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Characterizations and time-dependent association measures
for bivariate Schur-constant distributions
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Abstract. Bivariate Schur-constant distributions have an important role in
Bayesian analysis of lifetime data, as models possessing no-ageing property.
In the present work, we obtain characterizations of bivariate Schur-constant
distributions by properties of functions of random variables and reliability
concepts. Various time-dependent measures are analysed and shown to be
characterized by the ageing property of the marginal distribution.

1 Introduction

Let (X,Y ) be a vector of nonnegative random variables with absolutely continuous
survival function F̄ (x, y) and probability density function f (x, y). Then we say
that (X,Y ) has a Schur-constant distribution if its survival function can be written
as

F̄ (x, y) = S(x + y), x, y > 0, (1.1)

where S(·) is convex. Obviously, the marginal distributions of X and Y are spec-
ified by the survival functions S(x) and S(y), respectively. An important area in
which Schur-constant models arise is Bayesian reliability analysis. Barlow and
Mendel (1992) have characterized (1.1) in terms of the bivariate no-aging prop-
erty

P(X > x + t |X > x,Y > y) = P(Y > y + t |X > x,Y > y) (1.2)

which means that the residual lifetimes of younger and older components with
the same survival history, have the same distribution. In Bayesian terminology,
regardless of the ages of the components one would bet the same amount on
the next increment in life of either component. The concept of Schur-constancy
can also be explained in terms of majorization order. For two vectors (x1, y1)

and (x2, y2) it is said that the former is less than the latter in majorization
order, written as (x1, y1) � (x2, y2), if x1 + y1 = x2 + y2 and max(x1, y1) ≤
max(x2, y2). A function p(x, y) is Schur-convex (concave) if for all (x1, y1) and
(x2, y2),

(x1, y1) � (x2, y2) ⇒ p(x1, y1) ≤ (≥)p(x2, y2).
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When p(x, y) is both Schur-concave and Schur-convex, it is called a Schur-
constant function. This definition also justifies the representation (1.1). Finally,
(1.1) possesses Archimedean survival copula with generator as the inverse of
S(x) and therefore enjoys many nice properties enjoyed by members of this
class of copulas. The properties of Schur-constant laws have been studied by
several authors like Barlow and Mendel (1993), Caramellino and Spizzichino
(1994, 1996), Bassan and Spizzichino (2005), Nelsen (2005) and Chi et al.
(2009).

In the present work, we propose to study some new properties of the model
(1.1). Characterization problems form an established topic in distribution theory
that provide properties unique to a distribution. They are often effective tools in
identifying the appropriate model and in estimation and testing. Therefore, we
examine whether certain properties of Schur-constant distributions observed by
Nelsen (2005) represent characterizations. While modelling data, using bivariate
distributions, an important criterion to choose the relevant model is to examine
whether the model nearly matches the dependence relation between X and Y .
Generally scalar measures of association, time-dependent measures and depen-
dence concepts are used for this purpose. Of these, scalar measures like Pearson’s
correlation coefficient, Kendall’s tau etc. for Schur-constant models have been dis-
cussed by various authors like Nelsen (2005) and Chi et al. (2009). Exploiting the
fact that Schur-constant bivariate distributions are represented in terms of univari-
ate survival functions, Caramellino and Spizzichino (1994) and Spizzichino (2001)
have shown that various dependence concepts like positive quadrant dependence,
stochastic increase etc. can be translated in terms of the ageing properties of X. The
results of similar nature in Bassan and Spizzichino (1999) and Averous and Dortet-
Bernadit (2005) and Spizzichino (2010) are also valid for Schur-constant laws. In
various studies on bivariate survival times, measures of association indexed by the
ages of the organisms or system provide means of assessing the influence of cer-
tain important factors on their lives. See Anderson et al. (1992) for examples and
a detailed discussion. Measures that are functions of the times x and y associated
with a lifetime random vector (X,Y ) are therefore important in survival analysis
and are called time dependent measures of association. Such measures are more
informative than the scalar measures. As in the case of dependence concepts, there
is the possibility that the time-dependent association measures may also be related
to the univariate ageing properties in view of the nature of Schur-constant laws.
It appears that this aspect of Schur-constant models and the implications between
time-dependent association and dependence concepts have not been investigated.
In Section 3, we discuss this topic and show that monotonicity of the hazard rate
or mean residual life is a necessary and sufficient condition that ensures positive
or negative time-dependent association.
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2 Characterizations

