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Combining Expert Opinions in Prior Elicitation

Isabelle Albert ∗, Sophie Donnet †, Chantal Guihenneuc-Jouyaux ‡,
Samantha Low-Choy §, Kerrie Mengersen ¶ and Judith Rousseau ‖

Abstract. We consider the problem of combining opinions from different ex-
perts in an explicitly model-based way to construct a valid subjective prior in a
Bayesian statistical approach. We propose a generic approach by considering a
hierarchical model accounting for various sources of variation as well as account-
ing for potential dependence between experts. We apply this approach to two
problems. The first problem deals with a food risk assessment problem involving
modelling dose-response for Listeria monocytogenes contamination of mice. Two
hierarchical levels of variation are considered (between and within experts) with
a complex mathematical situation due to the use of an indirect probit regression.
The second concerns the time taken by PhD students to submit their thesis in a
particular school. It illustrates a complex situation where three hierarchical levels
of variation are modelled but with a simpler underlying probability distribution
(log-Normal).

Keywords: Bayesian statistics, Hierarchical model, Random effects, Risk assess-
ment

1 Introduction

In this paper we consider the problem of combining opinions from different experts in an
explicitly model-based way to construct a valid subjective prior in a Bayesian statistical
approach. In many applied problems, it is necessary to construct complex models.
In these models some parts are well informed by what we could call good data, that
is informative data, whereas in other parts, it is very difficult to collect appropriate
data to provide the required information. This occurs for instance when considering
contamination by ingestion of some bacteria, say campylobacter (Albert et al. 2008). A
complex model can be built by specifying sub-models, which are then combined. Data
are provided to inform some sub-models, in order to obtain as much information as
possible on the global model. However in other sub-models very little data are available
so that it is necessary to use expert opinions to supplement the information provided in
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rousseau@ceremade.dauphine.fr

© 2012 International Society for Bayesian Analysis DOI:10.1214/12-BA717

mailto:isabelle.albert@paris.inra.fr�
mailto:donnet@ceremade.dauphine.fr�
mailto:chantal.guihenneuc@parisdescartes.fr�
mailto:chantal.guihenneuc@parisdescartes.fr�
mailto:s.lowchoy@qut.edu.au�
mailto:k.mengersen@qut.edu.au�
mailto:rousseau@ceremade.dauphine.fr�


504 Combining Expert Opinions

the other well-informed sub-models. From a Bayesian perspective, this corresponds to
constructing informative priors on some of the parameters for which data can provide
little information (Berger 2006). The construction of such informative priors using
expert opinions is a delicate problem, because the human mind finds it difficult to
quantify qualitative knowledge; and has been reviewed from various perspectives (e.g.
Spetzler and Staël von Holstein 1975; Gill and Walker 2005; O’Hagan et al. 2006; Kynn
2008; Low-Choy 2012).

Consider a sampling model with observation X following a probability distribution
Pθ, with unknown parameter θ and as in any Bayesian approach a prior π on θ is
constructed. The aim of prior elicitation is then to construct such a prior probability
distribution for θ using expert knowledge. In most cases, it is more realistic to base the
prior probability elaboration on a parametric family, say π ∈ {πγ , γ ∈ Γ} where γ is
also estimated from the experts’ knowledge. Indeed, it is often the case that we may
not be able to feasibly elicit more than a few quantities from experts, which we call the
elicited data.

With more than one expert, we may elicit from each expert a different prior (i.e. a
different γ) and in many situations it is desirable to combine these different priors into
a single “consensus” prior for θ. There are various methods registered in the literature
to achieve this, although most are not entirely satisfactory for applications such as the
case studies considered here. The prevailing approaches are averaging (e.g. Burgman
et al. 2011) and pooling (Genest and Zidek 1986). Averaging emphasizes the consensus
on elicited quantities. Diversity among experts can then be expressed in terms of how
much experts differ from this consensus (e.g. Lipscomb et al. 1998). The advantage
of averaging is its simplicity, making it accessible, especially where rapid feedback is
desired (Burgman et al. 2011). A disadvantage is that focussing on deviations from
the average can understate variation by ignoring uncertainty, being the range of values
considered plausible by each expert. Furthermore, averaging may mis-represent multiple
modes, which may arise for example due to distinct rather than gradual differences in
schools of thought.

In contrast, the popular linear or logarithmic pooling methods emphasize diversity,
since they accumulate, across experts, the plausibility of all values. Pooling has been ad-
vocated as a principled approach to combining expert judgments (O’Hagan et al. 2006).
Since pooling can be viewed as a construction of an additive or multiplicative mixture
(albeit with specified weights w`) across individual experts,

∑L
`=1 w`πγ`

, it can easily
be extended to allow expert weights to be unequal (Genest and Zidek 1986). Indeed
Cooke’s method (as summarized in Cooke and Goossens 2008) provides an integrated
classical method for estimating then pooling with these weights that ‘has stood the test
of time’ (French 2011). Weights are based on p-values for evaluating how well expert
assessments on seed variables align with empirical results. Whilst pooling acknowl-
edges diversity, it does not highlight a consensus nor capture expert differences from
the consensus. Here we seek an approach for combining elicited judgments that retains
the advantages yet addresses the disadvantages of these two approaches by explicitly
modelling both the consensus and diversity of expert opinions, whilst acknowledging
multiple sources of uncertainty and variation.
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In our approach, we deviate from these traditional approaches of averaging and
pooling, by treating the elicited information as data, in the spirit of other Bayesian
approaches to combining expert judgments (see for instance Winkler 1968; Lindley 1983;
French 1985; West 1988). The decision-maker (DM) updates their knowledge according
to Bayes’ Theorem (French 1985, 2011). The DM begins with some prior opinion ψγ on
the parameter θ, which may then be updated using information elicited from experts,
to provide an updated posterior view. In turn, this posterior may then form the prior
for a subsequent analysis, and is here denoted πγ .

Our approach falls under the Parameter-Updating form of the Supra-Bayesian ap-
proach (Roback and Givens 2001), since we combine priors on plausible values of pa-
rameters, represented by probability distributions, rather than probabilities of events
(French 2011). However instead of directly eliciting the hyper-prior parameters γ for
θ, we perform indirect elicitation of expert knowledge on more intuitive observables
X|θ, γ, and then infer γ. This indirect approach to encoding has previously been ap-
plied in various situations, including Generalized Linear Models (GLMs), but only for
a single expert (e.g. Kadane et al. 1980; Bedrick et al. 1996; Kynn 2005; Denham and
Mengersen 2007; James et al. 2010). Here we demonstrate how to combine indirect
elicitations across multiple experts.

The method is generic and we consider two applications. One deals with risk assess-
ment using a dose-response model for Listeria monocytogenes on mice, the second deals
with the time taken to submit a PhD dissertation by students in applied mathematics
in an Australian university.

In Section 2 we describe the approach and the hierarchical model. In Section 4
we consider the the dose-response and the PhD example and Section 6 contains some
conclusions.

2 Method

Let X be a possible vector of observations from a distribution Pθ, θ ∈ Θ, with density
f(X|θ). As described in the introduction, we suppose that X provides only a limited
amount of information on θ (for instance X consists of a small number of i.i.d. repli-
cates), so that the prior on θ is likely to have an impact. In this Section we describe a
generic approach for combining elicited expert assessments about θ.

