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1. Introduction

Since traditional arguments for the rationality of Bayesian methods and the
objectivity of frequentist methods have failed to achieve a consensus among
statisticians, Samaniego (2010) and others seek to determine under what cir-
cumstances one approach performs better than another according to neutral
decision-theoretic criteria. However, the controversy between Bayesianism and
frequentism may be irresolvable inasmuch as it reflects honest differences in
personal attitudes of statisticians rather than differences in their rationality or
knowledge of performance comparisons. Efron (2005) argued,

The Bayesian-frequentist debate reflects two different attitudes about the pro-
cess of doing science, both quite legitimate. Bayesian statistics is well suited
to individual researchers, or a research group, trying to use all of the informa-
tion at its disposal to make the quickest possible progress. In pursuing progress,
Bayesians tend to be aggressive and optimistic with their modeling assumptions.
Frequentist statisticians are more cautious and defensive. One definition says that
a frequentist is a Bayesian trying to do well, or at least not too badly, against
any possible prior distribution. The frequentist aims for universally acceptable
conclusions, ones that will stand up to adversarial scrutiny.

On one hand, methodology reflecting extreme caution in the form of the minimax-
like attitude attributed to frequentists and, on the other hand, methodology re-
flecting the extreme reliance on modeling assumptions attributed to Bayesians
both play useful roles in statistical inference. Bayesian methods can outperform
frequentist methods to the extent that the priors are close to the truth, but call
for caution since priors far from the truth can lead to severe bias. Building on
that premise, the idea motivating this paper is that methodology for moderate
amounts of caution also has a place in practical data analysis. The extent of
such caution will be formally defined in order to facilitate making statistical
inferences at the level of caution appropriate to the situation.

The mathematical definition will build on previous work to formalize caution
in the face of uncertainty. Attitudes toward uncertainty have long been math-
ematically modeled in the economics literature. Ellsberg (1961) identified two
distinct types of uncertainty: risk is the variability in an unknown quantity that
threatens assets, whereas ambiguity is ignorance about the extent of such vari-
ability. The same agent may be much more cautious toward risk than toward
ambiguity or vice versa. A utility or loss function can model an agent’s attitude
toward risk but not its attitude toward ambiguity. Because frequentist actions
can differ from Bayesian actions given the same loss function, the attitude to-
ward risk is not relevant to the problem of representing and balancing the two
basic approaches to statistical inference. The attitude toward ambiguity is much
more pertinent to the concept of caution toward relying on a prior distribution.

Ellsberg (1961) distinguished “pessimism” from “conservatism”: the former is
an excessive belief that worst-case scenarios will materialize, whereas the latter
only involves cautiously acting as if they will. In other words, the attitude of
“hoping for the best, preparing for the worst” is consistent with conservatism but
not pessimism. While that attitude does motivate much of frequentist statistics,
“conservatism” already has technical meanings in the statistics literature, e.g.,
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Table 1

Utility function for actions I-II and the three possible states of nature

Red drawn Black drawn Yellow drawn

action I $100 $0 $0
action II $0 $100 $0

Table 2

Utility function for actions III-IV and the three possible states of nature

Red drawn Black drawn Yellow drawn

action III $100 $0 $100
action IV $0 $100 $100

conservative confidence intervals have higher-than-nominal coverage rates. For
that reason, the term “caution” will be used when assigning an operational
definition to the degree of conservatism toward ambiguity in the sense of Ellsberg
(1961).

Example 1. Ellsberg Paradox. In an example from Ellsberg (1961), a ball is
randomly drawn from an urn of 90 balls, each of one of three possible colors: red,
black, and yellow. Nothing is known about the distributions of the balls in the
urn except that exactly 30 are red. Thus, there is ambiguity in the distribution
of black and yellow balls. The agent would gain a reward of $0 or $100 based on
its taking action I or action II according to utility function displayed as Table
1 in setting 1. In setting 2, the agent would instead gain $0 or $100 based on
its taking action III or action IV according to the utility function displayed as
Table 2. Agents cautious toward ambiguity would choose action I over action
II in setting 1 but would take action IV over action III in setting 2, against
subjective Bayesian concepts of coherence but without requiring the extreme
caution of a minimax strategy (Ellsberg, 1961).

In the absence of ambiguity, the axiomatic system of von Neumann and Mor-
genstern (1953, §3.6) and later generalizations prescribe choosing the action that
maximizes expected utility. By forcefully applying such a system to conditional
expectations given observed data, Savage (1954) revitalized Bayesian statistics.
The action that maximizes expected utility with respect to a Bayesian posterior
is called the posterior Bayes action. Ambiguity about the posterior is usually
modeled in terms of a set Ṗ of multiple posteriors in place of a single posterior.
A multiplicity of posteriors may arise from insufficient elicitation of subjective
prior opinions (e.g., Berger, Insua and Ruggeri, 2000), from a spread in a gam-
ble’s buying and selling prices (e.g., Walley, 1991), or, more objectively, from
ignorance as to which prior distribution in a set describes the physical variabil-
ity of a parameter. The last source accords best with the notion of ambiguity
as used in Ellsberg (1961), Jaffray (1989b), Jaffray (1989a), and Gajdos, Tallon
and Vergnaud (2004).

In the Bayesian statistics literature, the most studied decision-theoretic ap-
proach for sets of priors is the (marginal) Γ-minimax strategy (e.g., Berger, Insua
and Ruggeri, 2000), which formulates the problem in terms of minimax risk in
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the frequentist sense of Wald (1961). The closely related conditional Γ-minimax
strategy (e.g., Betrò and Ruggeri, 1992) takes the action that minimizes the
expected loss maximized over all of the posterior distributions in a set Ṗ, each
member of which corresponds to a prior distribution in a set traditionally de-
noted by Γ. That statistical strategy is a special case of the maxmin expected
utility strategy (Hurwicz, 1951b; Gilboa and Schmeidler, 1989), which takes the
action that maximizes the expected utility minimized over a set of distributions.
Both “robust Bayesian” strategies are reviewed in Vidakovic (2000).