With reference to (X,Y ) defined in the previous section, the bivariate hazard rate
is given by (

h1(x, y), h2(x, y)
) = −∇ log F̄ (x, y)

where ∇ = ( ∂
∂x

, ∂
∂y

) is the gradient operator Further, the mean residual life is
(r1(x, y), r2(x, y)), where

r1(x, y) = 1

F̄ (x, y)

∫ ∞
x

F̄ (t, y) dt

and

r2(x, y) = 1

F̄ (x, y)

∫ ∞
y

F̄ (x, t) dt.

The corresponding concepts for the random variable X are its hazard rate h(x) =
−d log F̄ (x)

dx
and the mean residual life r(x) = 1

F̄ (x)

∫ ∞
x F̄ (t) dt . We also note the

identities

h(x) = 1 + r ′(x)

r(x)

and

hi(x, y) =
(

1 + ∂

∂x
ri(x, y)

)/
ri(x, y), i = 1,2. (2.1)

Since F̄ (x, y) = S(x + y) in the Schur-constant case, it follows that

h1(x, y) = − ∂

∂x
logS(x + y) = h(x + y) (2.2)

and similarly h2(x, y) = h(x + y). Also

r1(x, y) = 1

S(x + y)

∫ ∞
x

S(t + y)dt = 1

S(x + y)

∫ ∞
x+y

S(t) dt = r(x + y). (2.3)

Similarly r2(x, y) = r(x + y).

Proposition 2.1. When (X,Y ) follows Schur-constant distribution,

V (Y |X = x) = 2r(x)h(x) − 1

h2(x)
. (2.4)

Proof.

E
(
Y 2|X = x

) =
∫ x

0
y2 ∂2S(x + y)

∂ ∂y
dy

= − 2

f (x)

∂

∂x

∫ ∞
0

∫ ∞
y

S(x + t) dt
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where f (x) is the density function of X. Thus

E
(
Y 2|X = x

) = − 2

f (x)

∂

∂x

∫ ∞
0

S(x + y)r(x + y)dy

= − 2

f (x)

∂

∂x

∫ ∞
x

S(y)r(y) dy (2.5)

= 2r(x)

h(x)
.

From Nelsen (2005),

E(Y |X = x) = 1

h(x)
(2.6)

and hence (2.4) follows from (2.5) and (2.6). �

Nelsen (2005) observed that Schur-constant distributions of (X,Y ) have the
following properties

(i) U = X + Y and V = X
X+Y

are independent and V is uniform over (0,1)

(ii) U is independent of W = Y
X

and W has Pareto II distribution with density
function g(w) = (1 + w)−2, w > 0

(iii) the joint distribution of M = max(X,Y ) and Z = min(X,Y ) has survival
function

Ḡ(m, z) = 2S(m + z) − S(2m)

(iv) E(Y |X = x) = 1
h(x)

and E(X|Y = y) = 1
h(y)

.

We show that under certain conditions the converses of (i) through (iv) are also
true so that these are characteristic properties of Schur-constant laws.

Proposition 2.2. Let (X,Y ) be a nonnegative random vector with continuous sur-
vival function F̄ (x, y) and convex survival function S(x) of X. If any one of the
properties (i), (ii) (on condition that F̄ is absolutely continuous), (iii) on condition
that (X,Y ) is exchangeable and (iv) on condition that (X,Y ) is exchangeable, F̄

is absolutely continuous and F̄ (x, y)−S(x +y) has the same sign for all x, y > 0,
is satisfied then F̄ (x, y) is Schur-constant.

