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Bayesian Strategies to Assess Uncertainty in
Velocity Models

Camila C. S. Caiado∗, Richard W. Hobbs† and Michael Goldstein‡

Abstract. Quantifying uncertainty in models derived from observed seismic data
is a major issue. In this research we examine the geological structure of the sub-
surface using controlled source seismology which gives the data in time and the
distance between the acoustic source and the receiver. Inversion tools exist to
map these data into a depth model, but a full exploration of the uncertainty of
the model is rarely done because robust strategies do not exist for large non-linear
complex systems. There are two principal sources of uncertainty: the first comes
from the input data which is noisy and band-limited; the second is from the model
parameterisation and forward algorithm which approximate the physics to make
the problem tractable. To address these issues we propose a Bayesian approach
using the Metropolis-Hastings algorithm.

Keywords: Gaussian Processes, Metropolis-Hastings algorithm, Seismology, Veloc-
ity Modelling

1 Introduction

Seismic reflection surveying is the principal means of investigating the geological struc-
ture of the Earth to depths of about 30km. Acoustic energy from a source on the
surface propagates into the Earth and is partially reflected due to a change of acoustic
impedance between different layers of rock. The amplitude and phase of the reflected
energy is dependent on the change of the elastic parameters at the interface, namely
p-wave velocity, s-wave velocity and density (see Glossary after Section 8).

In the field, a series of acoustic sources are fired into the sub-surface at known
points along the seismic profile to be investigated and each source is recorded by an
array of receivers. Knowledge of the position of the source and receiver locations is
used during processing to collect together recorded traces with the same geometrical
mid-point between the source and receiver called a common midpoint (CMP) gather.
A CMP gather consists of a number of traces with varying source-receiver offsets. In
Figure 1, we can see a simple example of a CMP gather with only two traces: the
recorded peak on the first trace of Figure 1a shows how long it took for the signal to
travel from source S1 to receiver R1. Figure 2 is another example of a CMP gather,
in this case with three traces. From the first trace we can see four distinct peaks each
corresponding to the travel time of the signal from source S1 to receiver R1 after being
partially reflected by four different layers with velocities vi and depths zi, i = 1, . . . , 4.
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Once the distortion due to the variation of offsets is removed through a process called
normal move-out (NMO) correction, the signals can be stacked together to enhance the
required reflected signal from the background noise. For the NMO correction to be
effective, it requires an estimate of the sound velocity structure of the sub-surface. In
this paper we propose a Bayesian based method to address this problem.

Unlike manual velocity picking by a trained operator, the Bayesian model provides
us with the most probable velocity model and the uncertainty associated with it and
each of its parameters. There is also the flexibility of adding prior knowledge about the
structure to be analysed and control over most of the variables.

In Section 2, we introduce the preprocessed data. In order to understand how the
data is sorted and filtered and the model structured, we introduce the tools used to
run our analysis in Sections 3, 4 and 5. In Section 6, we explain how all these tools
are combined to deliver a model for the velocity structure of the subsurface. Synthetic
and real data sets are used in Section 7 to show the model efficiency compared to other
methods. In Section 9, we have a small glossary of geophysics terms used here (see oil
(2010)).

2 The Preprocessed Data

In order to create a velocity model, we need to understand the data and define variables.
Each trace in the CMP consists of a sequence of points Akj generated at source Sj and
recorded at receiver Rj , which are separated by a distance xj , at time (∆(t) · k) where
∆(t) is a fixed sampling rate.

The signal recorded is bipolar so each trace alternates between positive and negative
values that correspond to the reflection strength or noise. When the signal reaches
an interface with a significant change of acoustic impedance, the energy is partially
reflected which is detected by the receiver and gives a peak on the data trace. Within
a CMP gather, these interfaces form coherent peaks through the traces following an
approximate hyperbolic curve that corresponds to a possible layer. Therefore, in order
to analyse this data, these peaks need to be selected and sorted (e.g. picking the peaks
on each trace of Figure 2b and matching them to their respective layer). In Section 6.1,
we give an automatic method to pick and sort these points however, in the mean time
we’ll assume that they were already picked using the Bayesian picking method or any
equivalent method, e.g., manual picking and matching of peaks in each trace. In Figure
3, we show the plot of a single trace and in Figure 4, we show the plot of a whole gather
consisting of 80 such traces.
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Figure 1: (a) 1.5-D single-layer model (i.e., a model in which velocities are assumed to
be functions of the depth only) showing the energy propagation path from the sources
S1 and S2 (fired independently at different times to avoid mixed signals) to receivers R1

and R2 centred around a CMP through one layer with velocity v1, depth z1 and zero-
offset travel time t01 . (b) The vertical traces represents the amplitude of the reflected
energy arriving at x1 = 150m (distance between S1 and R1) and x2 = 225m (distance
between S2 and R2) against time. The amplitude spikes on the traces correspond to
the two-way travel time for the energy to travel from the sources S1 and S2 to the
sub-surface reflectors and back to the receivers R1 and R2.

