 77]
™, (E[n],w)ep

+ P* sup {AJF(W, é\[n]uE[n])]lA+(7r,/z\[n],E[n])20} > 771
7, (Z[n),m)EP

If (g[n],ﬂ) e P:
Gn (T, Zp)) > —00 and
|6n (7, Zn)) — P (7, Z1) | < (70, Zj)) — P77, 2y

by definition of Z[,,;. According to Proposition 3.5, one gets

sup {A+(7T, g[np5[n])]1A+(w,2[n],z[n])zo}
T, (2[71] ,T)EP

i
< sup  A(m 2, 2m)  ——— 0.
(cameP [n]> Z[n] oo

Otherwise (Z,,), m) & P:

P*

sup {A+(7T, g[np5[n])]1A+(w,2[n],z[n])zo} >
7, (Z[n),m)EP

< P*[3m, Op(m,Z) = —00, AN (T, 2y, Zy) > 1]

Set a sequence {e,}, - such that ¢, — 0 and ne, — 400 as n — +oo0.
Then,

Pl (Asﬁi . { A (7, 2, Fa) Lt (2 220 ) >n]
= P* [3m, @, (7, Zjn)) = —00, AT (7, Zjny, Zn)) > 0,

( Zln]5 W)SG n(n—1)] (21)
+ P [ 3, @p(n 3[ ) = —00, At (7, 2}, Zn)) > 1,

N(Zp), ) > €qn(n —1)] (22)

where N (Zp,),m) = [{(i,4) | i # J, 72,7, € {0,1} and 7z, 5, # 7k .- }|-
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The first term (21) in the right-hand side is dealt with by Proposition D.1:
P [Hﬂ, b, (7, /Z\[n]) = —00, A+(7T, /Z\[n],g[n]) > 1, N(/Z\[n],ﬂ) <epn(n— 1)}
< p* [aw, ,,(m, Zj)) = —00, 240 + Alm, 250, 25)) > n,

N (Zj), ) < €nn(n — 1) ]

<P | 2a,+ sup  A(T, 2, 2m)) >0 — 0,

(Z[n],ﬂ')ep n—+00

following the proof of Proposition 3.5.
The second term (22) is upper bounded by noticing that

{¢n(ﬂ,2[n]) > —oo} N {fbn(ﬂ',%\[n]) = —oo}

= ) Xiyy=03n9 > (1-Xi;) =0, ,

(@:5)E€Mo (i.5)€M
where Mg = {(i,j) |i# j, 72,2, =0 and ﬂ':rﬁz}f > O} and M, = {(i,j) |
i #j, 755 = 1and 7k . <1}

Thus,
P* [3m, @p(m,Zjp)) = —00, AT (7,20, ) > 1, N (s ™) > €nnn(n — 1)
epn(n—1)
S pP* Yk =0 = (1 _ g)enn(nfl) 0 :
k=1 n—+o0

where {Yi}p< n(n_1) denote i.i.d. Bernoulli variables with parameter
§ = mingg), nz,2{0,1} [TF;J AL =, ], and a A b = min(a,b).

Finally since no upper bound does depend on z[*n , every convergence in prob-
ability with respect to P* can be turned into a convergence with respect to P.

Upper bound of (20): ®,,(7, 2[,)) can be expressed as:

D, (7, 2[n))
Nog (Zp)) N (2n)) ¢, *
_ Z aq’ \Z[n] [] [ms  logmg 4+ (1 — 7 ) log(1 — mqrir)] (23)
qlq’l’ nin = 1)

where Nyg/ (z[n]) =Hi|zf =q, and z; = ¢'}|.
Let Ny (m) = Ny (2 (7)), Ny = Hilzf =g}, agq(7) = and

A, the stochastic matrix of Gqq (7). Coefficient aqq (7) yield the proportion of
vertices from class ¢ attributed to class ¢’ by z},). Note that (23) shows that

qu/(ﬂ')
Ny 2

b, (7, z[n]) only depends on zj,,; through the matrix A,. Therefore, one uses the
notation @, (m, A(z[,))) in place of @, (7, 2,).

