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Abstract. The Weibull distribution is characterized via the ratio of two upper
record statistics. Also the uniform distribution is characterized via the ratio
of two lower record statistics. As an application, an improved confidence in-
terval for the Weibull shape parameter is presented.

1 Introduction

The record values were introduced by Chandler (1952). Suppose that {Xi}i≥1 is a
sequence of independent and identically distributed random variables with com-
mon distribution function F(x) and common probability density function f (x).
Set Yn = min(max){X1,X2, . . . ,Xn} for n ≥ 1. We say Xj is a lower (upper)
record value of this sequence if Yj < (>) Yj−1 for j > 1. By definition, X1
is a lower as well as an upper record value. Let Ln = min{j | j > Ln−1, Yj <

YLn−1, n ≥ 2} with L1 = 1 denote the times of lower record values. Similarly, let
Un = min{j | j > Un−1, Yj > YLn−1, n ≥ 2} with U1 = 1 denote the times of upper
record values. For comprehensive accounts of the theory and applications of record
values, we refer the readers to Ahsanullah (1995), Arnold et al. (1998), Ahsanullah
(2004), and Ahsanullah and Raqab (2006).

Characterizing distributions via their record statistics has a long history. Some
recently published examples include: characterization of generalized extreme
value, power function, generalized Pareto and classical Pareto distributions (Wu
and Lee, 2001); characterizations of the uniform distribution (Arslan et al., 2005a,
2005b); characterizations of the exponential distribution (Iwinska, 2005; Ahsanul-
lah and Aliev, 2008; Oncel, 2009; Yanev and Ahsanullah, 2009); characterizations
based on regression on pairs of record values (Bairamov et al., 2005); characteri-
zation based on Fisher information in minima and upper record values (Hofmann
et al., 2005); characterizations based on sums of squares of spacings (Kirmani and
Wesolowski, 2005); characterizations of general classes of doubly truncated distri-
butions (Sultan and Abd El-Mougod, 2006); characterization based on the condi-
tional expectation of truncated record values (Gupta and Ahsanullah, 2006); char-
acterizations of the generalized Pareto distribution (Tavangar and Asadi, 2007);
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characterizations of the doubly truncated Burr type XII distribution (El-Baset and
Ahmad, 2007); characterizations based on regression of adjacent generalized order
statistics (Bieniek, 2007); characterizations based on the difference between the
counting process of upper records (Gouet et al., 2007); characterizations based on
entropy of record values (Baratpour et al., 2007); characterizations based on con-
ditional expectations of functions of generalized order statistics (Beg and Ahsanul-
lah, 2007); characterizations of the exponentiated Pareto distribution (Shawky and
Abu-Zinadah, 2008a; Khan and Kumar, 2010); characterizations of the exponenti-
ated gamma distribution (Shawky and Bakoban, 2008); characterization based on
bivariate regression of record values (Yanev et al., 2008); characterizations based
on the conditional expectation of the kth lower record values (Malinowska and
Szynal, 2008); characterization based on entropies of records (Ahmadi, 2009; Ah-
madi and Fashandi, 2009); characterizations based on Rényi entropy of record
values (Baratpour et al., 2008); characterization through expectation of functions
of generalized order statistics (Haque et al., 2009); characterization conditioned
on a pair of nonadjacent records (Khan and Khan, 2009); characterizations based
on conditional expectation of functions of dual generalized order statistics (Khan
et al., 2010a); and, characterizations based on the difference of two conditional
expectations, conditioned on a nonadjacent record statistic (Khan et al., 2010b).

For other recent examples, we refer the readers to Shawky and Abu-Zinadah
(2006), Akhundov and Nevzorov (2007), Sultan and Abd El-Mougod (2007),
Shawky and Abu-Zinadah (2008b), Su et al. (2008), and Shawky and Bakoban
(2009).

The aim of this short note is to provide characterizations of the Weibull and uni-
form distributions via the ratio of two record statistics. The main results are given
in Section 2. An application of these results for confidence interval estimation is
presented in Section 3. A real data application of the proposed confidence inter-
val in Section 3 is described in Section 4. Finally, some future work are noted in
Section 5.

