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Bayesian Model Selection for Beta
Autoregressive Processes

Roberto Casarin∗, Luciana Dalla Valle† and Fabrizio Leisen‡

Abstract. We deal with Bayesian model selection for beta autoregressive pro-
cesses. We discuss the choice of parameter and model priors with possible pa-
rameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo
(RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm.

Keywords: Bayesian Inference, Beta Autoregressive Processes, Reversible Jump
MCMC

1 Introduction

The analysis of time series data defined on a bounded interval (such as rates or propor-
tions) has been a challenging issue for many years and still represents an open issue.
For modelling data defined on a bounded interval there are at least two alternative
approaches. Historically the main approach applies a transform to the data in order to
map the interval to the real line and then uses standard time series models. Typical
examples of transformations are the additive log-ratio transformation and the Box-Cox
transformation (see Aitchinson (1986)). One of the earlier and relevant contributions
to this framework is Wallis (1987).

In this paper, we follow the second approach, which is based on a direct modelling
on the original sample space. Among the first contributions along this line we refer to
Grunwald et al. (1993), who suggest a multivariate state space model for time series data
defined on the standard simplex. Another seminal contribution is McKenzie (1985), who
introduces a new beta autoregressive process for time series defined on the standard unit
interval (0, 1). In recent years, Ferrari and Cribari-Neto (2004) have introduced a beta
regression model, showing that it is more convenient to consider the data in the orig-
inal sample space instead of using a transformation. Rocha and Cribari-Neto (2009)
extend the beta regression model and propose a beta autoregressive moving average
process that possibly includes exogenous variables in the dynamics. Beta autoregres-
sive (BAR) processes have also recently been used in Amisano and Casarin (2007) for
stochastic correlation and in Taddy (2010) for spatial Poisson processes. Both papers
describe sequential Monte Carlo methods for first-order BAR processes. Billio and
Casarin (2010, 2011) employ beta processes for modelling the transition probabilities in
Markov-switching processes and propose a Bayesian approach for inference on first-order
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BAR.

The main contribution of this paper is to propose a Bayesian method for the estima-
tion of the number of lags in beta autoregressive models of general order. In the proposed
framework, model uncertainty can be handled by indexing all the models, including the
model order in the parameter vector, and calculating posterior model probabilities. In
the literature, it has been recognised that there are many difficulties with the compu-
tation of the marginals (or the predictives) involved in posterior model probabilities.
When the number of competing models is large, the computation of the marginals in-
volves numerical integration over parameter spaces with different dimensions. In this
context, the use of standard Markov Chain Monte Carlo (MCMC) algorithms on the
different spaces is computationally expensive, since it is not possible to use the MCMC
output of a given dimension for computing the integrals in different dimensions. This
calls for the use of tailor-made numerical approximations. For a brief discussion on the
alternative approaches based on Monte Carlo and MCMC approximations, we refer the
reader to Robert (2007). In this paper we consider a natural extension of the MCMC
algorithms to the variable dimension case called Reversible Jump MCMC (RJMCMC)
introduced in Green (1995) (see also Fan and Sisson (2011) for an updated review).
One of the drawbacks that is often encountered by RJMCMC is that the acceptance
probability of moves between different parameter spaces can be very low. We circum-
vent this problem by following Ehlers and Brooks (2008) and propose a very efficient
RJMCMC for the simultaneous estimation of both the parameters and the model order
of the autoregressive process.

This paper extends the RJMCMC strategy for Gaussian models given in Brooks
et al. (2003) and Ehlers and Brooks (2008) to the non-Gaussian case. The Gaussian
assumption allows Ehlers and Brooks (2008) to have a closed form solution of the
efficient proposal calibration problem, whereas in the case of the beta processes this
result is no longer valid. In order to overcome this difficulty, we employ a posterior
mode approximation to calibrate the proposal in the RJMCMC algorithm. To the best
of our knowledge, only a few studies exist on the application of RJMCMC algorithms
to non-Gaussian autoregressive models. Among them, we refer the interested reader to
Enciso-Mora et al. (2009), who proposed a model selection algorithm for integer valued
ARMA.

The outline of the paper is as follows. In Section 2 the beta autoregressive process
of order k (BAR(k)) is introduced with a suitable parametrisation. In Section 3 the
Bayesian inference is developed for the BAR(k) model under the choice of some priors
and the RJMCMC algorithm is illustrated. In Section 4 some simulation results are
shown, and in Section 5 the model selection procedure for beta processes is applied to
unemployment and capacity utilisation data. Concluding remarks are given in Section
6.
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2 The beta AR(k) model

Let us define a beta autoregressive process {xt}t≥0 of the order k as follows

xt|FX
t−1 ∼ Be(η1t(k), η2t(k)) (1)

where the FX
t = σ({xs}s≤t) is the σ-algebra generated by the process, Be(η1t(k), η2t(k))

denotes the type I beta distribution, and η1t(k) > 0, η2t(k) > 0 are the two parameters
of the distribution, usually referred to as shape parameters. The two parameters are
Ft−1-measurable functions of the k last values of the process. The beta process has the
following transition density

f(xt|xt−1, . . . , xt−k) =
1

B(η1t(k), η2t(k))
x

η1t(k)−1
t (1− xt)η2t(k)−1I(0,1)(xt) (2)

where IA(x) is the indicator function, B(a, b) is the beta function with a, b > 0, k is
the order of the process and η1t(k) and η2t(k) will be defined later. In the following we
will denote with BAR(k) the k-order beta autoregressive process and assume k ≤ kmax,
with kmax < ∞ the maximum order of the process.

We consider the beta distribution of the first type (see Kotz and van Dorp (2004)
for a review on beta distributions) and the parametrisation suggested in Robert and
Rousseau (2002), Ferrari and Cribari-Neto (2004), and Rocha and Cribari-Neto (2009).
In such parametrisation, the conditional distribution of the process at time t is

xt|Ft−1 ∼ Be(ηtφ, (1− ηt)φ) (3)

where φ and ηt represent the precision and location parameters respectively (see Rocha
and Cribari-Neto (2009)).