The following equation extends the conditional Γ-minimax strategy to the
problem of conducting statistical inference at a specified degree of caution κ
and with respect to a Bayesian posterior Ṗ ∈ Ṗ that is not generally the true
physical distribution of the parameter θ. For any κ ∈ [0, 1], the κ-conditional-Γ
(κCG) action is defined as

ȧκ = arg inf
a∈A

(
κ sup

P ′∈Ṗ

∫
L (θ, a) dP ′ (θ) + (1− κ)

∫
L (θ, a) dṖ (θ)

)
, (1)

with the conventions that κ × ∞ = 0 if κ = 0 and (1− κ) × ∞ = 0 if κ = 1.
The κCG action reduces to the conditional Γ-minimax action under complete
caution (κ = 1) and to the posterior Bayes action in the complete absence of
caution (κ = 0). For discrete θ, this κ is isomorphic to quantities used by Ellsberg
(1961), Gajdos, Tallon and Vergnaud (2004), and Tapking (2004) and is similar
in spirit to the quantity in Hurwicz (1951a) and Jaffray (1989b) that Augustin
(2002) calls “caution.” Gärdenfors and Sahlin (1982) and Gajdos, Tallon and
Vergnaud (2004) stressed the equivalent of the rearrangement of equation (1)
as

ȧκ = arg inf
a∈A


 sup

P∈{κP ′+(1−κ)Ṗ :P ′∈Ṗ}

∫
L (θ, a) dP (θ)


 . (2)

The κCG strategy has two drawbacks that will prevent its use in many appli-
cations. First, under standard loss functions, the conditional Γ-minimax (1CG)
strategy requires either that Ṗ impose strict bounds on the parameter space
(Bayati Eshkaftaki and Parsian, 2011) or that A be severely restricted (Betrò
and Ruggeri, 1992), and the κCG strategy with 0 < κ < 1 has the same limita-
tion. Second, since the 1CG strategy is not necessarily a frequentist procedure,
the κCG framework does not fulfill the above goal of formulating procedures
that reduce to frequentist procedures given complete caution.

Following the preliminary notation and definitions of Section 2, an information-
theoretic framework will be introduced in Section 3 to overcome the identified
limitations of the κCG framework. Simple examples demonstrating the wide
applicability of the information-theoretic framework will appear in Section 4.
Extensions are described in Section 5 in terms of exchanging roles of frequentist
and Bayesian procedures as appropriate for particular applications. Section 6
closes the paper with a brief discussion.
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2. Bayesian and frequentist posterior distributions

2.1. Preliminary concepts

The observed data vector x ∈ X is modeled as a realization of a random variable
X of probability space (X ,X, Pθ∗,λ∗

), which for some parameter set Θ∗ × Λ∗ is
indexed by an interest parameter θ∗ ∈ Θ∗ and potentially also by a nuisance
parameter λ∗ ∈ Λ∗. The family {Pθ∗,λ∗

: θ∗ ∈ Θ∗, λ∗ ∈ Λ∗} will be called the
sampling model for x.

Inferences will be made about the focus parameter θ = θ (θ∗), a subparameter
of the interest parameter, in a set Θ. In the simplest case, θ = θ∗ and Θ =
Θ∗, but there are many other possibilities. For example, when testing the null
hypothesis that θ∗ = 0 against the alternative hypothesis that θ∗ 6= 0 for Θ∗ =
R, it is convenient to define the focus parameter by θ = 0 if θ∗ = 0 and θ = 1
if θ∗ 6= 0, in which case Θ = {0, 1}. Let H denote a σ-field that allows any
physically meaningful hypothesis about θ to be expressed as “θ is in Θ†,” where
Θ† ∈ H.

2.2. Bayesian posteriors

In the Bayesian setting, the above sampling model is understood as conditional
on the parameter values with respect to some prior distribution. For notational
simplicity, the distributions written in this subsection are marginal over the
nuisance parameter, i.e., λ∗ is eliminated by integrating with respect to some
prior.

Let P denote the set of all probability distributions on (Θ,H). Before ob-
serving data, knowledge about the observable vector and focus parameter is
represented by Pplaus, a set of plausible joint distributions on (X ×Θ,X⊗H).
Accordingly, every member of Pplaus is called a plausible joint distribution. The
integral of every plausible joint distribution over the data is a marginal distri-
bution on (Θ,H) and is called a plausible prior distribution.

The Bayesian approach yields inferences about the focus parameter on the
basis of a single distribution, Ṗ plaus ∈ Pplaus. If 〈Ẋ, θ̇〉 ∼ Ṗ plaus, then the
working prior distribution is the marginal distribution of θ̇. It follows that the
working prior is one of the plausible priors.

The working Bayesian posterior Ṗ and the knowledge base Ṗ (Topsøe, 2004)
are defined such that

Ṗ = Ṗ plaus
(
•|Ẋ = x

)
; (3)

Ṗ =
{
P ′
(
•|Ẋ = x

)
: P ′ ∈ Pplaus

}
. (4)

Ṗ is simply the Bayesian posterior distribution corresponding to the working
prior, and Ṗ is likewise the set of Bayesian posteriors in P that correspond to
plausible prior distributions. To prevent confusion with Ṗ , members of Ṗ will
be referred to as plausible posteriors since they are the parameter distributions
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consistent with the mathematical representation either of a physical system or
of a belief system (cf. Topsøe, 1979, 2004). Thus, the posterior that would be
used in purely Bayesian inference is one of the plausible posteriors (Ṗ ∈ Ṗ).

As equation (3) indicates, the working prior is updated to its posterior just
as if it were a physical distribution. For that reason, many authors have criti-
cized pure Bayesianism for treating mental probabilities exactly as if they were
limiting relative frequencies of events in a realistic model of the external world
(e.g., Kardaun et al., 2003; Fraser, 2011; Bickel, 2011d). However, equation (3)
results from the same information-theoretic framework of constrained inference
as the moderate-posterior approach to be introduced in Section 3. In particular,
Ṗ plaus(•|Ẋ = x) is the distribution that minimizes the information divergence
with respect to Ṗ plaus (•) under the sole constraint that Ẋ = x (Harremoës,
2007, Example 3), as Williams (1980) proved in the discrete case. That fact
leads to Ṗ plaus(•|Ẋ = x) as the solution to a minimax problem under broad
conditions (Topsøe, 2007). See also Csiszár (1985).

2.3. Confidence posteriors

The sampling model of Section 2.1 admits not only system constraints and
Bayesian inference (§2.2) but also frequentist inference in the form of confidence
intervals and p-values. Let H∗ denote B (Θ∗), the Borel set of Θ∗. Given some

α ∈ [0, 1], if the function Θ̂ (1− α, •) : X → H∗ satisfies

Pθ∗,λ∗

(
θ∗ ∈ Θ̂ (1− α;X)

)
= 1− α (5)

for all θ∗ ∈ Θ∗ and λ∗ ∈ Λ∗, then Θ̂ (1− α;X) is called a 100 (1− α)% con-

fidence set for θ∗. Suppose Θ̂ : [0, 1] × X → Θ∗ defines nested confidence sets

in the sense that Θ̂ (1− α;X) is a 100 (1− α)% confidence set for θ∗ given any
confidence level 1− α ∈ [0, 1] and such that

0 ≤ 1− α1 < 1− α2 ≤ 1 =⇒ Θ̂ (1− α1;X) ⊂ Θ̂ (1− α2;X)

almost surely. A confidence posterior distribution is a distribution P̈∗ on (Θ∗,H∗)
for which