Definitions of A, and A, imply that ®, (7, A;) > @, (7, A;) and M(7) =
M(r, A;) > M(n, Ay). Therefore,
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1. ®p(m, Ar) = M(r) N B
= 0 < D, (7, Ay) — M(m) < @, (7, Ar) — M(mr, A),
2. O, (7, Ar) < M(m) N
= 0 <M(n) — @, (7, Ar) < M(m, Ay) — @y (m, Ay)
Then,

Moreover for every A € A,
Dy (7, A) — M(m, A) =

Ny N/ o « -
Z [ q l1 —aai } Agq Qry [ﬂ'qJ log mgr + (1 — 7y ;) log(1 — wq/l,)]
qq’ll’ n(n—1)

Since any mgr € {0,1} such that m;; # mg is excluded, (A2) provides

|me log mg + (1 — i) log(1 — 7g)| < A(C) < 400

where A(¢) > 0 is independent of 7 and ¢, and only depends on ¢ from As-
sumption (A2).

Then, since 0 < aq,; <1 for every (g, 1), the strong law of large numbers applied
to each Nj entails that sup, {I1®n (7, 2 (7)) —M(m)[} P 0 P—a.s. .

D.2. Proof of Proposition D.1
Proposition D.1 (Existence of a copy of Z|,) in P). Let w be defined as in Sec-

tion 2.1 and satisfying (A2). Let us further assume that there exists a sequence
{entpen- such that €, — 0 and ne, — 400 as n — +o0, and

H(i,j) i #j, w2z €4{0,1} and 7z, 2, # 7. }’ <en(n—1), as. .
%5

Then, there exist Z[IZ] € P and a real sequence {ay}y. such that

0 < Gu(m,Zjuy) = O (7, 26y) < any and [, Ziny) = Pu(m, 207

<an, a.s.,

where a, — 0 as n — 400, and a, does neither depend on z[*n] nor on .

Proof of Proposition D.1. First let us introduce

L={(a,e) € {1, QY | Ny > nv/er}

where

Npgow={1<i<n|Zi=q, 2/ =q}| .

P

For every 1 <1i < n, we define z; in the following way:
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1. le = 21', if (21;21*) €L,
2. zP = c(2}), otherwise,

where 1 < ¢(z]) < @ is obtained by applying Lemma D.2 with g = 2.
Then it results that (2f, 27) € L for every 1 <i < n.

7 9
Let us now introduce

N={(@d.L1) € {1,...,QY" | myu € {0,1} and v # 74 }

Then for every couple (i,j), (2,25,2F,2%) ¢ N since (2F,2f) € L and

PRI Rl BN [Nt

(zf, %) € L thanks to Lemma D.3. As a consequence, it comes Z[IZ] € P since

{(%.7)'1#37 ﬂ—zf),zf 6071 and ﬂ-zip,sz #ﬂ-z:,z;‘} :@ :

Finally, the conclusion results from (A2) by noticing that the number of
changes between Z[,,) and z[lz ] is at most Q%n.\/e,. O

Lemma D.2. Set L = {(q1,q2) € {1,.. QY | Ny > ny/€n }, where
Nogo =H1<i<n|zi=q, zf = ¢} .
With the notation and assumptions of Proposition D.1, if (A4) holds true then
V1<g<Q, N<qa<@, (g9 )el.

Proof of Lemma D.2. Otherwise, there exists g2 such that for every 1 < ¢; < @,
(q1,q2) & L. Then,

Q
H{l<i<n|z =@} = ZNQ11¢12§QH\/Q’

=1
which contradicts (A4). O

Lemma D.3. With the same notation and assumptions as Lemma D.2, let us
introduce

N = {(q,q',z,z') €{l,...,Q} | mgy € {0,1} and 75, # wq,l}
Then,
(0.4, L,I)eN = (¢,¢)¢Lor (LI) gL .

