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1. Introduction

A real-valued process X is H-self-similar if, for all a > 0

{X(at), t ∈ R} (d)
= aH{X(t), t ∈ R},
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where
(d)
= stands for equality of the finite dimensional distributions. Process X

has stationary increments if, for all s ∈ R,

{X(t+ s)−X(s), t ∈ R} (d)
= {X(t)−X(0), t ∈ R}.

A process that is H-self-similar with stationary increments will be called H-sssi.
The aim of this paper is to estimate H from a discrete sample of X over the
time interval [0, 1]. More precisely, one observes a H-sssi process X at a discrete
sampling k/n, k = 0, . . . , n. Let a = (a0, a1, . . . , aK) be a finite sequence with
L+ 1 vanishing moments

K∑

k=0

akk
ℓ = 0 ℓ = 0, . . . , L,

K∑

k=0

akk
L+1 6= 0,

with convention 00 = 1. The increments of X with respect to the sequence a
are defined by

∆p,nX =

K∑

k=0

akX

(
p+ k

n

)
.

Classical variations (L = 0) are associated with a0 = 1, a1 = −1

∆p,nX = X(p/n)−X((p+ 1)/n).

An example with L = 1 is given by a0 = −1, a1 = 2, a2 = −1

∆p,nX = 2X((p+ 1)/n)−X(p/n)−X((p+ 2)/n).

A usual statistical tool is the φ-variation

Vn(φ,X) =
1

n−K + 1

n−K∑

p=0

φ(|∆p,nX |), (1.1)

where φ is a given function. When X is a fractional Brownian motion, general-
ized quadratic variations (φ(x) = x2, L ≥ 1) provides a consistent estimate ofH ,
asymptotically normal with rate

√
n [10]. These generalized quadratic variations

can be used for Rosenblatt or more generally Hermite processes [4, 5, 17], that
are processes with finite variance, but the

√
n-rate of convergence is not always

obtained. A similar tool is the wavelet’s one. Roughly speaking, the increments
of the process X are replaced by wavelet coefficients [1, 11]. For H-sssi pro-
cesses with infinite variance, for instance α-stable processes, the use of (general-
ized) quadratic variations is hopeless. One could try with functions φ(x) = xp,
0 < p < α. Indeed, the p-variations still lead to estimate for fractional Brow-
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nian motions [12]. But, for stable processes, this requires an a priori accurate
estimate of the stability index α. One can try with log-variations φ(x) = log |x|
as in [7, 9]. Indeed, this estimate requires only the existence of logarithmic
moments. Unfortunately, the rate of convergence of the self-similarity index es-
timate is very slow (logarithmic [9, sec. 6.2]). [14] propose an estimate based on
weighted sums of logarithm of wavelet coefficients, but on a time interval [0, T ]
with T → +∞.

At present, in the statistical literature, there is no self-similarity index con-
sistent estimate with a reasonable rate of convergence. One only knows that
the self-similarity index is identifiable from the observation of one sample path
over a bounded interval. Let us come back to the φ-variations, with φ(x) = xp.
These power functions are used since, for all x, y > 0, φ(x/y) = φ(x)/φ(y). But,
for any p ∈ C, we still have (x/y)p = xp/yp. Among these complex powers, the
purely imaginary powers (p = iM, M ∈ R) are particularly interesting, since
|xiM | = 1. Indeed, for any positive random variable U , the expectation of U i

still exists. In this paper, we therefore work with complex variations

Vn(X) =
1

n−K + 1

n−K∑

p=0

|∆p,nX |iM .

These complex variations provide a self-similarity index estimate without as-
sumptions on the existence of moments of X . Under suitable conditions, we
prove the consistency and obtain the rate of convergence.

We then consider family of examples. H-sssi second-order processes exist for
0 < H ≤ 1. Stable H-sssi processes exist for 0 < H ≤ max(1, 1/α). Therefore,
we consider examples that cover the range of admissible parameters H : H-
sssi processes with independent increments, fractional Brownian motions, well-
balanced linear fractional stable motions and Takenaka’s processes. In the case of
fractional Brownian motion, we provide a central limit theorem and a numerical
comparison between quadratic variations, log variations and complex variations.
Finally, we prove that the distribution of X(1) is identifiable, even if we do not
build a tractable estimate.

2. Main result

2.1. Settings and assumptions

For r > 0, M ∈ R, set

riM = eiM log(r).