P̈∗

(
Θ†
)
= P̈∗

(
θ̈∗ ∈ Θ†

)
∈
{
1− α : Θ̂ (1− α;x) = Θ†, 0 ≤ α ≤ 1

}
(6)

for all x ∈ X and Θ† ∈ H∗, where θ̈∗ is a random variable of distribution P̈∗.
Polansky (2007) called P̈∗

(
Θ†
)
the observed confidence level of the hypothesis

that θ∗ ∈ Θ†. Confidence posteriors for which θ∗ is a real scalar (Θ∗ ⊆ R) and
the σ-field is Borel (H∗ = B (Θ∗)) are usually called confidence distributions,
each of which encodes confidence intervals of all confidence levels and hypoth-
esis tests of all simple null hypotheses (Efron, 1993). Various devices extend
confidence posteriors to cases in which their posterior probabilities only ap-
proximately match confidence levels (Schweder and Hjort, 2002; Singh, Xie and
Strawderman, 2005; Polansky, 2007; Bickel, 2012a).
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The identity between confidence posterior probabilities and levels of confi-
dence (6) clears up the misunderstanding that confidence levels and p-values
cannot be interpreted as epistemological probabilities of hypotheses given the
observed data. In fact, since P̈∗ is a Kolmogorov probability measure on pa-
rameter space, decisions made using various loss functions by the confidence
posterior action

ä = arg inf
a∈A

∫
L (θ∗, a) dP̈∗ (θ∗)

for each loss function L are coherent with each other in the senses usually
associated with Bayesian inference, whether or not P̈∗ can be derived from some
prior via Bayes’s theorem (Bickel, 2011b, 2012a).

Let P̈∗ denote the set of confidence posteriors on (Θ∗,H∗) that are under
consideration. For example, P̈∗ could be the set of a single confidence posterior,
the set of all distributions on (Θ∗,H∗) that satisfy equation (6), or, as in Bickel
(2012a), the set of two approximate confidence posteriors or the convex set of
all mixtures of the two.

The set P̈ will represent the set of distributions of θ(θ̈∗) for all P̈∗ ∈ P̈∗:

P̈ =
{
P ′′ ∈ P : θ

(
θ̈∗

)
∼ P ′′, θ̈∗ ∼ P̈∗ ∈ P̈∗

}
.

Thus, for any P̈∗ ∈ P̈∗, there is a random parameter θ̈ = θ(θ̈∗) of distribution

P̈ ∈ P̈ such that P̈ (θ̈ ∈ {θ(θ′′∗ ) : θ
′′
∗ ∈ Θ†

∗}) = P̈∗(θ̈∗ ∈ Θ†
∗) for all Θ

†
∗ ∈ H∗. P̈ will

be considered as a set of confidence posterior distributions of the focus parameter
even though more literally they are not necessarily confidence posteriors but
rather fiducial-like distributions derived from the set P̈∗ of confidence posteriors
by the laws of probability. (Hannig (2009) provides a recent review of fiducial
inference.) In the simplest case of θ̈ = θ̈∗, (Θ,H) = (Θ∗,H∗) and P̈ = P̈∗. While
confidence distributions are used here to represent frequentism in the form of
hypothesis tests and confidence intervals, P̈ can be a set of any distributions on
(Θ,H) to use as benchmarks with respect to which the posterior introduced in
the next section is intended as an improvement.

3. Framework of moderate inference

3.1. Moderate posteriors

Let P and Q denote probability distributions on (Θ,H). The information di-
vergence of P with respect to Q is defined as

I (P ||Q) =

∫
dP log

(
dP

dQ

)
(7)

if Q is absolutely continuous with respect to P and I (P ||Q) = ∞ if not, where
0 log (0) = 0 and 0 log (0/0) = 0. I (P ||Q) goes by many names in literature,
including “Kullback-Leibler information” and “cross entropy.” Viewing I (P ||Q)
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as information leads to the concept of how much information for statistical
inference would be gained by replacing a confidence posterior P ′′ ∈ P̈ with
another posterior Q ∈ P if the plausible posterior P ′ ∈ Ṗ were the physical
distribution of the parameter θ. Specifically,

I (P ′||P ′′
 Q) = I (P ′||P ′′)− I (P ′||Q) ,

as a special case of “information gain” (Pfaffelhuber, 1977), is called the infer-
ential gain of Q relative to P ′′ given P ′ (Bickel, 2011a). (The  notation is
borrowed from Topsøe (2007) to express the inferential gain as a function of
three probability distributions while conveniently recalling their unique contri-
butions.)

In analogy with equation (2), the caution κ ∈ [0, 1] is then the extent to
which a “worst-case” plausible posterior P ′ ∈ Ṗ is used for inference as opposed
to the working Bayesian posterior Ṗ in this definition of the κ-inferential gain
of Q relative to P ′′ given P ′ and Ṗ :

I
(
P ′, Ṗ ||P ′′

 Q;κ
)
= I

(
κP ′ + (1− κ) Ṗ ||P ′′

 Q
)
. (8)

The posterior distribution that has the highest κ-inferential gain in the following
sense will be used for making inferences and decisions. The moderate posterior
distribution with caution κ relative to P̈ given Ṗ and Ṗ is denoted by P̃κ and
defined by

inf
P ′′∈P̈

inf
P ′∈Ṗ

I
(
P ′, Ṗ ||P ′′

 P̃κ;κ
)
= inf

P ′′∈P̈
sup
Q∈P

inf
P ′∈Ṗ

I
(
P ′, Ṗ ||P ′′

 Q;κ
)
.

(9)

Less technically, P̃κ is the posterior distribution that maximizes the worst-case
inferential gain relative to the confidence posterior P ′′, which is in turn chosen
to minimize the maximum worst-case gain. In the case that equation (9) does
not have a unique solution, the moderate posterior is defined to be as close as
possible to the working Bayesian posterior:

P̃κ = arg inf
P ′′′∈P̃κ

I
(
Ṗ ||P ′′′

)
, (10)

where the set P̃κ of candidate moderate posteriors is defined as the set of all
distributions in P such that every member of P̃κ solves equation (9). By letting

J
(
Ṗ ||P ′′

 Q;κ
)
= inf

P ′∈Ṗ
I
(
P ′, Ṗ ||P ′′

 Q;κ
)

(11)

for any P ′′ ∈ P̈ , that set may be written as

P̃κ =

{
P ∈ P : inf

P ′′∈P̈
J
(
Ṗ ||P ′′

 P ;κ
)
= inf

P ′′∈P̈
sup
Q∈P

J
(
Ṗ ||P ′′

 Q;κ
)}

.