Each expert may have their own conceptual model about θ, which we parameterize
by γ so that π(θ|γ) belongs to a parametric class {πγ , γ ∈ Γ ⊂ Rp}. The aim is to
construct an informative prior probability distribution on θ based on expert information
denoted by Delicit, in a way that accounts for our uncertainty in modelling each expert’s
information. Information on γ can be obtained using the posterior from a Bayesian
analysis of the elicited information, that begins with a prior π0 and treats elicited
expert knowledge as data (e.g. Lindley 1983), using the following scheme:

π(γ|Delicit) ∝ f(Delicit|γ)π0(γ). (1)
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Thus the elicited data Delicit is considered conditional on the expert’s knowledge, which
here is conceptualized as being represented by the distribution π0 and parameter γ.

The information on θ can be summarized by integrating this posterior over possible
parameterizations indexed by γ:

π(θ|Delicit) =
∫

π(θ|γ)π(γ|Delicit)dγ. (2)

We thus adopt the so-called supra-Bayesian approach (see for instance Gelfand et al.
1995) where a supra-Bayesian constructs a likelihood for the elicited data f(Delicit|γ).
This construction is detailed in Section 2.2.

2.1 About the experts and the elicited data

In the following we interview N experts. To each expert e corresponds an unknown
hyperparameter γe resulting in their own prior distribution π(θ|γe). To estimate this
hyperparameter, we interview each expert e and encode their knowledge on X. We
denote by De the set of the elicited quantities provided by expert e. These quantities
may vary in nature, reflecting variation within each expert or across experts or both.
For the sake of presentation and also because they are often considered more reliable
(see O’Hagan et al. 2006, for a review of encoding techniques), we restrict our attention
to elicited quantiles (also known as fractile estimation) and probabilities (also known
as interval estimation). Therefore here De consists of a vector of quantiles Qe and a
vector of probabilities Pe.

In the following we denote by |x|o the dimension of a vector x. Let Qe = (Qek, k =
1 . . . |Qe|o) be the vector of elicited quantiles of the distribution of interest f(X|θ) cor-
responding to specified cumulative probabilities (pek, k = 1 . . . |Qe|o) for expert e. Then
Qelicit = (Qe, e = 1 . . . N) is the vector of all the elicited quantiles for all the experts.
Similarly, we denote cumulative probabilities by Pe = (Pe`, ` = 1 . . . |Pe|o) the set of the
elicited probabilities of f(X|θ) at the specified quantiles (qe`, ` = 1 . . . |Pe|o) for expert
e. Then Pelicit = (Pe, e = 1 . . . N) is the vector of all the elicited probabilities for all
the experts. We denote the complete set of elicited data by Delicit = (Pelicit, Qelicit) =
(Det, t = 1 . . . |Pe|o + |Qe|o), t being the index of the question. Each block of answers
(Pelicit or Qelicit) can be used as separate sources to provide the elicited distribution
(2) as detailed below.

For each question t, the expert e also provides a measure of uncertainty in their answer
in the form of a number cet ∈ (0, 1) quantifying the expert’s confidence in their response.
This information allows us to build a measurement error model to quantify each expert’s
individual accuracy, adopting similar ideas to earlier approaches to elicitation modelling
(Lindley et al. 1979; Lindley 1983) as described below.
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2.2 A model of error for elicited data

The individual inaccuracies for each expert can be modelled using a measurement error
model. Set η as the link function. The link-transformed elicited data may follow a
general measurement error distribution h with measurement error σet, for e = 1 . . . N
and t = 1, . . . |Pe|o + |Qe|o:

η(Det) ∼ h(η(dt(γe)); σet). (3)

Here dt(γe) is the theoretical response to the question relative to t-th quantity of the
distribution of X under the model X|θ ∼ Pθ and θ ∼ πγe

. For instance the quantile
qk(γe) and the probability p`(γe) respectively satisfy:

∫
P (X ≤ qk(γe)|θ)dπ(θ|γe) = pek and

∫
P (X ≤ qe`|θ)dπ(θ|γe) = p`(γe). (4)

A common measurement error model is additive:

η(Det) = η(dt(γe)) + εet, e = 1 . . . N t = 1, . . . |Pe|o + |Qe|o. (5)

The expressions for qk(γe) and p`(γe) derived from equations (4) depend on the appli-
cation. Expressions specific to the dose-response parameter in a probit model and the
location and scale parameters for a lognormal distribution are detailed for each example
in Section 4.

The link function η can be different for quantiles and probabilities. Typical examples
of link functions for probabilities are probit or logit link functions.

We assume that the error (on the appropriate scale) with which experts specify
elicited quantities are conditionally independent, given the expert’s conceptual model
γe. The εet are therefore independent and have a known distribution het constructed
by the assessor (or supra-Bayesian) from the expert’s measures of uncertainty cet, to-
gether with measures of individual coherence and precision considered by the assessor
(or supra-Bayesian), based for instance on the training of the expert or on previous
expertise (this point is detailed in the examples of Section 4). In our examples, we have
considered het = h(.|vet) to be centered Gaussian distributions with variance vet. These
variances are constructed using the expert’s measures of uncertainty cet together with
extra information on uncertainty. Thus, the influence of the answers of the expert e is
assessed via the error densities het: an expert whose own measures of uncertainty are
large typically would have error densities h(.|vet) with large variance inducing a weak
influence of Det on the likelihood.

Remark 1. In practice and in our examples, only a few quantities (say fewer than 10)
are generally elicited from each expert. It is however useful to ask for more quantities
than |γ|o to check for coherence in each expert’s elicitation. Note that the above error
model allows for some incoherence in the elicitation of the experts, in the sense that
there might not exist a γe such that dt(γe) = Det for all t. However a sensible choice
of the distribution of εet will ensure that the error model provides a reasonably coherent
set of quantiles conforming to the order imposed by both (pek, qe`, k = 1 . . . |Qe|o, ` =
1 . . . |Pe|o).
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2.3 Combining the experts’ opinions: a hierarchical model

The key issue is to derive a final unique distribution π(θ|Delicit) taking into account
the fact that the elicitations vary among the N experts and that potential dependence
between experts may exist. This pooling step relies on the building of the joint like-
lihood of expert opinions. One option is to model this likelihood using a multivariate
distribution, such as a multivariate normal (e.g. Lindley 1983). This highly parameter-
ized approach requires estimation, and therefore specification of hyperparameters for
several fixed effects: bias (additive and multiplicative) of individual experts as well as
correlations between experts. A random effects model provides a more parsimonious
approach.

We assume that the N experts can be grouped into J homogeneity classes (of re-
spective sizes Nj) , corresponding to similar background or similar schools of thought
for instance. Thus, from now on, we label the experts according to their class, so that
e = (i, j) denotes the i-th expert in class j.