For z ∈ C⋆, let

z = |z|ei arg(z), 0 ≤ arg(z) < 2π.
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We will make some of the following assumptions.

1. P(∆0,1X = 0) = 0.
2. E|∆0,1X |iM 6= 0.
3. (a)

lim
n→+∞

1

n

∑

|k|≤n

|cov(|∆k,1X |iM , |∆0,1X |iM )| = 0.

(b) There exists 0 < γ < 1/2 such that

lim sup
n→+∞

1

n2γ

∑

|k|≤n

|cov(|∆k,1X |iM , |∆0,1X |iM )| = Σ2.

Trivial cases, like X(t) = Ut (U ∼ N (0, 1)) and L ≥ 1, are forbidden by the first
condition. For the second condition, the function M 7→ E|∆0,1X |iM is continu-
ous and equal to 1 at M = 0. There always exists a neighborhood of 0 such that
E|∆0,1X |iM 6= 0. Moreover, we prove that E|∆0,1X |iM is never vanishing for
Gaussian and stable variables. We show in the section “Examples” how to check
the third condition on several H-sssi processes. Note that the limit case γ = 0
corresponds to the case when the series

∑
k∈Z

|cov(|∆k,1X |iM , |∆0,1X |iM )| is
convergent.

Let us define the estimate of the self-similarity index H

Ĥn =
1

M log 2
arg(Vn/2(X)/Vn(X)).

Let us make an heuristic explanation of this estimator Ĥn. As proved later,
the expectation of Vn(X) is equal to n−iHME|∆0,1X |iM . If Vn(X) converges,
as n → +∞, to its expectation, the ratio Vn/2/Vn will converge to 2iHM . Since
the modulus of Vn/2/Vn may be not equal to 1, we need to take the argument

of Vn/2/Vn to build the estimator Ĥn.
We have the following, where OP is defined by

• Xn = OP(1) iff ∀ε > 0, ∃C > 0 such that supn P(|Xn| ≥ C) ≤ ε.
• Yn = OP(δn) means Yn = δnXn with Xn = OP(1).

Theorem 2.1. Assume that 0 < H < 2π/(M log(2)). Then, assuming 3)a)

•

lim
n→+∞

Ĥn = H (P). (2.1)

• Assuming moreover 3)b)

Ĥn −H = OP(n
γ−1/2). (2.2)
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2.2. Proof

Set

Wn(X) = niHMVn(X).

Since process X is H-sssi

EWn(X) = E|∆0,1X |iM .

Then

E|Wn(X)|2 =
1

(n−K + 1)2

n−K∑

p,p′=0

E|∆p,1X |iM |∆p′,1X |−iM

=
1

n−K + 1

∑

|k|≤n−K

(
1− |k|

n−K + 1

)
E|∆k,1X |iM |∆0,1X |−iM .

It follows

E|Wn(X)− E|∆0,1X |iM |2 ≤ 1

n−K + 1

∑

|k|≤n−K

(
1− |k|

n−K + 1

)

×|cov(|∆k,1X |iM , |∆0,1X |iM )| (2.3)

and (2.1) is proved. Using (2.3), assumption 3)b) and the dominated convergence
theorem then yield

lim sup
n→+∞

n1−2γ
E|Wn(X)− E|∆0,1X |iM |2 ≤ Σ2.

It follows that Wn(X)− E|∆0,1X |iM = OP(n
γ−1/2). Since z 7→ arg(z) is a C1

function around E|∆0,1X |iM , (2.2) is proved.

3. Examples

3.1. H-sssi processes with independent increments

For the Brownian motion (H = 1/2), Theorem 2.1 applies obviously with any
L and any M < 4π/ log(2).

For the Lévy α-stable processes (0 < α < 2), where H = 1/α, Theorem 2.1
applies obviously for any L and H ∈ (0, 2π/(M log(2))). This is a drawback of
Theorem 2.1: one needs an a priori upper bound of H . Nevertheless, note that
in many examples, the index H belongs to (0, 1), and any M < 2π/ log(2) is
appropriate.
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3.2. Fractional Brownian motions

3.2.1. Theoretical results

Fractional Brownian motion is the unique, up to a constant, Gaussian H-sssi
process, with H ∈ (0, 1]. The case H = 1/2 has just been treated. Our assump-
tions exclude the trivial case H = 1. Let us consider the other cases. We prove
that Theorem 2.1 holds with L ≥ 1 and any M < 2π/ log(2). Moreover, we
prove a central limit theorem.