We define ηt = ϕ(α′zt), where ϕ(v), with v ∈ R, is a twice differentiable strictly
monotonic link function ϕ : (0, 1) → R, α = (α0, α1, . . . , αk)′, xs:t = (xs, . . . , xt)′,
with s < t and zt = (1, ϕ−1(xt−1), . . . , ϕ−1(xt−k))′. It should be noted that for a
linear mean process ϕ(v) = v, and it is necessary to assume that α ∈ ∆k+1 where
∆k+1 = {α ∈ (0, 1)k+1|∑k

i=0 αi ∈ (0, 1)} for the process conditional mean to belong to
the unit interval. We will refer to this as a convexity constraint.

In Figure 1 there are some sample paths of a beta process of the third order, with
ϕ(v) = v. The paths are given for different values of the precision parameter φ and of
the constant term α0. For higher values of φ the process exhibits less volatility (top-left
chart). The larger the value of the constant term α0, the greater the conditional mean
of the process (top-right chart). Finally we observe that the conditional mean of the
process ηt ∈ [α0,

∑k
i=1 αi]. When α0 < 1/φ and

∑k
i=1 αi > (φ − 1)/φ, then φηt < 1

and φ(1 − ηt) < 1, and the transition density of the process is anti-unimodal. In this
case the process exhibits a switching-type behaviour (see the left and right charts at the
bottom of Figure 1).
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Figure 1: Simulated trajectories of a BAR(3) process for different parameter set-
tings. Top-left : the effect of the precision parameter φ ∈ {20, 100} for α =
(0.17, 0.03, 0.1, 0.60). Top-right : effect of the constant term α0 for φ = 100 and
(α1, α2, α3) = (0.03, 0.1, 0.60). Bottom-left and bottom-right : anti-unimodal transition
distribution and switching-type trajectories of the BAR(3) process for different values
of φ (φ ∈ {0.1, 0.9}) and with α = (0.46, 0.03, 0.01, 0.30). Both of the cases correspond
to α0 = 0.46 < 1/φ and

∑k
i=1 αi = 0.8 > (φ− 1)/φ.

3 Bayesian inference

The likelihood function of the model is

L(α, φ, k|xt0:T ) =
T∏

t=t0

B(ηtφ, (1− ηt)φ)−1xηtφ−1
t (1− xt)(1−ηt)φ−1 (4)

where xt0:T = (xt0 , . . . , xT )′ and t0 = kmax +1. Note that we consider an approximated
likelihood because, for a beta process of the order k ≤ kmax, we assume the observations
start in t = kmax+1 and thus forget the first (kmax−k) observations on xt. Moreover, in
the following we will assume that the first kmax initial values of the process are known.
It is possible to include the initial values in the inference process following, for example,
the approach given in Vermaak et al. (2004) for the Gaussian autoregressive processes.



R. Casarin, L. Dalla Valle and F. Leisen 389

3.1 The priors

Assuming that the constant term and the coefficients of a BAR(k) belong to the set
Rk+1, then we consider different prior specifications.

For general ϕ(v) we use a multivariate normal with mean ν and variance Υ, truncated
to the set Rk+1. In the following we will denote

f(α|k) ∝ exp
{
−1

2
(α− ν)′Υ−1(α− ν)

}
IRk+1(α) (5)

the density function of the prior on α.

For the linear mean process (i.e., ϕ(v) = v), a slightly different prior should be
considered. In this setting it is not easy to have a diffuse prior and at the same time to
guarantee the convexity constraints, i.e., ηtφ > 0 and (1− ηt)φ > 0 ∀t. The truncation
on the simplex of the normal prior distribution can generate numerical problems in
the evaluation of the posterior distribution. In order to prevent the posterior from
taking values near the boundaries of the parameter space, Robert and Rousseau (2002)
introduce a repulsive factor around the boundaries of the standard simplex defined in
the previous section. We observe that α0 ≤ ηt ≤

∑k
i=1 αi and propose the following

prior distribution conditional on φ

f(α|φ, k) ∝ exp
{
−1

2
(α− ν)′Υ−1(α− ν)

}
exp

{
− κ

φ2α0(1−
∑k

i=1 αi)

}
I∆k+1(α)

(6)
where κ is a hyperparameter. In the left and right charts of Figure 2 we show, for the
bivariate case, the shape of this prior distribution conditional on φ = 10 for two values
of the hyperparameters (κ = 5 and κ = 10). The multiplicative factor creates low den-
sity regions near the boundaries of the simplex. In both the simulation experiments and
the real data applications considered in Sections 4 and 5, this kind of prior contributes
considerably to avoiding the numerical problems in the evaluation of the posterior den-
sity and its gradient and Hessian, which are needed for the simulation based inference
procedures.

The precision parameter φ is positive, thus we assume a gamma prior

φ ∼ Ga(c, d) (7)

with hyperparameters c and d, and we denote with f(φ|k) the associated density func-
tion.

Finally for the model index k, which will be included in the inference process, we
assume a discrete uniform prior on {1, . . . , kmax} and denote with f(k) the associated
density function.
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Figure 2: Prior distributions for α in the simplex ∆k+1 for k = 1. Each graph shows
the level set (gray areas) and the sum-to-one constraint (solid line). Modified normal
prior conditional on φ = 10, with parameters ν = (1/(k + 2), 1/(k + 2))′ and Υ = 0.1I2

for κ = 5 (left) and κ = 10 (right).

3.2 The Reversible Jump algorithm

According to the RJMCMC approach, a set of models M = {Mk}k∈K is assumed,
where the model Mk is a BAR(k) with a vector of parameters θ of dimension nk, where
θ = (α, φ) and nk = k + 1. Then the joint distribution of (k, θ), given the observed
data xt0:T is

π(k, θ | xt0:T ) ∝ L(θ, k|xt0:T )f(k, θ) (8)

where L(θ, k|xt0:T ) is the likelihood given in Equation (4) and
f(k, θ) = f(α|φ, k)f(φ|k)f(k) is the joint prior for the model order and the param-
eter from the previous section.

The joint posterior distribution in Equation (8) is the target distribution of the
RJMCMC sampler over the state space Θ = ∪k∈K(k,Rnk). Within each iteration,
the RJMCMC algorithm updates the parameters, given the model order, and then the
model order given the parameters.

The full conditional distributions of the parameters given the model cannot be sam-
pled exactly and are simulated by the following Metropolis-Hastings (M.-H.) within
Gibbs steps.

