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Hypergeometric functions where two arguments differ
by an integer
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Abstract. If oy — B is an integer, then p, Fy(et; B:7) can be expressed in
terms of ;1 F,; 1. This leads to a conjectured generalization of Kummer’s
transformation from | F to p Fy. Applications are given for noncentral chi-
square and Student’s ¢ distributions.

1 Introduction and summary

The generalized hypergeometric function ,F,; and its variants are basic tools in
many areas of mathematics, see Mathai and Saxena (1973, 1978) and Mathai et al.
(2010) for most excellent accounts. Many standard functions can be expressed in
terms of the generalized hypergeometric function.

By equation (9.14) of Gradshteyn and Ryzhik (2007), , F,(et; B : 2) is defined
by

o0

(@) 2k
Fya;B:2)=
pFalec B2 g(ﬁ»k!

for e in CP, B in C9 and z in C, where (o)r = (o) (@2)k - (etp)k, Dk =
F'z+k)/T(z)=zz+1)---(z+k—1)fork=0,1,2,..., and (B) is defined

(1.1

similarly. For convenience, we set a* = (a2, ..., ®p), B* = (B2, ..., By)’, so that
o = (a1, a*) and B = (B1, B7).
The sum in (1.1) is finite if ;1 =0, —1, =2, .... It is absolutely convergent if

p<g+1lorif p=g+1 and |z] < 1. These restrictions can be removed by
redefining it in terms of an integral transform: see Mathai and Saxena (1973, 1978)
and Mathai et al. (2010).

The aim of this short note is to provide some transformation tools for (1.1)
when o and B differ by an integer. In Sections 2 and 3, we express , F in terms
of ,_1F,;—1 when a; — B is a positive and negative integer, respectively. Several
examples are given, including applications to noncentral chi-square and Student’s
t distributions.

The nth derivative of (1.1) is

(d/dz)" pFy(a; B:2) = (@) (B), ' pFyle +nly; B +nl,:2),
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where 1, is the vector of p 1’s. So,

pFy(a+nly; B+nly,:2) = (@), (B)a(d/dz)" ,Fy(e; B:2). (1.2)
The nth integral of (1.1) is

z n
(/(; dz) pFy(a; B:2) = (o — nlp),jl(ﬂ — nlq),,pF(;’(a —nl,; B—nl,:2),
where pF; (a5 B : z) denotes the series for , Fy (a; B:z) less its first n terms. Note
that
_ (a)nzn
~ (B!

which we can rewrite as
pFa(a*, ;B 1+n:z)

qu”(oz;ﬂ:z) 1Fypi(e+nly, 1;8+nl,,1+n:2), (1.3)

(ﬂ* - nlq—l)nn!
(“* - nlp—l)nzn )

= p—1Fy_y(@" —nlp_1; B* —nly_1:2)

Compare this with (3.2) below with o) = 1.

Mathai and Saxena (1973, pages 165-166) (see also Mathai and Saxena (1978)
and Mathai et al. (2010)) give several examples of 2 F| («; §:z) with coefficients
differing by an integer that are not covered by our results: see equation (5.4.2) for
ar = o1 + m, equation (5.4.3) for ap = oy + m, B = a2 + n, equations (5.4.4) and
(5.4.5) for B = a1 + a2 + m, equations (5.4.6) and (5.7) for 8 = o1 + ap — m.
Analogous results for , F;(a; B:z) are presumably deducible from their Theo-
rems 5.5.1, 5.6.1, 5.7.1 using their equation (1.1.9).

If (wy,...,ap) = (o, 01+ 1/m,...,a1+(@m—1)/m) forsomem=1,2,...,
then

(@) - (@) = m~" (may)mi.

So, if in (1.1) (a1)x is changed to (o¢)mi or if (B1)x is changed to (B1)mk, the
series remains a hypergeometric function with p or g, respectively, increased by
m— 1.

