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A criterion for the fuzzy set estimation of the density
function

Jesús A. Fajardo
Universidad de Oriente

Abstract. In this paper we propose a criterion to estimate the density func-
tion by means of a nonparametric and fuzzy set estimator, based on n i.i.d
random variable, obtaining a reduction of the integrated mean square error
of the fuzzy set estimator regarding the integrated mean squared error of the
classic kernel estimators. This reduction shows that the fuzzy set estimator
has better performance than the kernel estimations. Also, the convergence
rate of the optimal scaling factor is computed, which coincides with the con-
vergence rate in classic kernel estimation. Finally, these theoretical findings
are illustrated using a numerical example.

1 Introduction

The methods of kernel estimation are among the nonparametric methods com-
monly used to estimate the density function f of a random variable X, with in-
dependent samples. Nevertheless, through the theory of point processes [see e.g
Reiss (1993)] we can obtain a new nonparametric estimation method. For exam-
ple, the method of fuzzy set estimation introduced by Fajardo et al. (2012), which
is a particular case of the method introduced by Falk and Liese (1998), is based
on defining a fuzzy set estimator of the density function by means of thinned point
processes [see e.g Reiss (1993), Section 2.4].

In this paper we estimate the density function by means of the nonparametric
and fuzzy set estimator introduced by Fajardo et al. (2012). With the implementa-
tion of this new estimator, we can obtain a significant reduction of the integrated
mean square error of the fuzzy set estimator regarding the classic kernel estimators,
which implies that the fuzzy set estimator has better performance than the kernel
estimations. Also, the convergence rate of the optimal scaling factor is computed,
which coincides with the convergence rate in classic kernel estimation of the den-
sity function. Moreover, the function that minimizes the integrated mean square
error of the fuzzy set estimator is obtained. Finally, these theoretical findings are
illustrated using a numerical example estimating a density function with the fuzzy
set estimator and the classic kernel estimators.

This paper is organized as follows. In Section 2, we define the fuzzy set es-
timator of the density function and we present its properties of convergence. In
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Section 3, we obtain the mean square error of the fuzzy set estimator of the density
function, Theorem 4, as well as the optimal scale factor and the integrated mean
square error. Moreover, we establish the conditions to obtain a reduction of the
constants that control the bias and the asymptotic variance regarding the classic
kernel estimators, the function that minimizes the integrated mean square error of
the fuzzy set estimator is also obtained. In Section 4 a simulation study was con-
ducted to compare the performances of the fuzzy set estimator with the classical
kernel estimators. Concluding remarks are given in Section 5. Appendix contains
the proof of the theorem in Section 3.

2 Fuzzy set estimator of the density function and its convergence
properties

In this section we define through thinned point processes a nonparametric and
fuzzy set estimator of the density function, obtaining a particular case of estima-
tor introduced by Falk and Liese (1998). Moreover, we present its properties of
convergence.

The method of fuzzy set estimation introduced by Falk and Liese (1998) is based
on defining a fuzzy set estimator of the density function by means of thinned point
processes, a process framed inside the theory of the point processes, which is given
by

θ̂n = 1

nan

n∑
i=1

Ui,

where an > 0 is a scaling factor (or bandwidth) such that an → 0 as n → ∞, and
the random variables Ui , 1 ≤ i ≤ n, are independent with values in {0,1}, which
decides whether Xi belongs to the neighborhood of x0 or not. Here x0 is the point
of estimation. In Falk and Liese (1998) only the asymptotic efficiency within the
class of all estimators that are based on randomly selected points from the sample
X1, . . . ,Xn was proved. Efficiency was established using LeCam’s LAN theory.
Although the almost sure, and uniform convergence properties over compact sub-
set on R are not studied, the pointwise convergence in law whose distribution limit
has a asymptotic variance that depends only of f (x0) is proposed. On the other
hand, we observe that the random variables that define the estimator θ̂n do not
possess, for example, precise functional characteristics in regards to the point of
estimation. This absence of functional characteristics complicates the evaluation of
the estimator using a sample. Thus, the simulations to estimate the density function
will be more complicated. To overcome the difficulties presented by the estimator
θ̂n we will introduce a new fuzzy set estimator of the density function, which is a
particular case of the estimator θ̂n.