Let us first prove that Assumption 2) is satisfied for any M .

Lemma 3.1. Let X be a centered Gaussian variable with variance σ2 6= 0.
Then, for all M ∈ R, E|X |iM 6= 0.

Proof.

E|X |iM =

√
2

σ
√
π

∫ +∞

0

xiM e−x2/(2σ2)dx.

The change of variable z = x2/(2σ2) leads to

E|X |iM = σiM 2iM/2

√
π

∫ +∞

0

z(iM−1)/2e−zdz

= σiM 2iM/2

√
π

Γ

(
1 + iM

2

)
,

where Γ is the Gamma function. Since Γ
(
1+iM

2

)
6= 0, Lemma 3.1 is proved.

Proposition 3.1. Assume M < 2π/ log(2) and L ≥ 1. Then
√
n(Ĥn − H)

converges in distribution, as n → +∞, to a centered Gaussian variable.

We start with the following Lemma.

Lemma 3.2. Let (U, V ) ∼ N2

(
(0, 0);

( 1 ρ
ρ 1

))
, |ρ| ≤ 1. There exists C > 0, such

that, ∀|ρ| ≤ 1

|cov(|U |iM , |V |iM )| ≤ Cρ2. (3.1)

Proof. Let Σ =
(
1 ρ
ρ 1

)
. Then

det(Σ) = 1− ρ2,

Σ−1 =
1

1− ρ2

(
1 −ρ
−ρ 1

)

Then

E(|U |iM |V |−iM ) =
1

2π
√
(1− ρ2)

∫

R2

|x|iM |y|−iM

× exp

{
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

}
dxdy,
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and

cov(|U |iM , |V |iM ) =
1

2π

∫

R2

|x|iM |y|−iM exp(−(x2 + y2)/2)Aρ(x, y)dxdy,

where

Aρ(x, y) =
1√

1− ρ2
exp

(
− ρ2

1− ρ2
(x2 + y2)

)
exp

(
ρxy

1− ρ2

)
− 1.

Since
∫

R

|x|iMxe−x2/2dx = 0,

one gets

cov(|U |iM , |V |iM ) =
1

2π

∫

R2

|x|iM |y|−iM exp

(
−x2 + y2

2

)

×Bρ(x, y)dxdy, (3.2)

where

Bρ(x, y) = Aρ(x, y)− ρxy.

One then checks that

lim
ρ→0

Bρ(x, y)

ρ2
= 1/2 + x2y2/2− (x2 + y2)/2.

B0(x, y) = 0,

(
∂Bρ(x, y)

∂ρ

)

ρ=0

= 0 and

∂2Bρ(x, y)

∂ρ2
= Pρ(x, y) exp

(
− ρ2

1− ρ2
(x2 + y2)

)
exp

(
ρxy

1− ρ2

)
,

where Pρ(x, y) is a fourth degree polynomial that depends continuously on ρ.
By a Taylor expansion of order 2 of the function ρ 7→ Bρ(x, y), there exists
ρ̃ ∈ (0, ρ) such that

Bρ(x, y) = ρ2Pρ̃(x, y) exp

(
− ρ̃2

1− ρ̃2
(x2 + y2)

)
exp

(
ρ̃xy

1− ρ̃2

)
.

On the compact set |ρ| ≤ 1/2, the polynomials Pρ(x, y) can be bounded by a
fourth degree polynomial P (x, y). More precisely, for all x, y ∈ R, |Pρ(x, y)| ≤
|P (|x|, |y|)|. Then

exp

(
− ρ̃2

1− ρ̃2
(x2 + y2)

)
exp

(
ρ̃xy

1− ρ̃2

)
= exp

(
− ρ̃2

1− ρ̃
(x− y)2

)

× exp

(
ρ̃

2(1 + ρ̃)
xy

)

≤ exp(|xy|/3).
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This leads to

|Bρ(x, y)| ≤ ρ2|P (|x|, |y|)| exp(|xy|/3).
One then checks that

∫

R2

exp
(
−(x2 + y2)/2

)
|P (|x|, |y|)| exp(|xy|/3)dxdy < ∞.