Proof of Lemma D.3. If (q,q') € L and (I,1") € L, then N, o N; v > n?e,, which
contradicts that

{Gi)1i#d s €0t and sz # 72 | < canln—1)
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Appendix E: Proof of Proposition 3.8

E.1. Proof of Proposition 3.8

Preliminaries First in the same line as the proof of Theorem 3.1, the main
quantity to deal with is

PXtl (2,
log Axiw (24)
P (2 “In ])
= Z X, i log Az“zj +(1-X;,)log Lo Z“z’ + Zlog
J z* z% ’ 1- 7Tz z 6é\z ,
i#£] L
where PXi " (2p)) = ]P’a; (Z[n] = 2 | X[n]) is the same quantity as

PXtl(zpn)) = Poe v (Zpn ) | X[n)) where (a*,7*) has been replaced by

(a,7), and 2, and 2z denote label vectors such that Hz[n] z[*n] Ho = r, with

n]

1<r<n.
Second, let us assume that
o (1—7)
T —7"| . <min |, min u} , 25
7 - 'l < [c(w%ﬁ#w“{ . (25)
where ( is given by (A2), which is fulfilled on the event
Q= {7 = 7" <vn} (26)

for large enough values of n since v,, = o (\/log n/ n) Note that by assumption,
P[QS] —— 0. Tt is also important to notice that the definition of 7 implies
n—oo

that every 7, € {0,1}U[(,1 — (] (see (A2)), which leads on ©,, to

Y(q,1), ol €10,1} = 7 =, (27)

q,l -

Finally for a given vector z,), let us introduce the following sets of couples

(i,J):

D* = D*(zp)) = {(i,j) | i# ], 72, # ”:;*xz;-‘} : (28)
B = Dlep) = (1) [§ £ Ry # 7t} @)
Proof First, the log-ratio (24) can be decomposed into the following terms
log M
PXin (=, n ])

= log % + (1 _X )].Og 1 Z“ZJ + log
D4 X los | = w)loe |\ T Z o
i#£] 0%
Toyn; Tar,or 1=y, . L= T o
i 1 1323 _ i%j 1 _ XZ . 1 1323 _ R
+§ e mZ zj Tz7,23 * 4)log 1= zj 1 =T o
KA ] %37 1777 iy 275
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Second using the definition of D* and D given by Eq. (28) and Eq. (29), and
that D* N D C {(i,j) li# 4, h(Xig; T m%, 2, 25,27, 25) = O} where A denotes
the complement of any set A and

o * * *
h(Xi)j,ﬂ',F ,Zi,Zj,Z- Z)

* v J %
= X log (ﬁil—zfiz*_zi> +(1— X,,)log <1 — Tz 1 - iz?,z}f) 7
Toes Tt 5 T=m, ., I= 7
it results
log éx[n] (2

GOl

ﬂ-:i,zj- 1 - Tr:i,zj- aZ'
= Z {Xi,j log <ﬂ_*—> + (1 - X;;)log (W) } + Zlog = -

(i,5)€D* 2075 2 i i
* *
T ™ 7 1—-m
+ Z X, ilog Doz 207 (1 - X;,)log L= Meiney L
i, = i, = .
o ~ / ﬂ-:i Zi ﬂ-z’f,z’f / 1- ﬂ—:i 2 1- ﬂ-z’f,z’f
(l,J)GD*UD <] k2 J <] k2 J

Finally from the following equalities

SR
1Og%zi*zﬂ' = 1Ogﬂ-;7zj +log |1+ Z“ZJ* o
ZiyZj
and
Fe o
log(l —/ﬁzi,zj) = log(l — ﬂ-:i;Zj) +10g 1— z,i,zj . 24,25 ‘| 7
_Trzl,zj

the last sum can be further split into

* *
P~ T P~ 1 -7 .
Ty 2. N2l 2% 1—7Tzvzy. z2¥,2%
Xijlog| ——2~ | +(1 - X, ,)log St 1
>J * 5] *
yeDeuD Thx Tt L=l 1= o
i,j