3 Velocity Models for Backscattered Seismic Reflection
Data

Consider the case where a single 1.5-D layer (i.e., layer that is part of a model in which
velocities are assumed to be functions of depth only) is detected and assume that it is
parallel to an array of m receivers (see Figure 2a). In this case, the travel-time equation

t2j = t20 +
x2
j

v2
x

(1)

applies, where xj ≥ 0, j = 1, . . . ,m, is the distance of the j-th source-receiver pair,
vx > 0 is the horizontal velocity for the layer, tj ≥ 0 is the real travel time and t0 ≥ 0
is the two-way travel time of a vertically reflected ray, or

t0 =
2z
vz
, (2)
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Figure 2: (a) Simple 1.5-D model showing the energy propagation path from sources
S1, S2 and S3 to receivers R1, R2 and R3 through a series of layers with velocities
v1, . . . , v4 and zero-offset travel times t01 , . . . , t04 separated by horizons at z1, . . . , z4.
(b) Each vertical trace represents the amplitude of the reflected energy arriving at a
given receiver with a known source-receiver offset x1, x2 and x3 against time. The
amplitude peaks on the trace correspond to the two-way travel time for the energy to
travel from the source to the sub-surface reflectors and back to the receiver (e.g., the
first spike around 3.75s on the first trace at x1 = 900m corresponds to the travel time
from source S1 to receiver R1 when the energy is reflected from horizon z1. This is
represented by the lightest grey path in (a)). The shape of the pulse is a function of
the band-limited nature of the seismic source. The dashed lines on (b) show the result
of the automatic picking algorithm described in Section 6.

where z > 0 is the layer’s depth (see Figure 1a) and vz is the vertical velocity for the
layer (see Kearey and Brooks (1992) and Yilmaz (1987)).

In the case of a 1.5-D seismic model where all n layers are parallel to an array of m
geophones (see Figure 2a), the travel-time equation is given by

t2ij = t20i
+
x2
j

v2
xi

, i = 1, . . . , n; j = 1, . . . ,m, (3)

where xj ≥ 0 is the offset distance (or the position of the j-th geophone relative to the
source), tij ≥ 0 is the ray’s real travel time reflected from the i-th layer to the j-th
receiver, vxi

> 0 is the horizontal stacking velocity for the i-th layer approximated by
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Figure 3: Plot of one recorded trace or wiggle for a given source-receiver distance xj .
The “spikes” on the trace correspond to possible layers. Even though the peaks seem
clear, coherence over a set of traces is necessary in order to make a good pick. Therefore,
we need to analyse gathers as a whole in order to confirm coherence.

the root mean square (RMS) velocity given by Dix’s equation (see Dix (1952) and Dix
(1955))

v2
xk

=

k∑
i=1

v2
int(i)(t0i

− t0(i−1))

k∑
i=1

(t0i − t0(i−1))

(4)

for i > 1 and vx1 = vint(1), vint(i) is the real velocity for the i-th layer, t0i ≥ 0 is the
travel time of a vertically reflected ray from the i-th layer to the receiver, or

t0i
=

2zi
vzi

, (5)

where zi is the depth for the i-th layer (see Figure 2a) and vzi
is the vertical velocity

for the i-th layer.

As we discussed in Section 2, the only variable observed is the wave amplitude against
time in a fixed offset. In order to build the model, we assume that the points forming
coherent curves or layers were already picked and their travel times recorded. Usually,
the data is processed using manual picking, i.e., an expert visually identifies the layers
that appear to be relevant in each CMP gather. This is a time-consuming process which
relies on expert judgements, where no quantitative estimate of uncertainty is made and
layers near noise level are normally missed. The number of layers n is assumed to be
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Figure 4: Grayscale map of a single gather formed by 80 recorded traces as in Figure
3. Note that the hyperbolic looking patterns are the ones we need to sort and model;
the brightest ones usually correspond to significant changes in velocity and possibly a
change in the sub-surfaces geology. The biggest challenges are to accurately sort the
data closer to the seabed and to identify relevant velocity changes in deep water, in this
case, time greater than 5s.

known and, in Section 6, we propose a method to identify layers without the need for
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manual picking.

Here we described a geometrically simple problem but, even though the target hori-
zons for real sub-surface geology are three-dimensional, multilayered and non-parallel,
locally these horizons can be assumed to be a multilayered 1.5-D model. For the simple
1.5-D single layer model, estimating the corresponding velocity model is trivial; however,
as more layers are added, the number of variables and the uncertainty sources grow.
We also have to consider that the recorded data includes ambient noise and signal loss
which degrades the ability to identify the reflected events accurately.

Therefore, we propose a Bayesian method which can produce a flexible and reliable
model and an estimate of its uncertainty. Prior information for these Bayesian models
include the tools used in manual picking: well-log data, outputs from other geophysical
models, semblance plots and expert judgement. In the next sections, we build the
models used to analyse this processed data and show how it works in synthetic and real
examples.

4 Bayesian Models

Given a set of picked points, the data is analysed by two different Bayesian models:
(M1) isotropic model (vi = vxi = vzi) estimating vi and zi (and subsequently t0i) and
(M2) anisotropic model (vxi 6= vzi) estimating vxi , vzi , zi and t0i . Usually vxi ≈ vzi ,
so the isotropic model (M1) can be used to produce start points to the anisotropic
model (M2) and reduce the search area when new variables are inserted. Here the only
observed variables relevant to the travel-time equations are the recorded travel times
and the offsets and we want to estimate RMS velocities, depths with interval velocities,
and two-way travel times as a by-product.

While the interval velocity represents the real velocity of the wave, it is the stacking
velocity approximated by the RMS velocity that defines the hyperbolic shape. The
interval velocity is a property intrinsic to the geology of the rock and more susceptible
to variation between layers. Furthermore, its correlation with the travel-time increments
is not trivial even using Dix’s equation (Equation 4). The RMS velocities, on the other
hand, usually create a more predictable smooth trend that handles weak priors well.
When fairly accurate information about interval velocities is available (i.e., from well-
logs and other surveys), priors for RMS velocities can be easily derived. Experts use
RMS velocities and two-way travel times in their analyses more often than interval
velocities and depths. In fact, most of the time, this information is used as an input
in further modeling; interval velocities and depths are seen as a final output but rarely
used as a modeling input. An alternative to the model proposed here is to use interval
velocities and depth increments as our target variables but, in this research, we choose
to use a combination that satisfies the industrial requirements and straightforwardly
incorporates the expert information.