Let X be a real random variable whose distribution L(X) has density f regard-
ing the Lebesgue measure. For each measurable Borel function ϕ : R → [0,1] and
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each random variable V , uniformly on [0,1] distributed and independent of X, the
random variable U = 1[0,ϕ(X)](V ) satisfies ϕ(x) = P(U = 1|X = x). This simple
observation allows us to construct a fuzzy set estimator of the density function f

that satisfies the conditions required in Falk and Liese (1998).
Let X1, . . . ,Xn be an independent random sample of X. Let V1, . . . , Vn be

independent random variables uniformly on [0,1] distributed and independent
of X1, . . . ,Xn. Let f

x0 ,bn
(Xi,Vi) = 1Ii

(Vi) be random variables where Ii =
[0, ϕ(

Xi−x0
bn

)] and bn > 0 is a scaling factor (or bandwidth) such that bn → 0 as
n → ∞. For each x ∈ R, we have

ϕ

(
x − x0

bn

)
= P

(
f

x0 ,bn
(Xi,Vi) = 1|Xi = x

)
,

then ϕn(x) = ϕ(
x−x0
bn

) is a Markov kernel [see Reiss (1993), Section 1.4]. Thus,
for independent copies (Xi,Vi), 1 ≤ i ≤ n, of (X,V ), we can define the thinned
point process

Nϕn
n (·) =

n∑
i=1

f
x0 ,bn

(Xi,Vi)εXi
(·),

with underlying point process Nn(·) = ∑n
i=1 ε

Xi
(·) and a thinning function ϕn [see

Reiss (1993), Section 2.4], where ε
X

is the random Dirac measure.

Remark 1. The events {Xi = x}, x ∈ R, can be described in a neighborhood of x0
through the thinned point process N

ϕn
n , where fx0,bn(Xi,Vi) decides, whether Xi

belongs to the neighborhood of x0 or not. Precisely, ϕn(x) is the probability that
the observation Xi = x belongs to the neighborhood of x0. Note that this neigh-
borhood is not explicitly defined, but it is actually a fuzzy set in the sense of Zadeh
(1965), given its membership function ϕn. The thinned process N

ϕn
n is therefore a

fuzzy set representation of the data [see Falk and Liese (1998), Section 2].

Next, we present the fuzzy set estimator of the density function introduced in
Fajardo et al. (2012), which is a particular case of the estimator proposed by Falk
and Liese (1998).

Definition 1. Let ϕ be such that an = bn

∫
ϕ(x)dx and 0 <

∫
ϕ(x)dx < ∞. Then

the fuzzy set estimator of the density function f at the point x0 ∈ R is defined as

ϑ̂n(x0) = 1

nan

n∑
i=1

f
x0 ,bn

(Xi,Vi) = τn(x0)

nan

.

Remark 2. The estimator ϑ̂n can be written in terms of a fuzzy set representation
of the data, since ϑ̂n = (nan)

−1N
ϕn
n (R). This equality justifies the fuzzy term of

the estimator proposed where the thinning function ϕn can be used to select points
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of the sample with different probabilities, in contrast to the kernel estimator, which
assigns equal weight to all points of the sample. Moreover, we can observe that ϑ̂n

is of easy practical implementation and the random variable τn(x0) is binomial
B(n,αn(x0)) distributed with

αn(x0) = E
[
f

x0 ,bn
(Xi,Vi)

] = P
(
f

x0 ,bn
(Xi,Vi) = 1

) = E
[
ϕn(X)

]
. (2.1)

In what follows we assume that αn(x0) ∈ (0,1).

Consider the following conditions:

(C1) The density function f is at least twice continuously differentiable in a
neighborhood of x0.

(C2) Sequence bn satisfies: bn → 0 and nbn

log(n)
→ ∞ as n → ∞.

(C3) Function ϕ is symmetrical regarding zero, has compact support on [−B,B],
B > 0, and it is continuous at x = 0 with ϕ(0) > 0.

(C4) nb5
n → 0 as n → ∞.

(C5) Function ϕ(·) is monotone on the positives.

(C6) bn → 0 and nb2
n

log(n)
→ ∞ as n → ∞.

(C7) Density function f is at least twice continuously differentiable on the com-
pact set [−B,B].