(12)
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The moderate posterior action with caution κ is

ãκ = arg inf
a∈A

∫
L (θ, a) dP̃κ (θ) , (13)

which defines making decisions on the basis of the moderate posterior as taking
actions that minimize its expected loss. For example, if P̈ is the only confidence
posterior under consideration, then P̈ = {P̈} and

P̃κ = arg supQ∈P

(
infP∈Ṗκ

I
(
P ||P̈  Q

))
; (14)

Ṗκ =
{
κP ′ + (1− κ) Ṗ : P ′ ∈ Ṗ

}
, (15)

which recalls equation (2). Since Ṗ ∈ Ṗκ ⊆ Ṗ , Ṗ0 = {Ṗ}, and Ṗ1 = Ṗ , the
effect of κ < 1 as opposed to κ = 1 is to replace the knowledge base Ṗ with a
subset Ṗκ containing the working Bayesian posterior Ṗ (cf. Gajdos, Tallon and
Vergnaud, 2004).

The two extreme cases of caution reduce decision making to previous frame-
works. A complete lack of caution (κ = 0) leads to the sole use of the working

Bayesian posterior for the minimization of posterior expected loss: P̃0 = Ṗ . On
the other hand, complete caution (κ = 1) leads to ignoring the working Bayesian
posterior and, in the case of a single confidence posterior, to the framework of
Bickel (2011a), in which P̃1 is called the blended posterior.

3.2. Minimum information divergence

The following fact is from Topsøe (1979); see also Pfaffelhuber (1977), Harremoës
(2007), Bickel (2011a), and especially Topsøe (2007).

Lemma 1. Given a distribution P̈ on (Θ,H), if Ṗ is convex and I(P ||P̈ ) < ∞
for all P ∈ Ṗ, then

sup
Q∈P

inf
P ′∈Ṗ

I
(
P ′||P̈  Q

)
= inf

Q∈Ṗ
I
(
Q||P̈

)
.

The resulting theorem is useful for finding P̃κ:

Theorem 1. For any κ ∈ [0, 1], if Ṗ is convex and I (P ′||P ′′) < ∞ for all

P ′ ∈ Ṗ and P ′′ ∈ P̈, then the moderate posterior P̃κ is given by equations (10)
and (15) with

P̃κ =

{
P ∈ P : inf

P ′′∈P̈
I (P ||P ′′) = inf

P ′′∈P̈
inf

Q∈Ṗκ

I (Q||P ′′)

}
. (16)

Proof. For any κ ∈ [0, 1] and P ′′ ∈ P̈, equations (11) and (14), with Lemma 1,
imply

sup
Q∈P

J
(
Ṗ ||P ′′

 Q;κ
)

= sup
Q∈P

inf
P∈Ṗκ

I (P ||P ′′
 Q) ,

= inf
Q∈Ṗκ

I (Q||P ′′)
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and thus

inf
P ′′∈P̈

sup
Q∈P

J
(
Ṗ ||P ′′

 Q;κ
)
= inf

P ′′∈P̈
inf

Q∈Ṗκ

I (Q||P ′′) .

Equation (12) thereby reduces to equation (16).

An immediate consequence is

Corollary 1. Given P̈ = {P̈}, if Ṗ is convex and I(P ′||P̈ ) < ∞ for all P ′ ∈ Ṗ,
then the moderate posterior is

P̃κ = arg inf
Q∈Ṗκ

I
(
Q||P̈

)
. (17)

Inference is also simplified when at least one of the confidence posteriors is
sufficiently close to the working Bayesian posterior:

Corollary 2. If P̈ ∩ Ṗκ is nonempty, Ṗ is convex, and I (P ′||P ′′) < ∞ for all
P ′ ∈ Ṗ and P ′′ ∈ P̈, then the moderate posterior is the confidence posterior that
is closest to the working Bayesian posterior in the sense that

P̃κ = arg inf
P ′′∈P̈∩Ṗκ

I
(
Ṗ ||P ′′

)
. (18)

Proof. For any P ′′ ∈ P̈ ∩ Ṗκ, equation (7) implies both infQ∈Ṗκ

I (Q||P ′′) =

I (P ′′||P ′′) = 0 and I (P ||P ′′) > 0 for all P ∈ P\(P̈ ∩ Ṗκ) (e.g., Cover and
Thomas, 2006). Thus, by Theorem 1,

P̃κ =
{
P ∈ P : I (P ||P ′′) = 0, P ′′ ∈ P̈ ∩ Ṗκ

}
= P̈ ∩ Ṗκ,

which was assumed to be nonempty. Equation (18) then follows from equa-
tion (10).

Remark 1. Unless κ = 0, the condition that P̈∩Ṗκ be nonempty holds whenever
the plausible posteriors are sufficiently unrestricted. The most important such
setting for applications is a complete lack of constraints (Ṗ = P), in which case

P̈ ∩ Ṗκ = P̈ ∩
{
κP + (1− κ) Ṗ : P ∈ P

}

and, if P is convex and unbounded, then P̈ ∩ Ṗκ = P̈ ∩P = P̈ for any κ ∈ (0, 1].

4. Examples

The first example of this section addresses the Ellsberg Paradox of the Intro-
duction.

Example 2. Example 1, continued. Suppose the agent may choose an action
after observing the colors of one or more balls independently drawn from the



696 D.R. Bickel

urn with replacement. Let x and n denote the numbers of black and non-red
balls drawn, respectively. Since the proportion of balls that are red is known
to be 1/3, nothing is learned from any red balls drawn, and x = 0, 1, . . . is an
outcome of Pθ, the 〈n, θ〉-binomial distribution, where θ is the proportion of the
non-red balls that are black. Based on standard confidence intervals, the set P̈
of confidence posteriors is the set of distributions on ([0, 1] ,B ([0, 1])) such that
every P̈ ∈ P̈ and θ̈ ∼ P̈ satisfies

Pθ (X > x) ≤ P̈
(
θ̈ ≤ θ

)
≤ Pθ (X ≥ x)

for all θ ∈ [0, 1] (cf. Bickel, 2012a). Let beta (β1, β2), the 〈β1, β2〉-beta distri-
bution, be the working prior of θ. That is a conjugate prior, and Ṗ is the
〈β1 + x, β2 + n− x〉-beta distribution. With Ṗ = P as the set of all distribution
on ([0, 1] ,B ([0, 1])), Theorem 1 applies, implying that the moderate posterior
is Ṗ if, for all θ ∈ [0, 1],
{
Pθ (X > x) ≤ κP ′

(
θ̈ ≤ θ

)
+ (1− κ) Ṗ

(
θ̈ ≤ θ

)
≤ Pθ (X ≥ x) : P ′ ∈ Ṗ

}
6= ∅.

Otherwise, the moderate posterior is the member of P̈ that is closest to Ṗ in
the sense of Theorem 1.