Define the variable t∗ij = tij + eij as the recorded travel time, where eij ∈ R is the
error between the real and recorded travel time, assumed to be normally distributed
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with zero mean and standard deviation σtij
given below. In both models, we make

the assumption that depth and velocity are independent. Since the error is normally
distributed, t∗ij is normally distributed with mean

µtij
=

√
4
z2
i

v2
zi

+
x2
j

v2
xi

(6)

and standard deviation

σtij
= qiµtij

, (7)

where qi is a Beta-distributed random variable with shape parameters αi and βi which
can be set with the help of an expert. For example, if µtij is expected to be approxi-
mately 3.74s and σtij

≈ 0.01 seconds, then we could set αi = 4 and βi = 2000. In the
case where no specific prior information is given about σtij

, it is reasonable to assume
that σtij

≤ 0.05 seconds.

In the anisotropic model, we assume that vzi
= aivxi

where ai is normally distributed
with mean around 1 and a small standard deviation σai

> 0 which accounts for the fact
that those velocities are usually similar. Now, assume that vx1 is normally distributed
with mean µ1 ∈ R and standard deviation σ1 > 0 and write

vxi
= vx(i−1) + s(i−1)d(i−1), i = 2, . . . , n, (8)

where d(i−1) is Gamma distributed with shape kd(i−1) and scale θd(i−1) , and s(i−1) in-
dicates the change in velocity between two layers, i.e. vxi is greater than vx(i−1) with
probability γi. Finally, vx(i−1) remains the same with probability δi and vx(i−1) is less
than vxi

with probability 1− γi − δi, where

s(i−1) =


−1, vx(i−1) > vxi

0, vx(i−1) = vxi

1, vx(i−1) < vxi

(9)

and

P
(
S(i−1) = s(i−1)

)
=

 γi, s = −1
δi, s = 0
1− γi − δi, s = 1.

(10)

In most cases, experts assume that the odds of having si−1 = −1 or si−1 = 0 are
very low, normally around 1% each.

While it might seem unnecessary to define RMS velocities recursively, this method
allows the trend to be controlled, since the curve formed by the RMS velocities is
expected to be fairly smooth and mostly increasing. For example, if the water layer
has a RMS velocity of 1480m/s, it is highly unlikely that the RMS velocity of the
next layer will be less than that. This semi-Markovian recursive definition results in a
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low correlation between jumps in RMS velocities and simplifies the detection of empty
layers, i.e., layers with the same properties as the previous one. It also simplifies the
diagnosis of the model and allows local prior updates.

Now assume that the thickness of the first layer, z1, is normally distributed with
mean µz1 > 0 and standard deviation σz1 > 0 and that

zi = z(i−1) + dz(i−1) , (11)

where dz(i−1) is a Gamma-distributed random variable with parameters kdz(i−1)
and

θdz(i−1)
.

For similar reasons used to justify the recursiveness of the RMS velocities, defining
depths with increments guarantees a monotonically increasing depth, helps detect ex-
tremely thin or repeated layers and gives us the advantage of a low correlation between
layers’ thicknesses.

Writing the posterior distribution for the multilayered model, we have

π (vx,a,vz, z,q|t∗,x) ∝ f (t∗|vx,vz, z,q,x)π(µ1,σ1)(vx1)π(µz1 ,σz1)(z1)

×
n∏
i=2

π(γ(i−1),δ(i−1))(s(i−1))π(θd(i−1)
,kd(i−1)

)(d(i−1))

×
n∏
i=2

π(
θdz(i−1)

,kdz(i−1)

)(dz(i−1))
n∏
i=1

π(αi,βi)(qi)π(µai
,σai)(ai)

∝ f (t∗|vx,vz, z,q,x) exp

[
− (vx1 − µ1)2

2σ2
1

]
exp

[
− (z1 − µz1)2

2σ2
z1

]

×
n∏
i=2

P
(
S(i−1) = s(i−1)

) [
d
kd(i−1)

(i−1) exp

(
−
d(i−1)

θd(i−1)

)]

×
n∏
i=2

(
dz(i−1)

)kdz(i−1) exp

(
−
dz(i−1)

θdz(i−1)

)

×
n∏
i=1

{[
qαi−1
i (1− qi)βi−1

]
exp

[
− (ai − µai)

2

2σ2
ai

]}
(12)

where t∗ =
{
t∗ij
}
i=1,...,n;j=1,...,m

, x = {xj}j=1,...,m are the observed values and vx =
{vxi}i=1,...,n, a = {ai}i=1,...,n and z = {zi}i=1,...,n are the variables that we aim
to estimate. As a result, vz, t0 and q are also estimated. The likelihood function
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f (t∗|vx,vz, z,q,x) is given by

f (t∗|vx,vz, z,q,x) ∝
n∏
i=1


exp

− m∑
j=1

(
t∗ij −

√
4z2
i /v

2
zi

+ x2
j/v

2
xi

)2

2q2i
(
4z2
i /v

2
zi

+ x2
j/v

2
xi

)


m∏
j=1

(
qi

√
4z2
i /v

2
zi

+ x2
j/v

2
xi

)


. (13)

The number of parameters to estimate grows with the number of layers and so
does the number of constants to be set by an expert using his/her own judgement and
uncertainty about the model. Since we assume that t∗ and x are given, the information
on the amplitudes is not used. Priors for velocity and depth jumps are set with the help
of an expert and the subspace where this posterior exists is bounded by the solution of
the Dix equation (Equation 4) for interval velocities as follows:

vint(i) =


vx1 , i = 1√√√√(v2

xi
t0i
− v2

xi−1
t0i−1

)
t0i
− t0i−1

, i > 1
. (14)

If useful prior information on pairs of interval velocities and two-way travel times is
available, then it can be transformed into a prior for RMS velocities and depths, oth-
erwise the equation above should be used only to guarantee that the interval velocities
are kept in the domain of positive real numbers. Other prior trends can be imposed
using this result, say by requiring an increasing interval velocity curve.