The full conditional distribution of α is

π(α|φ, k,xt0:T ) ∝ exp

(
−

T∑
t=t0

log B(ηtφ, (1− ηt)φ) +
T∑

t=t0

Atηtφ

)
f(α|k) (9)

where At = log(xt/(1 − xt)). To simulate from this distribution we employ a M.-
H. algorithm with a proposal distribution that makes use of the information on the
local structure of the posterior surface (see Albert and Chib (1993) and Lenk and
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DeSarbo (2000)). Consider the second-order Taylor expansion of the log-posterior,
gk(α) = log π(α|φ, k,xt0:T ), centred around α̃(j),

gk(α) ≈ gk(α̃(j))+ (α− α̃(j))′∇(1)gk(α̃(j))+
1
2
(α− α̃(j))′∇(2)gk(α̃(j))(α− α̃(j)) (10)

where α̃(j) represents the approximated mode of the posterior. Then at the j-th itera-
tion of the M.-H. step we generate a candidate as follows

α(∗) ∼ N (α̃(j),Σ(j−1)) (11)

where Σ(j−1) = − (∇(2)gk(α̃(j−1))
)−1

. We remark that in the linear case the candidate
distribution has to be truncated to the set ∆k+1, in order to satisfy the convexity
constraints.

The full conditional distribution of φ is

π(φ|α, k,xt0:T ) ∝ exp

(
−

T∑
t=t0

(
log B(ηtφ, (1− ηt)φ) + φ(Atηt + log(1− xt))

))
f(φ|k).

(12)
We simulate from the full conditional with a M.-H. step. We consider a gamma random
walk proposal and, at the j-th step of the algorithm, given the previous value φ(j−1) of
the chain, we simulate

φ(∗) ∼ Ga(ζ(φ(j−1))2, ζφ(j−1)) (13)

where ζ represents the scale of the random walk. After tuning, ζ = 0.01 was finally
adopted, achieving an acceptance rate approximately equal to 80% with an autocorre-
lation lower than 0.2 for lag ≥ 5. The proposal distribution for φ is centered on the
previous value with a fixed variance of 1/ζ. An alternative proposal distribution for pos-
itive support quantities would be Ga(ζ,ζ/φ(j−1)), which has mean φ(j−1) and variation
coefficient 1/

√
ζ.

The proposal is accepted with probability

min

{
1,

π(φ(∗)|α, k,xt0:T )
π(φ(j−1)|α, k,xt0:T )

Γ(ζ(φ(j−1))2)(φ(j−1))ζ(φ(∗))2−1(ζφ(∗))ζ(φ(∗))2

Γ(ζ(φ(∗))2)(φ(∗))ζ(φ(j−1))2−1(ζφ(j−1))ζ(φ(j−1))2

}
. (14)

We now describe the model update step. We start with a BAR(k) with parameters
α and φ. Suppose the RJMCMC proposal is to move to the model BAR(k′), with pa-
rameters α′ and φ. Let pk k′ denote the probability of proposing to move to BAR(k′),
given that the chain is currently in BAR(k), with an analogous notation for the reverse
move. The RJMCMC proposes a jump to the space Rk′+1 through three steps. First,
generate k′ from a discrete uniform distribution pk k′ , secondly draw a k′-dimensional
parameter vector u ∈ Rk′+1 from the distribution q(u) and, finally, let α′ be a determin-
istic function of α and u. Conversely, in the reverse move, we generate a k-dimensional
parameter vector u′ ∈ Rk+1, setting α to be a function of α′ and u′. For the dimension
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matching, we consider the linear map (α′,u′) = (u, α), which has the Jacobian equal
to one. The acceptance probability is min(1, Ak,k′), where

Ak,k′ =
L(u, φ, k′|xt0:T )f(u|k′)f(φ|k′)pk′pk′,k

L(α, φ, k|xt0:T )f(α|k)f(φ|k)pkpk k′

q(α)
q(u)

,

and pk′ and pk are the prior probabilities of, respectively, model BAR(k′) and BAR(k).

As a proposal for φ and u, we consider a parametric family of distributions and
choose the parameters in such a way that the first and higher-order derivatives of the
log-acceptance ratio are approximately equal to zero. This implies an approximately
constant acceptance ratio. We consider a second-order method and focus on the gra-
dient and the Hessian of the log-acceptance ratio with respect to (u, α). The gradient
naturally splits into two subvectors, which are the gradients with respect to u and α.
The cross derivatives in the Hessian are null. In the following, we consider the case for
u; the case for α being similar.

Let ϕ(1) and ϕ(2) be, respectively, the first derivative and second derivative of the
function ϕ. We choose the parameters of the proposal such that

∇(1) log Ak,k′ =φ

T∑
t=t0

(
At −Ψ(0)(ηtφ) + Ψ(0)((1− ηt)φ)

)
ϕ(1)(α′zt)zt

+∇(1) log f(u|k′)−∇(1) log q(u) = 0

∇(2) log Ak,k′ =− φ2
T∑

t=t0

(
Ψ(1)(ηtφ) + Ψ(1)((1− ηt)φ)

)
(ϕ(1)(α′zt))2ztz′t

− φ

T∑
t=t0

[
Ψ(0)(ηtφ)−Ψ(0)((1− ηt)φ)

]
ϕ(2)(α′zt)ztz′t

+∇(2) log f(u|k′)−∇(2) log q(u) = 0

where Ψ(0) and Ψ(1) are the digamma and trigamma functions respectively.

In contrast to the Gaussian autoregressive model by Ehlers and Brooks (2008), here
the gradient and the Hessian depend on u. We propose to evaluate the derivatives at
the approximated posterior mode ũk′ , defined on the k′-dimensional space.

As an example, let us consider a Gaussian prior distribution truncated on the sim-
plex, and a Gaussian proposal distribution with mean µk′ and variance Σk′ . We solve
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the above system of equations with respect to µk′ and Σk′ and find that

Σ−1
k′ =Υ−1

k′ +
T∑

t=t0

(
Ψ(1)(ηtφ) + Ψ(1)((1− ηt)φ)

)
φ2(ϕ(1)(α′zt))2ztz′t

− φ

T∑
t=t0

[
Ψ(0)(ηtφ)−Ψ(0)((1− ηt)φ)

]
ϕ(2)(α′zt)ztz′t

µk′ =ũk′ + Σk′
[
Υ−1

k′ (ũk′ − νk′)

− φ

T∑
t=t0

(
At −Ψ(0)(ηtφ) + Ψ(0)((1− ηt)φ)

)
ϕ(1)(α′zt)zt

]
.