In order to represent variation between and within classes of expert opinions, we
consider a hierarchical formulation of a random effects model (e.g. Lipscomb et al.
1998; Lin and Bier 2008). We suggest the following hierarchical model to group the
experts:

γij
i.i.d.∼ g(·|γj , bj), ∀i = 1, . . . , Nj ,

γj
i.i.d.∼ g(·|γ, b), ∀j = 1, . . . , J,

γ ∼ π0

(6)

where π0 is the assessor’s prior. In other words the expert opinions grouped into the
same homogeneity class have the same distribution g(.|γj , bj). Then the different groups
have knowledge that can be linked via a common distribution g(.|γ, b). Finally in the
last level a prior is used, representing the overall uncertainty on γ prior to the elicitation.
Thus γ can be understood as the true parameter of model (2), or more realistically as
the parameter representing the agreement of experts. In model (6), the γj ’s are location
parameters and so is γ. The hyperparameters bj , b are typically dispersion parameters.
In Section 3.1, we consider the following example of model (6) in the case of γ = (µ, σ2)
with µ ∈ R and σ2 > 0:

∀j µij |µj , τj
i.i.d.∼ N (µj , τj) and σ2

ij

σ2
j
|σj , ξj

i.i.d.∼ Γ(ξj , ξj) i = 1 . . . Nj

µj |µ, τ
i.i.d.∼ N (µ, τ) and σ2

j

σ2 |σ2, ξ
i.i.d.∼ Γ(ξ, ξ), j = 1 . . . N

µ ∼ N (µ0, V ) and σ2 ∼ σ2
0Γ(a, a)

(7)

corresponding to γj = (µj , σ
2
j ), bj = (τj , ξj), γ = (µ, σ2) and b = (τ, ξ). The

hyperparameters are thus {bj , j = 1 . . . J} , b, µ0, σ
2
0 , V, a. This model-based approach

seeks to quantify the two variance components, which could be used to inform design
of elicitation.

Our approach is also useful when a consensus expert model is desired, since it ex-
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plicitly combines potentially disparate expert elicitations in order to specify the prior
distribution of interest.

Remark 2. In model (6) we have implicitly considered that we weight each group
equally, which would typically occur in situations where we have no extra knowledge
on the quality of the groups of experts that have been interrogated nor on the specific
reliability of a specific expert within a group. However it is possible to consider other
situations where for instance one of the groups is a priori known to be less reliable or to
have an opinion which represents a smaller fraction of the population of experts (outside
those interrogated) than the other groups, in which case we can use this extra knowledge
(based on previous elicitations made by this group, for instance) to consider a specific
distribution for the parameter γj corresponding to this group. Such a scenario can occur
when the groups correspond to different schools of thought, say you have two groups
corresponding to two schools of thought, the first one corresponding to the majority of
the population of experts and the second one being more marginal. In such a situation,
even though it is important to take into account the second group we may not want to
put too much weight on the answers of these experts. One way to take into account this
difference is to assume a higher variance parameter for its distribution, in which case γ1

and γ2 would follow respectively a distribution in the form g(·|γ, b) and g(·|γ, bb′) with
b′ is such that the variance of the second distribution is greater. Or, if the second group
is known to have a systematic bias of some order of magnitude, we could consider a dis-
tribution in the form: γ2 ∼ g(·|γ +∆, b) where ∆ is assessed using this extra knowledge.
Hence any other knowledge on the behaviour of each expert or group of experts could be
and should be included in the model, using variations such as the two just described. For
example, a ‘supra-Bayesian’ could estimate the imprecision b′ and systematic bias ∆ for
each expert (Lindley 1983), or these could be estimated via responses to seed questions
where the answer is known (Genest and Zidek 1986).

Remark 3. The sizes Nj of the groups play an important role. The larger they are
the better in terms of statistical information, nonetheless the approach can be used for
small sample sizes as illustrated in the dose-response example. However, the number
of experts is often dictated by the area and level of expertise required (Low-Choy et al.
2010), and some experts may provide more relevant or accurate assessments than others
(Lin and Bier 2008). Moreover in the situation where a group j contains a single expert,
the model for this group is reduced to γij ∼ g(.|γ).

Finally, we have constructed a Bayesian hierarchical framework to model the impreci-
sion and incoherence of individual experts as well as their variability (between experts).
We now present two estimation methods deriving from two ways of formulating the
model to utilize both sources of elicitation data.

2.4 Estimation of the elicited distribution

The difference between the two following methods (method A and method B) is mainly
characterised by how priors on hyperparameters and parameters are determined. In
method B, priors for all elicited data are considered while in method A the elicited data
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is split into two parts, one part is used to estimate the hyperparameters (bj , b) and the
other part is used to construct the likelihood.

In the following, Pij = (Pij`, ` = 1 . . . |Pij |o) denotes the elicited probabilities of
expert i of group j and Qij = (Qijk, k = 1 . . . |Qij |o) denotes the elicited quantiles
of expert i of group j. Pelicit = (Pij`, i = 1 . . . Nj , j = 1 . . . J, ` = 1 . . . |Pij |o) is the
vector of all the elicited probabilities and Qelicit = (Qijk, i = 1 . . . Nj , j = 1 . . . J, k =
1 . . . |Qij |o) the vector of all the elicited quantiles.

Method A: Two-Stage Estimation of π(θ|Delicit) in Practice.

In method A, we separate the contributions of Pelicit and Qelicit. In a first step, the
hyperparameters of model (6), namely (bj)j=1...J , b and those entering π0 (in model
(7), these are µ0, V and a) are estimated from Pelicit. In a second step, we “plug”
these dispersion hyperparameter estimators into the likelihood of elicited data Qelicit
–as described in (9)– and derive the posterior distribution π(θ, γ|Delicit) (10) using a
Markov Chain Monte Carlo (MCMC) algorithm. More precisely,

• From Pelicit we derive preliminary estimators of γij by minimizing the least
squares objective (Low-Choy et al. 2008):

γ̂ij = argminγ

|Pij |o∑

`=1

[Pij` − p`(γ)]2 (8)

where p`(γ) is the theoretical response.

Estimators of (bj)j=1...J and b are then deduced using moment estimators for instance.
Various estimates are available, depending on the models and on the elicited quantities.
This point is discussed in the two examples (Section 4). We denote by (b̂j)j=1...J and b̂
the obtained estimates.

• Using (2), (5) and (6) and plugging in the estimated dispersion hyperparameters,
we deduce the likelihood of elicited data Qelicit:

f
(
Qelicit|γ, (b̂j)j=1...J , b̂

)
=

∫ ∏

ijk

hijk(η(Qijk)− η(qk(γij)))

×
∏

ij

g(γij |γj , b̂j)
∏

j

g(γj |γ, b̂)dγj dγij (9)

• Finally using:

π(θ|Delicit) ∝
∫

π(θ|γ)f
(
Qelicit|γ, (b̂j)j=1...J , b̂

)
π0(γ)dγ (10)

we generate Markov realizations of (γ, θ) under the posterior distribution:

π(θ, γ|Delicit)

through Markov Chain Monte Carlo.
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This is similar to an empirical Bayesian procedure, except that there is no double-
use of the data since we split the elicited data into two parts used respectively for
the estimation of the hyperparameters and for the computation of the likelihood. Note
however that elicited data is of a specific nature since each data point conveys (hopefully)
a lot of information (knowing a quantile of a distribution is much more informative than
knowing only one realisation). Hence, even though we avoid the double use of the data,
per se, we do not exactly avoid the double use of the information. This method is
useful in situations where the number of experts is small, since it avoids using weakly
informative priors on the hyperparmeters. We found this approach well-suited to the
dose-response case study on food risk.

In the case of sufficient numbers of experts and so a sufficient amount of elicited data, we
could implement a global MCMC approach, avoiding the plug-in step for the dispersion
hyperparameters. This is described in Method B.

Method B: All-in-one Estimation of π(θ|Delicit) in Practice.