Next, we present the convergence properties obtained by Fajardo et al. (2012):

Theorem 1. Under conditions (C1)–(C3), we have

ϑ̂n(x0) → f (x0) a.s.

Theorem 2. Under conditions (C1)–(C4), we have

√
nan

(
ϑ̂n(x0) − f (x0)

) L−→ N
(
0, f (x0)

)
.

The “
L−→” symbol denotes convergence in law.

Theorem 3. Under conditions (C3) and (C5)–(C7), we have

sup
a∈[−B,B]

∣∣ϑ̂n(a) − f (a)
∣∣ = oP(1).

Remark 3. The estimator ϑ̂n has a limit distribution whose asymptotic variance
depends only on the point of estimation, this does not hold to the kernel estimator.
However, since an = o(n−1/5) we see that the same restrictions are imposed for
the smoothing parameter of the kernel estimators.
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3 Statistical methodology

In this section we will obtain the mean square error of ϑ̂n, as well as the op-
timal scale factor and the integrated mean square error. Moreover, we establish
the conditions to obtain a reduction of the constants that control the bias and the
asymptotic variance regarding to the classic kernel estimators. The function that
minimizes the integrated mean square error of ϑ̂n is also obtained.

The following theorem provides the asymptotic representation for the mean
square error (MSE) of ϑ̂n.

Theorem 4. Under conditions (C1)–(C3), we have

MSE
[
ϑ̂n(x)

] = f (x)

nbn

1∫
ϕ(u)du

+ b4
n

[
f ′′(x)

2

∫
u2ψ(u)du

]2

+ o

(
1

nbn

+ b4
n

)
,

where

ψ(x) = ϕ(x)∫
ϕ(u)du

.

Next, we calculate the formula for the optimal asymptotic scale factor b∗
n to

perform the estimation. The integrated mean square error (IMSE) of ϑ̂n is given
by

IMSE[ϑ̂n] = 1

nbn

1∫
ϕ(u)du

+ b4
n

4

[∫
u2ψ(u)du

]2 ∫ [
f ′′(x)

]2
dx. (3.1)

From (3.1), we obtain the following formula for the optimal asymptotic scale factor

b∗
nϕ

=
[

1

n
∫

ϕ(u)du [∫ u2ψ(u)du]2
∫ [f ′′(u)]2 du

]1/5

. (3.2)

We obtain a scaling factor of order n−1/5, which implies a rate of optimal con-
vergence for the IMSE∗[ϑ̂n] of order n−4/5. We observe that the optimal scaling
factor order for the method of fuzzy set estimation coincides with the order of the
classic kernel estimate. Moreover,

IMSE∗[ϑ̂n] = n−4/5Cϕ, (3.3)

where

Cϕ = 5

4

[ [∫ u2ψ(u)du]2 ∫ [f ′′(u)]2 du

[∫ ϕ(u)du]4

]1/5

.
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Next, we will establish the conditions to obtain a reduction of the constants that
control the bias and the asymptotic variance regarding the classic kernel estimators.
For it, we will consider the usual kernel density estimator

f̂n
K
(x) = 1

nbn

n∑
i=1

K

(
x − Xi

bn

)
,

which has the mean squared error

MSE
[
f̂n

K
(x)

] = f (x)

nbn

∫
K2(u) du + b4

n

[
f ′′(x)

2

∫
u2K(u)du

]2

+ o

(
1

nbn

+ b4
n

)
.

Moreover, the IMSE of f̂n
K

is given by

IMSE[f̂n
K
] = 1

nbn

∫
K2(u) du + b4

n

4

[∫
u2K(u)du

]2 ∫ [
f ′′(u)

]2
du. (3.4)

From (3.4), we obtain the following formula for the optimal asymptotic scale factor

b∗
n

K
=

[
1

n

∫
K2(u) du

[∫ u2K(u)du]2
∫ [f ′′(u)]2 du

]1/5

. (3.5)

Moreover,

IMSE∗[f̂n
K
] = n−4/5C

K
,

where

C
K

= 5

4

[[∫
K2(u) du

]4[∫
u2K(u)du

]2 ∫ [
f ′′(u)

]2
du

]1/5

.