Sketch of proof. Result (i) ((ii)) is proved by taking the transformations X = UV

and Y = U(1 − V ) (X = U
1+W

, Y = UW
1+W

) in the joint density function of U and
V (U and W ). Assuming (iii), we have

F̄ (m, z) + F̄ (z,m) − F̄ (m,m) = 2S(m + z) − S(2m).

Applying exchangeability of (X,Y ), F̄ (u, v) = S(u + v). When (iv) holds,∫ ∞
y

S(x) dx =
∫ ∞

0
F̄ (x, y) dx

so that from the additional condition on (iv), F̄ (x, y) = S(x + y). �
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Remark 2.3.

1. It is well known that when X and Y are independent, the independence of
U and V with uniform distribution for V characterizes the univariate exponential
law. Our result extends this result to Schur-constant models where X and Y are
exchangeable. A similar interpretation holds for (ii) also.

2. Z(M) represents the lifetime of a parallel (series) system with identical com-
ponents with survival function 2S(m) − S(2m) (2S(z)). The bivariate reliability
characteristics of the Schur-constant models that represent the two systems can be
evaluated in terms of those of the component lives alone.

3. Characterization of bivariate distributions by regression functions is of par-
ticular interest in distribution theory (see, e.g., Kagan et al. (1973)). The hazard
rate of the generalized Pareto distribution

F̄ (x) =
(

1 + ax

b

)−(a+1)/a

, x > 0, b > 0, a > −1

is h(x) = a+1
ax+b

. Accordingly the bivariate distribution

F̄ (x, y) =
(

1 + a

b
(x + y)

)−(a+1)/a

(2.7)

is characterized by a linear regression function. Note that the result in (2.7) pro-
vides new characterizations of the bivariate distribution with independent expo-
nential marginals when a → 0, the bivariate Pareto with α = a

b
, β = a+1

a
when

a > 0 and the bivariate beta with m = −a
b

, n = −a+1
a

when a < 0.

Proposition 2.4. The random vector (X,Y ) has Schur-constant distribution if and
only if any one of the following equivalent conditions are satisfied for all x, y > 0,
provided S(x) is convex.

(a)
(
h1(x, y), h2(x, y)

) = (
h(x + y),h(x + y)

)
,

(b)
(
r1(x, y), r2(x, y)

) = (
r(x + y), r(x + y)

)
.

Proof. When (X,Y ) is Schur-constant from (2.2) and (2.3) we have (a) and (b).
Conversely, from the representation

F̄ (x, y) = exp
[
−

∫ x

0
h1(t1,0) dt −

∫ y

0
h2(x, t) dt

]

we have F̄ (x, y) = S(x + y). Further, the proof of (b) follows from the identity
(2.1) and (a). �
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Remark 2.5.

1. The correspondence between univariate hazard rate (mean residual life) and
the bivariate counter part in Proposition 2.4 will be used to establish the implica-
tions of the ageing properties of X on the measures of association between X and
Y in the next section.

2. Proposition 2.4 enables the comparison of Schur-constant distributions in
terms of stochastic orders relating to the marginals. Let (X1, Y1) and (X2, Y2)

have Schur-constant distributions with hazard rates (h̄1(x, y), h̄2(x, y)) and
(k̄1(x, y), k̄2(x, y)) respectively with marginal hazard rates of X1 and Y1 as h̄(x)

and k̄(y). Recall that X1 is smaller than X2 in hazard rate order X1 ≤hr Y1, iff
h̄(x) ≥ k̄(x) for all x > 0. Likewise from Hu et al. (2003) (X1, Y1) is smaller than
(X2, Y2) in weak hazard rate order, (X1, Y1) ≤whr (X2, Y2), iff h̄i(x, y) ≥ k̄i (x, y),
i = 1,2 for all x, y > 0. It now follows that

X1 ≤hr Y1 ⇔ (X1, Y1) ≤whr (X2, Y2).