Given such a complicated model, the Metropolis-Hastings algorithm is used to obtain
estimates for the pertinent variables. The results obtained at this stage are usually
accurate for practical concern but, to refine them and reduce the modelling error, a
Gaussian process modelling phase based on a Taylor expansion of (3) can be applied as
we describe in Section 5.2.

5 Estimation

In this section, we suppose that we observe each t∗ij , i = 1, . . . , n; j = 1, . . . ,m and that
the number of layers n is fixed. In the isotropic model, our aim is to estimate the depth
(zi) and the velocity (vxi) for each layer. In the anisotropic case, we also estimate z
and vzi and additionally a. In this section we introduce the tools used to estimate the
model parameters. As mentioned before, we use the Metropolis-Hastings algorithm to
obtain these estimates and we provide a tool to refine these values using a Gaussian
process.

When informative priors exist, especially in the number of layers, and the target
space is small, the steps in Section 5.1 become optional since its main purpose is to
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reduce the search space, locate new layers when used jointly with the algorithm in
Section 6 and retrieve quick estimates for the target parameters, especially depths and
velocities. The most desirable feature of the method in Section 5.1 is computational
speed and, in Section 5.2, precision.

5.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (M-H) (see
Metropolis et al. (1953) and Hastings (1970)) generates n states of a Markov chain by
drawing samples from a target probability distribution with unknown shape; in our case,
the posterior distribution given by (12).

The chain is initiated using estimates from previous analyses, expert judgement or
a random value inside the target search interval. Under normal circumstances, any of
these options allow the chain to converge to the expected region in the sampling space.
The only differences are the number of iterations necessary for the chain to converge
and the number of samples discarded during the “burn-in” stage.

Given the number of variables to be estimated, the complexity of the model and
the size of the search area, we use a component-wise sampling strategy. In order to
generate a d-dimensional chain update Xn, we use d nested steps each consisting of
an ergodic chain. While not the most elegant method, the simplest and most efficient
approach is to use d uniform proposal distributions over the search interval for each
variable to be estimated. As shown by Roberts and Rosenthal (2007), adaptive hybrid
algorithms like this are ergodic and satisfy the law of large numbers. While it is not
possible to cover the whole search space, we can easily monitor if the chain is walking
towards a boundary and if the algorithm is showing signs of divergence. It is common
that a few marginal posteriors, usually the ones related to the target variables, show
signs of convergence to a region of the search space but, in order to assure we have
a good uncertainty analysis of the whole model, the chain is run until all marginals
show signs of stability. In most examples where expert prior information was used, we
noticed that it is enough to sample each component around 10, 000 times in order to
have convergence. When no prior information or extremely large search intervals were
used (e.g. 0 ≤ v ≤ 15, 000), around 100, 000 samples were necessary.

It is natural to believe that there is a high correlation between all the variables
involved a priori, which is true when talking about RMS velocities and depths. How-
ever, as we mentioned before, the difference between velocities and depths in each layer
present a rather low correlation. Since the purpose of this stage is to produce quick
rough estimates from a statistical point of view, it is unnecessary to spend resources in
a more time consuming model that might not produce better results. This analysis is
used later on in Section 6 with a search algorithm that determines the number of layers
in the model. It would be unreasonable to create a correlation matrix or use a more
complicated model while trying to sort the data efficiently. As an example, the pre-
sorted model for the real data in Section 7 would produce an initial square matrix with
6144 rows, roughly 288 megabytes of memory, for each variable, which would have to be
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updated and cropped through the MCMC. This would be inefficient but feasible if just
a single CMP gather were to be analysed at a time, but it would be impraticable in an
array of gathers. Due to the low correlation between differences and the nature of these
variables, it is acceptable to assume independence to generate rough approximations
and reduce the target space for the Gaussian process in Section 5.2.

When the initial search space is unfeasibly large, in order to avoid exploring around
improbable regions of the parameter space, the search area is reduced by using p%
credibility intervals generated by the last n runs as boundaries for the next n runs. For
example, if 10, 000 samples are generated and 99% credibility intervals are estimated,
than the next 10, 000 samples will be generated from points inside this subspace. This
way, after repeating the process 5 times, the final intervals will cover roughly 95% of
the posterior distribution. Most of the strategies suggested here, while unconventional,
are fast and flexible, particularly when combined with Section 6.

5.2 Gaussian Process Modelling

The Metropolis-Hastings algorithm is a robust and time-efficient method for velocity
models. When applied to synthetic examples, it returns expected values for the param-
eters we want to estimate close to their real values but the uncertainty related to these
values is not well resolved mainly due to the assumption of a hyperbolic fit and recursive
errors from the use of Dix’s equation. In order to improve the accuracy of the estimates,
we apply a Gaussian process model using the target space defined by the M-H intervals
(see Rasmussen and Williams (2006)). In order to avoid convergence problems, the first
prior from the M-H is used as the prior for this process or a uniform distribution over
the M-H credibility interval.

Rewriting the travel-time equation (3), we have:

tij =

√
t20i

+
x2
j

v2
i

, i = 1, . . . , n, j = 1, . . . ,m (15)

where t0i = 2
zi
vzi

and vi = vxi in the anisotropic case.