The reduction of the constants that control the bias and the asymptotic variance,
regarding the classic kernel estimators, are obtained if for all kernel K

∫
ϕ(u)du ≥

[∫
K2(u) du

]−1

and
∫

u2ψ(u)du ≤
∫

u2K(u)du.

Remark 4. The conditions on ϕ allows us to obtain a value of B such that
∫ B

−B
ϕ(u)du >

[∫
K2(u) du

]−1

.

Moreover, to guarantee that∫
u2ψ(u)du ≤

∫
u2K(u)du,
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we define the function

ψ(x) = ϕ(x)∫
ϕ(u)du

with compact support on [−B ′,B ′] ⊂ [B,B]. Next, we guarantee the existence
of B ′. As

1∫
ϕ(u)du

<

∫
K2(u) du and ϕ(x) ∈ [0,1],

we have

x2ψ(x) ≤ x2
(∫

K2(u) du

)
. (3.6)

Observe that for each C ∈ (0,
∫

u2K(u)du] exists

B ′ = 3

√
3C

2
∫

K2(u) du

such that

C =
∫ B ′

−B ′

(∫
K2(u) du

)
x2 dx ≤

∫
u2K(u)du. (3.7)

Combining (3.6) and (3.7), we obtain∫ B ′

−B ′
u2ψ(u)du ≤

∫
u2K(u)du.

In our case we take B ′ ≤ B .

On the other hand, the criterion that we will implement to minimizing (3.3) and
obtain a reduction of the constants that control the bias and the asymptotic variance
regarding the classic kernel estimation, is the following

Maximizing
∫

ϕ(u)du

subject to the conditions∫
ϕ2(u) du = 5

3
,

∫
uϕ(u)du = 0,

∫ (
u2 − v

)
ϕ(u)du = 0,

with u ∈ [−B,B], ϕ(u) ∈ [0,1], ϕ(0) > 0 and v ≤ ∫
u2K

E
(u)du, where K

E
is the

Epanechnikov kernel

K
E
(x) = 3

4

(
1 − x2)

1[−1,1](x).

The Euler–Lagrange equation with these constraints is

∂

∂ϕ

[
ϕ + aϕ2 + bxϕ + c

(
x2 − v

)
ϕ

] = 0,
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where a, b and c the three multipliers corresponding to the three constraints. This
yields

ϕ(x) =
[
1 −

(
16x

25

)2]
1[−25/16,25/16](x). (3.8)

The new conditions on ϕ, allows us to affirm that for all kernel K

IMSE∗[ϑ̂n] ≤ IMSE∗[f̂n
K
].

Thus, the fuzzy set estimator has the best performance.

4 Simulations results

A simulation study was conducted to compare the performances of the fuzzy set
estimator with the classical kernel estimators. For the simulation, we used the den-
sity function

f (x) =
⎧⎨
⎩

15
32

[
x(x + 2)

]2 if −2 ≤ x ≤ 0,
15
32

[
x(x − 2)

]2 if 0 ≤ x ≤ 2.

In this way, we generated samples of size 100, 250 and 500. The bandwidths was
computed using (3.2) and (3.5). The fuzzy set estimator and the kernel estimations
were computed using (3.8), and the Epanechnikov and Gaussian kernel functions.
The IMSE∗ values of the fuzzy set estimator and the kernel estimators are given in
Table 1.

As seen from Table 1, for all sample sizes, the fuzzy set estimator using varying
bandwidths have smaller IMSE∗ values than the kernel estimators with fixed and
different bandwidth for each estimator. In each case, it is seen that the fuzzy set

Table 1 IMSE∗ values of the estimations for the fuzzy set estimator and the kernel estimators

v n IMSE∗[ϑ̂n] IMSE∗[f̂n
KE

] IMSE∗[f̂n
KG

]

0.2 100 0.0149∗ 0.0178 0.0185
250 0.0071∗ 0.0085 0.0089
500 0.0041∗ 0.0049 0.0051

0.15 100 0.0133∗ 0.0178 0.0185
250 0.0064∗ 0.0085 0.0089
500 0.0037∗ 0.0049 0.0051

0.10 100 0.0113∗ 0.0178 0.0185
250 0.0054∗ 0.0085 0.0089
500 0.0031∗ 0.0049 0.0051

∗Minimum IMSE∗ in each row
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estimator has the best performance. Moreover, we see that the kernel estimation
computed using the Epanechnikov kernel function shows a better performance than
the estimations computed using the Gaussian kernel function.