= Z log

(i,j)eD*UD

— Z log

(i,j)eD*UD

1 + (%Zixzj - ﬂ—:i,zj')(Xi;j - ﬂ-zi,z]')
)

(1 —m

ZiyZj

ZiyZj

1+

(%z;ﬂz; - W:;,z;)(Xi,j - W:;,z;) 1

* *
z*z*(1 Iz*z*)
i%j i0%j

This leads to

PXinl (z1))
PX["] (Z* )

[n]

ﬂ—:i,z]' 1_ ﬂ—:i,z]' azi
= Z {Xi,j log <7r*—> +(1-X,,)log (ﬁ) } + Zlog =

(i,4)€D* 2075 525 i ;

%5 zi,z].
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(%zi,Zj - W:Z,zj)(X}j - ﬂ—:mzj)
)

+ Z log

1-m

(i,j)eD*UD Moz 21,2
~ * *
(apor = o o ) (X — 72 L2)

J K J
— E log | 1+ ” ”
= Trz*f z* (1 - Trz*f z’f)
(i,j)eD*UD L g
=T\ +1T5 T3 .

Note that (27) implies for every 1 < i # j <mn,

(%zz',zj- - T‘—:“zj)(X',j - W:i,zj) —0
) .

., ., €{0,1} = log =

zl,zj z“z]

In the sequel, the strategy consists in providing successive upper bounds for 77,
TQ, and Tg.

Upper bounding T}

The magnitude of T} is given by a similar argument to that in the proof of
Theorem 3.1. Let us consider

ﬂ-: z 1 23,2
Tl_Z{ Ulog<7r—]>+(1—Xw-)log<1_ ]>}+Zloga

R a2

Dx* i9°5 i’J
T e L=l
SR [C T T -
z; ( 7 o8 Mhe o L—2,
J g
+E 7r* *log z“z’ + (1 =7l ,-)log L z“z’ —l—E log
e Zi%; 1— ﬂ'z - . az*
wj i1%;5 i
:T1,1+T1,2-

Then for every t € R,

P*[Ty >t] =P [Ty +Ti2 > t]

Upper bound of Th 2: The same proof as that of Lemma B.3 shows there exists
a constant K (7*) = K* > 0 such that

T D k * 5 */ 1) = —K* < O 5
1,2 (| |) (q,l)?f(q’,l’),ﬂ'q 2101} (7Tq,l 7Tq N )

for large enough values of n, where k(W;‘l,W;‘, p) = llog( Ta. )+ (1 —
El k) l/

)log( *‘” ) and |D*| denotes the cardinality of D*. Thus,
qull

P*[Tl>t]§P*[T171—|D*|K*>t]
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Upper bound of T 5 :

P*[T1>t]
71' 1 Trz*z
<p* (Xl--— )1 s DR ) Sy | DY K
< Z 5= e ) log | >t+|D"|
(i,j)eD* zf z Zi,Zj

Hoeffding’s inequality associated with (A2) provides a constant C¢ > 0 such
that for every t € R

oI el S

(i,j)ED* z?‘.z. 2,25

P75

x12 *\2 * * * * 2
< exp (DR 4 24| DT K = exp —QtK -exp | — |D* |( )
|D*[ C¢ ¢ Ce

Upper bounding 75
With ¢ > 0 on the event {T% > t}, log(1l + z) < z for every x > —1 leads to

O<t<Ty < Z (Trzi’zj B Tr:iqzj)(Xiyj - ﬂ-:i,z]') )

Tr:i,zj- (1 - ﬂ-:i,z]' )

(i,j)eDuD*

Then with N%', = Y iyepups Ler=q zr=1)L(z,=q.2,=1) it comes
(g — 7T;.l) "
ney |G S ()
q,l

s
@l q’l) (i,4) € Du D*
2; =4, Zj =1

<y :T“

qa.l q,l q;l

Z . (Kay—m)

q’ U (1 ])EDUD*
(zf, 25 =" 1)
(zivzj):(‘%l)

