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Abstract: A popular model selection approach for generalized linear mixed-
effects models is the Akaike information criterion, or AIC. Among others,
[7] pointed out the distinction between the marginal and conditional infer-
ence depending on the focus of research. The conditional AIC was derived
for the linear mixed-effects model which was later generalized by [5]. We
show that the similar strategy extends to Poisson regression with random
effects, where conditional AIC can be obtained based on our observations.
Simulation studies demonstrate the usage of the criterion.
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1. Introduction

Generalized linear models (GLM) are powerful modelling tools that have gained
popularity in statistics. It has wide applications in medical studies, pattern clas-
sification, sample surveys, etc. The scope of GLM can be greatly expanded by
the incorporation of random effects. For example, in typical longitudinal stud-
ies, a model with random effects not only models individual characteristics, but
attempts to extrapolate to the entire population as well. It takes into account
both within cluster and between cluster variations in the study. Model selection
in GLM is typically achieved using AIC or BIC combined with step-wise proce-
dures. With fixed-effects models, the definition of AIC is straightforward using
the likelihood penalized by a term that depends on the number of parameters.
When random effects come into play, it is not entirely clear how the number of
parameters in the model should be defined. Based on other previous works such
as [1] and [3], [7] made a distinction between marginal and conditional inference
and provided a formal definition of conditional Akaike information, cAI, which
gives a theoretical justification for some previous approaches. They derived an
unbiased estimator of cAI, called conditional AIC or cAIC, when the covariance
matrix of random effects is known. [5] derives a more general cAIC that dis-
penses with such strong assumptions. In [7], the definition of cAI was given for
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general mixed-effects models but the unbiased estimator was only derived for
linear mixed-effects models. A general approach of getting an unbiased estima-
tor of cAI for generalized linear mixed-effects models (GLMM) seems to be out
of reach. In this note, we propose an unbiased estimator of cAI for Poisson re-
gression with random effects. The nature of Poisson regression is very different
from the linear model since the responses are discrete. However, it turns out
unbiased cAIC exists although it is derived in a different way.

Recently, [2] has extended cAIC to generalized linear and proportional haz-
ards models. Although the class of problems considered by them is much more
general, their proposal is based on asymptotic considerations and in particular
they show asymptotic unbiasedness of cAIC when both the number of clusters
and cluster sizes go to infinity. They also need to assume asymptotic normality
of the fixed and random coefficients estimators. Our method is based on finite
sample calculations and the cAIC derived is exactly unbiased.

2. Conditional AIC for count data

Suppose we have some count responses {yi}, i = 1, . . . ,m from m clusters that
we want to model in relation to covariates Xi and Zi, with yi an ni × 1 vector
from cluster i, and Xi,Zi are ni × p and ni × q matrices associated with fixed
and random effects respectively. We use Poisson GLMM with the canonical link:

yi ∼ Pois(µi) (2.1)

log µi = Xiβ + Zibi, bi ∼ N(0, G),

where β is a p × 1 vector of fixed effects and bi is a q × 1 vector of random
effects following a mean zero Gaussian distribution with unknown covariance
matrix G. The total number of observations is thus N =

∑m

i=1 ni. Let θ be
the population parameters in the model, including β and the parameters in G.
The marginal likelihood is g(y|θ) =

∫

g(y|b, θ)g(b|G)db where g(y|b, θ) is the
Poisson likelihood conditional on the random effects and g(b|G) is the density
of the random effects. Sometimes it is more convenient to represent (2.1) in the
condensed form

y ∼ Pois(µ)

log µ = Xβ + Zb,

where y = (yT1 , . . . , y
T
m)T is an N × 1 vector of count responses, X = (XT

1 , . . . ,
XT

m)T , Z = diag(Z1, . . . , Zm) and b = (bT1 , . . . , b
T
m)T .

In marginal inference, the focus is on the population parameters and the
random effects are just a mechanism for modelling the correlations within the
clusters. The standard AIC being used refers to this case and is called marginal
AIC, mAIC, by [7], defined by −2 log g(y|θ̂(y))+ 2K, where K is the dimension
of θ. This penalty term is there to correct the bias caused by using the same data
to estimate θ as well as to evaluate the marginal likelihood g(y|θ̂). The AIC is de-

signed to approximate the Akaike information, AI = −2Ef(y)Ef(y∗) log g(y
∗|θ̂),
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where y∗ is an independent replicate of y coming from the same true distribution
f(y), which might not be contained within the family defined by (2.1).

