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Posterior Concentration Rates for Infinite
Dimensional Exponential Families

Vincent Rivoirard∗ and Judith Rousseau†

Abstract. In this paper we derive adaptive non-parametric rates of concentration
of the posterior distributions for the density model on the class of Sobolev and
Besov spaces. For this purpose, we build prior models based on wavelet or Fourier
expansions of the logarithm of the density. The prior models are not necessarily
Gaussian.
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1 Introduction

Frequentist properties of Bayesian nonparametric procedures have been increasingly
studied in the last decade, following the seminal papers of Barron et al. (1999) and
Ghosal et al. (2000) which established general conditions on the prior and on the true
distribution to obtain posterior consistency for the former and posterior concentration
rates for the latter. Consistency of the posterior distribution is admitted as a minimal
requirement, both from a subjectivist and an objectivist view-point, see Diaconis and
Freedman (1986). Studying posterior concentration rates allows for more refined results,
in particular it helps in understanding some aspects of the prior and can be used to
compare Bayesian procedures and to contrast them with frequentist procedures. In the
frequentist nonparametric literature the usual optimality criterion that is considered is
the minimaxity over a given functional class, typically indexed by a smoothness index,
for instance a Sobolev or a Besov ball. However the smoothness is generally unknown
a priori and it is important to construct estimators which adapt to these smoothness
indexes, i.e. which do not depend on these indexes but which achieve the optimal rate
within each class.

In this paper we derive posterior concentration rates for density estimation, when
the prior is based on wavelet or Fourier expansions of the logarithm of the density. We
consider Xn = (X1, ..., Xn) which, given a distribution P with a compactly supported
density f with respect to the Lebesgue measure, are independent and identically dis-
tributed according to P. Without loss of generality we assume that for any i, Xi ∈ [0, 1]
and we set

F =
{

f : [0, 1] → R+ s.t.
∫ 1

0

f(x)dx = 1
}

.
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As already mentioned, we restrict our attention to families of priors on F built from
Fourier and wavelet expansions of log f assumed to be square-integrable. Wavelets are
localized in both time and frequency whereas the standard Fourier basis is only localized
in frequency. We recall that Fourier bases constitute unconditional bases of periodized
Sobolev spaces W γ where γ is the smoothness parameter. Wavelet expansions of any
periodized function h take the following form:

h(x) = θ−101l[0,1](x) +
+∞∑

j=0

2j−1∑

k=0

θjkϕjk(x), x ∈ [0, 1]

where θ−10 =
∫ 1

0
h(x)dx, θjk =

∫ 1

0
h(x)ϕjk(x)dx and 1lA is the indicatrix function :

1lA(x) = 1 if x ∈ A and 1lA(x) = 0 if x /∈ A. We recall that the functions ϕjk are obtained
by periodizing dilations and translations of a mother wavelet ϕ that can be assumed to be
compactly supported. Unlike the Fourier basis, under standard properties of ϕ involving
its regularity and its vanishing moments, wavelet bases constitute unconditional bases
of Besov spaces Bγ

p,q. We refer the reader to Härdle et al. (1998) for a good introduction
to wavelets and to Section 5.2 for more details on Sobolev and Besov spaces. We just
mention that the scale of Besov spaces includes Sobolev spaces: W γ = Bγ

2,2. In the
sequel, to shorten notation, we use a unified framework including Fourier and wavelet
bases. The considered orthonormal basis will be denoted Φ = (φλ)λ∈N, where φ0 = 1l[0,1]

and

- for the Fourier basis, if λ ≥ 1,

φ2λ−1(x) =
√

2 sin(2πλx), φ2λ(x) =
√

2 cos(2πλx),

- for the wavelet basis, if λ = 2j + k, with j ∈ N and k ∈ {0, . . . , 2j − 1},

φλ = ϕjk.

Here and in the sequel, N denotes the set of non negative integers, and N∗ the set of
positive integers. Now, the decomposition of each periodized function h ∈ L2[0, 1], the
set of square-integrable functions on [0, 1] with respect to the Lebesgue measure, on
(φλ)λ∈N is written as follows:

h(x) =
∑

λ∈N
θλφλ(x), x ∈ [0, 1],

where θλ =
∫ 1

0
h(x)φλ(x)dx.

We use such expansions to build non-parametric priors on F in the following way:
For any k ∈ N∗, we set

Fk =

{
fθ = exp

(
k∑

λ=1

θλφλ − c(θ)

)
s.t. θ ∈ Rk

}
,
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where

c(θ) = log

(∫ 1

0

exp

(
k∑

λ=1

θλφλ(x)

)
dx

)
. (1)

So, we define a prior π on the set F∞ = ∪kFk ⊂ F by defining a prior p on N∗ and
then, once k is chosen, we fix a prior πk on Fk. Such priors are often considered in
the Bayesian non-parametric literature and our study can be strongly connected to the
well-known papers by van der Vaart and van Zanten (2008) (see Section 4 for a detailed
comparison with our results) and by Shen and Wasserman (2001) who considered the
problem of estimating a regression function decomposed on an orthonormal basis. The
prior model proposed by Shen and Wasserman is a special case of the prior described
in Section 2. However, they assume that all the functions of the basis are uniformly
bounded by a constant. This is of course satisfied by the Fourier basis but not by
wavelet bases. Furthermore, once the prior is fixed, depending on a hyperparameter p,
rates are only achieved on Sobolev balls of regularity p. So, adaptation is not handled
by Shen and Wasserman (2001). See below for specific results we obtain in our paper.
The family of priors defined in Section 2 has also been used in the infinite-means model
(equivalently in the white noise model) by Zhao (2000) where minimax but non adaptive
rates were obtained for the L2-risk (see for instance Theorem 6.1 of Zhao (2000)). We
also mention the special case of log-spline priors studied by Ghosal et al. (2000) and the
prior model based on Legendre polynomials considered by Verdinelli and Wasserman
(1998).