2 When arguments differ by a positive integer

If a1 = Bi, then ,Fy(a; B:2) = p—1 Fy—1(a®; B*:2). In this section, we assume
thatm = a1 — 1 =0, 1,2, .... We state our first main result as follows.
Theorem 2.1. Form=a; — 81 =0,1,...,

Fy(a; B:2)
pFa( bz 2.1

=2 (}7) p—1 Fq1 (& 4 j 1,13 B* + jlg—1:2) (@) ;27 /(B) .
=0
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Proof. Note that («1);/(B1)i = (B1 +m)i/(B1)i = (B1 + Dm/(B1)m and

m
Br+Dm= dej(al)[i]js (2.2)
j=0
where [z]j =z(z— 1D —j+D=T@+1/I'z+1-j)=(-1/(-2); and
dpj(ar) = (';’)[oq — 11— ((2.2) follows from the last displayed equation in “Re-
lation to umbral calculus” section of http://en.wikipedia.org/wiki/Pochhammer_
symbol). Also [i];/i! =1/ — j)!. Setting k =i — j gives

R R T

Fylo; B:2) = 'NYd,; J — A

pFe(e; B:2) = (B1),, ;) j@)z kg Bk
But (e*)k4j = (e*)j(a* + j1,_1). The theorem now follows using [B; + m —
Hm—j/(BDm =1/(B1);. O

Theorem 2.1 leads us to conjecture that whether or not m is an integer,
qu(,Bl +m»05*§ B ZZ)
(@*)j(=m)j(=2)/
B)J!

The next two examples show that this is true for (p,g) = (1, 1) and (2, 1).

00
= X:p—qu—l(Ol>X< +j1p—l§ ﬁ* +j1q—1 :Z)
=0

Example 2.1. By (2.1), form =0,1,...

IFi(B+m; By =Y (B+m);z/ /{(B);j!}

=0
=exp@ Y- (") 2 /(B); = exp(a)1 (- i)
=0

In fact, this holds for any m in C by Kummer’s transformation, equation (13.1.27)
of Abramowitz and Stegun (1964).

If p = g, one can apply the previous example iteratively. For example, if p = ¢
and a — B is a positive vector integer it follows that exp(—z),Fy(a; B:z) is a
polynomial in z of degree (a1 — B1) +--- + (ap — Bp).

Example 2.2. By (2.1),
m

2Fi(B+ma; Bir)= (’7)#(1 —2)7 (@) /(B);

j=0

= —-2)"%Fi(a,—m; B:z/(z—1)).
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In fact, this holds for any m in C by equation (15.3.4) of Abramowitz and Stegun
(1964). This covers the cases of equation (9.121.23) of Gradshteyn and Ryzhik
(2007), and give alternative forms of equations (9.121.16), (9.121.21), (9.121.29),
(9.121.32) with n even, and of equations (9.121.17), (9.121.20), (9.121.30),
(9.121.31) with n odd.

Example 2.3. By (2.1),
1F2(3/2; B1,1/2:2) = f1 + 223/ B,
1F2(5/2; 1, 1/2:2) = fi + (4/3)zf3/ B + 42 f5/ (B1)2.
1F2(7/2; Bi, 1/2:2) = fi 4623/ B1 +42° f5/ (B2 + (8/19)2 £/ (B1)3,
and so on, where f; = F1(j/2:z). Set Z = 2712, C =coshZ and S = sinh Z.
Then f1 =C. By (1.2),
»B=S/Z,
fs=3Z7%(C - 5/2),
f1=15273(82*> —3CZ +38),

and so on. In this way one may express 1 F>(j/2; B1,1/2:z) as a linear combina-
tion of C and S. More generally, by equation (9.6.10) of Abramowitz and Stegun
(1964, page 375),

0F1(B:2) =T (B P15 1(2), (2.3)
where Z = 2z!/2, where I,(-) is the modified Bessel function of the first kind of

order v. So, f; = F(j/2)(2/Z)j/2_11j/2_1(Z), which is given in terms of C, S by
equations (10.2.12)—(10.2.14) of Abramowitz and Stegun (1964, page 443).

Example 2.1 allows one to find the moments of the noncentral chi-square
random variable X ~ Xf((S). For, by equation (3) of Johnson and Kotz (1970,
page 132),

E[X] = exp(—38/2)2% | F1(v/2 + 0;v/2:8/2)T (v/2 + 6) (2.4)

e.¢]
=exp(—8/2)2"T(v/2+m) Y (v/24+m);(8/2) /{(v/2);j!} (2.5)
j=0
if 0 =m. Note that (B+ j)—j=B+)HDB+j+D---B+m—-1)=I(B+
m)/ (B + j). This expression (2.5) appears to be new. For comparison, by John-
son and Kotz (1970, page 133), it follows that the mth cumulant of Xf(é) is

km (X) =2""Vm — DI(v + m$).