In the following, we give some preliminaries. Let XU(m) and XU(n) for m < n

denote the upper record statistics from a given family. Let XL(m) and XL(n) for
m < n denote the corresponding lower record values. The joint probability density
function of XU(m) and XU(n) is given by (see Ahsanullah, 1995; Arnold et al.,
1998; Ahsanullah, 2004 and Ahsanullah and Raqab, 2006):

fXU(m),XU(n)
(x, y)

= [ln(1 − F(x)) − ln(1 − F(y))]n−m−1

�(m)�(n − m)
(1.1)

× [− ln
(
1 − F(x)

)]m−1 f (x)f (y)

1 − F(x)
,
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where 0 < x < y < ∞, 1 ≤ m < n and �(·) denotes the gamma function defined
by

�(a) =
∫ ∞

0
ta−1 exp(−t) dt.

The joint probability density function of XL(m) and XL(n) is given by

fXL(m),XL(n)
(x, y)

= 1

�(m)�(n − m)

[− lnF(x)
]m−1 (1.2)

× [
lnF(x) − lnF(y)

]n−m−1 f (x)f (y)

F (x)
,

where 0 < y < x < ∞ and 1 ≤ m < n.
A continuous random variable X is said to have the gamma distribution with

shape parameter a > 0 if its probability density function is

fX(x) = xa−1 exp(−x)

�(a)
,

where x > 0. A continuous random variable X is said to have the beta distribution
with shape parameters a > 0 and b > 0 if its probability density function is

fX(x) = xa−1(1 − x)b−1

B(a, b)
,

where 0 < x < 1 and B(·, ·) denotes the beta function defined by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt.

Finally, if a continuous random variable X has the Weibull distribution with shape
parameter α > 0 then its distribution function and probability density function are
given by

FX(x) = 1 − exp
[
−

(
x

β

)α]
(1.3)

and

fX(x) = α

β

(
x

β

)α−1

exp
[
−

(
x

β

)α]
, (1.4)

respectively, where x > 0 and β > 0.
There have not been many papers giving characterizations of the Weibull dis-

tribution based on records. The only one we are aware of is Chang (2008). It
shows that X is a Weibull random variable with shape parameter α if and only
if XU(n+1)/{XU(n+1) − XU(n)} and XU(n+1) for n ≥ 1 are independent or equiva-
lently XU(n)/{XU(n+1) − XU(n)} and XU(n+1) for n ≥ 1 are independent or equiv-
alently {XU(n+1) + XU(n)}/{XU(n+1) − XU(n)} and XU(n+1) for n ≥ 1 are inde-
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pendent. But Chang (2008) discusses no practical uses of these characterizations.
We cannot see any practical use either. Since the if and only if conditions are inde-
pendent of the shape parameter they cannot be used for estimation for instance.

There are many situations in which only records are observed. Examples in-
clude destructive stress testing, meteorology, hydrology, seismology, mining, and
athletic events. For a more specific example, consider the situation of testing the
breaking strength of wooden beams as described in Glick (1978). Hence, it is im-
portant that one has accurate estimation procedures based only on records. We
describe such a procedure later in Section 3 and show its superior performance
versus known estimation procedures using both simulated and real data.

The Weibull distribution is the most popular model in many areas, including
destructive stress testing. Hence, it is even more important that accurate estimation
procedures are developed for the Weibull distribution based only on records.

2 Main results

Our main results are Theorems 2.1 and 2.2. Theorem 2.1 provides a characteriza-
tion of the Weibull distribution based on the ratio of two upper record statistics.
Theorem 2.2 provides a characterization of the uniform distribution based on the
ratio of two lower record statistics.

Theorem 2.1. Suppose XU(m) and XU(n) for m < n are the upper record statis-
tics from a given family. Suppose without loss of generality that the distribution
function has the form F(x) = 1 − exp{−h(x)/c}, where c > 0. Suppose further
h(xy) = h(x)h(y) for all x, y. Then the family is Weibull with shape parameter
α if and only if the distribution of (XU(m)/XU(n))

α is beta with shape parameters
n − m and m.

Proof. Suppose X is a Weibull random variable with shape parameter α. Consider
the transformations R = XU(m)/XU(n) and Q = XU(n). The modulus of the deter-
minant of the Jacobian matrix for these transformations is q . It follows from (1.1)
that

fQ,R(q, r) = qfXU(m),XU(m)
(qr, q)

= q[ln(1 − F(qr)) − ln(1 − F(q))]n−m−1

�(m)�(n − m)

× [− ln
(
1 − F(qr)

)]m−1 f (qr)f (q)

1 − F(qr)

= α2q[(q/β)α − (qr/β)α]n−m−1(qr/β)α(m−1)+α−1(q/β)α−1

β2�(m)�(n − m) exp{(q/β)α}

= α2q(q/β)nα−2[1 − rα]n−m−1rα(m−1)+α−1 exp{−(q/β)α}
β2�(m)�(n − m)