Our results are concerned with adaptation that has been partially studied in the
literature. Let us cite Scricciolo (2006) who considers infinite dimensional exponential
families and derives minimax and adaptive posterior concentration rates. Her results
differ from ours in two main aspects. Firstly she restricts her attention to the case
of Sobolev spaces and Fourier basis, whereas we consider Besov spaces. Secondly she
obtains adaptivity by putting a prior on the smoothness of the Sobolev class whereas we
obtain adaptivity by constructing a prior on the size k of the parametric spaces, which
to our opinion is a more natural approach. Moreover Scricciolo (2006) merely considers
Gaussian priors. Also related to adaptation are the works of Huang (2004) and Ghosal
et al. (2008) who derive a general framework to obtain adaptive posterior concentration
rates, the former applies her results to the Haar basis case. The limitation in her case,
apart from the fact that she considers the Haar basis and no other wavelet basis is that
she constrains the θλ’s in each k-dimensional model to belong to a ball with fixed radius.

In this paper we give general conditions on families of priors briefly described pre-
viously to obtain adaptive minimax rates (up to a log n term) for the estimation of f .
In the next section we introduce the prior model and Theorem 2.1 gives the posterior
rates on Sobolev balls W γ(R) and Besov balls Bγ

p,q(R) p ≥ 2. Section 3 gives the proof
of Theorem 2.1 and Section 4 contains conclusions we can draw from our results. We
state in the Appendix a result useful for establishing concentration rates. The Appendix
also contains the proof of a technical result and an overview of Sobolev and Besov spaces.
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Notation: In the sequel, we denote by `n(f) the log-likelihood associated with the
density f . The Kullback-Leibler divergence and the Hellinger distance between two
positive densities f1 and f2 will be respectively denoted K(f1, f2) and h(f1, f2). We
recall that

K(f1, f2) =
∫ 1

0

f1(x) log
(

f1(x)
f2(x)

)
dx (2)

and

h(f1, f2) =
[∫ (√

f1(x)−
√

f2(x)
)2

dx

]1/2

. (3)

In the sequel, we shall also use

V (f1, f2) =
∫ 1

0

f1(x)
(

log
(

f1(x)
f2(x)

))2

dx. (4)

The minimum between reals a and b is denoted by a∧b. Let P0 be the true distribution of
the observations Xi whose density and cumulative distribution function are respectively
denoted f0 and F0. For any positive sequence un, xn = oP0(un) means that xn/un

converges to 0 in probability with repect to the distribution P0. We denote by ||.||γ
and ||.||γ,p,q the norms associated with W γ and Bγ

p,q respectively. The integer r will
denote the number of vanishing moments of the wavelet basis. When the Fourier basis
is considered, we set r = +∞.

2 Prior models and concentration rates

Given β > 1/2, the prior p on k satisfies one of the following conditions:

[Case (PH)] There exist two positive constants c1 and c2 and s ∈ {0, 1} such that for
any k ∈ N∗,

exp (−c1kL(k)) ≤ p(k) ≤ exp (−c2kL(k)) ,

where L(x) = (log x)s.

[Case (D)] If k∗n = bn1/(2β+1)c, i.e. the largest integer smaller than n1/(2β+1),

p(k) = δk∗n(k),

where δk∗n denotes the Dirac mass at the point k∗n.

Conditionally on k the prior πk on Fk is defined by

θλ√
τλ

iid∼ g, τλ = τ0λ
−2β 1 ≤ λ ≤ k,

where τ0 is a positive constant and g is a continuous density on R such that for any x,

A∗ exp (−c̃∗|x|p∗) ≤ g(x) ≤ B∗ exp (−c∗|x|p∗) ,
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where p∗, A∗, B∗, c̃∗ and c∗ are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for densities g to
have different tails. In the Dirac case (D), the prior on k is non random. For the case
(PH), L(x) = log(x) typically corresponds to a Poisson prior on k and the case L(x) = 1
typically corresponds to geometric priors. The density g can be for instance the Laplace
or the Gaussian density.

Assume that f0 is 1-periodic and f0 ∈ F∞. Let Φ = (φλ)λ∈N be one of the bases
introduced in Section 1, then there exists a sequence θ0 = (θ0λ)λ∈N∗ such that

f0(x) = exp

( ∑

λ∈N∗
θ0λφλ(x)− c(θ0)

)
.

We have the following result.

Theorem 2.1. We assume that || log(f0)||∞ < ∞ and log(f0) ∈ Bγ
p,q(R) with p ≥ 2,

1 ≤ q ≤ ∞ and 1/2 < γ < r + 1 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Then,

Pπ

{
fθ s.t. h(f0, fθ) ≤

√
log n

L(n)
εn|Xn

}
= 1 + oP0(1), (5)

and

Pπ

{
fθ s.t. ||θ0 − θ||`2 ≤ log n

√
log n

L(n)
εn|Xn

]
= 1 + oP0(1), (6)

where in the case (PH),

εn = ε0

(
log n

n

) γ
2γ+1

,

in the case (D), L(n) = 1,

εn = ε0(log n)n−
β

2β+1 , if γ ≥ β

εn = ε0n
− γ

2β+1 , if γ < β

and ε0 is a constant large enough.

If the density g only satisfies a tail condition of the form

g(x) ≤ Cg|x|−p∗ ,

where Cg is a constant and p∗ > 1, then, in the case (PH), if γ > 1, the rates defined
by (5) and (6) remain valid.
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Note that in the case (PH) the posterior concentration rate is, up to a log n term, the
minimax rate of convergence, whereas in the case (D) the minimax rate is achieved only
when γ = β. The interpretation is the following: In the case (PH), k is random, which
allows one to determine the appropriate space Fk by using the data, i.e. the Bayesian
procedure automatically adapts to the unknown approximation space containing the
unknown signal. In particular, if f0 belongs to Bγ

p,q then the “optimal” approximation
space Fk corresponds to k = O

(
n1/(2γ+1)

)
. Roughly speaking, this optimal k is obtained

by some trade-off between minimizing the Kullback-Leibler divergence between f0 and
Fk and maximizing the prior mass of neighbourhoods of f0 in Fk.