Note that X /2 is known to electrical engineers as the Ricean random variable. By
(2.4) its mean requires 1 F1 (8 + 1/2; B:z) for § = v/2. This is one of many cases
where it would be nice to have a simplification for , Fy, (et; B :z) when 2(ay — B1)
is an integer.
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3 When arguments differ by a negative integer
In this section, we suppose that n = 1 — «] is a positive integer. So, («1); /(a1 +

n); = (a1)n /(o1 +i),. Expanding in partial fractions gives

n—1

V(a4 in = caj/(a1 +i + j), 3.1
j=0

where
nj = 4 D @aleeey = 17 (") =1

= (=1)//{n!B(n — j, j + D},
where B(-, -) denotes the beta function. That is,
cio=1,
(€20, c21) = (1, = 1),
(c30, €31, ¢32) = (1, =2, 1)/2!,
(a0, ca1, caz, ca3) = (1, =3,3, —1)/3!,

and so on. So, using the notation of (1.3) we obtain our second main result.

Theorem 3.1. Forn=1,2,...,
n—1

pFylesar+n, B :2) = (@1)a Z cnjpAg—1(a1 + j,o*; B*:2), (3.2)
j=0

where

(a*)iz'

o0
pAq—l(Wﬂ*:Z)_Z
If o1 > 0, then
Z
PAq—l(“; p* IZ) =z /0 yal_lp—qu—l(“*? B*: Y) dy.

If a1 <O, then
[—a] .
pAg-1 (e B*z) = Y ()2 /(G +a)(B7);i!)
i=0
—aq ¢ ap—1 I+[—ar]l . px .
oy p—1F, 1 (s BT y) dy,

where |x] is the integral part of x.

(3.3)
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For example, taking n = 1, 2 gives
pFloar +1, 8% :2) =y pAg_1(a; B* : 2), (3.4)
pFy(esar +2, B :2) = (a1)af—pAg—i(1 + 1,a"; B*:2)
+ pAg—1(e; B :2)}.

The theorem is useful because it expresses j, Fy; in terms of ,_1 F;, 1. As an exam-
ple of (3.3), if —1 < a1 <0, then

Z
pAg1(@; i) = 4 ./0 Yy, Fyo (e B y) — 1) dy.

For an application of (3.3) to » F1, see equation (9.121.2) of Gradshteyn and Ryzhik
(2007).

(3.5)

Example 3.1. Note that ¢ Fp(y) =exp(y). Set p=¢g = 1. Fora > 0,

Z
1Ag(aiz) =27¢ /O y*Lexp(y) dy

o
=exp(z) Y _(—=2)'/(@)it1 (3.6)
i=0
=a 'exp(@) 1 Fi(1;a + 1:—2) 3.7)
a—1 .
= (—z)_“I’(a){l —exp(2) Z(—Z)’/i! (3.8)
i=0
for « = 1,2,.... The first series is obtained by integrating by parts to obtain a

recurrence relation and then showing the remainder after n terms goes to zero as
n — oo. The last line is equivalent to equation (6.5.13) of Abramowitz and Stegun
(1964, page 260). So, by (3.2), for @ > 0,

n—1
1Pl a+n:z)=(@nexp@) Y cnjla+ ) 1Fi(lia+j+1:—2)
j=0

= (@)nexp(z) Y (—2)'ch(a),

i=0
where
n—1
@)= cnj/(e+ it = )i/ {il(@nti},
j=0

where the last equality follows by (3.1). So, we obtain
1Fi(a;o+n:z)=exp(1 F1(n;a +n:—2), 3.9)
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a form of Kummer’s transformation. From (3.2), (3.8) above, fora =1, 2, ...,

n—1 a+j—1
1F1<a;a+n:z>=chj<—z>—“—fr<a+j){1—exp(z) > <—z>"/i!}.

j=0 i=0
For example, taking n =1 gives foraa =1, 2, ...,

a—1
1Fila;a+1:2) =(—2) 7T (a + 1){1 —exp(2) Z(—z)i/i!}.
i=0
For a <0,
[—a] . z [—o]
1Aol@iz) =) (i +a>—1z’/i!+z—“/0 y“—l{exp@) - y’/i!}dy,
i=0 i=0

which is equal to the right hand side of (3.6) for o # —1, —2,....

Example 3.2. For Re(y) <1 and Re(ap) > 1, 1 Fo(aa:y) = (1 — y)~?2. So, for
a1 >0,(p,g)=(2,1)and Re(z) <1,
Z
2Ao(@:z) =z f Yy 1 = y)T*2dy
0 , (3.10)
_ o / sin21~1(9) cos! 22 () d#
0

at sin?(#) = z. This has a closed form if, for example,

(i) a1 =1,2,3,...;
(i) a1 =1/2,3/2,5/2,...and an = 1/2,0, —1/2, .. ;
(iii) o1 =1/2,00 = 1.