3. A similar result exists with regard to mean residual life functions also.
Let r̄(x) and μ̄(x) denote mean residual lives of X1 and Y1 respectively and
(r̄1(x, y), r̄2(x, y)) and (μ̄1(x, y), μ̄2(x, y)) the bivariate mean residual lives of
(X1, Y1) and (X2, Y2). Then we say that X1 is smaller than Y1 in mean resid-
ual life denoted by X1 ≤mrl Y1 iff r̄(x) ≤ μ̄(x) for all x. Similarly (X1, Y1) is
smaller than (X2, Y2) in bivariate mean residual life or (X1, Y1) ≤bmrl (X2, Y2), iff
r̄i (x, y) ≤ μ̄i(x, y), i = 1,2. Then

X1 ≤mrl Y1 ⇔ (X1, Y1) ≤bmrl (X2, Y2).

Further a sufficient condition for (X1, Y1) ≤bmrl (X2, Y2) is that X1 ≥hr X2.

3 Measures of association and dependence

In this section, we examine the relationships between some time-dependent mea-
sures of association have with the ageing properties of the marginal distribution of
X. In fact, it will be shown that in the case of Schur-constant models, positive (neg-
ative) association between X and Y corresponds to the positive (negative) ageing
property of X, Time-dependent measures are of importance in survival analysis,
where identification of the age at which association is maximum is of special in-
terest. They allow comparisons of variations in association overtime and also help
in identification of models.

Clayton (1978) proposed

θ(x, y) = F̄ (x, y)
∂2F̄

∂x ∂y

/(
∂F̄

∂x

∂F̄

∂y

)
(3.1)

as a measure of association between X and Y . For a detailed study of the interpre-
tations, properties and applications of (3.1) we refer to Oakes (1989), Anderson
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et al. (1992) and Gupta (2003). When X and Y are positively (negatively) associ-
ated, θ(x, y) > (<)1 and θ = 1 implies independence of X and Y . An alternative
representing of (3.1) in terms of bivariate hazard rates is

θ(x, y) = k̄(x, y)

h1(x, y)h2(x, y)
, (3.2)

where

k̄(x, y) = f (x, y)

F̄ (x, y)

is the scalar bivariate hazard rate of Basu (1971). Since

h1(x, y) = − 1

F̄

∂F̄

∂x
,

∂h1

∂y
= h1(x, y)h2(x, y) − k̄(x, y)

and hence

θ(x, y) = 1 − ∂h1

∂y

/(
h1(x, y)h2(x, y)

)
. (3.3)

Specializing to the Schur-constant case, (3.3) becomes

θ(x, y) = 1 − ∂h(x + y)

∂x

/(
h2(x + y)

)
. (3.4)

Proposition 3.1. For Schur-constant distributions,

(i) θ(x, y) > (<)1 or X and Y are positively (negatively) associated if and
only if X is strictly DHR (IHR)

(ii) θ(x, y) = 1 or X and Y are independent if and only if h(x +y) is a constant
or X is exponential. In this case

S(x + y) = exp[−x − y], x, y > 0. (3.5)

Example 1. (a) Let (X,Y ) follow the bivariate Schur-constant Pareto law

S(x + y) = (1 + αx + αy)−β, x, y > 0, α,β > 0. (3.6)

Then S(x) = (1 + αx)−β and therefore from (3.4)

θ(x, y) = 1 + 1

β
> 1.

The Pareto law is DHR and accordingly (X,Y ) is positively associated.
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(b) For the bivariate beta distribution,

S(x + y) = (1 − p1x − p1y)q1,
(3.7)

0 < x <
1

p1
,0 < y <

1 − p1x

p1
,p1 > 0, q1 > 1,

the marginal distribution S(x + y) = (1 − p1x)q1 is IHR. Also

θ(x, y) = q1 − 1

q1
< 1

showing that there is negative association between X and Y .
(c) Consider the bivariate Weibull distribution

S(x + y) = exp
[−(x + y)λ

]
, x, y > 0,0 < λ ≤ 1.