A glance at the proof of Theorem 2.1 allows us to go further. We have the following
result enhancing our results with respect to adaptation.

Corollary 2.1. Let p∗ > 0 and 1/2 < β ≤ (1/2 + 1/p∗) ∧ 1, then for all R0 > 0 and
γ0 > 1/2, the posterior distribution associated to the prior (PH) achieves the adaptive
minimax rate up to a logarithmic term on the whole class

C(γ0, R0) =
{Bγ

p,q(R) : γ0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R0

}
,

meaning that there exists ε0 > 0 such that

sup
γ0 ≤ γ < r + 1

0 < R ≤ R0

sup
p ≥ 2
q ≥ 1

sup
f0∈Bγ

p,q(R)

Ef0

[
Pπ

{
h(f0, fθ) ≤ ε0

√
log n

L(n)

(
log n

n

) γ
2γ+1

|Xn

}]
= o(1).

A similar result holds for the `2-loss.

3 Proof of Theorem 2.1

In the sequel, C denotes a generic positive constant whose value is of no importance and
may change from line to line. To simplify some expressions, we omit at some places the
integer part b·c. Remember that L(n) = 1 for any n in the case (D). To prove Theorem
2.1 it is enough to verify conditions (A), (B) and (C) of Theorem 5.1, which is presented
in the appendix. We consider (Λn)n the increasing sequence of subsets of N∗ defined by
Λn = {1, 2, . . . , ln} with ln ∈ N∗ (defined below). For any n, we set:

F∗n =

{
fθ ∈ Fln s.t. fθ = exp

( ∑

λ∈Λn

θλφλ − c(θ)

)
, ||θ||`2 ≤ wn

}
,

with
wn = exp(w0n

ρ(log n)q), ρ > 0, q ∈ R.

For l0 a constant,

- εn = ε0n
− γ

2γ+1 (log n)
γ

2γ+1 and we set ln = l0nε2n
L(n) in the case (PH),

- εn = ε0(log n)1{γ≥β}n−
β∧γ
2β+1 and we set ln = l0k

∗
n = l0n

1
2β+1 in the case (D).
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Condition (A) Since β > 1/2,
∑

λ τλ < ∞ and for the sake of simplicity, without loss
of generality, we assume that

∑
λ τλ ≤ 1. Using the tail assumption on g,

π {F∗nc} ≤
∑

λ>ln

p(λ) + Pπ





∑

λ≤ln

θ2
λ > w2

n





≤ C exp (−c2lnL(ln)) +
∑

λ≤ln

Pπ

{
θ2

λ

τλ
> w2

n

}

≤ C exp
(−c2l0nε2n

)
+

∑

λ≤ln

Pπ

{
exp

(
c∗|θλ|p∗
2τ

p∗/2
λ

)
> exp

(
c∗wp∗

n

2

)}

≤ C exp
(−c2l0nε2n

)
+ Cln exp

(
−c∗wp∗

n

2

)

≤ C exp
(−c2l0nε2n

)
+ C exp

(−nH
)

for any positive H > 0. For the second line, we have used

Pπ





∑

λ≤ln

θ2
λ > w2

n



 ≤ Pπ





∑

λ≤ln

θ2
λ >

∑

λ≤ln

τλw2
n



 ≤

∑

λ≤ln

Pπ
{
θ2

λ > τλw2
n

}

and for the fourth line the Markov inequality combined with

θλ√
τλ

iid∼ g

and
g(x) ≤ B∗ exp (−c∗|x|p∗) .

Hence,
π {F∗nc} ≤ C exp

(−c2l0nε2n
)

and Condition (A) is proved for l0 large enough.

Condition (B) In the framework of Theorem 5.1, we bound Hn,j for any j ≥ 1. Actually,
since the Hellinger distance is uniformly bounded by

√
2, we can restrict our attention

to the case j ≤ √
2ε−1

n . For this purpose, we show that the Hellinger distance between
two functions of F∗n is related to the `2-distance of the associated coefficients. Let

c̃1 =
1

4c1,Φ
,

where c1,Φ is defined in Lemma 5.1, in the appendix. We consider fθ and fθ′ belonging
to F∗n with

fθ = exp

( ∑

λ∈Λn

θλφλ − c(θ)

)
, fθ′ = exp

( ∑

λ∈Λn

θ′λφλ − c(θ′)

)
.
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We show that for j ≤ √
2ε−1

n ,

||θ − θ′||`2 ≤ c̃1jεnl−1/2
n ⇒ h(fθ, fθ′) ≤ jεn

2
. (7)

For this purpose, we apply Lemma 5.1 with Kn = Λn and kn = ln and if ||θ′ − θ||`2 ≤
c̃1jεnl

−1/2
n , then,

∥∥∥∥∥
∑

λ∈Λn

(θ′λ − θλ)φλ

∥∥∥∥∥
∞
≤ c1,Φ

√
ln||θ′ − θ||`2 ≤ c1,Φc̃1jεn ≤

√
2c1,Φc̃1 ≤ 1.

Now, straightforward computations lead to

|c(θ′)− c(θ)| =

∣∣∣∣∣log

(∫ 1

0

fθ(x) exp

( ∑

λ∈Λn

(θ′λ − θλ)φλ(x)

)
dx

)∣∣∣∣∣

≤
∣∣∣∣∣log

(∫ 1

0

fθ(x) exp

(
‖

∑

λ∈Λn

(θ′λ − θλ)φλ‖∞
)

dx

)∣∣∣∣∣

= ‖
∑

λ∈Λn

(θ′λ − θλ)φλ‖∞.