ZN’l’ T =, l)

/l/

(Wq,

1—7T

2|

q,l

Introducing the event Q,, defined by (26) and using (A2), one gets for every
t>0

P [Q, N{Ty > t}]

<P Y D > (Xij —mou)| > t/(2vn)

q,l |¢',l'  (i,j) € DuD*
(zf.25) =@ 1)
(2, 25) = (a, 1)
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+ P* <2 Z Z Ng/77ll/ (77;/7[/ - ﬂ—;,l) > t/(2’l}n)

a,l (gl

For the first term, Hoeffding’s inequality requires summing over a determin-
istic set of indices, which leads to

Py D > (Xij— 75 0)| > t/(20n)
q,\l

;! (i,4) € Du D*
(zf.27) = (', 1)
(24, 25) = (a,; 1)

:Z Z Z Z Z (Xij — 75 0)| > t/(20n)
k D, |D|=k

¢\l (5 eDpuDp
Gy =)
Giip =@

)

where the sum over k is computed for [v/2nr] < k < 2nr by Proposition B.4
and Lemma E.1.

For each set D such that |D| = k, a union bound and Hoeffding’s inequality
provide

Py D > (Xij— 7 )| > t/(20n)

q,l ¢\l  (i,§) e DuD*
(zf,2z5) = (', 1)
(24, 25) = (a, 1)

<Q? nﬁxP* > > (Xij — 7o) >t/ [20a(¢Q)? ]
q’\U (i,j) € DU D*

(=5, =) = (a',1)
(zi %) = (a. 1)

1 2
2(¢Q)* vi(k +[D*)

B 2 12
[20,(¢Q)2)* k + | D]

Then,

P Z S > (X)) > t/(2u)
q’ U (1])€DUD*

(€ *)7(11 )

(zi! zj) = (g, 1)

) 2nr . 1 t2
<@ 3 mtew| yegnan o

k=[v/2nr]
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For the second term, Lemma E.1 provides

PGy Y NG (w = m50)| > 1/ (200)
q7l q/7l/

S Q2 maXP* ZN:}Z/{Z/ (W;,,l, — T‘—;,l) > t/ [2UH(CQ)2]

q,l L

< Q*P* [4nr >t/ [20,(¢Q)* ] ]

Upper bounding 73
Let us first notice

(T oz = Ml ) (Xij = 2 ) ]

log | 1+

ﬂ-:;‘,z;f(l_ :Z‘,z;‘)
(/7%2*;2* - ﬂ—:* z*) (/TFZ*VZ* ﬂ-:* z*)
=(1-X;,)1 1 - — URRE) X -1 1 e i %
( w3)log [ (=72 .-) MRl Mo o
177 1777

Then,

Z log

(i,j)e DuD*

:Z Z (1—Xi,j)log[1_w

q,l (i,j) € DuD*
(25,25 = (a. D)

Centering the X; ;s, it comes

Z log

(i,j)eDuUD*

(A
To% o —
27 572]

1+

% 1 — 7
= (W;,l_Xi,j)IOgll_H]
q,l  (i,j) e DuD*
(275 27) = (4, 1)

+ (Xi,j — W;‘)l)log 1+

™

(g1 — 72,1) 1

oy
1 “ 31 1 (Tq1 — W;,z)
+ Z (1—my)log |1~ -,

al G, eDbup* al
(F =) = (. D)

(Mg — W;,z) 1
)

+m, log | 1+

*
q,l
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which leads to
T = Z (log

14 (g1 — 77;,1) “log |1 (g1 — 77;,1)
q,l ﬂ-;l (1 - ﬂ-;,l)

X > (Xij —mq0)