In conditional inference, the focus is on the cluster and the estimation of the
random effects is of interest. The prediction in this case refers to new responses
with the same clusters. Suppose the true distribution of y is f(y, u) = f(y|u)p(u)
where u is the true random effects with density p(u). Following [7], the condi-
tional AI is naturally defined as

cAI = −2Ef(y,u)Ef(y∗|u) log g{y
∗|θ̂(y), b̂(y)),

where y∗ is independent of y, generated from the same conditional distribution
f(·|u). Similar to AI, cAI cannot be directly calculated since the true distribution
f is unknown. For linear mixed-effects models, unbiased estimators were derived
in [7] and [5]. No unbiased estimator has been proposed for other GLMM to our
best knowledge. The following theorem gives an unbiased estimator of cAI for
Poisson regression, and the proof is given in the Appendix.

Theorem 2.1. Assume that the count responses have the true distribution
y ∼ Pois(µ0), where µ0 = (µ01, . . . , µ0N )T is the mean of the Poisson dis-
tribution and depends on some covariates as well as the random effects u. The
data are modelled by (2.1) with conditional likelihood denoted by g(y|θ, b). For

any estimator θ̂(y) and b̂(y), an unbiased estimator of the cAI is

cAIC = −2 log g(y|θ̂, b̂) + 2K,

where K is given by

N
∑

j=1

{

yj log[µ̂j(y)]− yj log[µ̂j(y
yj−1)]

}

µ̂j(y) is the fitted value of µj based on data y, y(yj−1) is the same as y except its
j−th component is replaced by yj − 1, and yj log[µ̂j(y

(yj−1))] = 0 when yj = 0
by convention.

Remark 2.1. Although the derivation of the unbiased estimator for cAI is dif-
ferent from the linear model, with the latter derived by integration by parts [5],
the results have some resemblance with each other. For linear models, K is given
by

∑

j ∂µ̂j/∂yj and the partial derivatives are estimated by finite difference. Our
K for Poisson regression bares the similarity in that it depends on the difference
between µ̂j and µ̂j(y

(yj−1)), the fitted responses after perturbing the original
observations.

Remark 2.2. In Theorem 2.1, we only need to assume that the true model is
in the Poisson family with means depending on some random effects u, which
might also be different from the modelled random effects b. Thus the true model
does not have to be included in the candidate model family. Besides, we are not
assuming anything about the estimators θ̂ and b̂ and they can be any reasonable
estimators used in the literature.
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Table 1

Comparison of bias correction BC with its unbiased estimate, K, based on 500 sets
of simulated data

ni σb BC K
5 0.125 6.87 6.53
15 0.125 10.35 10.43
5 0.25 9.18 9.09
15 0.25 11.69 11.45
5 0.5 10.19 10.31
15 0.5 11.59 11.14

3. Simulation study

We conducted some simulations to investigate the properties of our unbiased
cAIC estimator and demonstrate the difference between marginal and condi-
tional inference. We simulate data from model (2.1) with a random intercept:

logµik = β0 + β1xk + bi, i = 1, . . . ,m = 10, k = 0, . . . , ni,

where β0 = 1, β1 = 0.2, xk = k and bi ∼ N(0, σ2
b ). In our simulation, we

consider ni = 5 and ni = 15 with σb = 0.125, 0.25 and 0.5. For each of the six
specifications, 500 data sets are generated. We compare the cAIC with the true
bias, BC, defined by

BC = Ef(y,u) log g(y|θ̂, b̂)− Ef(y,u)Ef(y∗|u) log g(y
∗|θ̂, b̂),

which is estimated by simulation with another independent 500 sets of y∗’s
generated from the true conditional distribution f(·|u) that shares common
random effects u with current responses.

The results are shown in Table 1. The estimated biases are close to the
true value. In general, the bias correction (as well as its estimate K) increases
with the variance for the random effects. The same comparison can be made
for mAIC and also for fixed-effects models, but we found in our simulations
that the estimator K in those cases is very close to the number of population
parameters and there appears to be no advantages of using our estimator which
only increases the computational burden.