Then,

h2(fθ, fθ′) =
∫ 1

0

fθ(x)

(
exp

(
1
2

∑

λ∈Λn

(θ′λ − θλ)φλ(x) +
1
2

(c(θ)− c(θ′))

)
− 1

)2

dx

≤
∫ 1

0

fθ(x)

(
exp

(
||

∑

λ∈Λn

(θ′λ − θλ)φλ||∞
)
− 1

)2

dx

≤ 4||
∑

λ∈Λn

(θλ − θ′λ)φλ||2∞

≤ 4c2
1,Φln||θ − θ′||2`2 ≤ 4c2

1,Φc̃2
1j

2ε2n ≤
j2ε2n

4
, (8)

where we have used the (rough) bound : exp(x)− 1 ≤ 2x for any x ∈ [0, 1]. This proves
(7). By identifying θ and fθ, it means that every covering of Sn,j by `2-balls of radius
c̃1jεnl

−1/2
n provides a covering of Sn,j by Hellinger-balls of radius jεn/2. Then, we use

the following lemma proved in Section 5.3.

Lemma 3.1. We assume that log(f0) ∈ Bγ
p,q(R) with p ≥ 2, 1 ≤ q ≤ ∞ and 1/2 <

γ < r + 1. We set c0 = infx∈[0,1] f0(x) > 0. There exists a positive constant c ≤ 1/2
depending on β, γ, R and Φ such that, for j ≥ 1, if

(j + 1)2ε2nln ≤ c

then for fθ ∈ Sn,j

||θ0 − θ||2`2 ≤
1
c
(log n)2h2(f0, fθ).
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The lemma shows that if (j + 1)2ε2nln ≤ c then, by identifying θ and fθ, Sn,j is
included into the `2-ball centered at θ0 with radius c−1/2(j + 1)εn log n. Therefore, in
this case, combining (8) and Lemma 3.1, we obtain

Hn,j ≤ log




(
C

(j + 1)εn log n

jεnl
−1/2
n

)ln

 ≤ ln log n,

for n large enough. Then, we have Hn,j ≤ Knj2ε2n as soon as j ≥ J0,n =
√

j0 log n/L(n),
where j0 is a constant and condition (B) is satisfied for such j’s.

When (j + 1)2ε2nln > c, then since for fθ ∈ F∗n, ||θ||`2 ≤ wn,

Hn,j ≤ log




(
C

wn

jεnl
−1/2
n

)ln

 ≤ 2ln log(wn) ≤ 2w0lnnρ(log n)q,

for n large enough. Choosing w0, q and ρ small enough such that l2n(log n)q ≤ n1−ρ,
implies Hn,j ≤ Knj2ε2n and condition (B) is satisfied for such j’s.

Condition (C) Let kn ∈ N∗ increasing to ∞ and Kn = {1, ..., kn}, define

A(un) =

{
θ s.t. θλ = 0 for every λ /∈ Kn and

∑

λ∈Kn

(θ0λ − θλ)2 ≤ u2
n

}
,

where un goes to 0 such that √
knun → 0. (9)

We define for any λ,

βλ(f0) =
∫ 1

0

φλ(x)f0(x)dx.

Denote

f0Kn = exp

( ∑

λ∈Kn

θ0λφλ(x)− c(θ0Kn)

)
, f0K̄n

= exp


 ∑

λ/∈Kn

θ0λφλ(x)− c(θ0K̄n
)


 .

We have

K(f0, f0Kn) =
∑

λ/∈Kn

θ0λβλ(f0) + c(θ0Kn)− c(θ0)

=
∑

λ/∈Kn

θ0λβλ(f0) + log
(∫ 1

0

f0(x)e−
∑

λ/∈Kn
θ0λφλ(x)dx

)
.
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Using inequality (15) of Lemma 5.1, we obtain
∫ 1

0

f0(x)e−
∑

λ/∈Kn
θ0λφλ(x)dx

= 1−
∑

λ/∈Kn

θ0λβλ(f0) +
1
2

∫ 1

0

f0(x)


 ∑

λ/∈Kn

θ0λφλ(x)




2

dx× (1 + o(1)) .

We have
∣∣∣∣∣∣

∑

λ/∈Kn

θ0λβλ(f0)

∣∣∣∣∣∣
≤ ‖f0‖2


 ∑

λ/∈Kn

θ2
0λ




1
2

and

∫ 1

0

f0(x)


 ∑

λ/∈Kn

θ0λφλ(x)




2

dx ≤ ‖f0‖∞
∑

λ/∈Kn

θ2
0λ.

So,

log
(∫ 1

0

f0(x)e−
∑

λ/∈Kn
θ0λφλ(x)dx

)
= −

∑

λ/∈Kn

θ0λβλ(f0)− 1
2


 ∑

λ/∈Kn

θ0λβλ(f0)




2

+
1
2

∫ 1

0

f0(x)


 ∑

λ/∈Kn

θ0λφλ(x)




2

dx + o


 ∑

λ/∈Kn

θ2
0λ


 ,

and

K(f0, f0Kn) =
1
2

∫ 1

0

f0(x)


 ∑

λ/∈Kn

θ0λφλ(x)




2

dx

−1
2


 ∑

λ/∈Kn

θ0λβλ(f0)




2

+ o


 ∑

λ/∈Kn

θ2
0λ


 .

This implies that for n large enough,

K(f0, f0Kn) ≤ ‖f0‖∞
∑

λ/∈Kn

θ2
0λ ≤ Ck−2γ

n .

Now, if θ ∈ A(un) we have

K(f0, fθ) = K(f0, f0Kn) +
∑

λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ)

≤ Ck−2γ
n +

∑

λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ).
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We set for any x, T (x) =
∑

λ∈Kn
(θλ − θ0λ)φλ(x). Using (13), ‖T‖∞ ≤ C

√
knun → 0.