The dominated convergence theorem is applied to (3.2) as ρ → 0. Since
|cov(|U |iM , |V |iM )| is bounded by 1, (3.1) is proved for any |ρ| ≤ 1/2.

Let us now prove Proposition 3.1. We next compute the covariance between
∆k,1X and ∆0,1X

cov(∆k,1X,∆0,1X) =
1

2

K∑

p,p′=0

apap′ |k + p− p′|2H .

A Taylor expansion up to order 3 leads to

|cov(∆k,1X,∆0,1X)| ≤ Ck2H−3.

Lemma 3.2 ensure the convergences of the series
∑

p∈Z
|cov(|∆k,1X |iM ,

|∆0,1X |iM )| for any H ∈ (0, 1).

Wn(X) has the same distribution as 1
n−K+1

∑n−K
k=0 |∆0,1X |iM . Let us re-

call the Breuer-Major’s theorem [2, 13]. The Hermite rank d of a function f is
the order of the first non-trivial coefficient in the Hermite expansion of f . Let
(Xk), k ∈ Z be a centered stationary Gaussian sequence. Let ρ(k) = E(X0Xk).
Assume d ≥ 1 and

∑
k∈Z

|ρ(k)|d < ∞. Then 1√
n

∑n
1 f(Xk) converges in distri-

bution, as n → +∞, to a centered Gaussian variable. Since
∫

R

|x|iMxe−x2/2dx = 0,

the Hermite rank of any linear combination αRe(|x|iM ) + βIm(|x|iM ) is at
least 2. The Breuer-Major’s theorem can be applied to any real function f(x) =
αRe(|x|iM ) + βIm(|x|iM ). This proves the convergence of the couple
(Re(|x|iM ), Im(|x|iM )). Therefore,

√
n(Wn(X)− E|∆0,1X |iM ) converges in dis-

tribution, as n → +∞, to a centered Gaussian variable. For the convergence
of the couple (Wn/2,Wn), one needs a bivariate Breuer-Major’s theorem. The
proof of this bivariate Breuer-Major’s theorem is similar to the proof of the
classical one. We sketch the proof, following [13, ch. 6 & 7]. Let f and g be two
real functions which Hermite ranks are at least d ≥ 1. Let (fq) and (gq) be the
coefficients of the Hermite expansion

f =
∑

q≥d

fqHq,

g =
∑

q≥d

gqHq,
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where (Hq) are the Hermite polynomials. The classical Breuer-Major’s theo-
rem ensures that 1√

n

∑n
k=1 Hq(Xk) converges in distribution, as n → +∞ to

a centered Gaussian variable
√
q!
∑

k∈Z
ρ(k)qNq, where Nq is a centered stan-

dard Gaussian variable. Since the Hermite polynomials are orthogonal, condition
(6.2.11) of Theorem 6.2.3 of [13] is straightforwardly satisfied. It follows, for any
given m ≥ d that

(
1√
n

n∑

k=1

Hq(Xk), d ≤ q ≤ m

)
(3.3)

converges in distribution, as n → +∞, to a centered Gaussian vector


√
q!
∑

k∈Z

ρ(k)qNq, d ≤ q ≤ m




where the centered standard Gaussian variables (Nq) are independent. We then
mimic the proof of Theorem 7.2.4 of [13]. Condition (d) is satisfied, one can get
m = +∞ in (3.3). With other words, we have proved that the couple

(
1√
n

n∑

1

f(Xk),
1√
n

n∑

1

g(Xk)

)

converges in distribution, as n → +∞, to the centered Gaussian vector


∑

q≥d

fq

√
q!
∑

k∈Z

ρ(k)qNq,
∑

q≥d

gq

√
q!
∑

k∈Z

ρ(k)qNq




The proof of the convergence of the couple (Wn/2,Wn) is similar. One proves
the convergence of the vector
(

1√
n−K+1

n−K∑

k=0

Hq

(
∆k,nX

var(∆k,nX)

)
,

1√
n/2−K+1

n/2−K∑

k=0

Hq

(
∆k,n/2X

var(∆k,n/2X)

))

first for a given q, with d ≤ q, using the fourth moment theorem [13, Th.5.2.7],
then for any given m, with d ≤ q ≤ m, using the orthogonality of the Hermite
polynomials, then for any d ≤ q. Since the estimator Ĥn is a smooth function of
the couple (Wn/2,Wn), the central limit theorem of Proposition 3.1 is proved.