The graphs of the real density function and the estimations of the density func-
tions are computed over a sample of 500, using 200 points and v = 0.2, are illus-
trated in Figures 1 and 2.

Figure 1 Estimation of f with ϑ̂n and f̂n
KE

.

Figure 2 Estimation of f with ϑ̂n and f̂n
KG

.
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5 Concluding remarks

In this paper, we have presented a criterion to estimate the density function by
means of the fuzzy set estimator introduced by Fajardo et al. (2012). In practice,
the method depends on a scaling factor and a membership function, in the context
of the Fuzzy Set Theory. This shows a parallelism with the classic kernel estimator,
which depends on a bandwidth and a kernel. It is proved that the new estimator
has the same asymptotic behavior than the classic kernel estimator. The optimal
scaling factor is of order n−1/5 and the rate of optimal convergence for the IMSE∗
is of order n−4/5. Nevertheless, the results showed that the thinning function or
membership function can be taken in such a way that the IMSE∗ is less than that
of the classic kernel estimators. This reduction allows us to affirm that the fuzzy set
estimator provides better estimates than the classic kernel estimators. Moreover, it
is important to emphasize that the thinning function can be used to select points of
the sample with different probabilities, in contrast to the classic kernel estimators,
which assigns equal weight to all points of the sample.

Appendix: Proof of Theorem 4

Let us consider the following decomposition

MSE
[
ϑ̂n(x)

] = Var
[
ϑ̂n(x)

] + (
E

[
ϑ̂n(x) − f (x)

])2
.

Next, we will present two equivalent expressions for the terms to the right in the
above decomposition. The combination of Definition 1 and (2.1), allows us to write

Var
[
ϑ̂n(x)

] = 1

nb2
n(

∫
ϕ(u)du)2 αn(x)

(
1 − αn(x)

)
.

Now, if we combine condition (C1), which allows us to make a Taylor expansion
of the density function f on the neighborhood of x0, with condition (C3), we can
write (2.1) as follows

αn(x) = bn

∫
ϕ(u)du

{
f (x) + b2

n

∫
u2ϕ(u)f ′′(x + βubn) du

2
∫

ϕ(u)du

}
, (A.1)

where β ∈ (0,1). Moreover, conditions (C1) and (C3) imply that∫
u2ϕ(u)

[
f ′′(x + βubn) du − f ′′(x)

]
du = o(1). (A.2)

Now, we can write (A.1) as

αn(x) = bn

∫
ϕ(u)du

{
f (x) + b2

n(f
′′(x)

∫
u2ϕ(u)du + o(1))

2
∫

ϕ(u)du

}
.
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Thus,

Var
[
ϑ̂n(x)

] = f (x)

nbn

1∫
ϕ(u)

+ bn(f
′′(x)

∫
u2ϕ(u)du + o(1))

n
∫

ϕ(u)

+ b2
n

n

(
f (x) + b2

n(f
′′(x)

∫
u2ϕ(u)du + o(1))

2
∫

ϕ(u)du

)2

.

By condition (C2)

Var
[
ϑ̂n(x)

] = f (x)

nbn

1∫
ϕ(u)

+ o

(
1

nbn

)
. (A.3)

On the other hand, (2.1) and (A.1) imply that

E
[
ϑ̂n(x) − f (x)

] = b2
n

2
∫

ϕ(u)du

∫
u2ϕ(u)f ′′(x + βubn) du.

By (A.2)

b2
n

∫
u2ϕ(u)

[
f ′′(x + βubn) du − f ′′(x)

]
du = o

(
b2
n

)
.

Thus,

E
[
ϑ̂n(x) − f (x)

] = b2
n

2
∫

ϕ(u)du
f ′′(x)

∫
u2ϕ(u)du + o

(
b2
n

)
.

Therefore,

(
E

[
ϑ̂n(x) − f (x)

])2 = b4
n

(
f ′′(x)

∫
u2ϕ(u)du

2
∫

ϕ(u)du

)2

+ o
(
b4
n

)
. (A.4)

The assertion now follows from (A.3) and (A.4).
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