So,
∫ 1

0

f0Kn(x) exp(T (x))dx = 1 +
∫ 1

0

f0Kn(x)T (x)dx +
∫ 1

0

f0Kn
(x)T 2(x)v(n, x)dx,

where v is a bounded function. Since log(1 + u) ≤ u for any u > −1, for θ ∈ A(un) and
n large enough,

−c(θ0Kn
) + c(θ) = log

(∫ 1

0

f0Kn
(x)eT (x)dx

)

≤
∫ 1

0

f0Kn
(x)T (x)dx +

∫ 1

0

f0Kn
(x)T 2(x)v(n, x)dx

≤
∑

λ∈Kn

(θλ − θ0λ)βλ(f0Kn) + Cknu2
n.

So,

K(f0, fθ) ≤ Ck−2γ
n +

∑

λ∈Kn

(θ0λ − θλ) (βλ(f0)− βλ(f0Kn))

≤ Ck−2γ
n + un‖f0 − f0Kn‖2.

Besides, (15) implies

‖f0 − f0Kn‖22 ≤ ‖f0‖2∞
∫ 1

0


1− exp


−

∑

λ/∈Kn

θ0λφλ(x)− c(θ0Kn) + c(θ0)







2

dx

and

|c(θ0Kn)− c(θ0)| ≤ ||
∑

λ/∈Kn

θ0λφλ||∞.

Finally,
‖f0 − f0Kn‖2 ≤ C||

∑

λ/∈Kn

θ0λφλ||∞ ≤ Ck
1
2−γ
n

and
K(f0, fθ) ≤ Ck−2γ

n + Cunk
1
2−γ
n . (10)

We now bound V (f0, fθ). For this purpose, we refine the control of |c(θ0Kn)− c(θ0)|:

|c(θ0Kn)− c(θ0)| =
∣∣∣∣∣∣
log




∫ 1

0

f0(x) exp


−

∑

λ/∈Kn

θ0λφλ(x)


 dx




∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
log

∫ 1

0

f0(x)


1−

∑

λ/∈Kn

θ0λφλ(x) + w(n, x)


 ∑

λ/∈Kn

θ0λφλ(x)




2

 dx

∣∣∣∣∣∣∣
,
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where w is a bounded function. So,

|c(θ0Kn
)− c(θ0)| ≤ C




∑

λ/∈Kn

|θ0λβλ(f0)|+
∫ 1

0


 ∑

λ/∈Kn

θ0λφλ(x)




2

dx




≤ C


 ∑

λ/∈Kn

θ2
0λ




1
2

≤ Ck−γ
n .

In addition,

|c(θ0Kn
)− c(θ)| ≤

∑

λ∈Kn

|θλ − θ0λ| |βλ(f0Kn
)|+ Cknu2

n

≤ un (||f0 − f0Kn
||2 + ||f0||2) + Cknu2

n

≤ Cun + Cknu2
n.

Finally,

V (f0, fθ) =
∫ 1

0

f0(x)


 ∑

λ∈Kn

(θ0λ − θλ)φλ(x) +
∑

λ/∈Kn

θ0λφλ(x) + c(θ)− c(θ0)




2

≤ 2||f0||∞


 ∑

λ∈Kn

(θ0λ − θλ)2 +
∑

λ/∈Kn

θ2
0λ


 + 2(c(θ)− c(θ0))2

≤ Cu2
n + Ck−2γ

n + Ck2
nu4

n. (11)

Now, let us consider the case (PH). We take kn and un such that

kn = k0ε
−1/γ
n and un = u0εnk

− 1
2

n ,

where k0 and u0 are constants depending on ||f0||∞, γ, R and Φ. Note that (9) is then
satisfied. If ε0 is large enough and u0 is small enough, then, by using (10) and (11),

K(f0, fθ) ≤ ε2n and V (f0, fθ) ≤ ε2n.

So, Condition (C) is satisfied if

Pπ {A(un)} ≥ e−cnε2n .

We have:

Pπ {A(un)} ≥ Pπ

{
θ s.t.

∑

λ∈Kn

(θλ − θ0λ)2 ≤ u2
n

∣∣∣∣∣ kn

}
× exp (−c1knL(kn)) .
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The prior on θ implies that, with Gλ = λβθλτ
−1/2
0 ,

P1 := Pπ

{
θ s.t.

∑

λ∈Kn

(θλ − θ0λ)2 ≤ u2
n

∣∣∣∣∣ kn

}

≥ Pπ

{
θ s.t.

∑

λ∈Kn

∣∣√τ0λ
−βGλ − θ0λ

∣∣ ≤ un

∣∣∣∣∣ kn

}

= Pπ

{
θ s.t.

∑

λ∈Kn

λ−β
∣∣∣Gλ − τ

− 1
2

0 λβθ0λ

∣∣∣ ≤ τ
− 1

2
0 un

∣∣∣∣∣ kn

}

=
∫

...

∫
1{∑

λ∈Kn
λ−β

∣∣∣∣xλ−τ
− 1

2
0 λβθ0λ

∣∣∣∣≤τ
− 1

2
0 un

}
∏

λ∈Kn

g(xλ)dxλ

≥
∫

...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}
∏

λ∈Kn

g
(
yλ + τ

− 1
2

0 λβθ0λ

)
dyλ.

When γ ≥ β, we have supλ∈Kn

∣∣∣τ−
1
2

0 λβθ0λ

∣∣∣ < ∞ and supn

{
τ
− 1

2
0 kβ

nun

}
< ∞. Using

assumptions on the prior, there exists a constant D such that

P1 ≥ Dkn

∫
...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}
∏

λ∈Kn

dyλ

≥ exp (−Ckn log n) .

When γ < β, there exist a and b > 0 such that ∀|y| ≤ M for some positive constant M

g(y + u) ≥ a exp(−b|u|p∗).

Using the above calculations we obtain if p∗ ≤ 2,

P1 ≥ Dkn exp{−C
∑

λ∈Kn

λp∗β |θ0λ|p∗}
∫

...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}
∏

λ∈Kn

dyλ

≥ exp
[
−Ck1−p∗/2+p∗(β−γ)

n

]
exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ 1/2 + γ

and if p∗ > 2,
∑

λ∈Kn
λp∗β |θ0λ|p∗ ≤ kp∗β−p∗γ

n so that

P1 ≥ Dkn exp{−C
∑

λ∈Kn

λp∗β |θ0λ|p∗} exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ γ + 1/p∗.