.
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So, the probability density function of R is:

fR(r) = α2[1 − rα]n−m−1rαm−1

β2�(m)�(n − m)

∫ ∞
0

q(q/β)nα−2 exp
{−(q/β)α

}
dq

= α�(n)

�(m)�(n − m)

[
1 − rα]n−m−1

rαm−1,

where α > 0 and r < 1. So, the distribution function of W = Rα is:

FW(w) = P
(
Rα ≤ w

) = P
(
R ≤ w1/α) = FR

(
w1/α)

,

and hence the probability density function of W is

fW(w) = (1 − w)n−m−1wm−1

B(n − m,m)
,

where 0 < w < 1.
Now consider the converse. The joint probability density function of (Q,R) is

fQ,R(q, r) = 1

cn�(m)�(n − m)
q
[
h(q) − h(qr)

]n−m−1[
h(qr)

]m−1

× h′(qr)h′(q) exp
{−h(q)/c

}
.

So, the probability density function of R can be expressed as:

fR(r) = 1

cn�(m)�(n − m)

×
∫ ∞

0
q
[
h(q) − h(qr)

]n−m−1[
h(qr)

]m−1 (2.1)

× h′(qr)h′(q) exp
{−h(q)/c

}
dq.

Note that we must have h′(·) > 0 since the integrand in (2.1) must be positive. Also
we must have h(·) > 0 since the exp{h(q)} term must be finite. Since h(qr) =
h(q)h(r) (and so h′(qr) = h(q)h′(r)/q), (2.1) can be reduced to

fR(r) = 1

cn�(m)�(n − m)

∫ ∞
0

h(q)n−m−1[
1 − h(r)

]n−m−1
h(q)m−1h(r)m−1

× h(q)h′(q)h′(r) exp
{−h(q)/c

}
dq

= h′(r)[1 − h(r)]n−m−1h(r)m−1

cn�(m)�(n − m)

∫ ∞
0

h(q)n−1h′(q) exp
{−h(q)/c

}
dq

∝ h′(r)[1 − h(r)]n−m−1h(r)m−1

�(m)�(n − m)
,

where 0 < h(r) < 1. So, the distribution function and the probability density func-
tion of W = Rα are:

FW(w) = P
(
Rα ≤ w

) = P
(
R ≤ w1/α) = FR

(
w1/α)
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and

fW(w) ∝ h′(w1/α)w1/α−1

�(m)�(n − m)

[
1 − h

(
w1/α)]n−m−1[

h
(
w1/α)]m−1

,

respectively, where 0 < w < 1. So, the only choice possible for h(·) is h(q) = qα .
The result follows. �

Theorem 2.2. Let XL(m) and XL(n) for m < n denote the lower record val-
ues from an absolutely continuous distribution function F(·). Then the ratio
W = − ln(XL(n)/XL(m)) has the gamma distribution with shape parameter n − m

if and only if X is distributed uniformly over the interval (0,1).

Proof. Suppose X is a uniform random variable over the interval (0,1). Consider
the transformations R = XL(n)/XL(m) and Q = XL(m). The modulus of the deter-
minant of the Jacobian matrix for these transformations is q . Its follows from (1.2)
that the joint probability density function of Q and R is:

fQ,R(q, r) = qfXL(m),XL(n)
(q, qr)

= q

�(m)�(n − m)

[− lnF(q)
]m−1

× [
lnF(q) − lnF(qr)

]n−m−1 f (q)f (qr)

F (q)
.

So, the probability density function of R is:

fR(r) =
∫ ∞
−∞

q

�(m)�(n − m)

[− lnF(q)
]m−1

× [
lnF(q) − lnF(qr)

]n−m−1 f (q)f (qr)

F (q)
dq

=
∫ ∞

0

F−1(exp(−u))

�(m)�(n − m)
um−1[−u − lnF

(
F−1(

exp(−u)
)
r
)]n−m−1

× f
(
rF−1(

exp(−u)
))

du.

Now consider the transformation W = − lnR. We have:

fW(w) = exp(−w)fR

(
exp(−w)

)
= exp(−w)

∫ ∞
0

F−1(exp(−u))

�(m)�(n − m)
um−1

(2.2)
× [−u − lnF

(
exp(−w)F−1(

exp(−u)
))]n−m−1

× f
(
exp(−w)F−1(

exp(−u)
))

du.
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If F−1(z) = z for 0 < z < 1, then

fW(w) = wn−m−1 exp(−w)

�(m)�(n − m)

∫ ∞
0

exp(−u)um−1 du = wn−m−1 exp(−w)

�(n − m)
.