The second method specifies priors on (bj , j = 1 . . . J), b, v = (vijt, t = 1 . . . |Dij |o, i ≤
Nj , j ≤ J), where v represents the imprecision parameters involved in the distribution of
errors εet (see (5)) and defines a joint Bayesian elicitation model for Qelicit and Pelicit:

π(θ|Delicit) ∝
∫

γ,c,d

π(θ|γ)f
(
Qelicit, Pelicit|γ, v, b

)
π0(γ)π0(v)dγ db dv (11)

From the conditional independence of the error model (5) we obtain

f(Dij |γij , vij·) = f(Pij |γij , vij·)f(Qij |γij , vij·). (12)

Method B gives equal weight to the P -elicitations and Q-elicitations, and is also
fully Bayesian, so in this regard is more satisfying; however as it needs to estimate also
the scale parameters it is better adapted to more than a few experts. Method A can
be interpreted as a two-stage modelling approach, where the second stage is Bayesian,
but the first stage utilizes simple Frequentist point-estimates of hyperparameters in the
prior. Method A has also the advantage of simplifying the computation.

3 Examples

In this section, we detail a particular case of the hierarchical model (6), namely model
(7) and discuss some technical points such as the model for hyperparameters (bj)j=1...J ,
and b and the error model. In a second step, we use this hierarchical model and our
methodology on two examples. The first example arose in food risk science and is
a model for a dose-response to a pathogen for mice. In the second example we are
interested in the time to thesis submission for an applied mathematical PhD student in
an Australian university. Although the two problems are of very different natures, the
hierarchical structures of the models used for combining the different expert opinions
follow a similar pattern, following either Method A or B detailed above.
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3.1 Description of a particular hierarchical model (6) used for both
examples

In both examples the parameter γ is composed of a mean µ and a variance σ2: γ =
(µ, σ2). We consider the hierarchical model (7) to model the possible interactions be-
tween experts.

The hyperparameters (bj)j=1...J = (τj , ξj)j=1...J , b = (τ, ξ) and (µ0, σ
2
0 , a, V ) must

be modelled carefully since their influence might be important, especially when the
numbers of experts and of elicited quantities are small, which is a common situation.
Under method A, we estimate the hyperparameters (τj , ξj), j ≤ J , (τ, ξ), (V, a) and
(µ0, σ

2) using Pelicit in the following way. First we derive µ̂ij , σ̂
2
ij via least squares (see

(8)). The solution of this equation is specific to each example and is detailed in Sections
3.4 and 3.3. Once such estimates have been obtained, we use moment estimators for
(bj)j=1...J and b. More precisely, since τj represents the conditional variance of µij in
the group j (given µj), a natural estimate is given by τ̂j = 1

Nj−1

∑Nj

i=1(µ̂ij− µ̂j)2, where
µ̂j is the average of the µ̂ij ’s in the group j. The variance τ can also be estimated
using τ̂ = 1

J−1

∑J
j=1(µ̂j − µ̂)2, where µ̂ is the average of {µ̂j , j = 1 . . . J}. Similarly

ξ−1
j represents the conditional variance of σ2

ij

σ2
j

given σ2
j so that a natural estimate is

ξ̂−1
j = 1

Nj−1

∑Nj

i=1

(
σ̂2

ij

σ̂2
j
− 1

)2

and ξ can be estimated using ξ̂−1 = 1
J−1

∑J
j=1

(
σ̂2

j

σ̂2 − 1
)2

,

where σ̂2 is the average of {σ̂2
j , j = 1 . . . J}. We then use µ̂ and σ̂2 as estimates for

µ0 and σ2
0 . Finally since V and a−1 are measures of uncertainty (variances) on µ

and σ2

σ2
0

we replace them by our observed uncertainty, namely V̂ = 1
J

∑J
j=1 τ̂j + τ̂ and

â−1 = 1
J

∑J
j=1 ξ̂−1

j + ξ̂−1. These hyperparameters are then plugged into the likelihood
to obtain an elicited prior distribution using an MCMC algorithm.

The alternative method (method B) uses all elicited data (Pelicit, Qelicit) for the com-
putation of the elicitation likelihood and uses weakly informative priors for the hyper-
parameters (τj , ξj , τ, ξ, a, V, µ0, σ

2
0). We apply truncated Normal priors to the standard

deviations (hereafter SD) of random effects. As shown by Gelman (2006), in the context
of a model comprising an intercept and one variance component, this form of prior dis-
tribution is a useful two-parameter simplification of the folded noncentral-t distribution,
which is conjugate for these SD parameters:

√
τij ∼ N+(0, ζ2

τij
);

√
τj ∼ N+(0, ζ2

τj
);

√
τ ∼ N+(0, ζ2

τ )
√

σ0 ∼ N+(0, ζ2
0 );

√
V ∼ N+(0, ζ2

V )

where N+ denotes a Normal distribution truncated at zero to include only non-negative
values. Similarly, we may replace the gamma prior (σ2

0Γ(a, a)) on the lognormal vari-
ance σ2 (7), with a truncated normal prior on the lognormal SD σ ∼ N+(0, ζ2

σ). In
practice setting the ζ parameters to large values provides weakly informative priors.
The hyperparameters for the multiplicative effects have exponentially distributed priors
ξ, ξj ∼ Exp(1). In addition we utilize weakly informative priors for the consensus mean:
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µ0 ∼ N (0, ζ2
µ). (13)

We now describe the error model we have considered to construct the elicitation likeli-
hood.

3.2 Description of the likelihood: error model (5)

In our examples we consider Gaussian errors in the elicitation error model for quantiles
(5):

η(Qijk) ∼ N (η(qk(γij)), vijk), k = 1 . . . |Qij |o (14)

where qk is defined in (4) with P (X|γ) specific to each example (detailed below) and η
is a link function. In method B, we also consider Gaussian errors in the elicitation error
model for probit-transformed cumulative probabilities (5):

Φ(Pij`) ∼ N (Φ(p`(γij)), vij`), l = 1 . . . |Pij |o. (15)

For either method, the variances vijt may be estimated using all the available informa-
tion on the precision of the experts. In particular this allows some flexibility so that
experts can provide this information in whatever form they find most natural. For
instance, when the experts provide confidence measures cijt ∈ (0, 1) with the elicited
quantities Dijt, as explained in Section 2.1, we interpret cijt as a coverage probability
of a confidence interval and write

1− cijt = P
[|η(Dijt)− η((dt(γij))| > q?

ij

]

= P
[|η(Dijt)− η(dt(γij))| /√vijt > q?

ij/
√

vijt

]

= 2(1− Φ(q?
ij/
√

vijt)),

so that

√
vijt =

q?
ij

Φ−1((1 + cijt)/2)
. (16)

The reference value q?
ij reflects the assessor’s estimate of the precision. This can be

evaluated from the training of the expert, or from other constraints on the precision
such as discretization. The choice of the q?

ij ’s is illustrated in the two examples. We can
understand in the above formulations the cijt’s, which are the personal evaluations of
the experts of their uncertainty, as relative measures of uncertainty within each expert,
the q∗ij as global measures of uncertainty for each expert.

In some other cases, the confidence is not assessed by a value but is given in terms
of an interval around a given value. Then setting a level for the confidence interval we
obtain a value for vijt using a similar formulation.