Condition (C) is established by choosing k0 small enough. Similar computations lead
to the result in the case (D). The result for the norm ||θ − θ0||`2 is proved using (19).
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4 Conclusions

This paper has investigated posterior concentration rates for Besov balls Bγ
p,q(R) in the

case p ≥ 2. General prior models allow us to obtain adaptive minimax rates up to
logarthmic terms on the class

C(γ0, R0) =
{Bγ

p,q(R) : γ0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R0

}
,

where R0 > 0 and γ0 > 1/2. When considering rates of convergence where the loss
function is the `2-norm or the Hellinger distance, Fourier and wavelets bases lead to
the same results. But they can potentially differ if we consider different types of loss
functions such as Ls-norms, with s 6= 2.

We mention that posterior concentration rates for wavelet density estimation on
Besov balls have also been studied in Section 4.5 of van der Vaart and van Zanten
(2008). In this particular framework, priors proposed by van der Vaart and van Zanten
(2008) are based on (truncated) Gaussian distributions and are special cases of our
prior model (D). Furthermore, the rates obtained in Theorem 2.1 are similar to rates
obtained in their Theorem 4.5 up to a logarithmic term. So, our results show that
when truncated series are considered, the choice of the Gaussian prior is not critical.
Also, randomizing as in the prior model (PH) leads to adaptation, which is not possible
with purely Gaussian priors (see Theorem 1 of Castillo (2008)). Note also that non-
Gaussian priors have been proved to be particularly useful in the context of sparsity: see
for instance Dalalyan and Tsybakov (2007) who established sparse oracle inequalities
for aggregation in the PAC-Bayesian setting, Rivoirard (2006) who studied minimax
rates on maxisets of classical procedures and Park and Casella (2008) who provided a
Bayesian interpretation of the Lasso procedure.

Note that we have only focused on the case p ≥ 2. Indeed, Besov spaces Bγ
p,q with

p < 2 model very different functions under the L2-loss, so the value p = 2 constitutes an
elbow, that clearly appears in Inequality (12). Such phenomena have been investigated
using various approaches: in the minimax approach by Donoho et al. (1995) or Reynaud-
Bouret et al. (2011) and in the Bayesian context where least favorable priors for such
spaces are built (see Johnstone (1994) or Rivoirard (2006)). From these studies, we can
draw the following conclusions: when p < 2, Besov spaces Bγ

p,q model sparse signals
where at each resolution level, very few of the wavelet coefficients are non-negligible.
But these coefficients can be very large. When p ≥ 2, Bγ

p,q-spaces typically model
dense signals where the wavelet coefficients are not large but most of them can be non-
negligible. Of course, the study of posterior concentration rates in the case p < 2 is an
exciting topic, we wish to investigate in future work. The results obtained in this paper
illustrate the type of behaviour to be expected using wavelets or Fourier bases, outside
the simple case of density estimation on [0, 1]. Theoretical extensions of our results to
more intricate problems such as estimating intensities of multivariate counting processes
or multivariate regression functions are also challenging problems of interest.
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5 Appendix

5.1 A result for convergence rates of posterior distributions

To prove Theorem 2.1, we use the following version of theorems on posterior convergence
rates.

Theorem 5.1. Let f0 be the true density and let π be a prior on F satisfying the
following conditions: There exist (εn)n a positive sequence decreasing to zero with nε2n →
+∞ and a constant c > 0 such that for any n, there exists F∗n ⊂ F satisfying

- (A)
Pπ {F∗nc} = o(e−(c+2)nε2n).

- (B) For any j ∈ N∗, let

Sn,j = {f ∈ F∗n s.t. jεn < h(f0, f) ≤ (j + 1)εn},

and Hn,j the Hellinger metric entropy of Sn,j, i.e. the logarithm of the smallest
number of balls of radius jεn/2 needed to cover Sn,j. There exists J0,n (that may
depend on n) such that for all j ≥ J0,n,

Hn,j ≤ Knj2ε2n,

where K is an absolute constant.

- (C) If Bn(εn) = {f ∈ F s.t. K(f0, f) ≤ ε2n, V (f0, f) ≤ ε2n}, we have Pπ {Bn(εn)} ≥
e−cnε2n .

Then, we have:

Pπ {f s.t. h(f0, f) ≤ J0,nεn|Xn} = 1 + oP0(1).

Proof. The proof of Theorem 5.1 is a slight modification of Theorem 2.4 of Ghosal
et al. (2000). We introduce Gn = {f s.t. h(f0, f) > J0,nεn}. So,

Pπ {f s.t. h(f0, f) > J0,nεn|Xn} ≤ Pπ [Gn ∩ F∗n|Xn] + Pπ {(F∗n)c|Xn} ,

and using the same arguments as Ghosal et al. (2000), condition (C) combined with
condition (A) implies that

Pπ {(F∗n)c|Xn} = oP0(1).

We now study

Pπ {Gn ∩ F∗n|Xn} =

∫
Gn∩F∗n e`n(f)−`n(f0)dπ(f)∫
F e`n(f)−`n(f0)dπ(f)

:=
Nn

Dn
.
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From the proof of Theorem 2.4 of Ghosal et al. (2000), we obtain that

Dn ≥ e−(c+2)nε2n

with P0-probability going to 1. We set Ln,j = exp(Hn,j). Let us a consider a set of
densities (fl)1≤l≤Ln,j

such that ∪1≤l≤Ln,j
Bh(fl, jεn/2), the union of the balls of center

fl and radius jεn/2 for the Hellinger distance, constitutes a covering of Sn,j . Following
Section 7 of Ghosal et al. (2000), for any l, there exists a test φ(l) such that

Ef0 [φ(l)] ≤ e−8Knh2(f0,fl), sup
f : h(f,fl)≤h(f0,fl)/2

Ef [1− φ(l)] ≤ e−8Knh2(f0,fl),

where K is an absolute constant. For any f ∈ Sn,j , there exists l such that h(fl, f) ≤
jεn/2 ≤ h(f0, f)/2. Let

φn = max
j≥J0,n

max
1≤l≤Ln,j

φ(l).