Expanding in a Taylor series of xj :

tij = t0i
+

x2
j

2v2
i t0i

−
x4
j

8v4
i t

3
0i

+
x6
j

16v6
i t

5
0i

+ o
(
x8
j

)
, i = 1, . . . , n, j = 1, . . . ,m. (16)

Now we can write

t∗ij = gj (t0i
, vi) + εij

= ĝj (t0i , vi) + εj (t0i , vi) + εij

= t0i
+

x2
j

2v2
i t0i

−
x4
j

8v4
i t

3
0i

+
x6
j

16v6
i t

5
0i

+ εj (t0i
, vi) + εij , (17)
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where εij is normally distributed with zero-mean and standard deviation σij and εj (t0i
, vi)

is a Gaussian process with zero-mean and covariance matrix

Cov (εj(t0k
, vk), εj(t0l

, vl)) = σ2
j exp

[
−θ1j (t0k − t0l)2 − θ2j (vk − vl)2

]
. (18)

The limited search space increases the rate of convergence of the chains, thus provid-
ing us with enough information to re-estimate the target parameters. Approximately
99% of the model is described by the polynomial part of the process so εj(·, ·) and εij
work as tuning parameters. As expected, εij will be relevant if the data is noisy or
presents peculiar characteristics while εj(·, ·) represents the modelling error.

The Taylor expansion is not a necessary step but is commonly used by geophysicists
to reduce the hyperbolic effect. We therefore follow this approach to allow comparability
with industry procedures. Using equation 15 instead of equation 16 in 17 causes a small
increase on the modelling error but still produces the desired results. This is due to the
fact that the curvature of the fit for large values of x is overcorrected in 15. By using
the Taylor expansion in 16, part of this error is accounted for. Also, it is not necessary
to use a polynomial of degree 6, as the only changes for different choices of degree would
be on the modelling error and computational time. The chosen degree is widely used in
industry and it is quite convenient given the precision and speed it offers.

It is interesting to note that, by running the model in Section 5.1 for longer, it is
possible to approach the results obtained using the Gaussian process in the sense that the
posterior means are almost the same as we would expect. However, as mentioned before,
that model is still limited by independence assumptions which result in unresolved
uncertainty around each parameter.

6 Sorting the Data

We now explain how the raw data is sorted; the peaks in the data have to be selected
and matched to their respective layers and these layers have to be validated to form
a coherent model. We call this procedure the Automatic Picking Algorithm which we
present in detail in the next subsection. Here we will assume that a CMP gather is
formed by a m-by-N matrix, A, of recorded amplitudes. Given this matrix A, we aim
to end up with the number of layers n ≤ N and t∗i=1...n, j=1...m which are required in
Section 5.

Roughly, the algorithm searches each trace for local maxima and minima, matches
trends formed by these points using a correlation and semblance analysis (see Section
6.2) and saves the best candidates for further analysis using the processes discussed in
Section 5. As mentioned before, the use of a semi-Markovian definition of velocity and
depth jumps, in conjunction with independent samplers and a component-wise M-H
allows us to locally search the dataset for layers by letting the number of layers vary
without compromising the rest of the model, as we can see in the next subsection.
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6.1 Automatic Picking Algorithm

It was assumed, in Sections 3 to 5, that the recorded travel-times and the number
of layers were given. Here we describe how to select the points from the matrix of
recorded amplitudes and match them to possible layers. We have tried to mimic some
of the steps that an expert would take when presented with a raw data file. The process
is a matching algorithm that detects the outlines of the picture described by the data.
It is somewhat similar to a sharpening filter that enhances the main features in a picture
and fades the background noise.

This statistically-based automatic peak-picking process consists of detecting peaks
in each CMP gather and matching them to their respective layers using adjacent gathers
to include or exclude new points or layers. Details of the method are listed here.

1. Treat the first trace of the CMP gather A·1 as a curve, pick its extremes (points
with the highest and lowest amplitudes; these amplitudes are always non-zero since
the signal is bipolar) and save their recording times (t∗k1) and amplitudes (ak1).
This sets an upper boundary p for the number of possible layers k = 1, . . . , p.
Minimum peak height, minimum peak distance and threshold can be set here
also to reduce the number of noisy picks. A reasonable choice for minimum peak
height is the average absolute height of the last 5% of points in each column or
the receiver’s factory standard error.

2. Start counter k = 1, . . . ,m where m is the number of traces. Start counter p =
1, . . . , L2k where L2k is a preset lag on the number of traces to be used on the
next step.

3. Given t∗kp, pick the extremes at t∗kp± l1k (l1k is a pre-set lag on the time difference
between two points in the same layer like the minimum recordable wavelength) on
trace (k+1) and assign to a(k+1)p the extreme that retrieves the minimum absolute
difference when compared to akp. For example, if t∗11 = 3.74s and l11 = 0.02s with
amplitude a11 = 1020, then we’ll search the second trace for peaks in the inverval
[3.72s, 3.76s] with amplitudes close to a11. Alternatively, use priors (velocity and
zero-offset travel time with a two-way travel time of a vertically reflected ray) or
a semblance plot (discussed in 6.2) to build hyperbolic guide curves based on (3)
and set lags for each parameter.

4. After the first 3 steps, there might be too many layers picked, most of them
following an unreasonable pattern. If so, given the first L∗2k points of each layer k,
fit a least-squares non-linear model t =

√
a2 + x2/b2, a > 0, b > 0 and reject the

layers with low R2 since that indicates a probable misfit given that we assumed
that our candidates should follow an approximate hyperbolic curve.