So, W is a gamma random variable with shape parameter n − m.
Now consider the converse. To obtain a gamma probability density function

with shape parameter n − m, the integral in (2.2) must evaluate to something
of the form wn−m−1/�(n − m). So, we must have F−1(exp(−u)) = exp(−u)

and lnF(exp(−w)F−1(exp(−u))) ∝ −(u + w). These two requirements result in
F−1(q) = q for 0 < q < 1. The proof is complete. �

3 A simulation study

Here, we use Theorem 2.1 to derive an improved confidence interval for the
Weibull shape parameter.

Suppose X1,X2, . . . ,Xn is a random sample from (1.3)–(1.4) with shape pa-
rameter α. The traditional confidence interval for α is based on normal approxima-
tion and the method of maximum likelihood. The maximum likelihood estimator
of α, say α̂, is the root of the equation

n

α
+

n∑
i=1

ln
(

Xi

β

)
=

n∑
i=1

(
Xi

β

)α

ln
(

Xi

β

)
, (3.1)

where β = n−1/α(
∑n

i=1 Xα
i )1/α . By asymptotic normality, an approximate 100(1−

γ )% confidence interval for α is:[
α̂ − zγ/2

√
I22

I11I22 − I 2
12

, α̂ + zγ/2

√
I22

I11I22 − I 2
12

]
, (3.2)

where zγ/2 is the 100(1 − γ /2)% percentile of the standard normal distribution
and

I11 = E

{
n

α̂2 +
n∑

i=1

(
Xi

β̂

)α̂[
ln

(
Xi

β̂

)]2
}
, (3.3)

I22 = E

{
−nα̂

β̂2
+ α̂(α̂ + 1)

β̂α̂+2

n∑
i=1

Xα̂
i

}
, (3.4)

I12 = E

{
n

β̂
− 1

β̂α̂+1

n∑
i=1

Xα̂
i − α̂

β̂α̂+1

n∑
i=1

Xα̂
i ln

(
Xi

β̂

)}
, (3.5)

where β̂ = n−1/α̂(
∑n

i=1 Xα̂
i )1/α̂ .

By Theorem 2.1, a 100(1 − γ )% confidence interval for α is:[
ln{Iγ (m,n − m)}
ln(XU(n)/XU(m))

< α <
ln{I1−γ (m,n − m)}
ln(XU(n)/XU(m))

]
, (3.6)
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where 1 ≤ m < n and Iγ (a, b) denotes the incomplete beta function ratio defined
by

Iγ (a, b) = 1

B(a, b)

∫ γ

0
ta−1(1 − t)b−1 dt.

An immediate advantage of (3.6) over (3.2) is that the former does not depend
on β . For the confidence interval, (3.2), both the maximum likelihood equation,
(3.1), and the three expectations, (3.3)–(3.5), are heavily dependent on β .

Another immediate advantage is that (3.6) is computationally less expensive.
One only needs to compute the incomplete beta function ratio and in-built routines
for this are widely available. The confidence interval, (3.2), requires finding roots
of (3.1) as well as computing the three expectations (3.3)–(3.5).

We now perform a simulation study to see how the empirical coverage lengths
and empirical coverage probabilities of (3.2) and (3.6) compare. We simulate
ten thousand samples of size n from (1.3)–(1.4) for n = 2,3, . . . ,100, α =
0.2,0.5,1,2,3,5 and β = 1. For each sample, we calculate the limits of the con-
fidence intervals, (3.2) and (3.6), for γ = 0.05. For given n, α and β , we calculate
empirical coverage length as the average of the empirical coverage lengths over
the ten thousand samples. We calculate empirical coverage probability as the pro-
portion of the ten thousand confidence intervals containing the true value of α.

The empirical coverage lengths and empirical coverage probabilities versus n =
2,3, . . . ,100 and for α = 0.2,0.5,1,2,3,5 are shown in Figures 1 and 2. The
horizontal line in Figure 2 corresponds to the empirical coverage probability being
equal to 0.95. The actual values plotted are the lowess (Cleveland, 1979, 1981)
smoothed versions versus n for n = 2,3, . . . ,100.

It is evident from the figures that the empirical coverage probability for (3.6) is
generally closer to the nominal level for all n. The empirical coverage length for
(3.6) appears smaller for small to moderate n. However, for n ≥ 80, the empirical
coverage lengths for (3.2) and (3.6) appear indistinguishable. It is also worth noting
that empirical coverage lengths generally increase with increasing α and decrease
with increasing n.