By definition of Hn,j , for any l, Bh(fl, jεn/2) ∩ Sn,j 6= ∅. So, there exists f̃l such that
f̃l ∈ Bh(fl, jεn/2) ∩ Sn,j and

h(f0, fl) ≥ h(f0, f̃l)− h(fl, f̃l) ≥ jεn − jεn/2 = jεn/2.

We obtain

Ef0 [φn] ≤
∑

j≥J0,n

exp(Hn,j)e−2Kj2nε2n ≤
∑

j≥J0,n

e−Kj2nε2n = o(1)

and
sup

f∈Sn,j

Ef [1− φn] ≤ e−2Kj2nε2n .

Therefore,

Ef0 [Nn(1− φn)] ≤
∫

dπ(f)
∑

j≥J0,n

1{f∈Sn,j}Ef [1− φn]

≤
∑

j≥J0,n

e−2Kj2nε2n .

Finally, by taking

J0,n >

√
c + 2
2K

,

we have:

Ef0 [Pπ {Gn ∩ F∗n|Xn}]

≤ P0

{
Dn < e−(c+2)nε2n

}
+ Ef0 [φn] + Ef0

[
Nn

Dn
(1− φn)1{Dn≥e−(c+2)nε2n}

]

≤ P0

{
Dn < e−(c+2)nε2n

}
+ Ef0 [φn] +

∑

j≥J0,n

e−(2Kj2−c−2)nε2n = o(1),

which ends the proof of Theorem 5.1. ¥
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5.2 Function approximation spaces

This section is devoted to function approximation spaces and to a technical lemma
useful to establish our main result.

We first give a brief description of Sobolev and Besov spaces. We recall that a
function h ∈ L2 belongs to the Sobolev space W γ (γ ∈ N∗) if it is γ-times weakly dif-
ferentiable and if h(j) ∈ L2, j = 1, . . . , γ. The parameter γ measures the smoothness of
underlying functions; larger γ means smoother functions. Periodized Sobolev spaces are
characterized by Fourier and wavelet bases and using notations from the Introduction,
we have

h :=
∑

λ∈N
θλφλ ∈ W γ ⇐⇒

∑

λ∈N
|λ|2γθ2

λ < ∞,

which allows us to extend the definition of periodized Sobolev spaces to the case γ ∈ R∗+.
See Bergh and Löfström (1976), DeVore and Lorentz (1993) or Tsybakov (2009) for more
details.

Besov spaces are classically defined by using modulus of continuity (see Definition
9.2 of Härdle et al. (1998)). In the framework introduced in the Introduction, periodized
Besov spaces, denoted Bγ

p,q, have the following characterization. We assume that the
wavelet basis has standard regularity properties and r vanishing moments (see Härdle
et al. (1998) for more details). Let 1 ≤ p, q ≤ ∞ and 0 < γ < r + 1, the Bγ

p,q-norm of h
is equivalent to the norm

||h||γ,p,q =




|θ−10|+

[∑
j≥0 2jq(γ+ 1

2− 1
p )||(θjk)k||q`p

]1/q

if q < ∞,

|θ−10|+ supj≥0 2j(γ+ 1
2− 1

p )||(θjk)k||`p if q = ∞.

Using || · ||γ,p,q, we say that h belongs to the Besov ball with radius R > 0 if ||h||γ,p,q ≤ R.
For any R > 0, if 0 < γ′ ≤ γ < r+1, 1 ≤ p ≤ p′ ≤ ∞ and 1 ≤ q ≤ q′ ≤ ∞, we obviously
have

Bγ
p,q(R) ⊂ Bγ

p,q′(R), Bγ
p,q(R) ⊂ Bγ′

p,q(R).

Moreover
Bγ

p,q(R) ⊂ Bγ′

p′,q(R) if γ − 1
p
≥ γ′ − 1

p′
.

Finally, using the Cauchy-Schwarz inequality when p ≥ 2 and the inequality ||(θjk)k||`2 ≤
||(θjk)k||`p when p < 2, we have for any j ≥ 0,

2jγ ||(θjk)k||`2 ≤ 2j( 1
p− 1

2 )+ × 2j(γ+ 1
2− 1

p )||(θjk)k||`p , (12)

which proves that for p ≥ 2,
Bγ

p,q(R) ⊂ Bγ
2,q(R).

The class of Besov spaces provides a useful tool to classify wavelet decomposed
signals with respect to their regularity and sparsity properties (see Johnstone (1994)).
Roughly speaking, regularity increases when γ increases whereas sparsity increases when
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p decreases. We finally recall that the scale of Besov spaces includes the class of the
Sobolev spaces since we have Bγ

2,2 = W γ .

Now, we prove the following result.

Lemma 5.1. Set Kn = {1, 2, . . . , kn} with kn ∈ N∗. Assume one of the following two
cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis

- 0 < γ < r+1, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r vanishing
moments.

Then the following results hold.