5. Run a low-precision (around 10,000 runs) M-H algorithm based on the isotropic
model M1 described in Section 4 to the first L∗2k points of each layer k. At this
point, we assume that we have a single-layer model, i.e. assume that layer k is
the only layer in the model, and fit M1 to each layer k individually. If no prior
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information is given for each layer, use a and b as estimates for the mean of t0
and v, δ · a and δ · b as estimates for its standard deviation where δ ≈ 0.1. Use
the M-H estimated velocity and t0 to pick the next L3k points.

6. Repeat steps 3-5 until all traces are used.

7. Fit a single-layer isotropic model (see Section 4) to each layer and estimate its
parameters. Next build hyperbolic boundaries around the picked points using (3)
and re-pick the most probable points in each layer.

0. [Optional] A filter may be used to help eliminate part of the background noise and
enhance the relevant peaks if applied before step 1. We’ve considered three filters
that can be used individually or combined with each other: Hilbert envelope (see
Hahn (1996)), high-pass filter (reduces the amplitude of signals with frequencies
lower than the cutoff frequency), low-pass filter (reduces the amplitude of signals
with frequencies higher than the cutoff frequency).

After passing the data through this algorithm, we have two r-by-n matrices: A of
recorded amplitudes and t∗ of corresponding travel times where r is the number of layers
picked and n, the number of traces in gather A. Both matrices are used to estimate
the required parameters using a full multi-layered isotropic or anisotropic model as
described in Section 4.

6.2 Semblance Plot

The semblance plot mentioned on step 3 of the Automatic Picking Algorithm is a map
created by calculating the semblance for a sample of possible velocities and zero-offset
travel times. Given a velocity and a zero-offset travel time, we draw a guideline on
the current CMP gather using Equation (1) and pick the amplitudes a+

j of the closest
points to this line in each trace j, j = 1, . . . ,m. The semblance is calculated as follows:

S =

m∑
j=1

(
a+
j

)2
m

 m∑
j=1

a+
j

2 . (19)

The semblance is a dimensionless measure that ranges from 0 to 1 where the most
coherent picks are closer to 1. A sample semblance plot is shown in Figure 6.

6.3 The Model Structure

The model we use here can be divided in four interlinked steps: (1) create a semblance
plot, (2) pick the points with highest semblance values, (3) match these possible picks
to the ones selected by the automatic picking algorithm described above and discard
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incoherent points and (4) run the Bayesian models (described in Section 4) to estimate
the parameters involved. On step (2), we identify likely interfaces by either setting a
minimum semblance threshold or using previous results. On step (3), we match the
peaks on the data with their most probable layers. As mentioned before, we use the
semblance plot and the M-H algorithm to create boundaries and help the automatic
picking algorithm “snap” to the right points. Finally, at this stage, the data is ready
to be analysed; we use the Bayesian models in Section 4 to provide the final estimates
required. Here, additionally, we can use the Gaussian process stage described in Section
5 to further explain the model variability.

7 Examples

In this section, we present two data sets to test the model suggested in this research
against traditional methods. The first consists of a synthetic data set created using
a finite-difference algorithm that was analysed with and without added noise. In the
second one, we use a real data set consisting of a single gather.

7.1 Synthetic Data

This 6-layer synthetic gather was produced based on 6 relevant layers from the real
data example described in the next subsection. The actual model used in the synthetic
example is given in the first two columns of Table 1. The synthetic data example is
necessary in order to verify the precision of the automatic picking algorithm in data sets
with a controlled noise level. In this case, we first added a small amount of uncorrelated
noise sampled from a normal distribution with mean zero and variance estimated from
all points on each trace. Additional noise was created by adding to each point a sample
from a Normal distribution with zero mean and covariance matrix estimated using a
15 × 15 matrix centred in the corresponding data point. In total, the amount of noise
added to points near a relevant peak is proportional to its amplitude as we would
expect to happen with real data. We subject the noise-free and the noisy CMP gathers
to different picking methods: manual picking by one of our trained operators (Richard
Hobbs), automatic picking without prior information and automatic picking with prior
information.

We used the noise-free synthetic as a control data set; the three methods picked the
right 6 gathers with negligible error. Four kinds of priors were analysed: we restricted
the search area to (1) points around real t0 and v values, (2) points around real t0 values,
(3) points around expert judgement on t0 and v and (4) vague priors on t0 and v. The
first set of priors was relaxed, i.e., the real values for the first layer are 3.743 seconds and
1480 metres per second so we assumed that t0 ∈ (3.7, 3.8) and v ∈ (1450, 1500). The
second method is similar to the first one except that all velocities were amply constrained
in an interval between 0 and 15000 m/s. In the case where we used vague priors,
no information about the number of layers was given and velocities were constrained
between 0 and 15000 metres per second and time between 0 and 10 seconds.
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In the cases where we fed the automatic picking algorithm with prior information
on only t0 and on both t0 and v, the M-H converged faster to the target area than when
only vague information was given. We also tested cases where a different number of
layers were given and the automatic picking algorithm was able to recover or eliminate
the relevant layers leading to the same results. Apart from when we omitted the picking
stage, this method produced similar results consistently with the noise-free synthetic,
regardless of how unreasonable the priors were. When the picking stage is removed, the
search phase that finds new layers is not present. Hence, inputting a smaller number of
layers than the one in the model will result in a model with the same number of layers
or less. Note that it is still possible to reject layers without the picking stage since layers
that are too similar are eliminated, i.e. those with a velocity or time difference below
the data precision or those with negligible thicknesses.