The marginal distributions are DHR and

θ(x, y) = 1 − λ + λ(x + y)λ

λ(x + y)λ
≥ 1.

In the above examples, the time-dependent measures in the first two cases are
independent of x and y. Motivated by this property, as a point of departure, we
enumerate the class of bivariate distributions for which θ(x, y) is a constant.

Proposition 3.2. Among Schur-constant bivariate models, the only distributions
for which θ(x, y) = c, a constant, are (3.5), (3.6) and (3.7).

Proof. When θ(x, y) = c, from (3.4),

∂

∂x

(
1

h(x + y)

)
= 1 − c (3.8)

which gives the solution

h(x + y) = [
(1 − c)x + a1(y)

]−1
.

By exchangeability

h(x + y) = [
(1 − c)y + a1(x)

]−1

giving

(1 − c)x + a1(y) = (1 − c)y + a1(x).

Since the left side is linear in x, right side must also be linear in x. Similarly for y.
Hence,

h(x + y) = [
(1 − c)(x + y)

]−1
.

The case c > 1 (c < 1) leads to the Pareto (beta) distribution. Further c = 1 in (3.8)
gives the bivariate exponential distributions (3.5). �
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Remark 3.3. We can see that θ(x, y) has the same values for the above three
distributions even if the scale parameters of X and Y are different.

For example, the bivariate Pareto model

F̄ (x, y) = (1 + α1x + α2y)−β �= S(x + y)

is not Schur-constant, but θ(x, y) = 1 + 1
β

.
Bjerve and Doksum (1993) defined a local nonparametric dependence function

which measures the strength of association between X and Y as a function of x

called the correlation curve. The measure provides the strength of relationships in
nonnormal models that reduce to the usual correlation coefficient in the normal
case. It is defined as

ρ(x) = σ1μ
′
1(x)

[(σ1μ
′
1(x))2 + σ 2(x)]1/2 (3.9)

where μ1(x) = E[Y |X = x], σ 2(x) = V (Y |X = x), V standing for variance and
σ 2

1 = V (X). It may be noted −1 ≤ ρ(x) ≤ 1 and X and Y are independent when
ρ(x) = 0.

With the aid of (2.2) and (2.3), the expression for ρ(x) reduces to

ρ(x) = σ1
d

dx

1

h(x)

/[(
σ1

d

dx

1

h(x)

)2

+ 2r(x)h(x) − 1

h2(x)

]1/2

,

on using E(Y |X = x) = 1
h(x)

for Schur-constant models. Further simplification
leads to

ρ(x) = −σ1
dhx

dx

/[
σ 2

1

(
dh(x)

dx

)2

+ 2h3(x)r(x) − h2(x)

]1/2

. (3.10)

Recalling that ρ(x) > (<)0 implies positive (negative) dependence, (3.10) pro-
vides the following proposition

Proposition 3.4. (a) When X is DHR (IHR) in the strict sense, ρ(x) > (<)0 and
conversely

(b) In the independent case ρ(x) = 0 if and only if X(Y) is exponential
(c) θ(x, y) > 1 ⇔ X is DHR ⇔ ρ(x) > 0, θ(x, y) < 1 ⇔ X is IHR ⇔ ρ(x) < 0.

Bjerve and Doksum (1993) also suggested the dependence function named con-
ditional correlation curve

ξ(x) = σ1μ
′
1(x)

σ (x)
. (3.11)

In terms of reliability functions,

ξ(x) = −σ1
dh(x)

dx

/(
h(x)

[
2r(x)h(x) − 1

]1/2)
.
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Thus there is positive (negative) dependence when X is DHR (IHR) and ξ(x) = 0
when X is exponential.