Remark 4. For the elicited quantiles in the PhD example, η is the identity link and
in the food risk example, η is the probit link since in that case Qijt ∈ [0, 1]. In both
examples, η is the logit link for the elicited cumulative probabilities.
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Alternatively, the individual elicitation errors can be modelled using a simpler model
than specified earlier (5). For each individual, the error in eliciting the cumulative
probabilities vijP can be expressed as a factor C of the error in eliciting quantiles vijQ

(after suitable link functions have been applied):

vijP = CvijQ. (17)

A typical prior for a coefficient of variation such as C is a Gamma distribution. This
approach suits a situation where (i) the relative elicitation error in quantiles and cumu-
lative probabilities Cq is of interest; and (ii) more information has been elicited, both
within and between experts, so that these elicitation errors can be estimated from the
elicited information.

We now describe the two examples. In the first example we develop a model to describe
the mortality rate for mice under a dose δ of Listeria monocytogenes strain EGD or
EGDe. The second example concerns the time students take to submit their mathemat-
ical PhD thesis in an Australian university.

3.3 Dose-response example

The model used for the dose response example is highly nonlinear and the number
of experts is expected to be small in practice, hence we have only considered method
A. We consider a (typical) bioassay problem where the dose of some treatment affects
mortality. We model the dose-response curve for the contamination of three strains of
mice - BALB/c, C57 Black/6 or Swiss - from Listeria monocytogenes EGD or EGDe
by intravenous injection. Let Xn be the number of dead mice out of n mice exposed to
a dose δ. Then, the sampling model is, conditionally on the injected dose, a binomial
model of parameter p(δ, θ)

Xn ∼ Bin(n, p(δ, θ)) with p(δ, θ) = 1− e−θδ, θ > 0. (18)

p(δ, θ) is the probability for a mouse to die from a dose δ of Listeria, (see for instance
Haas et al. 1999, p. 264). We are interested in the elicitation of the prior distribution of
the unobservable parameter θ. We consider a log-normal distribution: log θ ∼ N (µ, σ2)
and denote γ = (µ, σ2).

Following advice (Kadane et al. 1980; Low-Choy et al. 2010), we follow an indirect
elicitation approach and ask questions on observables rather than directly interrogating
experts about parameters. Each expert chooses a dose δ = δij , which he or she finds
easier to work with and is then asked questions about the proportions of dead mice out
of a sample of n mice exposed to dose δ (Xn/n), which we relate to the probabilities of
mortality, to help formulate the distribution of p(δ, θ).

We first ask questions regarding the quantiles of p(δ, θ), for which we ask questions
based on large samples (n = 100) of mice exposed to dose δ, so that we can approximate
proportions Xn/n as the probabilities p(δ, θ). Recall that the answers given by the
expert i of group j are denoted Qijk and the theoretical associated quantile is

qk(µij , σij) = 1− exp{−δij × exp(σijΦ−1(pijk) + µij)}.
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The second set of questions concerns the probabilities P [X10 ≤ qij`|δij ], l = 1 . . . |Qij |o
where X10 is the number of dead mice out of 10 mice submitted to dose δij . We denote
by Pij` the answer given by the expert i of group j and the theoretical probabibility is

p`(µij , σij) =
qij`∑
r=0

Cr
10

∫ ∞

0

(1− e−θδij )re−(10−r)θδij ϕ((log θ − µij)/σij)σ−1
ij θ−1dθ (19)

where ϕ(.) is the density function of a standard Gaussian random variable. We then
apply the methodology described in Section 2 and compare the elicited prior distribution
obtained with this hierarchical approach to those obtained with two standard methods.
The first standard method is the plug-in method, where a global estimate (µ̂, σ̂2) is
obtained from the method of moments described in Section 3.1 on the overall Delicit

leading to a consensus elicited prior in the form log θ ∼ N (µ̂, σ̂2) and the second is
the mixture method where a point estimate (µ̂ij , σ̂

2
ij) is derived for each expert from

Delicit leading to a non-consensus prior log θ ∼ N−1
∑

i,j N (µ̂ij , σ̂
2
ij). The latter is the

same as Cooke’s method (as described in (Cooke and Goossens 2008)) in the absence
of prior calibration of experts, which is the case in our examples.

To study the robustness of our method we first consider various simulated scenarios
presented in the following section.

Note that the comparison is not aimed at showing some superiority of our method,
compared to other methods, since we are only comparing with two naive methods.
Indeed more sophisticated versions of the plug-in or the pooling of experts exist in the
literature. Here we merely wish to better understand how the hierarchical modelling
stands in terms of consensus of experts.

Simulation study

We now describe four simulated datasets and comment on the results. In each dataset,
the doses δ are different for all the experts and fixed arbitrarily between 103 and 107.
These values correspond to realistic situations. We simulate elicitated probabilities
associated with the following quantiles for the number of dead mice out of 10: {qe`, ` =
1, 2} = {3, 8} and we simulated elicited quantiles of the distribution of the probability
that a mouse should die subject to a dose δ, associated with the probabilites {pek, k =
1 . . . 5} = {0.1, 0.25, 0.5, 0.75, 0.9}. We add an error term with variance vijt = 0.1 for
all the experts and all the questions. In each simulated case, we simulate the individual
parameters (µij) and (σij) following:

µij ∼ N (µj , τj) ,
σ2

ij

σ2
j

|σj ∼ Γ(ξj , ξj)

and the σj ’s are fixed.

Dataset 1. Balanced case: In this dataset, we consider a balanced case where we
interview 10 experts divided into two groups of the same size (N1 = N2 = 5). We then
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set:

N1 = 5 N2 = 5
µ1 = −2 µ2 = −1.1, τ1 = 0.01 τ2 = 0.01
σ2

1 = 1 σ2
2 = 1, ξ1 = 100 ξ2 = 100.

Figure 1: Dataset 1. Balanced case. Comparison of methods for combination of experts
using p(log θ|Delicit): mixture (−−), plugin (solid line), hierarchical (−·).

The resulting elicited prior distributions are plotted in Figure 1. This standard dataset
clearly illustrates the specific behaviour of our hierarchical method. On the one hand,
the plug-in method (solid line) forces an agreement between the experts’ answers,
smoothing the variabilities due to the origin of knowledge for instance. On the other
hand, the mixture model (−−) takes into account the variabilities and models the
difference between experts. The hierarchical model is an intermediate approach allow-
ing one to consider the interactions between experts: the elicited prior distribution of
p(log θ|Delicit) (−·) (which is thus a posterior) is smoother than the mixture one but
has a wider support than the plug-in elicited prior distribution.

Dataset 2. Unbalanced groups of experts: In this dataset, the numbers of experts
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in the groups are strongly unbalanced :

N1 = 10 N2 = 2
µ1 = −2.5 µ2 = −1, τ1 = 0.01 τ2 = 0.01
σ2

1 = 0.5 σ2
2 = 0.5 ξ1 = 100 ξ2 = 100.

In Figure 2, we see again that the mixture method takes into account the global variabil-
ity whereas the plug-in method (solid line) encourages a consensus, leading to a narrow
distribution; the hierarchical method is a compromise between these two. Note that the
hierarchical prior has the additional advantage of taking into account the small group,
which has been ‘forgotten’ by the plug-in method. Indeed, the mode of the hierarchical
elicited prior is slightly shifted toward the small group (corresponding to µ2 = −1).
This shows that the hierarchical approach clearly does what it is aimed at: take into
account the dependencies between experts to avoid redundancies.

Figure 2: Dataset 2. Unbalanced groups of experts. Comparison of methods for combi-
nation of experts using p(log θ|Delicit): mixture (−−), plug-in (solid line), hierarchical
(−·).