3.2.2. Numerical comparisons

Let us now numerically compare the estimate Ĥn of Theorem 2.1 with quadratic
and log variations estimates. More precisely, we use φ(x) = x2 and φ(x) = log(x)

in (1.1). We compute the mean estimation ĤM and the mean square error

ĤSP =
1

SP

SP∑

m=1

(
Ĥm −H

)2
,
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Table 1

Quadratic variations (on the top), log-variations (in the middle) and complex variations (on
the bottom). Mean estimation is indicated, mean square errors are in brackets. Simulations

are done with the R package FieldSim [3]

N = 7 N = 8 N = 9

H = 0.5 0.485 (0.030) 0.500 (0.012) 0.495 (0.007)
H = 0.7 0.690 (0.017) 0.690 (0.010) 0.695 (0.005)
H = 0.8 0.795 (0.018) 0.795 (0.009) 0.800 (0.004)

N = 7 N = 8 N = 9

H = 0.5 0.490 (0.0007) 0.490 (0.0003) 0.490 (0.0002)
H = 0.7 0.725 (0.0013) 0.725 (0.0007) 0.720 (0.0005)
H = 0.8 0.859 (0.0039) 0.855 (0.0030) 0.850 (0.0024)

N = 7 N = 8 N = 9

H = 0.5 0.500 (0.050) 0.500 (0.022) 0.490 (0.012)
H = 0.7 0.680 (0.040) 0.690 (0.023) 0.710 (0.010)
H = 0.8 0.825 (0.037) 0.805 (0.020) 0.800 (0.008)

for SP = 200 sample paths, for different values ofH and n = 2N . At first sighat,
quadratic variations leads to better results, that is consistent with [6]. Logarith-
mic variations leads to worst results and complex variations are in between.

3.3. Well-balanced linear fractional stable motions

Let M be a symmetric α-stable random measure (0 < α < 2) with Lebesgue
control measure. We refer to [15] for basic facts on integration with respect to a
stable random measure. The well-balanced linear fractional stable motions are
defined by [15, p.140]

X(t) =

∫

R

(|t− s|H−1/α − |s|H−1/α)M(ds),

where 0 < H < 1 and H 6= 1/α. Process X is H-sssi. We prove, in the following
serie of Lemmas 3.3, 3.4, 3.5 and 3.6, that, for all L ≥ 0

lim
n→+∞

Ĥn = H (P),

and that there exists C > 0 such that

Ĥn −H = OP(n
−min(1/2,1/4(αL−α(H−1))), if αL− α(H − 1) 6= 2

Ĥn −H = OP

(√
log(n)

n

)
if αL− α(H − 1) = 2.

Therefore, Theorem 2.1 holds with L > 2/α+H − 1 and any M < 2π/ log(2).
With other words, to obtain the optimal rate of convergence, one needs to know
an a priori bound for the stability index α.
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Lemma 3.3. Let p ∈ C, with 0 < R(p) < 1. For all a ∈ R

∫

R

1− eiax

|x|1+p
dx = Cp|a|p,

Cp =
π

Γ(p+ 1) sin(πp/2)
.

Proof. Following formula 3.823 of [8], for a > 0 and 0 < R(p) < 2

∫ +∞

0

sin2(ax)

x1+p
dx = −Γ(−p) cos(pπ/2)2p−1ap.

Since 2 sin2(x) = 1− cos(2x), for all a ∈ R, 0 < R(p) < 2
∫

R

1− cos(ax)

|x|1+p
dx = −2Γ(−p) cos(pπ/2)|a|p.

One then has, with 0 < R(p) < 1
∫

R

sin(ax)

|x|1+p
dx = 0.

Therefore, for all a ∈ R, 0 < R(p) < 1

∫

R

1− eiax

|x|1+p
dx = −2Γ(−p) cos(pπ/2)|a|p.

Using −pΓ(−p) = Γ(1−p) and Γ(1−p)Γ(p) = π/ sin(pπ), Lemma 3.3 is proved.

Let us now prove that Assumption 2), for a standard stable variable, is sat-
isfied for any M .

Lemma 3.4. Let X be a standard α-stable variable with characteristic function

E(exp(iλX)) = exp(−|λ|α).

Then, for all M ∈ R, E|X |iM 6= 0.

Proof. From Lemma 3.3, with 0 < R(p) < min(α, 1)

CpE|X |p = 2

∫ +∞

0

1− e−xα

x1+p
dx.

