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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION

BY CHRISTOPHE GIRAUD AND ALEXANDRE TSYBAKOV

Ecole Polytechnique and CREST-ENSAE

Recently there has been an increasing interest in the problem of estimating a
high-dimensional matrix K that can be decomposed in a sum of a sparse matrix S∗
(i.e., a matrix having only a small number of nonzero entries) and a low rank ma-
trix L∗. This is motivated by applications in computer vision, video segmentation,
computational biology, semantic indexing, etc. The main contribution and novelty
of the Chandrasekaran, Parrilo and Willsky paper (CPW in what follows) is to
propose and study a method of inference about such decomposable matrices for
a particular setting where K is the precision (concentration) matrix of a partially
observed sparse Gaussian graphical model (GGM). In this case, K is the inverse
of the covariance matrix of a Gaussian vector XO extracted from a larger Gaussian
vector (XO,XH) with sparse inverse covariance matrix. Then it is easy to see that
K can be represented as a sum of a sparse precision matrix S∗ corresponding to
the observed variables XO and a matrix L∗ with rank at most h, where h is the
dimension of the latent variables XH . If h is small, which is a typical situation in
practice, then L∗ has low rank. The GGM with latent variables is of major interest
for applications in biology or in social networks where one often does not observe
all the variables relevant for depicting sparsely the conditional dependencies. Note
that formally this is just one possible motivation and mathematically the problem
is dealt with in more generality, namely, postulating that the precision matrix sat-
isfies

K = S∗ + L∗(1)

with sparse S∗ and low-rank L∗, both symmetric matrices. A small amendment to
that inherited from the latent variables motivation is that L∗ is assumed negative
definite (in our notation, L∗ corresponds to −L∗ in the paper). We believe that this
is not crucial and all the results remain valid without this assumption.

CPW propose to estimate the pair (S∗,L∗) from a n-sample of XO by the pair
(Ŝ, L̂) obtained by minimizing the negative log-likelihood with mixed �1 and nu-
clear norm penalties; cf. (1.2) of the paper. The key issue in this context is identifia-
bility. Under what conditions can we identify S∗ and L∗ separately? CPW provide
geometric conditions of identifiability based on transversality of tangent spaces to
the varieties of sparse and low-rank matrices. They show that, under these condi-
tions, with probability close to 1, it is possible to recover the support of S∗, the rank
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of L∗ and to get a bound of order O(
√

p/n) on the estimation errors |Ŝ − S∗|�∞
and ‖L̂ − L∗‖2. Here, p is the dimension of XO and | · |�q and ‖ · ‖2 stand for the
componentwise �q -norm and the spectral norm of a matrix, respectively.

Overall, CPW pioneer a hard and important problem of high-dimensional statis-
tics and provide an original solution both in the theory and in numerically imple-
mentable realization. While being the first work to shed light on the problem, the
paper does not completely raise the curtain and several aspects still remain to be
understood and elucidated.

The nature of the results. The most important problem for current applica-
tions appears to be the estimation of S∗ or the recovery of its support. Indeed, the
main interest is in the conditional dependencies of the coordinates of XO in the
complete model (XO,XH) and this information is carried by the matrix S∗. In this
context, L∗ is essentially a nuisance, so that bounds on the estimation error of L∗
and the recovery of the rank of L∗ are of relatively moderate interest. However,
mathematically, the most sacrifice comes from the desire to have precise estimates
of L∗. Indeed, if �̂n and � denote the empirical and population covariance matri-
ces, the slow rate O(

√
p/n) comes from the bound on ‖�̂n − �‖2 in Lemma 5.4,

that is, from the stochastic error corresponding to L∗. Since the sup-norm error
|�̂n − �|�∞ is of order

√
(logp)/n, can we get a better rate when solely focusing

on |Ŝ − S∗|�∞?

Extension to high dimensions. The results of the paper are valid and mean-
ingful only when p < n. However, for the applications of GGM, the case p � n is
the most common. A key question is whether the restriction p < n is intrinsic, that
is, whether it is possible to have results on S∗ in model (1) when p � n. Since the
traditional model with sparse component S∗ alone is still tractable when p � n,
a related question is whether introducing the model (1) with two components and
estimating both S∗ and L∗ gives any improvement in the p � n setting as com-
pared to estimation in the model with a sparse component alone. A small simu-
lation study that we provide below suggests that already for p = n, including the
low-rank component in the estimator may yield no improvement as compared to
traditional sparse estimation without the low-rank component, although this low-
rank component is effectively present in the model.

Optimal rates. The paper obtains bounds of order O(
√

p/n) on the estima-
tion errors |Ŝ − S∗|�∞ and ‖L̂ − L∗‖2 with probability 1 − 2 exp(−p). Can we
achieve a better rate than

√
p/n when solely focusing on the recovery of S∗ with

the usual probability 1 − p−a for some a > 0? Is the rate
√

p/n optimal in a min-
imax sense on some class of matrices? Note that one should be careful in defin-
ing the class of matrices because in reality the rate is not O(

√
p/n) but rather

O(ψ
√

p/n), where ψ is the spectral norm of � depending on p. It can be large
for large p. Surprisingly, not much is known about the optimal rates even in the
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simpler case of purely sparse precision matrices, without the low-rank component.
In this case, [1, 7] and [8] provide some analysis of the upper bounds on the esti-
mation error of different estimators and under different sets of assumptions on the
precision matrix. All these bounds are of “order” O(

√
(logp)/n), but again one

should be very careful here because of the factors depending on p that multiply
this rate. In [1], the factor is the squared �1 → �1 norm of the precision matrix
while in [7], it is the squared degree of the graphical model multiplied by some
combinations of powers of matrix norms that are not easy to interpret. The most
recent paper [8] obtains the rate O(d

√
(logp)/n), where d is the degree of the

graph for �∞-bounded precision matrices. An open problem is to find optimal
rates of convergence on classes of precision matrices defined via sparsity and low
rank characteristics. The same problem makes sense for covariance matrices. Here,
some advances have been achieved very recently. In particular, some optimal rates
of estimation of low-rank covariance matrices are provided by [5].