Dataset 3. Mis-specification of the number of groups: In this dataset, we



518 Combining Expert Opinions

suppose that the experts are issued from a unique group but the elicitation procedure
is performed assuming that there are two groups. This group is simulated under the
following set of parameters:

N = 10
µ1 = µ2 = −1.5, τ1 = τ2 = 0.05,
σ2

1 = σ2
2 = 0.5 ξ1 = ξ2 = 100.

We apply our procedure assuming that the experts are divided into two groups of size
N1 = N2 = 5.

One can see the elicited densities in Figure 3. As expected, we observe similar elicited
priors across the three methods: hierarchical, mixture and plug-in. As a consequence,
artificially creating a group of experts does not deteriorate the performance of our
method.

Figure 3: Dataset 3. Mis-specification of the number of groups. Comparison of methods
for combination of experts using p(log θ|Delicit): mixture (−−), plug-in (solid line),
hierarchical (−·).
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Real elicited data

A real elicitation has been conducted in this example. Five French experts of Listeria
dose-response experiments on mice have been questioned: 3 from Institut Pasteur and
2 from INRA (French National Institute for Agricultural Research). We have asked
questions about the quantiles of p(δ, θ):

P (p(δ, θ) ≤ Qk) = k with k = 1, . . . , |Qe|o and |Qe|o = 3

and about the probabilities

P`(µ, σ) = P [X10 ≤ `] with ` = 1, . . . , |Pe|o and |Pe|o = 2.

The sets T and L have been chosen by the experts and they differ across experts. The
doses δ have also been chosen by each expert. For lack of information in the elicited data
and since the elicited data lead to very similar estimates of the variances σ2

i2 for the two
experts of the INRA group we simplify the model by considering the same variance σi2

in the INRA group : σ2
i2 ≡ σ2

2 . Figure 4 presents the elicited prior densities of p(δ, θ) for
a fixed usual dose δ = 4 by mixture, plug-in and hierarchical approaches. The density
of a Beta

(
1
2 , 1

2

)
is added as an example of a non-informative prior on p(δ, θ). In this

case, the higher prior weights on values near 0 or 1 may be interpreted as reflecting an
expert’s tendency to think concretely of whether mortality occurs or not on a single
trial.

As shown on simulation, the mixture approach (i.e. Cooke’s method with equal
weights) models the differences between experts and the plug-in method encourages an
agreement between the experts’ answers. The two modes in the mixture model results
reflect the large inter-expert variability, indicating that two experts have quite different
opinions. The hierarchical model provides results close to the plug-in method results but
with a larger support and a slight translation towards the left probably due to a smaller
weight on the second group. Practically this could lead to quite different inferences
in the lower tail, which could be pivotal for decision-making related to limitations in
the efficacy of the dose. After accounting for both intra- and inter-expert variability,
the hierarchical model provides a larger estimated probability (compared to the plug-
in) that the mortality rate (at fixed dose of 4) is lower than 20%, and consequently
weaker evidence that mortality will be greater than 20% at this dosage. The hierarchical
formulation is the only model which both reflects this increased chance of low efficacy
at low dose, as well as smoothing the estimated probability of survival rate near the
mode (approx. 60%). The differences between the non informative prior (Beta

(
1
2 , 1

2

)
)

and the elicited prior distributions clearly indicate that experts supply information on
the parameter.

3.4 PhD example

Contrary to the first example, in this Section we apply methods A and B, and the
relations that are involved are mainly linear. This example illustrates that using a
vague prior (on the scale of the parameter) at the lower level of the hierarchy does not
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Figure 4: Non-informative prior Beta
(

1
2 , 1

2

)
(· · ·) and elicited prior densities of p(δ = 4)

with real experts data using: mixture (−−), plug-in (solid line), hierarchical (−·)
approaches.

necessarily lead to excessively wide elicited distributions on the time to submission of a
PhD thesis.

Let X∗ be the time to submission for a PhD student in applied mathematics in
the Queensland University of Technology in Australia. The experts were much more
comfortable with answering questions based on X∗, which correspond to observable
quantities. This agrees with advice on targeting elicitation (Kadane et al. 1980; Low-
Choy et al. 2010). Hence we work with the marginal distribution of X∗ given µ, σ2,
which differs between experts since they each have their own conceptual model for µ
and σ2.

There is a logical constraint on minimum submission times; experts agreed that
except in very rare situations which fall beyond the scope of this model, PhD students
would need a minimum of 2 years’ candidature before submitting a thesis. This reflects
both administrative and practical constraints particular to the university and faculty.
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Therefore, the quantity of interest is based on X∗−2 > 0. Also, the time to submission
for a PhD is expected to have quite fat tails, as a random variable, we therefore assume
that X = log(X∗−2) follows a Normal distribution with mean µ and variance σ2. Such
a marginal distribution can be obtained for instance from the following model:

X|θ, v ∼ N (θ, v), θ|µ, v, ρ2 ∼ N (µ, vρ2), σ2 = v(1 + ρ2). (20)

We apply the hierarchical model for describing variation in µij and σij across experts
and groups, as described in (7) in Section 3.1.

Elicitation was conducted in two phases. In each phase different styles of questions
were asked. The order of assigning styles to the two phases was randomized for each
expert to eliminate anchoring effects. These two styles correspond to (i) Qelicit, elic-
iting quantiles for specified cumulative probabilities (also known as fractile estimation)
and (ii) Pelicit, eliciting cumulative probabilities for specified quantiles (also known as
interval estimation). To address (i) we asked questions such as “For most students (95
in a hundred), what would you estimate to be the shortest and longest time taken to
submit their PhD thesis?” To address (ii) we asked questions such as “In a cohort of one
hundred PhD students, how many would you expect to submit their PhD thesis within
4 years?” These two approaches have been used iteratively within a feedback cycle to
elicit opinions (Low-Choy et al. 2010). The methodology presented here, however, al-
lows us to retain information from both styles of elicitation, and explicitly model the
variability arising from each method separately.

We report results from four experts interviewed in phase I, who were asked for five
quantiles associated with probabilities in {0.025, 0.25, 0.5, 0.75, 0.975}, and two prob-
abilities associated with quantiles in {log(3 − 2) = 0, log(4 − 2) ≈ 0.7}. We report
on results from another five experts interviewed in phase II, who were asked for six
quantiles associated with probabilities in {0.01, 0.025, 0.25, 0.75, 0.975, 0.99}, and four
probabilities associated with quantiles in {log 0.5 ≈ −0.7, 0, log 1.5 ≈ 0.4, log 2 ≈ 0.7}.
Only two experts in the latter group could estimate with any level of confidence the
cumulative probability associated with the quantile corresponding to the proportion of
students that submit in under 2.5 years, we are thus, similarly to the dose-response
example, in a case where the experts did not provide the same quantities. Here elic-
iting three or four cumulative probabilities was satisfactory given that we desired a
minimum of two such values. Similarly to before we assume that the error model is
Gaussian so that the likelihood associated with the error model for Qelicit is given
by

∏Nj

i=1

∏J
j=1 φ(Qijk − qk(µij , σ

2
ij)|vijk), with φ(.|v) denoting the density of a centred

Gaussian random variable with variance v.