To illustrate the differences between marginal and conditional inference, we
use the same setup as before with (β0, β1) = (1, 0.2), ni = 5, σb = 0.125, 0.25 and
0.5. Laplace approximation is used to approximate the marginal likelihood in
the calculation of mAIC, for which the bias is simply estimated by the number
of population parameters, 3 in this case. Also, a fixed-effects model logµik =
β0 + β1xk is fitted to the data and standard AIC is found. The values of AIC,
mAIC and cAIC are shown in Figure 1 for different random effect variances.
These values are averages over 500 sets of data simulated from the model. By
comparing the information criteria, when σb = 0.125, the fixed-effects model is
selected for 395 of the 500 data sets when comparing AIC with mAIC, while it is
selected only for 3 data sets when comparing AIC with cAIC. When σb = 0.25,
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Fig 1. Comparison of AIC (with fixed effects only), mAIC and cAIC.

fixed-effects model is selected for 165 of the 500 data sets using mAIC, while it
is selected only once when using cAIC.

We use a separate and slightly more complicated simulation to demonstrate
the selection of the number of random-effect coefficients using cAIC. The true
model is

logµik = (β0 + bi0) + (β1 + bi1)xik1 + (β2 + bi2)xik2, i = 1, . . . ,m, k = 1 . . . , n,

where (β0, β1, β2) = (1, 0.5,−1), (bi0, bi1)
i.i.d.
∼ N(0, 0.5I2), bi2 = 0, xik1 and

xik2 are independently generated from the standard normal distribution. We
consider four different models used to fit 100 independently generated data
sets. Model 1 is the fixed effects model, Model 2 includes one random effect
bi0, Model 3 includes two random effects bi0 and bi1 and Model 4 includes all
three random effects. For each case, we calculated cAI (based on simulation
from the true model), cAIC and mAIC. To see the effect of bias correction

in cAIC, we also included the values of −2 log g(y|θ̂, b̂). The average values of
different criteria are shown in Table 2 with several different values of (m,n).
The bias correction effects for cAIC is obvious. From the Table, for m = 10,
mAIC will favor fixed effects models over random-effects models with a random
intercept (Model 2). When we focus only on the random effects models, both
mAIC and cAIC rank the three models (Models 2-4) correctly. Even for m = 30
where mAIC can identify the true Model 3 in most cases, values of mAIC for
random effects models are much closer to mAIC for fixed effects models than
cAIC are. Among the four models, cAIC selected the true model (72, 68, 89, 90)
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Table 2

Comparison of cAIC and mAIC for model selection, based on 100 sets of simulated data

Model cAI cAIC −2 log g(y|θ̂, b̂) mAIC

(m, n) = (10, 10)

Model 1 540.6 541.7 537.3 543.6

Model 2 435.5 433.5 411.4 557.2

Model 3 377.2 380.9 346.3 438.7

Model 4 379.3 382.4 344.4 442.6

(m, n) = (10, 30)

Model 1 2441.9 2445.8 2438.4 2446.4

Model 2 1558.4 1554.8 1530.9 2458.5

Model 3 1168.1 1167.3 1127.0 2033.1

Model 4 1171.4 1170.0 1125.0 2042.7

(m, n) = (30, 10)

Model 1 2372.3 2372.9 2360.5 2372.5

Model 2 1510.3 1512.2 1452.2 2177.4

Model 3 1156.6 1156.7 1051.9 1824.8

Model 4 1159.1 1158.2 1048.6 1825.1

(m, n) = (30, 30)

Model 1 6904.2 6917.2 6898.9 6916.9

Model 2 4405.1 4418.2 4385.3 6421.7

Model 3 3381.7 3390.7 3277.0 5026.9

Model 4 3384.7 3393.3 3271.9 5031.0

Table 3

Computation time of cAIC for the last simulation example in minutes (m) and seconds (s)

Model 1 Model 2 Model 3 Model 4

(m,n)=(10,10) 1s 51s 1m7s 1m43s

(m,n)=(10,30) 3s 3m2s 4m7s 6m37s

(m,n)=(30,10) 4s 3m54s 3m30s 5m29s

(m,n)=(30,30) 15s 9m23s 13m20s 18m1s

times under the four settings of (m,n) respectively, while mAIC selected the
true model (59, 62, 88, 92) times respectively. Thus the advantage of cAIC in
model selection is seen at m = 10 while cAIC and mAIC perform similarly for
m = 30.