(i,4) € Du D*
(52 = (@D

% " (%q,l _W;,l)
+ ZNq7l l(l —_ Wq)l)log |:l — W

+ 7T:;7l log

14 (Mgt — 7T:;,l)‘|‘|

where N = Z(i,j)eﬁuD* Lizz=g, 22=0)-
Second on the event €, (25) and [log(1 + x)| < 2|z| for every x € [—-1/2,1/2]

entail

ITs] < 4v, Y > (Xij =73 )| +4vn Y Ny
q,l

q,l | (i,5) € DuD*
(=5, 2)) = (0, 1)

Then for every ¢t > 0,

P [Qn N {|Ts] > t}] < P* | 4v, Y oo (X —my)| > /2
q,l (i, j) € Du D*
(=25 = (¢, D

+ P | dv, Y Ny > )2
q,l

Similarly to T5, partitioning and Hoeffding’s inequality lead to

P* | 4u, E E (Xi7j—7T;J) >t/2
q,l | (i,5) € DuD*
GEEH =@

2nr
2 t2
< Q? Z (2nr)k exp {— TR ,
- k -+ |D*
o QTR+ D)

and Lemma E.1 provides

P* | 40, Y Ny >1/2 | < P [vadnr > t/8]
q,l

Then,
2nr 92 t2
P*Q, N {|Ts] > t}] < Q2 2nr)k —
000501 <@ 3, @t ew | g

+ P* [vpdnr > t/8]
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Gathering T3-, T5-, and T3-upper bounds
At the beginning the following steps are very close to those in the proof of
Theorem B.4.

For every e > 0

PXm
p Z ([zmg]) .

DX *
itz £ ()
PXti ([,
< P* > M>e NQ, | +P[Q°] .
| PXe ()
[l L2, ] [n]
Furthermore,
PXnl ([z19))
P* = > N,
Z X[n €

it £ ()

PX0(21))
logﬁi) > —(r+1)logn—rlog Q+logey, N,

PR ()

PXin)(z1)
log =—— > —b5rlogn , N,

Tn1l
n]

* ‘0:7‘

[n]

:Z Z P {Th + T, — T35 > —brlogn}NQ,] .
tl]
\O]ZT

r=1 Z[n] Z [z

I2n) = =)

It remains to deal with P* [{T1 +T» — T3 > —5rlogn} N, ]:

P [{T1 +T» — T3 > —brlogn} N, ]
< P [{Th +To — T3 > —5rlogn} N, N{|T3] < rlogn}]
+ P [{|T5] > rlogn} N, ]
< P [{Th + T2 > —6rlogn} NQ, |+ P* [{|T5] > rlogn} NQ,]
< P*|Ty > —Trlogn]| + P [{|Ta] > rlogn} N Q,]
+ P [{|T5] > rlogn}nQ,] .

Upper bounding T; comes from Proposition B.4 and results in

14K* K*)2
P [Ty > —Trlogn] < exp {rlogn ] ~exp|:—|D*|u]
Ce Ce

<e rlo ! i € —nr ( *)2
X n - eX n
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For T5, Lemma E.1 provides

2nr
1 (rlogn)?
* 2 k
PUIT > rlogny10n] £ Q° (2/23 e exp{‘—z@czyl R
=Y nr

+ Q*P* [4nr > rlogn/ [20,(¢Q)* ] ]

2
< Q%exp[8nrlogn] - exp [—ﬁm]

dnrv2

1ogn

~ &nlCQ)y?

Similarly for T3, it results

R 2 (rlogn)?

* 2 k

P [{|T5] > rlogn}NQ,] <Q ) r% ](2m‘) exp[—82Q4W]
=[~/2nr

+ P* [vp4nr > (rlogn)/8]

2 g

2
< Q%exp[8nrlogn]-exp [_82Q4 o

logn
p* >
* {Uﬂ 32n ]
From the previous bounds, one observes that requiring v,, = o(logn/n) makes
P* [vn > lggs ] and P* [ Un 8;??5)2 ] vanish as n grows, which leads to

P*[{T1+T2—T3 > —5T10gn}ﬁQ ]

2 r(logn)?
<Q? :
< Q%exp[8nrlogn] exp[ 201 4m)2 ]
1 r(logn
+ Q%exp[8nrlogn] - exp { (CQ) (475)2 }