A simpler approach first transforms the set of confidence posteriors into a
single posterior for application of Corollary 1. Any function carrying out such a
transform from a set of distributions to a single, representative distribution is
called an inference process (Paris, 1994; Bickel, 2011a), representation (Weich-
selberger, 2001, p. 258; Augustin, 2002), or reduction (Bickel, 2012a). The one
that corresponds to the usual mid-p-values yields

P̈ =
{(

P̈> + P̈≥

)
/2
}

(19)

as the single-member set of confidence posteriors to be used in place of P̈, where
P̈> and P̈≥ are defined by

P̈>

(
θ̈ ≤ θ

)
= Pθ (X > x) ;

P̈≥

(
θ̈ ≤ θ

)
= Pθ (X ≥ x)

for all θ ∈ [0, 1]. For concreteness, suppose the physical distribution of urns used
in this type of game is such that there is symmetry between black and yellow
balls and that extreme proportions cannot be more frequent than less extreme
proportions. Translated to the beta-binomial model, those constraints are equiv-
alent to using {beta (β′, β′) , β′ ≥ 1} as the set of plausible prior distributions
of the binomial parameter. Let the working prior distribution of the binomial
parameter be beta (5, 5). Corollary 1 gives P̃κ = Ṗκ,β(κ), where

Ṗκ,β′ = κbeta (β′ + x, β′ + n− x) + (1− κ) beta (5 + x, 5 + n− x) ;

β (κ) = arg infβ′≥1 I
(
Ṗκ,β′ ||

(
P̈> + P̈≥

)
/2
)
.



Degree of caution in inference 697

Fig 1. Optimal strength β (κ) of the physical prior versus κ, the caution parameter. See

Example 2.

Thus, β (κ) measures the strength of the first component’s optimal prior. As-
suming further that a single black ball is drawn (n = x = 1), β (κ) is plotted
as a function of κ in Figure 1. The phase transition seen at κ ≈ 0.73 is due to
the β′ ≥ 1 constraint. The actions that maximize the expected utility are found
from the moderate-posterior predictive probability that the next ball drawn will
also be black, which is 2/3 of

∫
θdP̃κ (θ), the expectation value of the binomial

parameter, with all expectation values defined with respect to the moderate
posterior P̃κ (Figure 2). Since that probability is uniformly greater than the
predictive probability that the next ball is yellow, actions II and IV are optimal
for all κ ∈ [0, 1].

The next two examples involve the continuous, scalar parameters typical of
point and interval estimation (Θ = R). For simplicity, each uses only a single
confidence posterior (P̈ = {P̈}).

Example 3. Pθ,1 is the normal distribution of mean θ and variance 1, i.e.,
X ∼ N(θ, 1), and X = x is observed. Further, θ ∼ N

(
µ, σ2

)
with unknown µ

and σ of known lower and upper bounds: µ ∈
[
µ, µ

]
; σ ∈ [σ, σ]. For generality,

the bounds are extended real numbers: µ ∈ {−∞}∪R, σ ∈ [0,∞), µ = R∪{∞},

σ = [0,∞) ∪ {∞}. The intervals
[
µ, µ

]
and [σ, σ] are open only as required to

ensure that µ, log σ ∈ R in the presence of infinite bounds or σ = 0, e.g., µ =

0, µ = ∞ =⇒
[
µ, µ

]
= [0,∞). The working prior is N

(
µ̇, σ̇2

)
for some given
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Fig 2. Moderate-posterior probability of drawing a black ball versus κ, the caution parameter.

See Example 2.

µ̇ ∈
[
µ, µ

]
and σ̇ ∈ [σ, σ]. By Bayes’s theorem (e.g., Carlin and Louis, 2009),

Ṗ = N

(
µ̇+ σ̇2x

1 + σ̇2
,

σ̇2

1 + σ̇2

)
;

Ṗ =

{
N

(
µ+ σ2x

1 + σ2
,

σ2

1 + σ2

)
: µ ∈

[
µ, µ

]
, σ ∈ [σ, σ]

}
.

By contrast, P̈ is N (x, 1), not depending on any prior. This P̈ is a genuine
confidence posterior (§2.3), as can be verified from the fact that P̈ (θ̈ ≤ θ) =

Pθ,1 (X ≥ x) for all θ ∈ R and x ∈ R. The performance of any estimator θ̂ of

θ may be quantified by its squared-error prediction loss: L(θ, θ̂) = (θ̂ − θ)2. By
equation (1), the κCG estimate is

ȧκ = arg inf
θ̂∈R

(
κ sup

P ′∈Ṗ

∫ (
θ̂ − θ

)2
dP ′ (θ) + (1− κ)

∫ (
θ̂ − θ

)2
dṖ (θ)

)

= arg inf
θ̂∈R

(
κ

[∫ (
θ̂ − θ

)2
dP

µ(θ̂),σ (θ)

]
+ (1− κ)

∫ (
θ̂ − θ

)2
dṖ (θ)

)
,

where µ(θ̂) = µ if |θ̂−µ| > |θ̂−µ| and µ(θ̂) = µ otherwise; P
µ(θ̂),σ = N(µ(θ̂), σ2).

If σ = 0, P
µ(θ̂),0 is the Dirac measure at µ(θ̂), implying that

ȧκ = arg inf
θ̂∈R

(
κ
(
θ̂ − µ

(
θ̂
))2

+ (1− κ)

∫ (
θ̂ − θ

)2
dṖ (θ)

)
,
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which only has a solution if µ > −∞ and µ < ∞. Those restrictions are not
needed for the estimate based on the moderate posterior. Since

Ṗκ =

{
κN

(
µ+ σ2x

1 + σ2
,

σ2

1 + σ2

)
+ (1− κ) Ṗ : µ ∈

[
µ, µ

]
, σ ∈ [σ, σ]

}
, (20)

Corollary 1 entails

P̃κ = arg inf
µ∈[µ,µ],σ∈[σ,σ]

I

(
N

(
µ+ σ2x

1 + σ2
,

σ2

1 + σ2

)
||N(x, 1)

)

= arg inf
µ∈[µ,µ],σ∈[σ,σ]

(
log

1 + σ2

σ2
+

σ2

1 + σ2
+

(
µ− x

1 + σ2

)2
)
,

with the second equality from, e.g., Kullback (1968, p. 189). Substituting P̃κ

into equation (13) gives the moderate-posterior-mean as the estimate of θ:

ãκ = arg inf
θ̂∈R

∫ (
θ̂ − θ

)2
dP̃κ (θ) =

∫
θdP̃κ (θ) ,

which is unique even if µ = −∞, µ = ∞, σ = 0, and σ = ∞.

The next example drops the parametric assumptions about the plausible prior
distributions.