Remark 3.5. Unlike θ(x, y), ρ(x) is not a constant for the distributions (3.6) and
(3.7). For example, the Pareto model (3.6) has

ρ(x) = α−1[
β2 + (β + 1)β(β − 1)2(β − 2)(1 + αx)2]−1/2

, β > 2.

Remark 3.6. One of the referees has pointed out that ρ(x) is constant for the
bivariate normal distribution and asked whether there are Schur-constant distri-
butions for which ρ(x) is a constant. When ρ(x) = C, a constant, equation (3.9)
when simplified, reduces to a second order second degree differential equation in
r(x) , which appears difficult to solve for a general form of r(x) and hence F̄ (x).
Schur-constant models generated from distributions with tractable expressions for
r(x) like exponential, Pareto, half-logistic etc and also the half-normal do not pos-
sess this property.

Instead of considering the regression function, Anderson et al. (1992) employed
the mean residual life in suggesting their measure of association, as

φ(x, y) = r1(x, y)

r(x)
.

In the Schur-constant case,

φ(x, y) = r(x + y)

r(x)
.

Values of φ(x, y) very different from 1 indicate strong association between X and
Y . If X and Y are positively associated as y increases φ(x, y) also should increase.

φ(x, y) > 1 ⇔ r(x + y) > r(x) ⇔ X is strictly IMRL

and φ(x, y) = 1 iff X and Y are independently distributed as exponentials.
A second measure proposed in Anderson et al. (1992) is based on the ratio of

survival functions

ψ(x, y) = P(X > x|Y > y)

P (X > x)

= F̄ (x, y)

S(x)S(y)
.

Assuming Schur-constancy for (X,Y ),

ψ(x, y) = S(x + y)

S(x)S(y)

so that

logψ(x, y) = logS(x + y) − logS(x) − logS(y).
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Differentiating,

1

ψ(x, y)

∂

∂y
ψ(x, y) = h(y) − h(x + y). (3.12)

When X and Y are independent ψ(x, y) = 1 and large values of ψ indicates pos-
itive association. From the construction of ψ , it is evident that as y increases ψ

also should increase. Hence increasing ψ(x, y) is indicative of positive associa-
tion. However from (3.12), ψ(x, y) increasing in y, if and only if X is DHR.

Nair and Sankaran (2010) suggested the measure

δ(x, y) = M(x,y)

r1(x, y)r2(x, y)
, (3.13)

where

M(x,y) = E
(
(X − x)(Y − y)|X > x,Y > y

) =
∫ ∞
x

∫ ∞
y F̄ (t, s) dt ds

F̄ (x, y)

is the product moment of residual life. By means of (3.13), the vector (X,Y ) is
positively (negatively) associated if δ(x, y) > (<)1 and X and Y are independent
if δ(x, y) = 1. Further, if (X1, Y1) is a nonnegative random vector specified by the
density function

f1(x, y) = F̄ (x, y)

E(XY)
,

then

δ(x, y) = θ1(x, y)

where θ1(x, y) is the Clayton measure (3.1) corresponding to (X1, Y1). Accord-
ingly it follows from the earlier discussion that if X1 is DHR (IHR) then (X,Y )

is positively (negatively) associated and X and Y are independent if X1 is expo-
nential whenever the distribution of (X,Y ) is Schur-constant. Further, in general,
δ(0,0) ≥ 1 implies Cov(X,Y ) ≥ 0 and thus X and Y are positively correlated.

Example 2. Let (X,Y ) be distributed as bivariate Pareto (3.6). Then (X1, Y1) has
density function

f1(x, y) = α2(β − 1)(β − 2)(1 + αx + αy)−β

and survival function

F̄1(x, y) = (1 + αx + αy)−β+2.