By applying the same procedure for the derivatives with respect to α we obtain a
procedure that promotes jumps between the modes of the posterior distributions of u
and α, which are defined in the k- and k′-dimensional spaces respectively.

We do not know the value of the posterior mode and in order to find an approxima-
tion we suggest to use a Newton-Raphson procedure. Each time the RJMCMC chain
visits the posterior in a given dimension, say k, then the approximated mode ũ

(j)
k , which

is dimension-specific, is updated following a Newton-Raphson procedure. The approxi-
mated modes of all the other dimensions are kept unchanged. At the (j−1)-th iteration
the updating recursion for the approximated modes is

ũ(j)
k =

{
ũ(j−1)

k − Σ(j−1)∇(1)gk(ũ(j−1)
k ) if k(j−1) = k

ũ(j)
k if k(j−1) 6= k

(15)

where k(j−1) is the value of the model index at iteration j−1 and gk is the log-posterior
distribution of u as defined in Eq. (10).

After an initial learning period, the posterior mode in the various spaces of different
dimensions is reached with a certain tolerance value, and the log-acceptance rate of the
jump move is close to zero as an effect of the choice of the proposal parameters.

Finally it should be noted that the approximation ũ(j)
k′ of the posterior mode in the

jump step is also used in the M.-H. steps within the Gibbs sampler for simulating u and
φ; thus no further computational burden is required for this approximation.

4 Simulation Results

In this section we study, through some simulation experiments, the efficiency of the
proposals. First, we focus on the parameter inference for given BAR model orders,
checking the mixing of the chains through the acceptance rate of the M.-H. steps,
the effective sample size, and the convergence diagnostic statistics. Then, we describe
parameter inference results for BAR models of unknown order through posterior model
probabilities.
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4.1 Inference with fixed AR order

In a first set of experiments, we verify the efficiency of the Metropolis-Hastings proposals
for different prior distributions and different parameter settings.

In each experiment we proceed as follows. For each model order k and parameter
setting θ = (α, φ), we generate 50 independent random samples with size T = 300 from
a BAR(k). On each dataset we iterate the RJMCMC algorithm defined in the previous
sections N = 10, 000 times.

As regards the values of the parameters, we consider two scenarios. In the first
scenario we set the precision parameter to φ = 20, which corresponds to the case of
high variability in the data (see Figure 1); we will refer to this as low precision data.
We expect that parameter estimation will be more challenging in this context.

In the second scenario, we set the precision parameter to φ = 100. In this case the
data exhibit less variability (see Figure 1); we will refer to this as high precision data.

For each scenario we consider different values of the parameters and different autore-
gressive orders. The parameter settings used in the MCMC experiments are summarized
in Table 1. We also evaluate the efficiency of the MCMC algorithm for different choices
of the prior distributions. We consider the truncated normal distribution with parame-
ters ν = (k+2)−1ι (ι being the unit vector of dimension k) and Υ = 100Ik (Ik being the
identity matrix of dimension k) and the modified truncated normal distribution with
parameters ν = (k + 2)−1ι, Υ = 100Ik and κ = 10.

k θ′ = (α′, φ) θ′ = (α′, φ)
1 (0.32, 0.5, 20) (0.32, 0.5, 100)
2 (0.32, 0.5, 0.1, 20) (0.32, 0.5, 0.1, 100)
3 (0.32, 0.5, 0.1, 0.03, 20) (0.32, 0.5, 0.1, 0.03, 100)
4 (0.32, 0.4, 0.1, 0.03, 0.1, 20) (0.32, 0.4, 0.1, 0.03, 0.1, 100)

Table 1: The parameter settings employed in the MCMC experiments. First column:
the autoregressive order. Second and third columns: conditional mean parameters for
low precision data (i.e., φ = 20) and high precision data (i.e., φ = 100).

Figure 3 shows a typical output and progressive averages of N = 10, 000 iterations
of the MCMC chain for α (left) and φ (right). In these figures, we include the initial
value of the Gibbs sampler and the burn-in sample in order to show the convergence of
the MCMC progressive averages to the true values of the parameters. In this example,
we considered a sample of T = 300 observations simulated from a BAR(3) model with
parameters α = (0.32, 0.5, 0.1, 0.03)′ and φ = 20. As it is clear from Figure 3, the
autoregressive parameters α seem to reach convergence in a slightly lower number of
iterations than the precision parameter φ. However, a burn-in period of 1,000 iterations
is enough to guarantee convergence for all of the chains. All of the sample paths denote
a good chain mixing and the chains show a moderate variability, with the exception of
the α2 parameter, with true value 0.1, that exhibits a higher variability. Furthermore,
the posterior estimates are slightly higher than the true values except for the constant
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term α0, with true value 0.32.

MCMC Iter.

α
0.

0
0.

1
0.
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5000 10000
MCMC Iter.

φ
0

10
20

30

5000 10000

Figure 3: MCMC raw output (gray solid lines) and progressive averages (dashed lines)
for α (left chart) and φ (right chart) estimated on a dataset of T = 300 observations
simulated from a BAR(3) process with parameters α = (0.32, 0.5, 0.1, 0.03)′ and φ = 20.
The initial value of the Gibbs sampler and the burn-in sample are included in the MCMC
sample in order to show the convergence of the MCMC progressive averages to the true
values of the parameters.

For each set of 50 independent MCMC experiments of length N we estimate the
root mean square error (RMSE), the average acceptance probability (ACC) of the M.-
H. within Gibbs steps and the effective sample size (ESS).

We estimate the RMSE for each component θ of the parameter vector θ.

The ACC index is the acceptance probability, averaged for all the parameters

ACC =
1
50

1
N





50∑

i=1

N∑

j=1

Aij





where Aij is the acceptance probability for each sample i, with i = 1, . . . , 50 and for
each iteration j, with j = 1, . . . , N .
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The ESS for a parameter θ is

ESS = N

(
1 +

∞∑
t=1

corr(θ(0), θ(t))

)−1

.