Example 4. X ∼ N(θ, 1) with no information about θ except that θ ∈ R = Θ,
that X = x is observed, and that Ṗ is the working Bayesian posterior distri-
bution of θ. It follows that Ṗ is the set of all distributions on the Borel space
(R,B (R)). Again under quadratic loss, by equation (1), the κCG estimate is

ȧκ = arg inf
θ̂∈R

(
κ sup

P ′∈Ṗ

∫ (
θ̂ − θ

)2
dP ′ (θ) + (1− κ)

∫ (
θ̂ − θ

)2
dṖ (θ)

)
,

which is the posterior mean
∫
θdṖ (θ) if κ = 0 but which has no unique value

for any other value of κ since supP ′∈Ṗ

∫
(θ̂ − θ)2dP ′ (θ) = ∞ for any θ̂. By

contrast, equation (13) specifies the unique moderate-posterior estimate given
P̈ = N(x, 1):

ãκ = arg inf
θ̂∈R

∫ (
θ̂ − θ

)2
dP̃κ (θ) =

∫
θdP̃κ (θ) ,

where, provided that κ > 0, P̃κ = P̈ according to Corollary 2 since P̈ ∈ P = Ṗκ,
leading to

ãκ =

∫
θdP̈ (θ) ,

the frequentist posterior mean.

The last example involves a discrete focus parameter, as is typical of hypoth-
esis testing and model selection applications.
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Example 5. Consider the indicator parameter θ defined such that θ = 0 if
the null hypothesis about θ∗∗ is true (θ∗∗ = 0) and θ = 1 if the alternative
hypothesis about θ∗∗ is true (θ∗∗ 6= 0). Equivalently, in terms of θ∗ = |θ∗∗|,
θ = 0 if θ∗ = 0 and θ = 1 if θ∗ > 0. If Ṗ is a working Bayesian posterior for θ∗∗,
then Ṗ (θ̇ = 0) is the corresponding working Bayesian posterior probability that
the null hypothesis is true. Let p(1) and p(2) denote observed p-values of the
one-sided test of θ∗ = 0 versus θ∗ > 0 and thus of the two-sided test of θ∗∗ = 0
versus θ∗∗ 6= 0. In this example, p(1) (x) ≤ p(2) (x), perhaps because p(2) (x) is
based on a test that makes weaker parametric assumptions than that of p(1) (x).

For i = 1, 2, let P̈
(i)
∗ denote the confidence posterior for θ∗ defined given some

x ∈ X such that

P̈
(i)
∗

(
θ̈∗ ≤ θ∗

)
= Pθ∗,λ∗

(
p(i) (X) ≤ p(i) (x)

)

for all θ∗ ∈ Θ∗ and λ∗ ∈ Λ∗, where the dependence of P̈
(i)
∗ on x is suppressed,

in Section 2.3. Since p(i) (X) ∼ U(0, 1) under the null hypothesis that θ∗ = 0, it
follows that

P̈
(i)
∗

(
θ̈∗ ≤ 0

)
= P̈

(i)
∗

(
θ̈∗ = 0

)
= P0,λ∗

(
p(i) (X) ≤ p(i) (x)

)
= p(i) (x) , (21)

i.e., the confidence posterior probability of the null hypothesis is equal to the p-
value (Bickel, 2011c,a); cf. van Berkum, Linssen and Overdijk (1996). With θ̈ = 0
if θ̈∗ = 0 and θ̈ = 1 if θ̈∗ 6= 0, equation (21) yields P̈ (i)(θ̈ = 0) = p(i) (x). From
widely applicable conditions for two-sided hypothesis testing (Sellke, Bayarri

and Berger, 2001; Bickel, 2011a) and with some Ṗ
plaus

∅ ∈ (0, 1) given as the
lower bound of the prior probabilities of the null hypothesis and the restriction
that no such probability is 1, the knowledge base is

Ṗ =
{
P ′ ∈ P : Ṗ

(
θ̇ = 0

)
= Ṗ ({0}) ≤ P ′ ({0}) < 1

}
,

the set of plausible posteriors, the distributions on
(
{0, 1} , 2{0,1}

)
with

Ṗ ∅ = Ṗ
(
θ̇ = 0

)
=

(
1 +

(
1− Ṗ

plaus

∅

Ṗ
plaus

∅ ep(2) (x) log
[
1/p(2) (x)

]

))−1

∧ Ṗ
plaus

∅

as the lower bound of the plausible posterior probability of the null hypothesis,
where θ̇ ∼ Ṗ . That lower bound is the greater of the two lower bounds found
by separately applying the methodology of Sellke, Bayarri and Berger (2001) to
p(1) (x) and p(2) (x). (The binary operator ∧ in the above equation means “the
minimum of,” and ∨ will similarly stand for “the maximum of.”) Since Theorem

1 applies, the moderate posterior P̃κ is given by equation (10) with

P̃κ =
{
P ∈ P : I

(
P ||P̈ (1)

)
∧ I
(
P ||P̈ (2)

)
= I

(
P̃ (1)
κ ||P̈ (1)

)
∧ I
(
P̃ (2)
κ ||P̈ (2)

)}

=
{
P̃ (i)
κ : I

(
P̃ (i)
κ ||P̈ (i)

)
= I

(
P̃ (1)
κ ||P̈ (1)

)
∧ I
(
P̃ (2)
κ ||P̈ (2)

)
, i ∈ {1, 2}

}
,
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where P̃
(i)
κ = arg infQ∈Ṗκ

I
(
Q||P̈ (i)

)
; Ṗκ = {κP ′ + (1− κ) Ṗ : P ′ ∈ P , Ṗ ∅ ≤

P ′ (θ = 0) < 1}. More simply,

P̃κ =





P̃
(1)
κ if I

(
P̃

(1)
κ ||P̈ (1)

)
< I

(
P̃

(2)
κ ||P̈ (2)

)

P̃
(2)
κ if I

(
P̃

(1)
κ ||P̈ (1)

)
> I

(
P̃

(2)
κ ||P̈ (2)

)

P̃
(1)
κ if I

(
P̃

(1)
κ ||P̈ (1)

)
= I

(
P̃

(2)
κ ||P̈ (2)

)
and I

(
Ṗ ||P̃

(1)
κ

)
≤ I

(
Ṗ ||P̃

(2)
κ

)

P̃
(2)
κ if I

(
P̃

(1)
κ ||P̈ (1)

)
= I

(
P̃

(2)
κ ||P̈ (2)

)
and I

(
Ṗ ||P̃

(1)
κ

)
≥ I

(
Ṗ ||P̃

(2)
κ

)
.

Letting Ṗ∅ = Ṗ (θ̇ = 0) and letting θ̃ denote the focus parameter according to

the moderate posterior (θ̃ ∼ P̃κ),

P̃ (i)
κ = arg inf

Q∈Ṗκ

∑

j=0,1

Q (θ = j) log
Q (θ = j)

P̈ (i) (θ = j)

P̃ (i)
κ

(
θ̃ = 0

)

= arg inf
Q∅∈{κP∅+(1−κ)Ṗ∅:P∅∈[Ṗ∅

,1)}
Q∅ log

Q∅

p(i) (x)
+ (1−Q∅) log

1−Q∅

1− p(i) (x)

= arg inf
Q∅∈[κṖ∅

+(1−κ)Ṗ∅,κ+(1−κ)Ṗ∅)
Q∅ log

Q∅

p(i) (x)
+ (1−Q∅) log

1−Q∅

1− p(i) (x)

=





κṖ ∅ + (1− κ) Ṗ∅ if p(i) (x) < κṖ ∅ + (1− κ) Ṗ∅

p(i) (x) if κṖ ∅ + (1− κ) Ṗ∅ ≤ p(i) (x) ≤ κ+ (1− κ) Ṗ∅

κ+ (1− κ) Ṗ∅ if p(i) (x) > κ+ (1− κ) Ṗ∅.