We subjected the synthetic data with noise to similar experiments which gave results
comparable to the noise-free one. The results for the case where correlated Gaussian
noise was added are presented on Table 1. The results for the Automatic picking column
used a non-informative prior for t0 and v.
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Figure 5: Left panel: noise-free synthetic data with layers picked by the automatic
picking algorithm. Right panel: synthetic data with enough correlated Gaussian noise
added to “hide” the second and the sixth layers, i.e. the average signal amplitude for
those two layers is around noise level.
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Real Values Manual Picking Automatic Picking
t0 (s) v (m/s) t0 (s) v (m/s) t0 (s) v (m/s) Sd(v)
3.743 1480 3.7055 1485.1 3.7409 1481.81 0.3799
3.934 1500 - - 3.9393 1502.6 0.3548
4.194 1520 4.1841 1528.9 4.1889 1523.9 0.4046
4.497 1565 4.4822 1567.2 4.4959 1565.8 0.4130
4.650 1605 4.6346 1615.7 4.653 1607.5 0.8641
6.888 2630 - - 6.8486 2629.152 2.0915

7.8407 2849.9

Table 1: Estimates for velocities and travel-times using the noisy synthetic data. Time
is measured in seconds (s) and velocity in metres per second (m/s). Standard deviations
for t0 were negligible.

The proportion of noise added here is much higher than what would be found in
a normal real data set but provides us with an example that challenges the automatic
picking algorithm to identify layers that would be missed through manual picking by a
trained operator. In this case, the manual picking method was unable to identify two
of the layers at noise level while the automatic picking method was able to identify all
of them and return estimates close to the original values. In all cases, the standard
deviation of t0 was reduced to or below the resolution of the data becoming negligible
from a practical point of view. If we consider that the hyperbola in Equation 1 is a good
approximation for each single layer, it is easy to check that its eccentricity is a function
of the velocity only and it approaches 1 as the velocity increases. It is reasonable to
expect such a small error since there are more than enough data points to offer a precise
estimate for t0. Without considering the effects of adjacent layers, we should expect
proportionally higher variances for high velocities on the pre-Gaussian modelling stage
as we are approaching asymptotes by using the hyperbolic approximation. The Gaussian
modelling stage should resolve most of the error resulting from this assumption.

In all cases, providing the automatic picking algorithm with prior information al-
lowed it to converge much faster to satisfactory values but the fact that priors influence
only the speed of convergence shows that the model is robust enough to handle synthetic
data and similar situations. During our tests, we’ve also fed the M-H algorithm with
bad priors that are physically plausible (i.e., non-negative starting points and veloci-
ties no higher than 15000m/s) and the estimates obtained were still within satisfactory
limits.

On the layers that were meant to be hidden by noise, reasonable estimates were
obtained in 100,000 runs without priors and in 10,000 runs with prior information on
t0. In all cases, the model explained around 99% of the error. The remaining variation
can probably be explained by numerical errors and approximations. Given the high
dimensionality of the problem, especially when multiple CMP gathers are analysed, it
is unreasonable to manually check each chain for convergence so we have automated a
few diagnostics strategies.
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Mixing is one of the main issues in multidimensional problems and the fastest way
to verify mixing problems is by checking the stability of the marginal chains. As each
of the marginal chains are built, their running mean and median series are checked for
stability using lags of 10 and 100. The structure of long-lag auto-correlation series is
also checked in order to avoid highly correlated samples.

Another issue is related to different rates of convergence for different parameters.
The chains for depths and velocities tend to take longer to stabilise when compared to
the two-way travel times. To assure that all space was explored, we either tune the
variance of the proposal distribution for each parameter to constrict or expand their
search area or the acceptance rate with simulated annealing to assure stability for all
chains.

The last problem that has to be addressed is the uncertainty around the number
of layers. While we expect to find at least one layer in a given data set, there is the
possibility that the recorded signal was corrupted by noise and no layers can be selected,
even though there is a large number of candidates as the ones mentioned in step 4 of
the picking algorithm in Section 6.1.

Given that one layer was selected, say the seabed, we might still have too many
candidates. So, if we assume that the total number of candidates is the maximum
number of possible layers, we can allow “bad” candidates to converge to possible good
ones like the seabed. If the first candidate after the seabed was picked happened to
have zero depth or a complex interval velocity, then this implies that such a layer does
not exist in that specific CMP gather so we can either delete it if a single CMP gather
is being analysed or replace it with the seabed estimates if we have multiple gathers
to allow new layers to be created. Using this method and including an empty model
candidate, the possibility of choosing a bad model because the number of layers was
preset should be reduced.

7.2 Real Data

The real data example is from a seismic survey acquired over the Naturaliste Plateau
and Mentelle Basins off the south west coast of Australia (see Borissova (2002)). The
data set is from a deep water environment where complications in the received signal
due to reverberation of the seismic energy in the water layer can be ignored because the
travel-time for these arrivals is longer than the target reflections. The research interest
in these data is the high latitude Cretaceous black shales that were deposited on this
margin during a period of extreme high global temperature which may be related to
sudden decreases in atmospheric CO2 concentrations (see Kuypers et al. (1999)) and
recorded sporadic short-lived glaciations (see Bornemann et al. (2008)). Additional
prior control on the geological structure is obtained from a Deep Sea Drilling Project
borehole number 258 (see Davies et al. (1974)) which provides depths to key boundaries
and estimates of acoustic velocity from recovered rock samples.

Currently the seismic data from this area is being reprocessed and reinterpreted. As
part of this research, a robust quantified velocity model is required to enable generation
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of depth sections and so provide the opportunity for a comparison of the automated
Bayesian based methods described here with the traditional manual method. The seis-
mic gather analysed here is close to the borehole and comes from a seismic survey
acquired in 2004 by Geoscience Australia (Borissova (2002)).
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Figure 6: The most probable layers picked from CDP 1624 using the automatic picking
algorithm without filters and minimum peak distance set at 100ms. On the left, we
have the picked points on the original gather and on the right, the same layers picked
on a semblance plot where the darkest areas correspond to high semblance points. The
black line shows the picks obtained by a trained operator and the white line shows the
results obtained using the Bayesian method. The direction of the lines after the last
peak is irrelevant.