In order to evaluate the RMSE and the other statistics we consider N = 10, 000 MCMC
iterations and discard the output of the first 1,000 iterations.

In the various experiments we also evaluate the number of MCMC iterations neces-
sary for our MCMC algorithm to reach convergence. For that purpose, we here combine
a graphical inspection of the progressive averages of the parameter posterior distribu-
tion with the evaluation of a convergence criterion based on the Kolmogorov-Smirnov
(KS) test (see Robert and Casella (2004), Ch. 12). In the simulation experiments, for
each component θ of the parameter vector θ, we split the associated MCMC sample
θ(j), j = 1, . . . , N into two subsamples θ

(g)
1 and θ

(g)
2 with g = 1, . . . , M and evaluate

KS =
1
M

sup
η

∣∣∣∣∣
M∑

g=1

I(0,η)(θ
(gG)
1 )−

M∑
g=1

I(0,η)(θ
(gG)
2 )

∣∣∣∣∣

where G is the batch size. The use of batches is necessary in order to obtain quasi-
independent samples. The independence of the samples is one of the assumptions to
have a known limit distribution for the KS statistics. For each experiment we show the
average p-value of the KS statistics over the vector of parameters and over the last 100
iterations of the MCMC chain.

We summarise the output of the MCMC experiments in Table 2 for the truncated-
Gaussian and modified truncated-Gaussian priors. From Table 2 we note that, generally,
the higher the model order, the worse the performance of the algorithm. The RMSE
of the autoregressive coefficients and of the φ parameter tends to grow with the model
order, denoting a lower precision of the estimates. Furthermore, the ESS decreases as
the order of the process increases, denoting a worse mixing of the Markov chain.

Moreover, the results (see Table 2) show that high precision data have a better per-
formance than low precision data. This is evident from the autoregressive coefficients,
whose RMSEs are generally lower for high precision data. We get the same conclu-
sion for the φ parameter. Furthermore, data with higher precision show a noticeable
improvement in terms of ACC compared to data with lower precision. From Table 2
we can conclude that the improvement is mainly due to the higher ACC value of the
φ parameter, since the ACC of the autoregressive coefficients is very similar for both
types of data. Moreover, as we see in the fourth column of Table 2, ESS values are
higher in high precision data, showing a better mixing than in low precision data.

The average p-values of the KS statistic take values close to 0.5 in all cases, suggesting
the acceptance of the null hypothesis that the subsamples associated with the Markov
chain have the same distribution, guaranteeing convergence. Besides, since Table 2
displays only the average p-values, we stress that over the last 100 iterations of the
Markov chains the KS p-values improved, getting closer to 1.
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Finally, the modified truncated-Gaussian prior performs better than the truncated-
Gaussian prior for both the low and high precision data. In particular, we note that the
ACC and the ESS values of the modified prior are slightly higher, and the RMSE of the φ
parameter is noticeably lower than the corresponding values of the truncated-Gaussian.

Low precision data

k Estimated RMSE ACC ESS KS
α0 α1 α2 α3 α4 φ

Truncated-Gaussian Prior (ν = (k + 2)−1ι, Υ = 100Ik)

1 0.032 0.058 0.376 0.176 704 0.534

2 0.033 0.043 0.023 0.996 0.172 630 0.552

3 0.087 0.094 0.026 0.051 2.092 0.163 584 0.523

4 0.041 0.011 0.019 0.075 0.032 3.727 0.155 538 0.541

Modified Truncated-Gaussian Prior (ν = (k + 2)−1ι, Υ = 100Ik, κ = 10)

1 0.033 0.051 0.392 0.181 1013 0.556

2 0.032 0.055 0.021 0.916 0.183 853 0.563

3 0.015 0.077 0.018 0.059 1.701 0.192 783 0.574

4 0.030 0.023 0.013 0.059 0.034 2.564 0.189 740 0.539

High precision data

k Estimated RMSE ACC ESS KS
α0 α1 α2 α3 α4 φ

Truncated-Gaussian Prior (ν = (k + 2)−1ι, Υ = 100Ik)

1 0.011 0.018 0.964 0.392 923 0.513

2 0.029 0.047 0.031 1.815 0.402 827 0.546

3 0.038 0.071 0.032 0.002 3.122 0.422 798 0.593

4 0.021 0.038 0.037 0.007 0.029 6.430 0.538 778 0.511

Modified Truncated-Gaussian Prior (ν = (k + 2)−1ι, Υ = 100Ik, κ = 10)

1 0.017 0.021 0.392 0.403 1198 0.511

2 0.020 0.028 0.001 1.101 0.420 1012 0.534

3 0.031 0.063 0.003 0.002 1.539 0.428 941 0.529

4 0.029 0.033 0.033 0.001 0.018 3.955 0.509 830 0.542

Table 2: Estimation results for different model orders, parameter settings, and prior
distributions. The results are averages over a set of 50 independent MCMC experiments
on 50 independent datasets of T = 300 observations. On each dataset we ran the
proposed MCMC algorithm for N = 10, 000 iterations and then discarded the first
1,000 iterations. In each panel: model order (first column); estimated root mean square
error (RMSE) (second column) for each parameter; average acceptance rate (ACC) and
effective sample size (ESS) (third and fourth columns) averaged over the two M.-H.
chains in the Gibbs sampler; KS convergence diagnostic statistics (last column) with
batch size G = 50 (average over the last 100 iterations).

Figure 4 gives a more detailed description of the behaviour of the RMSE and of the
ESS in the MCMC experiments. The large circles denote the truncated-Gaussian prior
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Figure 4: ESS and RMSE of the 50 MCMC simulation experiments (averages over the
parameter vector) for different autoregressive orders of the BAR(k) (different gray levels
of the circles) and different choices of the prior (bigger circles for the truncated Gaussian
and smaller circles for the modified Gaussian prior). The rows show the ESS and the
RMSE statistics for two different values of φ.

results, while the small circles denote the modified truncated-Gaussian prior results.
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The different colors of the circles indicate the different order of the BAR(k). The top
plot displays low precision results (φ = 20) and the bottom plot displays high precision
results (φ = 100).