Note that (i) covers the cases of equations (9.121.5), (9.121.6), (9.121.7),
(9.121.24) of Gradshteyn and Ryzhik (2007), (ii) covers the cases of equa-
tions (9.121.13), (9.121.26), (9.121.28) and (iii) covers the cases of equations
(9.121.15), (9.121.27). In all of these cases except the first, n = 1 so that by (3.4),

2F1(a;a1+1:2) =a12A0(:2) (3.11)

of (3.10). Another special case of (3.11) is given by equation (4.5) of Johnson and
Kotz (1970, page 96): Student’s ¢ distribution with v degrees of freedom is

Pr(r, <t)=1/2+ct2F1(1/2,a2;3/2: —1/v)
for 1> < v, where ap = (v + 1)/2 and ¢ = (7v) /2T (a2)'(v/2) L. By (3.11),
2F1(1/2,0053/2:—2) =272 A0(1/2, a2 —2)

—Z
— 2 l(g) 12 /0 y 1201 = y)e gy

Z
— _2*1{1/2/ V21 4+ x) "2 dx.
0
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Corollary 3.1. Fora; >0,

2F1(a; 000 +n:2)

1 (3.12)
n—
=@Da(1 =272 cpjlar+ N 2Fi(L ez + 1+ j:z/(1 —2))
j=0
= -2 Fi(n,a2; 001 +n:2/(1 — 2)). (3.13)
Proof. Set
Z
J@ =20 = [y 1= dy,
0
q=(q1.92) = (z. 1/(1 = 2)),
K(o) =q% =z"(1 — 2)*.
Integrating by parts gives for a > 0,
J(@) =a; K (@) —ard (@ + 1)}
=K(a)/a; —axK (e +12)/(a1)2 + (02)2K (e + 212) /(@1)3 — -+ -
=a;'qF1 (1, a0 01 + 1:1),
where t = —q192> =z/(z — 1). So, by (3.2),
n—1
2F1(o a1 +n:2) = (@)agy? Y cnjlon + N hFR a4+ 1:0)
j=0
w . .
= (a)ngy? Y1 (a2)id) (1),
i=0
where
) n—1
dy(ar) =) cnj/ (@1 + jivr = )i/ {il@)nyi}s
j=0
where the last equality follows by (3.1). g

So, just as (3.2) with (3.7) reduces | Fi(o;a + n:z) to a sum of n 1F;’s
with @« =1, and (3.9) reduces | Fi(a;x +n:z) to o« = n, so does (3.12) re-
duce >Fi(a; 1 +n:z) to a sum of n pF1’s with oy = 1, and (3.13) reduces
2F1(o; 0 +n:2) to g =n.

If @p < 1, one can write (3.10) in the form

2A0(1,00:2) =2 ¥ B(ag, 1| —a) (a1, 1 — ),



148 C. S. Withers and S. Nadarajah

where I,(«, B) is the distribution of a beta random variable. This is the nota-
tion of Section 26.5 of Abramowitz and Stegun (1964, page 944). Also given in
Abramowitz and Stegun (1964) are expansions for the incomplete beta function.
The coefficient of the second term in equation (26.5.12) should be a not b. Finite
expansions are available when oy or 1 — «p are positive integers. The incomplete
beta is a simple transformation of the F distribution.

Example 3.3. Note that | F>(«; @ + 1, B:7) is given by (3.2) in terms of 1 A;. For
a >0,

4 Z
(A o) =2 /O Yo Fi(B:y)dy =T(B)z /0 (/22 1y (x) dx

by (2.3), where Z = 2712, For example, by (3.4)—(3.5) and equation (10.2.13) of
Abramowitz and Stegun (1964, page 443),

1F2(1/2;3/2,3/2:2) = (1/2)1A1(1/2;3/2:2)

Z
:Z—1F(1.5)21/2/ Io5(x)/x% dx
0

Z
_ Z*I/ x~'sinhx dx,
0

and
1F2(1/2;5/2,3/2:2) = (1/2)1A1(1/2;5/2: 2),
where
VA
1A1(3/2; 3/2:z)=z_1'5F(1.5)/ (x/2)"I.5(x) dx
0
zZ
=2z—3/ x sinhx dx
0
=2Z73(Zcosh Z — sinh Z),
and
Z
1A1(1/2;5/2:z)=3«/27tZ_1/ Lis(x)/x'Pdx
0
V4
=6Z*1/ (coshx/x? — sinhx /x?) dx.
0
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