In this example, we used a real data set to compare the results obtained by the models
and those obtained by traditional methods. At first the automatic picking algorithm
without informative priors on t0 and v produced over 200 layer candidates that were
reduced to approximately 50 and later to 8. The results are listed in Table 2. The data
provided was clean enough to return standard deviations lower than expected for most
layers, i.e., less than one millisecond for t0 and less than one meter per second for v.

The results obtained are consistent with the ones obtained using manual picking
since the points picked (white points on the semblance plot in Figure 6) are close to
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Manual Picking
t0 (s) v (m/s)
3.7437 1480.5
3.9405 1498.1
4.1943 1518.9
4.4973 1563.5
4.6501 1606.0
6.8877 2632.2

Automatic Picking
t0 (s) v (m/s) Sd(v) P(Layer)
3.7494 1490.4 0.6 0.9993
3.8228 1494.1 0.8 0.9998
4.0129 1520.2 1.0 0.9992
4.1947 1522.6 1.2 0.9998
4.3095 1554.6 0.9 0.9994
4.4198 1573.7 1.1 0.9990
4.5633 1595.3 1.6 0.9988
4.7041 1642.3 1.2 0.9880

Table 2: Velocities and travel-times obtained using manual picking and estimated veloc-
ities and travel-times and the probability that each layer is part of the model obtained
using automatic picking for the real data - time in seconds and velocity in meters per
second. The standard deviations for t0 were negligible.

the trend line formed by manual picks (black line on the semblance plot in Figure 6).
Even though most of the points picked manually were acceptable when compared to the
candidates given by the automatic picking algorithm, they weren’t selected as the most
probable picks. Here the MCMC tool used, the M-H algorithm, returned 95% credibility
intervals on each parameter by using a nested approach of repeated runs that reduces
the search area to 99% of the current posterior distribution as the algorithm shows
stability. This reduced search space is then used in a Gaussian process modelling phase,
based on a more exact solution to the normal move-out equation, to further decrease
the uncertainty to the noise level in the data by reassigning part of the modelling error.

In this work, the results obtained using the model described would be accepted as a
good result and the point estimates selected by our method are comparable to those an
experienced operator analysing the same data set could obtain. Moreover, we are able
to derive an uncertainty model for our picks while an operator would be unable to do
the same using traditional methods. When analysing a single CMP gather, informative
priors are not necessary because we are just looking for the vertical velocity trend. To
obtain better results using automatic or manual picking, it is interesting to use adjacent
CMP gathers and extra information obtained from a larger data set to build models in
which velocities vary on the horizontal and vertical axes and with depth. This way, it
is possible to build a correlation structure between gathers and detect or delete layers
more quickly and more accurately. This will be discussed in future research.

8 Conclusion

The automatic picking algorithm has proved that it can work on single gathers, both
synthetic and real. It retrieves a large number of possible layers that are ranked accord-
ing to their probability of pertaining to the current model, leaving space to improve the
model by matching this information to adjacent gathers.
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As expected, it is less stable as the signal to noise ratio decreases and tends to identify
possibly spurious horizons but the same happens to our trained operators. Similar to
the manual picking procedure, this will improve when dealing with real data sets where
spatial oversampling provides additional data to help discrimination. Therefore, the
Bayesian model proposed here proved to be more efficient than manual picking and
also provided an analysis of uncertainty of the fitted solution which a trained operator
cannot retrieve.

9 Glossary

1.5-D seismic model Velocity model in which velocities are assumed to be functions
of the depth only. 214

acoustic impedance The product of density and seismic velocity, which varies among
different rock layers. 211, 212

band-limited Fourier-transformed data that is restricted to a finite range of frequen-
cies or wavelengths. 211

common midpoint (CMP) In multichannel seismic acquisition, the point on the sur-
face halfway between the source and receiver that is shared by numerous source
receiver pairs. Such redundancy among source-receiver pairs enhances the quality
of seismic data when the data are stacked. The common midpoint is vertically
above the common depth point or common reflection point. 211

geophone A device used in surface seismic acquisition, both onshore and on the seabed
offshore, that detects ground velocity produced by seismic waves and transforms
the motion into electrical impulses. 214

normal move-out (NMO) The effect of the separation between receiver and source
on the arrival time of a reflection that does not dip. A reflection typically arrives
first at the receiver nearest the source. The offset between the source and other
receivers induces a delay in the arrival time of a reflection from a horizontal surface
at depth. A plot of arrival times versus offset has a hyperbolic shape. 212

p-wave An elastic body wave or sound wave in which particles oscillate in the direction
the wave propagates. P-waves are the waves studied in conventional seismic data.
211

receiver A device that detects seismic energy in the form of ground motion or a pres-
sure wave in fluid and transforms it to an electrical impulse. 211
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s-wave An elastic body wave in which particles oscillate perpendicular to the direction
in which the wave propagates. S-waves are generated by most land seismic sources,
but not by air guns. S-waves, or shear waves, travel more slowly than P-waves
and cannot travel through fluids because fluids do not support shear. 211

semblance A quantitative measure of the coherence of seismic data as described in
(6.2). 217

source A device that provides energy for acquisition of seismic data, such as an air
gun, explosive charge or vibrator. 211

trace The seismic data recorded for one channel. A (seismic) trace represents the re-
sponse of the elastic wavefield to velocity and density contrasts across interfaces of
layers of rock or sediments as energy travels from a source through the subsurface
to a receiver or receiver array. 211

two-way travel time The elapsed time for a seismic wave to travel from its source to
a given reflector and return to a receiver at the Earth’s surface. 213
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