The above model implies that for each k, and corresponding pijk ∈ (0, 1), the theoret-
ical quantile corresponding to the expert’s conceptual model (parameterized by µij , σij)
is qk(µij , σij) = σijΦ−1(pijk) + µij and for each ` ∈ R, the theoretical probability asso-
ciated with the quantile qij` is given by p`(µij , σij) = Φ((qij`−µij)/σij). This provides
the basis for both approaches to estimation. For method A, the second set of equations
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allow us to determine estimates for µij and σij by solving for each (i, j)

argminµ,σ

∑

`=1,...,|Pe|o

(
Φ−1(Pij`)σ + µ− qij`

)2
,

which leads to:

µ̂ij = q̄ij − Φ̄−1(Pij`)σ̂ij and σ̂ij =
∑

`(Φ
−1(Pij`)− Φ̄−1(Pij`))(qij` − q̄ij)∑

`(Φ−1(Pij`)− Φ̄−1(Pij`))2
,

where q̄ij is the average of the values qij` over ` and Φ̄−1(Pij`) is the average of the values
Φ−1(Pij`) over ` = 1, . . . , |Pe|o. In other words (µ̂ij , σ̂ij) is the least squares estimate
associated with the linear model Φ−1(Pij`)σij + µij + εij` = qij`, where εij` represents
the individual error of elicitation. Hence we implicitly consider an error model on the
elicitated probabilities similar to the error model on the elicitated quantiles. Then the
hyperparameters are estimated as described in Section 3.1.

We consider both the two-stage modelling approach (A), as described in the previous
example and the fully Bayes (one-stage) approach (B). For the latter, the likelihood for
the Qelicit is supplemented by a likelihood for the Pelicit:

f(Delicit; γij , vij , wij) =

[∏

k

p(qijk|γij , vijt(k))

][∏

`

p(pij`|γij , vijt(l))

]

where

qijk ∼ N (
qt(µij , σij), vijt(k)

)

Φ−1(pij`) ∼ N (
Φ−1(p`(µij , σij), vijt(`)

)

t(`) = ` and t(k) = k + |Pe|o
leading to a joint distribution given by

p(µ|µ0, τ0)p(σ2|σ2
0 , ξ0)

J∏

j=1

p(µj |µ, τ)p(σ2
j |σ2, ξ)

Nj∏

i=1

p(µij |µj , τj)p(σ2
ij |σ2

j , ξj)

×f(Delicit; γij , v)p(v).

Recall that the variances v = (vijt, i, j, t = 1, . . . , |Pe|o + |Qe|o) are determined using
(16), and in this example we consider the following prior that is vague on the scale of the
quantile: q∗ij ∼ N+(0, 10). In this case study v reflects the expert’s coherence, among all
elicited P and Q quantities, as well as their fidelity to a lognormal distribution for X.
In comparison, a deterministic method would assume accuracy of all elicited quantities
(P or Q) and the lognormal distribution.

For method B, hyperparameters were set as ξj = 0.5, ξ = 0.5 for the multiplicative
effects on the lognormal variance, within and between groups. Setting ζ2

0 = 10, ζ2
τ = 10,

also sets a weakly informative prior over the interval [0, 10]. The coefficient of variation C
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relating the error in eliciting cumulative probabilities with respect to quantiles, specified
in (17), is thought to be over one, since the latter is an easier task (O’Hagan et al. 2006).
However we supposed that the two elicitation tasks are not vastly different in difficulty,
so that C is not likely to exceed fifty. This prior assessment led to specification of a
Gamma prior on C: C ∼ G(1, 0.1), which has a mean at one, but a non-zero mode
(located at 2) with 99.3% of its values falling below fifty.

Figure 5: Marginal elicited prior predictive densities of X based on: pooled (mixture
model) (−−), plug-in (−·), hierarchical approaches, method A (· · ·) and method B
(thick solid line) and prior predictive density (thin solid line).

We group the experts depending on their domain of interest and of their formation,
an important consideration for their estimation of PhD thesis submission times. One
group is formed of applied statisticians (3 individuals), another group is formed of more
theoretical mathematicians (4 individuals), a third group is formed of computational
mathematicians (2 individuals). Results for the marginal elicited prior predictive dis-
tributions of the time to submission are presented in Figure 5. Here it is evident that
although the methods-of-moment approach (plug-in) provides a consensus opinion, it
overstates the confidence in that opinion, by not addressing variability across and within
experts. The pooled estimate (mixture model) focuses on diversity of opinions at the
expense of consensus, and also does not adjust for within-expert variation, nor for de-
pendence between experts. In contrast, the hierarchical approaches (methods A and B)
distribute the weight of expert opinion more widely across potential submission times
than the pooling or method-of-moments approaches. Consensus is concentrated on a
mode of 3 years (Method B) or 3.12 years (Method A), much lower than the modal esti-
mate of approximately 3.5 years provided by the other methods. However the weight of
expert opinion on the mode is much lower, indicating that there is a wider possibility of
submission times away from that most commonly achieved. Interestingly, the expected



524 Combining Expert Opinions

submission time is fairly similar across all methods (all means lie between 3.55 and 3.72
years), regardless of the shift in the weight of expert opinion for shorter and longer
submission times.

Following the hierarchical model (method B) results suggest that the administration
should be ready for the majority of students to submit around the 3 year (rather than
3.5 year) mark, however a fairly large (rather than small) minority takes longer than 4.5
years to submit (about 17%). In addition, the administration should be ready to accept
a non-negligible (rather than negligible) proportion of theses to be submitted within
2.3-2.7 years (9%). This suggests that it may be important to account for covariates
responsible for shorter or longer submission times. From a more theoretical viewpoint,
we comment that the hierarchical models provide a skewed consensus distribution, whilst
accounting for within expert as well as between expert variation. This contrasts with
the more symmetric consensus distributions encoded using the other methods, which
have ignored within-expert variation.

Figure 6: Contour plots of the individual prior distributions on (µij , σij).

It is interesting to note that the hierarchical approaches lead to a wider elicited prior
distribution on X and that it is shifted to the left compared to the other two methods,
taking into account the smaller group of more mathematical experts. Note that this
method still allows for the individual experts’ prior distributions, since we can recover
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them from the MCMC algorithm. Figure 6 displays such distributions, corresponding
to the hierarchical model using method B. The groups can be easily recognized, forming
three different clusters.

4 Discussion

4.1 Applications

In the examples we have considered in this paper, some practically important differ-
ences appear in inferences, when compared to more standard methods for combining
expert judgments. In the PhD case study, compared to other methods, the hierarchical
approach to combining opinions led to a much lower typical thesis submission time, but
a greater minority with shorter or longer thesis submission times. In the dose-response
case study, the hierarchical approach permitted the possibility that the dose could be
of lower efficacy compared to the plug-in approach, but provided smoother estimates of
efficacy for mid-range probabilities of mortality. These differences between approaches
were evident even though elicitation was based on a small number of parameters; we
estimate these differences to be further magnified under higher dimensional models. We
believe that the approach described in this paper has potential even for larger dimen-
sional setups.

For a very limited number of experts (only five in the dose-response case study),
method A provided an interesting combined prior distribution, acting as a compromise
between the plug-in and mixture approaches and being interpreted as a posterior dis-
tribution given the elicited data. Interestingly the fully Bayesian approach (method B)
also leads to very reasonable priors, at least in the particular case of the PhD example
considered here. Hence, even with a few elicited quantities per expert the information
is good enough to compensate for the complexity of the hierarchical model.