Thus, X1 is DHR and

δ(x, y) = β − 1

β − 2
= θ1(x, y) > 1

and hence X and Y positively associated.
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In a discussion on the properties and interrelationships between association
measures, Gupta (2003) has shown that

θ(x, y) > 1 ⇒ φ(x, y) > 1 and also that

θ(x, y) > 1 ⇒ ψ(x, y) > 1.

From the results given above, we have a wider chain of implications for Schur-
constant laws, that corresponds to ageing concepts.

Proposition 3.7. If (X,Y ) follows Schur-constant distribution, then

(a) X is DHR ⇔ θ(x, y) > 1 ⇔ ρ(x) > 0 ⇔ ξ(x) > 0

⇔ ψ(x, y) > 1 ⇒ φ(x, y) > 1.

(b) X is IMRL ⇔ φ(x, y) > 1.

Averous and Dortet-Bernadit (2005) and Spizzichino (2010) have studied the
correspondence between various dependence concepts of an Archimedian copula
and the ageing properties of the corresponding survival functions. Since Schur-
constant models possess Archimedian copula whose generator is the inverse of S,
their results along with the discussions in the present work, provide us the cor-
respondence between some dependence properties and the various measures of
association. We recall that

(i) (X,Y ) is right convex set increasing (RCSI) iff P(X > x,Y > y|X > x ′,
Y > y′) is nondecreasing in x′, y′ for all (x, y)

(ii) Y is right tail increasing in X (RTI (Y |X)) if P(Y > y|X > x) is increasing
in x for all y

(iii) Y is stochastically increasing in X for all y (SI (Y |X)) or positively regression
dependent (PRD) iff P(Y > y|X = x) is nondecreasing in x for all y

(iv) (X,Y ) is positive quadrant dependent (PQD) iff P(X > x,Y > y) ≥ P(X >

x)(Y > y)

(v) Y is left-tail decreasing in X (LTD (Y |X)) if P [Y ≤ y|X ≤ x] is decreasing
in x for all y

From Spizzichino (2001), Averous and Dortet-Bernadit (2005) and Spizzichino
(2010), we have

X is NWU ⇔ (X,Y ) is PQD,

X is DHR ⇔ (X,Y ) is LTD (Y |X),

X is DHR ⇒ RTI (X|Y).

Comparing these results with correspondence between ageing properties and mea-
sures of association we have the following propositions providing more general
results.
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Proposition 3.8. If (X,Y ) follows Schur-constant distribution, then

(a) θ(x, y) > 1 ⇔ ρ(x) > 0 ⇔ ξ(x) > 0 ⇔ ψ(x, y) > 1 ⇔ (X,Y ) is RCSI.
(b) ρ(x) ≥ 0 ⇔ (X,Y ) is PRD (SI (Y |X)).
(c) ψ(x, y) > 1 ⇔ (X,Y ) is PQD.

Proof. Part (a) follows from Gupta (2003) who proved that θ(x, y) > 1 ⇔ (X,Y )

is RCSI. If ρ(X) ≥ 0, (X,Y ) is PRD (Lai and Xie, 2006, p. 305). Conversely when
(X,Y ) is PRD from (2.6), X is DHR and ρ(x) ≥ 0. The proof of (c) is obvious. �

Remark 3.9. In general among bivariate laws there is no direct relationship be-
tween SI and RCSI. Further PQD neither implies RCSI nor SI.

4 Conclusion

In the present work, we have established several characterizations of Schur-
constant models that may be useful in identifying the distribution that posses the
bivariate ageing property. The analysis of dependent measures make it easier to
find the nature of association based on the aging property of the marginal. The
correspondence between aging property and association also help the choice of
appropriate Schur-constant models. While discussing time-dependent measures we
have not considered the measures proposed by Holland and Wang (1987), the lo-
cal dependence measure proposed in Bairamov and Kotz (2000) and developed in
Bairamov et al. (2003). Although these two measures can be expressed in terms
of reliability functions, the problem of relating them to aging concepts was found
difficult to resolve.
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