Let us perform the change of variable xα = y2

CpE|X |p =
4

α

∫ +∞

0

1− e−y2

y1+2p/α
dy. (3.4)

Let Z be a centered standard Gaussian variable. The same can be written for Z

CpE|Z|p = 2

∫ +∞

0

1− e−y2

y1+p
dy. (3.5)
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Following Lemma 3.1

E|Z|p =
2p/2√
π
Γ

(
1 + p

2

)
. (3.6)

(3.4), (3.5) and (3.6) lead to

E|X |p =
2(2+p)/2

α
√
π

Γ

(
1

2
+

p

α

)
.

The dominated convergence theorem then leads, as p → iM ,

E|X |iM =
2(2+iM)/2

α
√
π

Γ

(
1

2
+

iM

α

)
,

and Lemma 3.4 is proved.

Lemma 3.5. Let (S, µ) be a measure space, f, g ∈ Lα(S, µ) and M be a sym-
metric α-stable random measure on S with control measure µ. Set

U =

∫

S

fdM,

V =

∫

S

gdM.

Assume
∫

S

|f |α = 1,

∫

S

|g|α = 1,

∫

S

|fg|α/2 ≤ η < 1.

There exists a constant C(η) such that

|cov(|U |iM , |V |iM )| ≤ C(η)

∫

S

|fg|α/2.

Proof. First note that, since function x 7→ |x|iM does not belong to L1, [14,
Th.2.1] cannot be applied.

Let 0 < ε < α/2 and let us apply Lemma 3.3 with p = iM + ε.

|U |iM+ε =
1

CiM+ε

∫

R

1− eixU

|x|1+ε+iM
dx,

and the same for V . Fubini’s Theorem then leads to

cov(|U |iM+ε, |V |iM+ε) =
1

CiM+εC−iM+ε

∫

R2

cov(eixU , eiyV )

|x|1+ε+iM |y|1+ε−iM
dxdy

=
1

CiM+εC−iM+ε

∫

R2

exp(−
∫
S
|xf + yg|α)− exp(−

∫
S
|xf |α −

∫
S
|yg|α)

|x|1+ε+iM |y|1+ε−iM
dxdy.



1404 J. Istas

Let us use the following bound (equation (3.6) of [14, Lemma 3.1])

∣∣∣∣ exp
(
−
∫

S

|xf + yg|α
)
− exp

(
−
∫

S

|xf |α −
∫

S

|yg|α
)∣∣∣∣

≤ 2

∫

S

|fg|α/2|xy|α/2 exp(−2(1− η)|xy|α/2).

Therefore

|cov(|U |iM+ε, |V |iM+ε)| ≤ 2
∫
S
|fg|α/2

|CiM+εC−iM+ε|
Iε

Iε =

∫

R2

|xy|α/2 exp(−2(1− η)|xy|α/2)
|x|1+ε|y|1+ε

dxdy.

By the dominated convergence theorem

lim
ε→0+

Iε =

∫

R2

|xy|α/2 exp(−2(1− η)|xy|α/2)
|x||y| dxdy.

There exists therefore a constantK1 > 0 such that, for all 0 < ε < α/2, Iε ≤ K1.
Coming back to Lemma 3.3

lim
ε→0+

|CiM+εC−iM+ε| = |CiMC−iM | 6= 0.

There exists therefore a constant K2 > 0 such that, for all 0 < ε < α/2,
|CiM+εC−iM+ε| ≥ K2. By the dominated convergence theorem

lim
ε→0+

cov(|U |iM+ε, |V |iM+ε) = cov(|U |iM , |V |iM ),

and Lemma 3.5 is proved.

Lemma 3.6. Set

f(t) =

K∑

i=0

ai|i− t|H−1/α.

There exists a constant C > 0 such that

(∫

R

|f(t+ p)f(t)|α/2dt
)2

≤ CpαH−α(L+1).

Proof. Using the change of variable x = t− p/2

∫

R

|f(t+ p)f(t)|α/2dt =

∫

R

|f(x+ p/2)f(x− p/2)|α/2dx.