Finally, we note the computation of cAIC is relatively slow, which obviously
is due to that we need to fit the model for mn times in total. As an indication of
computation speed with implementation in R, the computation times on a single
simulated dataset for the last simulation above are recorded in Table 3. The
entire simulation on the 100 datasets takes a few days on our HP workstation
6800 running Windows 7, with 3GB memory and Intel(R) Core(TM)2 Quad
CPU Q9300 @2.50GHz.

4. Concluding remarks

Previous study of unbiased conditional AIC is only limited to the linear mixed-
effects models. We provided the corresponding cAIC for Poisson regression. Since
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the derivation of the estimator does not depend on either the normality of
random effects or specific estimators used for the fixed and random effects, the
same formula works in more general contexts such as when using the approach
of hierarchical likelihood [4] which has become very popular in recent years.
Based on asymptotic arguments, [2] has considered cAIC for general linear and
proportional hazards mixed models, which is asymptotically unbiased under
some regularity assumptions, although currently unbiased cAIC is lacking in
such generality.

Obviously the cAIC derived in the text is still unbiased for more complex
random effects structure, for example for hierarchical or crossed designs, since
the proof in Theorem 2.1 only used simple property of Poisson distribution. It is
also applicable to semiparametric regression using splines due to its equivalent
formulation in terms of mixed-effects models although in this context there
seems to be no need to perform random effects selection [6]. However, for these
more complex structures which usually concerns larger datasets, we expect the
computation to be a bottleneck for the application of the method.
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Appendix: Technical details

Proof of Theorem 2.1. Suppose that the true conditional likelihood is f(y|u) =
∏N

j=1 e
−µ0jµ

yj

0j/yj!, where µ0 = (µ01, . . . , µ0N ) depends on the random effects
u. Let µ̂ be the fitted responses from the mixed-effects model. The conditional
Akaike information is

cAI = −2Ef(y,u)Ef(y∗|u) log g(y
∗|θ̂, b̂)

= −2Ef(y,u)Ef(y∗|u)





∑

j

(−µ̂j + y∗j log µ̂j − log y∗j !)





= −2Ef(y,u)





∑

j

(−µ̂j + µ0j log µ̂j − Ef(y∗|u) log y
∗
j !)



 .

Meanwhile,

−2Ef(y,u) log g(y|θ̂, b̂) = −2Ef(y,u)





∑

j

(−µ̂i + yj log µ̂j − log yj !)



 .
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Thus

cAI− (−2Ef(y,u) log g(y|θ̂, b̂)) = 2Ef(y,u)

∑

j

(yj − µ0j) log µ̂j .

In addition, we have that

Ef(y|u)[µ0j log µ̂j ] =
∑

yj′ ,j
′ 6=j

∞
∑

yj=0







log[µ̂j(y)]µ0j

e−µ0jµ
yj

0j

yj!

∏

j′ 6=j

e−µ
0j′µ

yj′

0j′

yj′ !







=
∑

yj′ ,j
′ 6=j

∞
∑

yj=0







(yj +1) log[µ̂j(y)]
e−µ0jµ

yj+1
0j

(yj + 1)!

∏

j′ 6=j

e−µ
0j′µ

yj′

0j′

yj′ !







=
∑

yj′ ,j
′ 6=j

∞
∑

zj=1







zj log[µ̂j(y
(zj−1))]

e−µ0jµ
zj
0j

zj!

∏

j′ 6=j

e−µ
0j′µ

yj′

0j′

yj′ !







=
∑

yj′ ,j
′ 6=j

∞
∑

zj=0







zj log[µ̂j(y
(zj−1))]

e−µ0jµ
zj
0j

zj!

∏

j′ 6=j

e−µ
0j′µ

yj′

0j′

yj′ !







= Ef(y|u)

{

yj log[µ̂j(y
(yj−1))]

}

,

where y(zj−1) is the vector y whose j−th component has been replaced by zj−1,
and similarly for y(yj−1).

Therefore,

cAI− (−2Ef(y,u) log g(y|θ̂, b̂)) = 2Ep(u)Ef(y|u)







N
∑

j=1

(yj − µ0j) log µ̂j







= 2Ef(y,u)







N
∑

j=1

yj log µ̂j − yj log[µ̂j(y
(yj−1))]







.
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