More generally this method can underpin aggregation of expert assessments in three
broad contexts— the decision maker (DM) problem, the group decision problem, and
the textbook problem (French 1985, 2011). These two case studies can be viewed as
exemplars of the DM problem. The approach could also contribute a quantitative
component to group deliberations, to formulate a decision or estimate model parameters
(the group decision problem), or else provide a synthesis of available knowledge (the
textbook problem). This is particularly important in fields, such as ecology, which rely
heavily on expert panels (Low Choy et al. 2009; Perera et al. 2011). We note that any
quantitative exploration and aggregation of expert opinions also benefits greatly from
a qualitative component, not least to overcome the inherent “impossibility” that group
decision-making can achieve a rational, democratic decision (French 2007).

4.2 Managing variation

The most popular methods of aggregation focus on one or two main avenues for man-
aging variation during the elicitation process. Pooling is primarily focused on retaining
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diversity among experts, on the entire encoded distribution. Pooling with weights, for
instance via Cooke’s method, places a strong emphasis on calibration. A hierarchical
Bayesian model provides many avenues for managing variation during the elicitation
process, which we summarize here.

Encoding variability as well as means. We have proposed a hierarchical model which
allows us to combine information elicited from experts, not only on means (of PhD sub-
mission times, or of important doses) but also on variability. This was key to practical
concerns about the tails of the distributions of interest in each example. The risk of
mortality at low doses was of considerable concern in the food risk assessment example.
Similarly the percentage of PhD students submitting earlier or later “than usual” had
considerable practical implications. The model proposed here provides information on
the consensus about both the means and the variability. This contrasts with other ap-
plications of random effects models to elicited information, where the hierarchical model
applies solely to the mean (Lipscomb et al. 1998; Lin and Bier 2008).

Eliciting different summary statistics across experts. A challenge posed in French
(2008) was “I am more comfortable with uncertainty judgments that lead to probability
elicitation; others are more comfortable with moment judgments. What happens if one
has a mix of experts some of whom are more comfortable with the former, others with
the latter? How do we combine both?” In this paper we provide a means for combining
different types of information elicited from the same or potentially different experts.
The modelling framework combines information on different aspects of the distribution
(here Ps and Qs). This is achieved by exploiting the conditional independence of elicited
data given the expert’s underlying conceptual model, here encapsulated by γij , through
an error model in the general form of (3). In fact, the likelihood for the elicited data
models the difference between each elicited datum and the theoretical value under γij ,
rather than modelling the elicited data themselves Delicit. Thus we may consider these
errors conditionally independent given the conceptual model. In this paper we have only
combined quantiles and probabilities, each expert considering both types but potentially
associated with different nominal values. However the same methodology could be
applied to other quantities, as soon as a likelihood is constructed using an error model
for the elicited data in the form (3).

Calibrating experts. Another important source of variation is mis-calibration (Cooke
and Goossens 2008). In our context this means that the error model (3) might be mis-
calibrated by a bad choice of the variances vijt. In our examples we have combined prior
information on uncertainty such as discretization to define the values q∗ij appearing in
(16) with the experts’ evaluations of their own uncertainty cijt. We are aware that the
latter is amenable to criticism, since the experts can be poor judges of their own ability
to make judgments, see for instance Burgman et al. (2011). Where gold standards exist,
scoring methods can be used to calibrate experts and define more reliable values for cijt

or q∗ij . In our case studies however, no empirical data yet exists which could be used to
calibrate the expert judgments and this is common in various fields of applications such
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as ecology where gold standards are difficult to obtain (e.g. Kuhnert et al. 2010; Martin
et al. 2012), in contrast to the long-term databases that are emerging to monitor experts
on safety and reliability (Cooke and Goossens 2008). Nevertheless, this hierarchical
model can accept expert weights through the quantities q∗ij for instance or through
their individual distribution g(.|γj , bij) on γij , depending on the form of calibration
available. Currently the most popular method for developing these expert weights is
Cooke’s method (as summarized in Cooke and Goossens 2008). Expert contributions
to the pooled assessment are weighted by their performance on estimating quantiles
of seed variables. Focusing on elicited quantiles aligns with natural propensities to
estimate categories better than quantities (e.g. Kynn 2008), and also elegantly leads
to a χ2 test to compare elicited with empirical quantiles. This takes advantage of the
frequentist property that in the long run we expect that, for an accurate expert, the
elicited values ought to accurately reflect the true values across many elicitation topics
(Bayarri and Berger 2004). Nevertheless, this suffers from the limitations imposed by
then using the p-values of this χ2 test (initially designed to help experts understand
their own short-comings) to define weights for each expert in the pooled distribution
(Clemen 2008).

4.3 Mathematical (encoding) issues

Eliciting natural counts. The dose-response case study shares the same structure as the
PhD case study in that we are asking experts about summary statistics (quantiles and
cumulative probabilities) of the possible response (the number of mortalities among n
mice at specific dose), rather than focussing on the parameters governing the response,
which are not interpretable. This approach was chosen to be consistent with a recent
review of cognitive biases in elicitation (see Kynn 2008, and references therein), which
has confirmed that elicitation based on counts is less prone to cognitive errors than elici-
tation of probabilities. However the method we use here, of deliberately structuring the
elicitation model to relate observable counts to the underlying probability, is quite new;
typically a probability is imputed from a count, without accounting for the sampling
issues inherent in counts (Low-Choy et al. 2010).

Different prior formulations. In the examples we have considered we have assumed an
independent prior on the mean and variance (µ, σ): π(µ, σ) = π(µ)π(σ). For other
applications, it may be fruitful to instead assume a conditionally conjugate prior which
explicitly models dependence between the mean and variance via p(µ, σ) = p(µ|σ)p(σ);
this is still possible in our framework.

Parametric vs Non-parametric encoding. This approach also combines different types
of elicited summary statistics (here quantiles and cumulative probabilities), which is
facilitated by the imposition of a parametric model. In these examples, the parametric
assumptions seemed feasible. In other cases, a non-parametric approach may be more
appropriate. Multiple types of elicited data could be incorporated by extending existing
Bayesian methods for non-parametric encoding of information, such as the roulette
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approach (Oakley and O’Hagan 2007), the use of the Dirichlet distribution (West 1988),
or a Dirichlet process (Merrick 2008).

Sequential versus Simultaneous Encoding. Importantly the γij deduced from both Ps
and Qs can be different, which is why we propose both a sequential Bayesian approach
that treats each type of judgment in sequence (Method A), and a fully Bayesian approach
that models both types of judgment.

4.4 Summary

In conclusion, the approach we describe in the paper is quite generic in the sense that
it does not depend on the particular distributions involved in the elicitation process,
nor does it depend on the questions that are asked of the experts. In particular the
experts could be asked questions of a very different nature, without changing the overall
hierarchical approach to combining expert elicitations. It does however require some
extra information on the nature and the sources of their knowledge to form the different
groups. However this information is usually asked of the experts, since it helps them
remember all (or at least most) of their knowledge on the subject (Fisher et al. 2012).
To our minds, one of the substantial advantages of such a method is that it does not
suffer from the various paradoxes that the other (ad-hoc) approaches might suffer, since
it is a fully probabilistic and coherent approach.

A critical aspect of our method compared to mixture model or plug-in approaches
is that it is computationally more demanding, in order to facilitate the hierarchical
combination of opinions whilst accounting for within-expert error. Nevertheless the
model for the PhD example can be implemented in WinBUGS (Spiegelhalter et al.
2003), so is widely accessible beyond the statistical research community.
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