The assumptions of the paper are stated in terms of some inaccessible charac-
teristics such as ξ(T ) and μ(�) and seem to be very strong. They are in the spirit
of the irrepresentability condition for the vector case used to prove model selec-
tion consistency of the Lasso. For a given set of data, there is no means to check
whether these assumptions are satisfied. What happens when they do not hold?
Can we still have some convergence properties under no assumption at all or un-
der weaker assumptions akin to the restricted eigenvalue condition in the vector
case?

Choice of the tuning parameters. The choice of parameters (γ, λn) ensur-
ing algebraic consistency in Theorem 4.1 depends on various unknown quantities.
Proposing a reasonable data-driven selector for (γ, λn) (e.g., similarly to [4] for
the pure sparse setting) would be very helpful for the practice.

Alternative methods of estimation. Constructively, the method of CPW is
obtained from the GLasso of [2] by adding a penalization by the nuclear norm
of the low-rank component. Similar low-rank extensions can be readily derived
from other methods, such as the Dantzig type approach of [1] and the regression
approach of [3, 6]. Consider a Gaussian random vector X ∈ R

p with mean 0 and
nonsingular covariance matrix �. Let K = �−1 be the precision matrix. We as-
sume that K is of the form (1) where S∗ is sparse and L∗ has low rank.

(a) Dantzig type approach. In the spirit of [1], we may define our estimator as a
solution of the following convex program:

(Ŝ, L̂) = argmin
(S,L)∈G

{|S|�1 + μ‖L‖∗},(2)

where ‖·‖∗ is the nuclear norm, G = {(S,L) : |�̂n(S+L)−I |�∞ ≤ λ} and μ,λ > 0
are tuning constants. Here, the nuclear norm ‖L‖∗ is a convex relaxation of the
rank of L∗.
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(b) Regression approach. The regression approach [3, 6] is an alternative point
of view for estimating the structure of a GGM. In the pure sparse setting, some nu-
merical experiments [9] suggest that it may be more reliable than the �1-penalized
log-likelihood approach. Let diag(A) denote the diagonal of square matrix A and
‖A‖F its Frobenius norm. Defining

	 = argmin
A:diag(A)=0

‖�1/2(I − A)‖2
F ,

we have 	 = K
 + I , where I is the identity matrix and 
 is the diagonal ma-
trix with diagonal elements 
jj = −1/Kjj for j = 1, . . . , p. Thus, we have the
decomposition

	 = S̄ + L̄, where S̄ = S∗
 + I and L̄ = L∗
.

Note that rank(L̄) = rank(L∗) and the nondiagonal elements S̄ij of matrix S̄

are nonzero only if S∗
ij is nonzero. Therefore, recovering the support of S∗ and

rank(L∗) is equivalent to recovering the support of S̄ and rank(L̄).
Now, we estimate (S̄, L̄) from an n-sample of X represented as an n × p ma-

trix X. Noticing that the sample analog of ‖�1/2(I −A)‖2
F is ‖X(I −A)‖2

F /n and
using the decomposition 	 = S̄ + L̄, we arrive at the following estimator:

(Ŝ, L̂) = argmin
(S,L):diag(S+L)=0

{
1

2
‖X(I − S − L)‖2

F + λ|S|�1,off + μ‖XL‖∗
}
,(3)

where μ,λ are positive tuning constants and |S|�1,off = ∑
i 
=j |Sij |. Note that here

the low-rank shrinkage is driven by the nuclear norm ‖XL‖∗ rather than by ‖L‖∗.
The convex minimization in (3) can be performed efficiently by alternating block
descents on the off-diagonal elements of S, the matrix L and the diagonal of S.
The off-diagonal support of S∗ is finally estimated by the off-diagonal support
of Ŝ.

FIG. 1. Each color corresponds to a fixed value of μ, the solid-black color being for μ = +∞. For
each choice of μ, different quantities are plotted for a series of values of λ. Left: Mean rank of XL̂.
Middle: The curve of estimated power versus estimated FDR. Right: The power versus FDR for the
estimators fulfilling E[rank(XL̂)] ≈ h = 3 (red dots), superposed with the Power versus the FDR for
μ = +∞ (in solid-black).
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Numerical experiment. A sparse Gaussian graphical model in R
30 is gener-

ated randomly according to the procedure described in Section 4 of [4]. A sample
of size n = 30 is drawn from this distribution and X is obtained by hiding the
values of 3 variables. These 3 hidden variables are chosen randomly among the
connected variables. The estimators (Ŝ, L̂) defined in (3) are then computed for a
grid of values of λ and μ. The results are summarized in Figure 1 (average over
100 simulations).

Strikingly, there is no significative difference in these examples between the
procedure of [6] (corresponding to μ = +∞, in solid-black) and the procedure (3)
that includes the low-rank component (corresponding to finite μ).
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