* *) 2
+ exp [rlognMCIj ] - exp [—m‘LZCC) ]
(bgnV})T

< <exp {Snlogn — (s

for large enough values of n and constants C7,Cy > 0 only depending on @, (,

v, and K* but not of z*.
Following the same line as in the proof of Theorem 3.1, for every ¢ > 0 and

large enough values of n, it comes

P* >

[z ]#[27,

zn:( ) e (eXp [Snlogn—C'z “‘fv’gy D
G (14 (Q— "~ 1)

PXtrl ([21))

= ——— > € ﬂQn
2

n

IN
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where ul, = exp [Sn logn — Cy Qogn)® |~ g requiring v, = o (vIogn/n), it

T2
comes

[14(Q —1uy, " =exp[nlog (1+ (Q — 1)uy,)]
<exp[(Q — 1)nuy, ] ml ,

which concludes the proof since no upper bound does depend on z*.

E.2. Lemma E.1

Lemma E.1. Let 7 € Mg(R) denote a matriz with coefficients my; belong to
[0,1], and z(, and [, be two label vectors such that iy Loer = 1. Then,

}{(27]) | { 7&]7 T2i,2; 7& Wz;,z;f}‘ <2nr .

Proof of Lemma E.1. Without loss of generality, one can assume the first r co-
ordinates of z[,) are different from those of z[* - Then, any difference between

T2z, and s .e CAL only occur if (2;, 2;) # (2, 2}). It results

‘{(’Lv]) | Z #.]7 Trzi,z]' # ﬂ-z;‘,z;}‘ :’{(7’5]) | 7’ #.]7 Trzi,zj #Wz:7z;f, ’LS T’}

+ ’{(Z’j) | 7;5 Trzj,z]' #ﬂ-z:,z;‘, 7;>7", ]ST’}

nr—+ (n—nr)r

VANVAN

2nr .

O

Lemma E.2. With the same notation as Proposition 3.8 and the assumptions
of Theorem 3.9, the maximum likelihood estimator of a is given by

n

1¢5
VI<q<Q,  Gg=—-> PZi=q|Xp) -

i=1
Proof of Lemma E.2. Let us introduce some notation:

(2] ™) = fxpy (21 ) = L1 (X 200, ),

(a, ) Ix (a,m) = Lo (X[n];a,ﬂ'),

o (o fZ['n.] (Oé) = H?:l OZ;s

(o, ™) = fx (.20 (@ T) = fx,(Zin), 7) f2,,, (@) denote the complete like-
lihood of (a, ).

We start computing the derivative of fx, (a, 7) +A(>_, ag —1) with respect
to ag, for 1 <k <Q and XA € R.

fX[n] (a7 7T) + )\(Zq Qg —

80&k

} ZN]C fX[n( vw)fZ[n](a)-f—)\ ,

Z[n]
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where Ny (2[n)) = S 1(.,—r)- Multiplying by a; and summing over k leads to
A= _an[n] (av 7T> )

where & denotes the optimum location of « (for which the derivative vanishes).
It results for every k

O =

. ZNk(Z[n])an]( ) fz,, (@)

Py n fX[n] ( ) )
_ Z Ni, (Z[n]) fX[n],Z[n] (au 7T)
e S (@)

_ Z Nk(z[n]) fX[n]vz[n] (a’ ﬂ-) — Z M X (62 77)

n fX[n] (a,) n Z[n]

Z[n] Z[n]

where fZ[ (@, ) = Pax [ Zjn) = 2n) | X[ny] (Section 3.1.2) denotes the a pos-

teriori probablhty of Zj,) = 2[n) given X[, with parameters (@, 7).
Finally, the result comes from

~ X @
ar —g gllzl zi’]"”aﬂ')

1=1 Z[p)

:_Z;Zﬂzl [Zm) = 2m) | Xy ]
7 Z[n]