A Taylor expansion proves that there exists C > 0 such that, for |t| ≥ 2K

|f(t)| ≤ C|t|H−1/α−L−1. (3.7)
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By Cauchy-Schwarz inequality

(∫

|x|≥2K

|f(x+ p/2)f(x− p/2)|α/2dx
)2

≤
∫

|x|≥2K

|f(x+ p/2)|αdx

×
∫

|x|≥2K

|f(x− p/2)|αdx (3.8)

(3.8) together with (3.7) lead to

(∫

|x|≥2K

|f(x+ p/2)f(x− p/2)|α/2dx
)2

≤ CpαH−α(L+1)

We use again (3.7) for large p. We then show that, for any p

∫

|x|≤2K

|f(x+ p/2)f(x− p/2)|α/2dx ≤ CpαH−1−α(L+1)

3.4. Takenaka’s processes

Let us recall the construction of the one dimensional Takenaka’s process [16].
Set, for t ∈ R

Ct = {(x, r) ∈ R× R
+, |x− t| ≤ r},

St = Ct∆C0,

where ∆ denotes the symmetric difference between two sets. Let M be a sym-
metric α-stable random measure (0 < α < 2) with control measure

m(dx, dr) = rβ−2dxdr (0 < β < 1).

Takenaka process X is defined by

X(t) =

∫

R×R+

1St
(x, r)M(dx, dr).

Process X is β/α-sssi.

Let us estimate cov(|∆k,1X |iM , |∆0,1X |iM ). We apply Lemma 3.5. Set

ft =

K∑

i=0

ai1St+i
.



1406 J. Istas

Using
∑K

i=0 ai = 0 and 1A∆B = (1A − 1B)
2

ft = (1− 21C0
)

K∑

i=0

ai1Ct+i
,

|ft| =

∣∣∣∣∣

K∑

i=0

ai1Ct+i

∣∣∣∣∣

=

∣∣∣∣∣

K∑

i=0

ai(1Ct+i
− 1Ct

)

∣∣∣∣∣

Therefore, we have to estimate, as |k| → +∞
∫ +∞

0

rβ−2

∫

R

|fk(x, r)f0(x, r)|α/2dxdr.

When k > 2r+K, then |fk(x, r)f0(x, r)| = 0. When k < 2r+K, |fk(x, r)f0(x, r)|
can only be bounded by a constant. In particular, increasing the number of
vanishing moments of the sequence (ai) has no effect. Indeed, we have proved
that there exists C > 0 such that

|cov(|∆k,1X |iM , |∆0,1X |iM )| ≤ C

∫ +∞

(k−K)/2

rβ−2dr

≤ C′kβ−1.

Take M such that 0 < β/α < 2π/(M log(2)). Then

lim
n→+∞

Ĥn = H (P),

Ĥn −H = OP(n
(β−1)/2).

4. Identification of the distribution of X(1)

We just have seen that the self-similarity index H is identifiable. The aim of this
section is to prove that the distribution of X(1) is identifiable. Let us assume
in this section the following

• The distribution of X(1) is symmetric.

• Estimate Ĥn, with L = 0, and a given M , satisfies the following

lim
n→+∞

log(n)(Ĥn −H) = 0 (P). (4.1)

An inspection of the proofs shows that all the examples of the previous section
satisfy condition (4.1). It follows that

niĤnMVn(X) = ei(Ĥn−H)M log(n)niHMVn(X)

lim
n→+∞

niĤnMVn(X) = E(exp(iM log |∆0,1X |)) (P).
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Take the sequence a0 = −1, a1 = 1. The characteristic function of log |∆0,1X | =
log |X(1)| is identifiable. Since X(1)’s distribution is symmetric, the distribution
of X(1) is identifiable.

5. Remarks

The following questions then arise. Are there other ways of estimating self-
similarity than complex variations? Is one way optimal? There are clearly other
estimators. For instance, one can use logarithmic variations (Please note that,
in the following equation, logarithmic variations are used in another way that
in [7, 9])

Ĥlog,n =
Vn/2(log, X)− Vn(log, X)

log 2
.

An inspection of the proof indicates that Theorem 2.1 holds assuming the exis-
tence of logarithmic moments for X . Let now f be an arbitrary function from
R2 onto R and g from R onto C. Define the following estimate

Ĥf,g,n = f(Vn/2(g,X), Vn(g,X)).

What is the class F of admissible functions f and g? That is functions f and
g leading to a consistent estimate under weak assumptions on X . Among this
class F , what are the best functions, say with respect to the mean square error?
These questions turn out to be actually open and this paper offers no answer.
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