(22)

Since P̃κ ∈ P̃κ,

P̃κ

(
θ̃ = 0

)

∈





{
κṖ ∅ +(1−κ)Ṗ∅

}
if p(1)(x) ≤ p(2)(x) < κṖ ∅ + (1− κ)Ṗ∅

{
p(2)(x)

}
if p(1)(x)<κṖ ∅ +(1−κ)Ṗ∅ ≤ p(2)(x)≤ κ+(1−κ)Ṗ∅

{
p(1)(x), p(2)(x)

}
if κṖ ∅ +(1−κ)Ṗ∅ ≤ p(1)(x)≤ p(2)(x)≤ κ+(1−κ)Ṗ∅

{
p(1)(x)

}
if κṖ ∅ +(1−κ)Ṗ∅ ≤ p(1)(x)≤ κ+(1−κ)Ṗ∅ <p(2)(x)

{
κ+ (1− κ)Ṗ∅

}
if p(2)(x) ≥ p(1)(x) > κ+ (1− κ)Ṗ∅,

(23)

from which the extreme condition p(1) (x) < κṖ ∅+(1− κ) Ṗ∅ < κ+(1− κ) Ṗ∅ <
p(2) (x) is omitted for brevity. In the case of no caution, the working Bayesian

posterior probability is recovered: P̃0(θ̃ = 0) = Ṗ (θ̇ = 0), which does not depend
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on p (x). More interestingly, the case of complete caution leads to

P̃1

(
θ̃ = 0

)
∈





{
Ṗ
(
θ̇ = 0

)}
if p(1) (x) ≤ p(2) (x) < Ṗ ∅

{
p(2) (x)

}
if p(1) (x) < Ṗ ∅ ≤ p(2) (x)

{
p(1) (x) , p(2) (x)

}
if Ṗ ∅ ≤ p(1) (x) ≤ p(2) (x) ,

(24)

which has no dependence on Ṗ (θ̇ = 0). The simplifying effect of considering
only a single p-value is evident from using p(1) (x) = p(2) (x) in the formulas

(23) and (24). For example, expression (24) results in a unique P̃1(θ̃ = 0) equal
to the blended posterior probability of Bickel (2011a). When formulas (23) and

(24) say no more than P̃κ(θ̃ = 0) ∈
{
p(1) (x) , p(2) (x)

}
, equation (10) ensures

the uniqueness of the moderate posterior probability by equating it with the
p-value closest to the working Bayesian posterior probability:

P̃κ = arg inf
P ′′′∈{p(1)(x),p(2)(x)}

I
(
Ṗ ||P ′′′

)
= P̈ (̃ı);

ı̃ = arg inf
i∈{1,2}


Ṗ

(
θ̇ = 0

)
log

Ṗ (θ = 0)

p(i) (x)
+ Ṗ

(
θ̇ = 1

)
log

Ṗ
(
θ̇ = 1

)

1− p(i) (x)


 ,

which is a special case of Corollary 2. In this way, the caution parameter, the
working Bayesian posterior, and the constraints on the plausible posteriors to-
gether overcome the dilemma of whether to use the more conservative p-value
or the less conservative p-value.

5. Extending the caution framework

5.1. Variations of the framework

The above framework for balancing Bayesian and frequentist approaches to in-
ference does not apply to all situations encountered in applications. The various
permutations of the Bayesian and confidence posteriors as the working posterior
Ṗ , used exclusively in the absence of caution, and a benchmark posterior P̈ , over
which inference will be improved as much as possible, in equations (14) and (17)
lead to four versions of the proposed approach:

1. Ṗ is a Bayesian posterior in Ṗ , and P̈ is a confidence posterior. This version
yields the balance between Bayesian and frequentist inference defined in
Section 3 and illustrated in Section 4.

2. Ṗ is a confidence posterior, and P̈ is a Bayesian posterior in Ṗ . The
potential uses of this reversal are unclear since it would paradoxically lead
to dependence on a single Bayesian posterior to the extent of the caution.

3. Ṗ = P̈ , where Ṗ is a Bayesian posterior in Ṗ . Using the same Bayesian pos-
terior as both the working posterior and the benchmark posterior is attrac-
tive in the absence of reliable confidence intervals or p-values from which a
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Table 3

Settings for three versions of the proposed framework

Setting Ṗ P̈ or P̈

Bayes and frequentist approaches apply Bayes posterior confidence posterior
no confidence intervals or p-values Bayes posterior

continuous θ & only a set of Bayes posteriors confidence posterior

confidence posterior could be constructed. Thus, this version extends the
scope of the framework across the domains to which Bayesian methods
apply. However, this version becomes trivial whenever equation (17) holds

according to Corollary 1, for in that case, P̃κ = arg infQ∈Ṗκ

I(Q||Ṗ ) = Ṗ

for all κ ∈ [0, 1] since Ṗ ∈ Ṗκ necessarily. In other words, the Bayesian
posterior would be used for inference irrespective of the degree of caution
and the knowledge base.

4. Ṗ = P̈ , where P̈ is a confidence posterior. Using the same confidence
posterior as both the working posterior and the benchmark posterior is
useful when a set Ṗ of plausible posteriors can be specified but when no
member of that set can be singled out as special. In many cases involving
a continuous parameter θ, no such member can be derived from the knowl-
edge base Ṗ without imposing arbitrary procedures such as averaging over
the members with respect to some measure chosen for convenience. That
will be explained in Section 5.2, where the case of two unequal confidence
posteriors will also be considered.

For simplicity, the versions are described as if P̈ = {P̈}, but they also pertain
to a set P̈ of multiple benchmark posteriors that define the moderate posterior
P̃κ according to equation (10). The three most applicable of those versions are
summarized in Table 3.

Generalizing beyond those versions, the working posterior Ṗ can be any pos-
terior distribution that would be used exclusively in the absence of caution,
whereas when there is caution, inferences are made with the goal that they im-
prove upon those that would be made using any other posterior distribution
in P̈. The application at hand can help determine which of those distributions
is a Bayesian posterior and which is some other type of distribution such as a
confidence distribution. For example, given a working posterior Ṗ from a proper
prior, a posterior from an improper prior could be used as the benchmark pos-
terior P̈ in the absence of a suitable confidence posterior (cf. Bickel, 2011a).