= Ezpa,w [Zi:k | X[n]]
i=1

Replacing 7 by the MLE 7 of 7*, the MLE of o* satisfies for every k

n

1
Oék— E Paﬂ- Z—k|X[n] _EE Z'=k|X[n])
i=1 i=1

Appendix F: Proof of Theorem 4.2

Lemma F.1. Let z},,) = Zj)(7) = Argmax, El( nls Zn), ™). For every X, €
X, (a,m) € ©, and 1) € Sy, it comes that

T (Xn); Tinpy o ™) < Lo2( Xy ) < L1(X ) 2, 7) -

Proof of Lemma F.1. The first inequality results from the definition of J given
by Eq. (10).
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The second one comes from Z,(7) = Argmax, L (X[n); 2[n)> 7)- Thus for
every (o, ),

Lo(Xpnp; o, m) < log § €51 (KtmiZim:m Z Pz, (2m)) ¢ < LX) Zn)y ) -
Z[n]EZ

Lemma F.2. Lemma F.1 and Assumption (A3) entail that there exists 0 <
~v < 1 such that for every (a, ),

|L2(Xnp; o0, ) = L1(X [ 2y, 7)| < mlog(1/7)
| T (X (g T @, ) — L1(X ) s ™)| < nlog(1/7) -

Proof of Lemma F.2. From Lemma F.1 and definition of 7, it comes for every
(a, ):

T (X} 2y @, ) < T (X Tings @6 1) < Lo( Xy, 1) < L1( X 2y 7) -
Combined with J(Xpp; 2, o m) = L1( X3 2, 7) + 2oiy logaz, (see
Lemma F.3), it leads to both

|L2(X(n)s ) = L1(X )i Znps )| < —Zlogaz ;

|\ T (X ()3 Ty ) = L1(X ()3 By 1) € =D logaz,
Assumption (A3) yields the conclusion. O
Lemma F.3. With the same notation as Theorem 4.2, let Z,) = Zpy)(7) =

Argminz[n]ﬁl(X[n];z[n],7T). Then for every (o, ),

T (X3 Zing> @ 1) = L1(Xn]; 2> 7) + Z log az,

Proof of Lemma F.3. First, let us recall Eq. (10)
T (Xin]; Tings @, ™) = Lo(Xppps 1) — K (DT[inX["])
=log [ f(Xp;a,m)] = K (D, PX0)

where (o, m) — f(X,); @, 7) denotes the likelihood of (a, 7).
Second, Eq. (9) and simple calculations lead to

K (Dr,), P
= ZD Z[n] logD Z DT[ Z[n]) IOgP (Z[ = Z[n] | X[n])

Z[n] Z[n]
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f(Xnps 2 @, )
_ZTZ’qlogTzq 2 Drto log( f (X oy m)

Z[n

where (a,m) +— f(X[n, 213, 7) denotes the complete-likelihood of (o, ).
Then,

K (D, P¥m) anlognq

:—ZD logf(X[n]vz[n]v )
2[n]
+ 3" Dry (2 10g £z @) + log f(Xpups 0 7)
Z[n]

where a — f(zp: ) =[], (Equl ozgi). Hence,

K( Tin] ) PX[" ZTquOngq

= — ZZ i, 10g7Tq7[ + (1 - Xi,j)log(l - 7Tq7[)]7'i7q7'j7[

i#j q,l
+ Z Tiqlog oy + EQ(X[H] ;Q, 7T) .

4,q
Therefore for every 7y,
T (Xin); Tn)» @, T)
=> > [Xijlogmy s+ (1= X ;) log(1 = mg0)|7igmji— Y Tig (l0g7iq — logay).

i#j gl iq
With Tin] = E[n], it comes j(X[n],g[n], T = ,Cl( Z[n], ) + Z?:l log az,,
which concludes the proof. O

Lemma F.4.

S\/ log[ ([n])} :

| D2, () = PCefy)

Proof of Lemma F.J.

’D?["] (Z[tl]) B P(z["] HD PHTV

Tin]
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