- There exists a constant c1,Φ depending only on Φ such that for any θ = (θλ)λ ∈
Rkn , ∥∥∥∥∥

∑

λ∈Kn

θλφλ

∥∥∥∥∥
∞
≤ c1,Φ

√
kn||θ||`2 . (13)

- If log(f0) ∈ Bγ
p,q(R), then there exists c2,γ depending on γ only such that

∑

λ/∈Kn

θ2
0λ ≤ c2,γ R2k−2γ

n . (14)

- If log(f0) ∈ Bγ
p,q(R) with γ > 1

2 , then there exists c3,Φ,γ depending on Φ and γ
only such that: ∥∥∥∥∥∥

∑

λ/∈Kn

θ0λφλ

∥∥∥∥∥∥
∞

≤ c3,Φ,γ R k
1
2−γ
n . (15)

Proof. Let us first consider the Fourier basis. We have:∥∥∥∥∥
∑

λ∈Kn

θλφλ

∥∥∥∥∥
∞

≤
∑

λ∈Kn

|θλ| × ||φλ||∞

≤
√

2
∑

λ∈Kn

|θλ|,

which proves (13). Inequality (14) follows from the definition of Bγ
2,2 = W γ . To prove

(15), we use the following inequality: for any x,
∣∣∣∣∣∣

∑

λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣
≤

√
2

∑

λ/∈Kn

|θ0λ|

≤
√

2


 ∑

λ/∈Kn

|λ|2γθ2
0λ




1
2


 ∑

λ/∈Kn

|λ|−2γ




1
2

.
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Now, we consider the wavelet basis. Without loss of generality, we assume that log2(kn+
1) ∈ N∗. We have for any x,

∣∣∣∣∣
∑

λ∈Kn

θλφλ(x)

∣∣∣∣∣ ≤
( ∑

λ∈Kn

θ2
λ

) 1
2

( ∑

λ∈Kn

φ2
λ(x)

) 1
2

≤ ||θ||`2


 ∑

−1≤j≤log2(kn)

∑

k<2j

ϕ2
jk(x)




1
2

,

with ϕ−10 = 1l[0,1]. Since, for some constant A > 0, ϕ(x) = 0 for x /∈ [−A,A], for j ≥ 0,

card
{
k ∈ {0, . . . , 2j − 1} s.t. ϕjk(x) 6= 0

} ≤ 3(2A + 1).

(see Mallat (1998), p. 282 or Meyer (1992), p. 112). So, there exists cϕ depending only
on ϕ such that

∣∣∣∣∣
∑

λ∈Kn

θλφλ(x)

∣∣∣∣∣ ≤ ||θ||`2


 ∑

0≤j≤log2(kn)

3(2A + 1)2jc2
ϕ




1
2

,

which proves (13). For the second point, we just use the inclusion Bγ
p,q(R) ⊂ Bγ

2,∞(R)
and

∑

λ/∈Kn

θ2
0λ =

∑

j>log2(kn)

2j−1∑

k=0

θ2
0jk ≤ R2

∑

j>log2(kn)

2−2jγ ≤ R2

1− 2−2γ
k−2γ

n .

Finally, for the last point, we have for any x:

∣∣∣∣∣∣
∑

λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣
≤

∑

j>log2(kn)




2j−1∑

k=0

θ2
0jk




1
2




2j−1∑

k=0

ϕ2
jk(x)




1
2

≤ Ck
1
2−γ
n ,

where C ≤ R(3(2A + 1))
1
2 cϕ(1− 2

1
2−γ)−1. ¥

5.3 Proof of Lemma 3.1

This section is devoted to the proof of Lemma 3.1. We use definitions recalled in (2),

(3) and (4). Using Theorem 5 of Wong and Shen (1995), with M1 =
(∫ 1

0
f2
0 (x)

fθ(x) dx
) 1

2
, if

h2(f0, fθ) ≤ 1
2
(1− e−1)2,
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we have

V (f0, fθ) ≤ 5h2(f0, fθ) (| log M1| − log(h(f0, fθ)))
2
. (16)

But

M1 =
∫ 1

0

f0(x) exp


 ∑

λ∈Λn

(θ0λ − θλ)φλ(x) +
∑

λ/∈Λn

θ0λφλ(x)− c(θ0) + c(θ)


 dx

and

log




∫ 1

0

f0(x) exp


 ∑

λ∈Λn

(θλ − θ0λ)φλ(x)−
∑

λ/∈Λn

θ0λφλ(x)


 dx


 = c(θ)− c(θ0).

So,

|c(θ)− c(θ0)| ≤ log




∫ 1

0

f0(x) exp




∥∥∥∥∥∥
∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥∥∥∥∥∥
∞


 dx




≤
∥∥∥∥∥∥

∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥∥∥∥∥∥
∞

and

M1 ≤
∫ 1

0

f0(x) exp


2

∥∥∥∥∥∥
∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥∥∥∥∥∥
∞


 dx

≤ exp


2

∥∥∥∥∥∥
∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥∥∥∥∥∥
∞




≤ exp
(
2c1,Φ

√
ln||θ0 − θ||`2 + 2c3,Φ,γRl

1
2−γ
n

)

by using (13) and (15). Similarly,

M1 ≥ exp
(
−2c1,Φ

√
ln||θ0 − θ||`2 − 2c3,Φ,γRl

1
2−γ
n

)
.

So,
| log M1| ≤ 2c1,Φ

√
ln||θ0 − θ||`2 + 2c3,Φ,γRl

1
2−γ
n .

Finally, since fθ ∈ Sn,j for j ≥ 1,

V (f0, fθ) ≤ 5h2(f0, fθ)
(
2c1,Φ

√
ln||θ0 − θ||`2 + 2c3,Φ,γRl

1
2−γ
n − log(εn)

)2

≤ C̃h2(f0, fθ)
(
ln||θ0 − θ||2`2 + (log n)2

)
, (17)
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where C̃ depends on Φ, R, β and γ. Since f0(x) ≥ c0 for any x and
∫ 1

0
φλ(x)dx = 0 for

any λ ∈ Λn, we have by straightforward computations,

V (f0, fθ) ≥ c0||θ0 − θ||2`2 . (18)

Combining (17) and (18), we conclude that

||θ0 − θ||2`2 ≤ 2C̃c−1
0 (log n)2h2(f0, fθ), (19)

if h2(f0, fθ)ln ≤ (j + 1)2ε2nln ≤ c0/(2C̃). Lemma 3.1 is proved by taking

c = min
(

c0

2C̃
,
1
2
(1− e−1)2

)
.
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