5.2. Inference without a working Bayesian posterior

The more interesting of the two widely applicable variations of the framework
is that in which both Ṗ and P̈ are the same confidence posterior. Thus, some
implications of using a single confidence posterior simultaneously as the working
posterior and as the benchmark posterior (Ṗ = P̈ ) merit noting. First, complete
caution (κ = 1) leads to ignoring the role of the confidence posterior as a work-
ing posterior and thereby collapses to the blended inferences of Bickel (2011a).
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Second, when κ < 1 and the confidence posterior is not a plausible posterior
(P̈ /∈ Ṗ), the moderate posterior may not be a plausible posterior (P̃κ /∈ Ṗ).

In fact, whenever sufficient conditions for Corollary 1 are met, P̃κ will be plau-
sible only if P̈ is plausible. That suggests the use of κ = 1 in the absence of
a working Bayesian posterior in order to avoid excessive dependence on P̈ at
the expense of Ṗ , the knowledge base. On the other hand, allowing P̃κ /∈ Ṗ
makes P̃κ less dependent on the precise borders of Ṗ , and this may be desirable
to the extent that such borders are uncertain or subjectively specified. Third,
when P̈ ∈ Ṗ , the moderate posterior is simply equal to the confidence posterior
(P̃κ = P̈ ) under the sufficient conditions for equation (17) given by Corollary 1.
The following examples illustrate the second and third implications.

Example 6 (Variation of Example 4). This example is trivial since Ṗ ∈ P ,

Ṗ = P̈ , and Corollary 1 entail P̃κ = P̈ .

More generally, P̈ ∈ Ṗ and Ṗ = P̈ imply P̃κ = P̈ by Corollary 2.

Example 7 (Variation of Example 5). Because P̈ (θ̈ = 0) = p (x), the identity
Ṗ = P̈ yields Ṗ∅ = p (x), reducing equation (22) to

P̃κ

(
θ̃ = 0

)
=

{
κṖ ∅ + (1− κ) p (x) if p (x) < Ṗ ∅

p (x) if p (x) ≥ Ṗ ∅.

Re-expressing this as P̃κ(θ̃ = 0) = [κṖ ∅ + (1− κ) p (x)] ∨ p (x) facilitates com-

parison with the equation P̃1(θ̃ = 0) = Ṗ ∅ ∨ p (x) used in the blended inference

framework (Bickel, 2011a). Therefore, κ ∈ [0, 1) entails that P̃κ(θ̃ = 0) is less
than the lower bound Ṗ ∅ whenever p (x) < Ṗ ∅. That would be clearly unaccept-

able if Ṗ
plaus

∅ is scientifically established, but if Ṗ
plaus

∅ is instead highly uncertain

or subjectively assessed, then P̃κ(θ̃ = 0) can bypass Ṗ ∅ as warranted.

An alternative to the above approach in the absence of a specified Ṗ is to
apply the strategy of Section 3 with Ṗ as a function of Ṗ, following Gajdos
(2008). Examples of functions that transform a set of distributions to a sin-
gle distribution include the Steiner point (Gajdos, 2008), the arithmetic mean
(“center of mass,” e.g., (19)), and the maximum entropy distribution (Paris,
1994). In the continuous-parameter case, such functions require a base measure
for partitioning.

There is no need to impose an arbitrary base measure if two different con-
fidence posteriors Ṗ and P̈ are under consideration (Ṗ 6= P̈ ). Using them as
the working posterior and the benchmark posterior in equations (14) and (17)
would be most appropriate when Ṗ represents a newer or relatively untested
procedure and when P̈ corresponds to a better established or more thoroughly
tested procedure. More generally, equation (10) specifies how to apply a working
confidence posterior Ṗ with a set P̈ of benchmark confidence posteriors.
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6. Discussion

The featured moderate-posterior methodology has been contrasted with the
simpler κCG methodology. As Examples 3 and 4 illustrated under quadratic
loss, the former can yield unique actions in a wide variety of settings in which
the latter cannot. Using CG minimaxity (κ = 1), uniqueness has been achieved
under quadratic loss by restricting the action space to finite bounds (Betrò
and Ruggeri, 1992) and by similarly restricting the parameter space Θ (Bay-
ati Eshkaftaki and Parsian, 2011). The moderate-posterior estimators did not
require such restrictions.

The main advantage of the moderate-posterior framework is that it provides
first principles from which a statistician may derive a Bayesian analysis, a fre-
quentist analysis, or a combination of the two, depending on the chosen level of
caution and on the quality of prior information. This allows the caution level to
be precisely reported with the resulting statistical inferences. In addition, the
caution level may be determined by the needs of an organization or collaborating
scientist rather than by the personal attitude of the statistician.

Various factors may be considered in choosing the level of caution. For ex-
ample, more caution with Bayesian inference may be warranted when the con-
fidence posterior represents a frequentist procedure that has stood the test of
time than when it represents a new frequentist procedure based on questionable
assumptions. The caution level could then be interpreted as the pre-data degree
of reluctance an agent has in modifying the frequentist procedures encoded in
the confidence posterior.

The moderate-posterior framework of Section 3 is general enough to incor-
porate conflicting frequentist approaches, as seen in Example 5. For additional
generality, Section 5.2 provides ways to modify the framework for situations
in which any dependence on a subjective or guessed Bayesian prior would be
undesirable.

Another general approach for such situations is that of a three-player game
against a player that chooses the true distribution from Ṗ and against a player
that chooses a competing posterior from P̈ (Bickel, 2012b). Since the framework
of the present paper takes a minimax strategy, it can be formulated as a two-
player game against the former player (see Topsøe, 1979) in order to relate it to
the three-player strategy.

In other situations, any dependence of inference on the level of caution would
be undesirable. Provided that there is at least a little caution, the use of a
sufficiently broad set of plausible posteriors under the unmodified framework
(§3) eliminates any other dependence on the degree of caution (Remark 1).

That most applications require more complicated models than those of the
examples raises the question of implementing algorithms for computing the mod-
erate posterior. Fortunately, under the usual conditions, those specified in Theo-
rem 1, the moderate posterior is among those that the maximize the differential
entropy −I (Q||P ′′) with respect to a confidence posterior or other benchmark
posterior as the base measure P ′′; see Grünwald and Dawid (2004). Thus, in
most cases, the moderate posterior can be found by one of the many strategies
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available in the vast literature on maximum entropy and minimum information
divergence. (A key difference between the maximum entropy approach of Theo-
rem 1 and that of generating default priors (Jaynes, 2003) is that the moderate
posterior must be defined in terms of posteriors rather than priors since not all
confidence posteriors have corresponding priors.) For cases in which the con-
ditions of Theorem 1 do not hold, strategies proposed by Topsøe (1979) and
Topsøe (2007) for finding supQ∈P infP ′∈Ṗ I(P ′||P̈  Q) may prove useful.
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