In summary, the confidence interval given by (3.6) does not depend on β , is
easy to compute, and has better empirical coverage probabilities and better empir-
ical coverage lengths. The empirical coverage lengths for (3.2) and (3.6) appear
indistinguishable for all sufficiently large n.

4 A real data application

Here, we compare the performance of the confidence intervals, (3.2) and (3.6), for
a real data set. The data set is on the times in days between successive earthquakes
of magnitudes greater or equal to 6.5 in Iran for the years from 1989 to 2008. The
data set given in Table 1 is extracted from the International Institute of Earthquake
Engineering and Seismology (IIEES) web-site, http://www.iiees.ac.ir.

http://www.iiees.ac.ir
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Figure 1 Empirical coverage lengths of (3.2) (solid) and (3.6) (broken) for samples of size n from
(1.3)–(1.4) each replicated ten thousand times.

We computed 100(1 − γ )% confidence intervals for the shape parameter, α, us-
ing both (3.2) and (3.6). The results are shown in Table 2. We see that the proposed
confidence interval is narrower for each γ . This supports are our findings from the
simulation study.

5 Future work

In this short note, we have derived characterizations of the Weibull and uniform
distributions based on records. As an application, we have proposed a confidence
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Figure 2 Empirical coverage lengths of (3.2) (solid) and (3.6) (broken) for samples of size n from
(1.3)–(1.4) each replicated ten thousand times.

interval for the Weibull shape parameter. We have shown that this confidence in-
terval is superior to the one based on maximum likelihood estimation.

A natural extension is to consider joint confidence regions for the Weibull shape
and scale parameters. Asgharzadeh and Abdi (2011) give such confidence regions.
But they do not compare their confidence regions with known ones; for example,
the one based on maximum likelihood estimation. So, the practical values of their
contribution (although quite novel) are not clear.

The characterization in Theorem 2.1 involves the ratio of two record statistics
each with the same scale parameter. Therefore, the characterization is independent
of the scale parameter. In other words, a joint confidence region of the Weibull
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Table 1 Times (in days) between successive earth-
quakes in Iran

284, 246, 139, 2280, 95, 308, 355, 607, 11, 563, 553

Table 2 Comparison of (3.2) and (3.6) for the real data

Confidence intervals

γ using (3.2) using (3.6)

0.1 (0.5896652, 1.280012) (0.7030108, 1.276851)
0.05 (0.5235391, 1.346138) (0.5519302, 1.252841)
0.005 (0.3457811, 1.523896) (0.4212522, 1.460757)
0.0005 (0.2044001, 1.665277) (0.2231795, 1.500415)

shape and scale parameters cannot be constructed using Theorem 2.1. A com-
pletely different characterization will be required. This is a possible future work.

Another natural extension is to consider the case that X in Theorem 2.1 is an
exponentiated Weibull random variable (Mudholkar and Srivastava, 1995) with
distribution function and probability density function specified by

FX(x) = {
1 − exp

[−xc]}α

and

fX(x) = cαxc−1 exp
[−xc]{1 − exp

[−xc]}α−1
,

respectively, where x > 0, α > 0 and c > 0. In this case, the joint probability
density function of (Q,R) becomes

fQ,R(q, r) = q{ln[1 − {1 − exp[−(qr)c]}α] − ln[1 − {1 − exp[−qc]}α]}n−m−1

�(m)�(n − m)

× {− ln
[
1 − {

1 − exp
[−(qr)c

]}α]}m−1

× c2α2q2c−2rc−1 exp
[−(qr)c − qc]

× {1 − exp[−qc]}α−1{1 − exp[−(qr)c]}α−1

1 − {1 − exp[−(qr)c]}α .

So, the marginal probability density function of R is

fR(r) = c2α2rc−1

�(m)�(n − m)

×
∫ ∞

0

{
ln

[
1 − {

1 − exp
[−(qr)c

]}α]
− ln

[
1 − {

1 − exp
[−qc]}α]}n−m−1 (5.1)
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× {− ln
[
1 − {

1 − exp
[−(qr)c

]}α]}m−1
q2c−1 exp

[−(qr)c + qc]
× {1 − exp[−qc]}α−1{1 − exp[−(qr)c]}α−1

1 − {1 − exp[−(qr)c]}α dq.

Clearly, (5.1) is not in a recognizable form. Hence, the approach of Theorem 2.1
is unlikely to give a characterization of the exponentiated Weibull distribution. An
alternative approach will be required, a possible future work.
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