For both high and low precision data, the RMSE grows with the order of the model,
the ESS decreases. The modified prior gives more efficient estimates in terms of RMSE
and ESS.

The RMSEs calculated with the low precision data (φ = 20) are lower than the
RMSEs calculated with the high precision data (φ = 100), but this is because the circles
depicted in Figure 4 are averages over all the parameters, including the parameter φ.

4.2 Inference with unknown AR order

The aim of the second set of experiments is to study the interplay between the sample
size and model posterior probability. We consider a dataset of 500 observations simu-
lated from a BAR(k) with k = 3 and parameter values (α′, φ) = (0.37, 0.4, 0.1, 0.03, 100).
We assume a modified truncated-Gaussian prior with parameters ν = (k + 2)−1ι,
Υ = 100Ik and apply the RJMCMC algorithm presented in the previous section for esti-
mating k to subsamples of different sizes (from 100 to 500 observations), with kmax = 15.
Our aim is to analyse how the RJMCMC approximates the autoregressive order estimate
when we have samples of increasing dimension.

0 2000 4000 6000 8000 100000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RJMCMC Iterations

BAR(1)
BAR(2)
BAR(3)
BAR(4)
BAR(5)
BAR(6)

Figure 5: RJMCMC progressive estimates of the model posterior probabilities, when
the true model is a BAR(3) with α = (0.37, 0.4, 0.1, 0.03)′ and φ = 100.

A typical RJMCMC estimation of model posterior probabilities for a dataset of 300
observations is given in Figure 5, when the true model is BAR(3). The chain moves
frequently between the different subspaces, but it visits the BAR(3) model more often.
The least visited model is instead BAR(6).
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Estimated Model Probabilities

k
T

100 200 300 400 500

1 0.06667 0.09143 0.10291 0.09806 0.00129
2 0.19208 0.38611 0.29345 0.19384 0.17828
3 0.18939 0.43252 0.35730 0.65473 0.75391
4 0.13245 0.03387 0.24522 0.05255 0.04449
5 0.10674 0.02291 0.00002 0.00011 0.00018
6 0.06682 0.01910 0.00001 0.00033 0.00013
7 0.05682 0.00691 0.00001 0.00001 0.00663
8 0.04682 0.00149 0.00001 0.00001 0.00012
9 0.04283 0.00139 0.00001 0.00001 0.00018
10 0.03891 0.00109 0.00042 0.00001 0.00001
11 0.01488 0.00080 0.00014 0.00001 0.00001
12 0.01455 0.00055 0.00022 0.00001 0.00001
13 0.01109 0.00062 0.00012 0.00001 0.00001
14 0.01078 0.00027 0.00011 0.00001 0.00001
15 0.00917 0.00092 0.00005 0.00030 0.00023

Mode 2 3 3 3 3
Mean 4.80121 2.65058 2.75522 2.66801 2.85226
s.d. 3.1253 1.2256 0.9854 0.76153 0.70101

Table 3: Relation between sample size T (first row) and model order posterior (columns
from one to six ) for kmax = 15 when data are simulated from a BAR(3) with
(α′, φ) = (0.37, 0.4, 0.1, 0.03, 100). We assume a modified truncated-Gaussian prior
with parameters ν = (k + 2)−1ι, Υ = 100Ik. Approximation of the model order poste-
rior and of its mode, mean and standard deviation (last three rows) is based on 100,000
RJMCMC iterations.

The results of the model selection procedure for the different sample sizes are given
in Table 3. All estimates are based on 100,000 iterations of the RJMCMC chain. In
the specific parameter setting considered, the last three rows in the table show two
interesting results. First, the estimated model order is not correct (k̂ = 2 with k = 3) for
a sample of 100 observations. Furthermore, the standard deviation is 3.1253 for T = 100
and decreases for increasing T , which means that the model posterior distribution is
less concentrated around the mode for the samples of smaller size.

Small-sample bias in the model order estimates has also been observed in RJMCMC-
based model selection procedures for other non-Gaussian autoregressive processes, such
as the integer valued ARMA processes (see Enciso-Mora et al. (2009)); however, the
high dispersion of the model order estimates in small samples is a characteristic of the
beta autoregressive processes.

Both of these results may contribute to the explanation of the shape of the model
posterior distributions presented in Section 5.
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5 Production factor data

The utilisation rate of the production factors is a key variable for policy makers. Better
modelling and forecasting of factor utilisation can improve the ability of policy makers
to make effective decisions. In this empirical analysis, we focus on two well studied
series for factor utilisation: the unemployment rate and the capacity utilisation rate.

The dynamics of the unemployment rate is certainly one of the most studied in time
series econometrics. See for example Deschamps (2008) for some recent modeling ad-
vances. The unemployment rate is usually characterised by a pattern of relatively short
periods of rapid economic contraction and by relatively long periods of slow expansion.
We do not aim to model the asymmetric behaviour of time series, but focus instead
on another fundamental feature of this variable, that is, that the unemployment rate is
naturally defined on the (0, 1) interval. Data transformation is usually applied to map
data on the real interval (see Wallis (1987)). We follow Rocha and Cribari-Neto (2009)
and apply beta autoregressive processes for modelling the unemployment rate.

While unemployment rate deals with utilisation of labour as a production factor,
capacity utilisation deals with all of the production factors (i.e., labour force and stock
of capital) of an economic system or sector. A detailed definition of capacity utilisation
and a discussion on the different ways to obtain a statistical measure of this quantity can
be found in Klein and Su (1979). A decreasing capacity utilisation is usually interpreted
as a slowdown of the aggregated demand and consequently a reduction in the inflation
level. An increase in capacity utilisation reveals an expansion of the level of economic
activity (see Baghestani (2008)).

5.1 Unemployment Data

Here we consider two interesting datasets (see Figure 6). The first one is the US un-
employment rate (source: Datastream (2010)) sampled at a monthly frequency from
February 1971 to December 2009. We are mainly interested in modelling the economic
cycle and thus consider deseasonalised data. This dataset is quite large (467 observa-
tions) when compared to other macroeconomic datasets and this variable is one of the
most studied in econometrics (see for example Nickel (1997)). The other dataset is the
deseasonalised unemployment rate of the Euro Area sampled at a monthly frequency
(source: Datastream (2010)), from January 1995 to December 2009. We consider the
aggregated unemployment rate for the 13 countries in the area. This is another well
studied variable (see Bean (1994)) and inference on this dataset could be challenging
due to the limited amount of observations (180 observations). Moreover, modelling and
forecasting of this variable represents one of the most important issues for the European
Central Bank and for the European Institute of Official Statistics (Eurostat).

We assume a modified Gaussian prior for the autoregressive parameters with hyper-
parameters κ = 5 and Υ = 100Ik, a Gamma prior for the precision with hyperparame-
ters c = 1 and d = 1, and a uniform prior for the autoregressive order with maximum
order kmax = 15. For the RJMCMC algorithm we consider N = 100, 000 iterations



402 Model Selection for BAR Processes

1967M01 1979M04 1991M10 2004M04

0.
00

0.
05

0.
10

US Unempl. Rate
EU Unempl. Rate

1967M01 1979M04 1991M10 2004M04

0.
5

0.
7

0.
9

US Cap. Ut. Rate
Detrended US Cap. Ut. Rate
Trend

Figure 6: Top: US (solid line) and EU (dashed line) unemployment rates at a monthly
frequency. Bottom: US capacity utilisation rate (solid line), its estimated linear trend
(dotted line) with intercept γ̂0 = 0.843 and slope γ̂1 = −0.066 and the detrended
capacity rate (dashed line).

and discard the first 10,000 samples. The top two plots of Figure 7 illustrate the model
posterior probabilities of BAR(k), with k = 1, . . . , 15. Table 4 gives the estimated pa-
rameters, the 95% credible interval, and the average acceptance probability (ACC) of
the transdimensional jump move in the RJMCMC chain, for the estimated model order.

We compare our results with the results available in the literature. For comparison
purposes we apply an inverse logistic transformation to the data (see Deschamps (2008))
and then estimate a Gaussian autoregressive model on the transformed data. In other
words, the dependent variable is yt = ln[0.01xt/(1 − 0.01xt)], where xt is the monthly
unemployment rate. We selected the order of the model, for k = 1, . . . , 15, with the
Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC),
listing the results in Table 5.

The RJMCMC algorithm strongly favours the BAR(2) model amongst the others.
Table 4 shows the parameter estimates for the estimated model order k̂ = 2. The
estimated value of the constant term α0 is close to 0, and its posterior distribution has a
very low variability. The other two autoregressive parameters are instead characterised
by higher estimate values and higher variability. Finally, the ACC value lies in the
range of 10-60%; that is a good sign of efficiency for most algorithms, as suggested, for
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Figure 7: Model probabilities for BAR(k) on the US (top chart) and EU13 (middle
chart) unemployment rates and on the US capacity utilisation rate (bottom chart).
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US Unemployment Rate (k̂ = 2)
θk α0 α1 α2 φ ACC
θ̂k 0.011 0.547 0.272 130 0.392

Q0.025 0.006 0.118 0.007 126
Q0.975 0.017 0.820 0.708 131

EU Unemployment Rate (k̂ = 5)
θk α0 α1 α2 α3 α4 α5 φ ACC
θ̂k 0.029 0.544 0.076 0.010 0.024 0.011 128 0.278

Q0.025 0.024 0.140 0.001 0.004 0.010 0.004 123
Q0.975 0.034 0.572 0.096 0.016 0.029 0.016 132

US Capacity Utilisation Rate (k̂ = 6)
θk α0 α1 α2 α3 α4 α5 α6 φ ACC
θ̂k 0.397 0.196 0.075 0.065 0.045 0.053 0.049 130 0.398

Q0.025 0.390 0.189 0.058 0.058 0.040 0.049 0.030 126
Q0.975 0.408 0.207 0.079 0.074 0.067 0.060 0.051 130

Table 4: Estimated parameters θ and the model order k for the US (first panel) and
EU13 (second panel) unemployment rates and for the US capacity utilisation rate (last
panel). In the last column, the acceptance rate (ACC) of the trans-dimensional jump
move of the RJMCMC chain.

example, by Rosenthal (2011).

Considering instead the results obtained by applying the AR model to the trans-
formed data yt, the AIC and BIC select the model orders k̂ = 7 and k̂ = 4 respectively
(second and fifth columns of Table 5). This result for the BIC is in line with that in
Deschamps (2008), whereby a Bayes factor criterion and a log-transformed US unem-
ployment rate, from February 1965 to December 2004, are considered to choose among
Gaussian and linear AR models with lags from 1 to 6. The author found that the AR(5)
is preferred. Our empirical findings also exhibit another similarity with the findings in
Deschamps (2008). In his comparison between linear and different nonlinear Gaussian
models, such as Markov-switching AR and smooth-transition AR, Deschamps (2008)
found that numbers of lags k̂ = 3 and k̂ = 2 are preferred for nonlinear models. Our
results show that in a nonlinear and non-Gaussian model, such as a BAR(k) model, a
lower number of lags than in the Gaussian and linear case is needed for fitting the US
unemployment rate.

We carry out the same kind of comparison for the EU unemployment rates. The
RJMCMC results are shown in the middle chart of Figure 7 and in the second panel
of Table 4. The estimated model order is k̂ = 5 (in Figure 7). However, the choice
of the model in this case is not as straightforward as it was for the US data, since
the posterior probabilities of models such as BAR(4) and BAR(6), are very close to
that of BAR(5). As we explained in Section 4, the model posterior distribution is less
concentrated around the mode for smaller samples, as in the EU unemployment time
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series data, with only 180 observations. The model posterior distribution is instead more
concentrated around the mode for samples of larger size, consistent with the results from
the US unemployment time series data. Considering the estimated parameter results, in
Table 4, we note that all parameter posteriors exhibit low variability, and their estimates
are all close to 0, except for α1 which has a value of about 0.5. Moreover, the data show
high precision, since the φ parameter estimate is equal to 128. Finally, the average
acceptance probability is slightly lower than the one calculated for US data, but it is
still fully satisfactory, since it belongs to the range 10-60%. Calculating the AIC and
BIC of Gaussian linear AR for the transformed data yt, we find that k̂ = 7 and k̂ = 5
respectively are preferred (third and sixth columns of Table 5). Our RJMCMC approach
for the BAR model selects k̂ = 5. This result may also be due to the sample size bias
described in Section 4.2. However, we should note that the BAR model still requires a
lower number of lags than the AR model, as already noticed for the US unemployment
rate.

5.2 Capacity Utilisation

We consider the capacity utilisation rate series for the US sampled at a monthly fre-
quency from January 1967 to May 2010. The dataset is quite large (521 observations);
the series refers to all the industry sectors and is seasonally adjusted (source: Datas-
tream).

From a graphical inspection (bottom of Figure 6) we note that the series exhibits a
negative trend. A deterministic trend could be naturally included in the beta regression
model with linear conditional mean by imposing some constraints on the slope and the
intercept of the linear trend. These constraints can be imposed by a suitable specifi-
cation of the prior distribution. However, we focus on the autoregressive components;
thus we follow a two-step procedure.

First we define a normalised linear trend t/T , where T is the sample size, and
introduce the constrained linear regression model

xt = γ0 + γ1
t

T
+ εt, with t = 1, . . . , T (16)

with γ0 ∈ (0, 1) and (γ1 + γ0) ∈ (0, 1). These parameter constraints ensure that the
residuals of the regression are in the interval (0, 1). In the first step, we calculate the
detrended capacity utilisation rate x̃t = xt − γ̂1

t
T . The results of the trend extraction

are given in Figure 6, bottom chart. In the second step, we estimate a beta process on
the variable x̃t.

We applied the RJMCMC algorithm with N = 100, 000 iterations and a burn-in of
10,000 in order to obtain an estimate of the parameters and of the model posterior. We
assume a modified Gaussian prior for the autoregressive parameters with hyperparam-
eters κ = 5 and Υ = 100Ik, a Gamma prior for the precision with hyperparameters
c = 1 and d = 1, and a uniform prior for the autoregressive order with maximum order
kmax = 15.
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AIC BIC

k US Un EU Un US Cap US Un EU Un US Cap

1 -2947.934 -1621.598 -3227.065 -2939.493 -1615.212 -3218.554
2 -2946.183 -1670.723 -3271.669 -2933.522 -1661.144 -3258.902
3 -2972.176 -1706.379 -3287.777 -2955.294 -1693.607 -3270.754
4 -2999.256 -1712.201 -3299.520 -2978.153 -1696.237 -3278.241
5 -3002.027 -1718.446 -3302.093 -2976.703 -1699.288 -3276.558
6 -3006.093 -1717.617 -3300.535 -2976.548 -1695.266 -3270.745
7 -3008.355 -1719.267 -3299.398 -2974.590 -1693.723 -3265.352
8 -3006.355 -1717.612 -3297.507 -2968.370 -1688.876 -3259.205
9 -3006.492 -1716.549 -3300.804 -2964.286 -1684.620 -3258.246
10 -3004.574 -1714.804 -3306.622 -2958.147 -1679.682 -3259.809
11 -3003.247 -1716.888 -3304.701 -2952.600 -1678.573 -3253.632
12 -3002.365 -1715.103 -3302.718 -2947.497 -1673.594 -3247.393
13 -3004.718 -1715.291 -3300.796 -2945.630 -1670.590 -3241.216
14 -3004.694 -1713.473 -3299.106 -2941.386 -1665.578 -3235.270
15 -3002.695 -1712.969 -3297.328 -2935.165 -1661.881 -3229.236

Table 5: AIC (columns from 2 to 4) and BIC (columns from 5 to 7) values for Gaus-
sian AR(k) models on transformed data, for US Unemployment Rate (second and fifth
columns), EU Unemployment Rate (third and sixth columns), and US Capacity Utili-
sation Rate (fourth and seventh columns). The values for the selection criteria for the
chosen models are in boldface. The chosen models are, respectively, of order 7, 7, and
10 for AIC, and of order 4, 5, and 4 for BIC.

The results of the model selection procedure for the beta process are in the bottom
chart of Figure 7 and in the third panel of Table 4. The preferred model order is k̂ = 6,
with the highest posterior model probability, as illustrated in Figure 7. Here, as for the
US unemployment data, the sample size of more than 500 observations guarantees that
the model posterior distribution is concentrated around the mode.

Table 4 shows that the posterior estimates of all the parameters have a small vari-
ability. All of the autoregressive parameter estimates are close to 0, with the exception
of α1 and the constant term α0, which had the highest value. Moreover, as in the
previous examples, the estimate of the parameter φ denotes a dataset with high preci-
sion. Furthermore, the value of ACC is very similar to the one calculated for the US
unemployment data, showing a good value of acceptance rate.

Finally, we applied a logistic transform to the data and estimated the AR model to
the transformed time series. Table 5 shows the AIC and BIC results for different model
orders. The model orders chosen by the AIC and BIC are k̂ = 10 and k̂ = 4 respectively
(fourth and seventh columns of Table 5). This result shows that the US capacity rate
seems to exhibit a longer memory than what was obtained with a Gaussian linear AR
model when using BIC. As a side remark, we note that, even for this data, the AIC for
AR is less conservative than the BIC.
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6 Conclusion

We proposed an efficient RJMCMC algorithm for conducting Bayesian inference and
model selection on BAR processes of general order. The methodology is given through
a very general algorithm that depends on the choice of the beta as the conditional
distribution of the process. The degrees of freedom in the choice of such a distribution
suggest the application of this algorithm to a wide class of autoregressive models, making
the methodology very appealing. Moreover, the RJMCMC methodology can be used to
analyse other BAR models that include explanatory variables and change-points in the
parameters.

In the simulation studies, the algorithm has been shown to be successful in estimating
true parameters and number of lags. We found that, in the sub-class of conditionally
linear BAR processes, the choice of the prior may have effects on the mixing property of
the RJMCMC chain by reducing the probability of the RJMCMC chain moves near the
boundaries of the parameter space. We also apply our inference procedure to real-life
data such as unemployment and capacity utilisation rates. Our results suggest that,
for some series, such as the EU unemployment data, there is a lot of uncertainty in the
selection of the number of lags. This uncertainty should be taken into account when
using these models in economics decisions. Model and parameter uncertainty can be
naturally included in the decision process by using the posterior probabilities of our
RJMCMC algorithm for Bayesian Model Averaging.
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