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LOCAL PROPER SCORING RULES OF ORDER TWO

BY WERNER EHM AND TILMANN GNEITING1

Institute for Frontier Areas of Psychology and Mental Health
and University of Heidelberg

Scoring rules assess the quality of probabilistic forecasts, by assigning a
numerical score based on the predictive distribution and on the event or value
that materializes. A scoring rule is proper if it encourages truthful reporting. It
is local of order k if the score depends on the predictive density only through
its value and the values of its derivatives of order up to k at the realizing event.
Complementing fundamental recent work by Parry, Dawid and Lauritzen, we
characterize the local proper scoring rules of order 2 relative to a broad class
of Lebesgue densities on the real line, using a different approach. In a data
example, we use local and nonlocal proper scoring rules to assess statistically
postprocessed ensemble weather forecasts.

1. Introduction. One of the major purposes of statistical analysis is to make
forecasts for the future, and to provide suitable measures of the uncertainty asso-
ciated with them. Consequently, forecasts ought to be probabilistic in nature, tak-
ing the form of probability distributions over future quantities and events [Dawid
(1984)]. Scoring rules provide summary measures for the evaluation of proba-
bilistic forecasts, by assigning a numerical score based on the predictive distri-
bution and on the event or value that materializes. We take scoring rules to be
negatively oriented losses that a forecaster wishes to minimize. Specifically, if
the forecaster quotes the predictive distribution Q and the event x materializes,
her loss is S(x,Q). The function S(·,Q) takes values in the extended real line,
R = [−∞,∞], and we write S(P,Q) for the expected value of S(·,Q) under P .
Suppose, then, that the forecaster’s best judgment is the predictive distribution P .
The forecaster has no incentive to predict any Q �= P , and is encouraged to quote
her true belief, Q = P , if S(P,P ) ≤ S(P,Q). A scoring rule with this property is
said to be proper [Gneiting and Raftery (2007)].

Our paper is concerned with local proper scoring rules for probabilistic fore-
casts of a real-valued quantity. Briefly, if the predictive distribution is absolutely
continuous, it can be argued that S(x,Q) ought to depend only on the behavior
of the predictive density, q , in an infinitesimal neighborhood of the observation
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that materializes, x. Any such scoring rule is said to be local, with the logarithmic
scoring rule,

S(x,Q) = − lnq(x),(1)

being the most prominent example [Good (1952)]. Another example is the Hyväri-
nen (2005) score,

S(x,Q) = 2
q ′′(x)

q(x)
−

(
q ′(x)

q(x)

)2

(2)
= ((lnq)′(x))2 + 2(lnq)′′(x),

which is local of order 2, in the sense that it depends on the predictive density only
by its value, and the values of its first and second derivative, at the observation.
Similarly, the logarithmic score can be considered to be local of order zero; in
fact, it is the only such score that is proper, up to equivalence [Bernardo (1979)].
The Hyvärinen score is also proper [Dawid and Lauritzen (2005)], thus raising the
question for a characterization of the local proper scoring rules of order k ≤ 2.

In a far-reaching recent paper, Parry, Dawid and Lauritzen (2012) achieve a
characterization of the key local score functions of any order k ≥ 0. They de-
rive these scores from the Euler–Lagrange equation of the calculus of variations,
thereby obtaining natural candidates for local proper scoring rules, the actual
propriety of which can be checked by additional criteria. We complement these
results—for more detailed comments, see Remark 3.4—by developing an alter-
native approach, restricting ourselves to the practically most relevant case of the
local proper scoring rules of order k ≤ 2. Our main contributions are the follow-
ing: we build on a characterization of proper scoring rules via concave functionals
and their (super-)gradients, which yields the general form of the second-order lo-
cal proper scoring rules in a natural tangent construction; and we specify suitable
classes of scoring rules and predictive densities that allow for a full-fledged, rigor-
ous characterization.

The remainder of the paper is organized as follows. Section 2 introduces the
notions of propriety and locality in full detail. Section 3 presents our main result,
in that we characterize the class of the local scoring rules of order 2 that are proper
relative to a comprehensive family of Lebesgue densities, which includes many
of the classical location-scale families on the real line. In addition, we discuss the
relations to and distinctions from the work of Parry, Dawid and Lauritzen (2012).
The proof of our main result is given in Section 4. Section 5 provides supplements
and examples, and a data example on ensemble weather forecasts is given in Sec-
tion 6. Section 7 closes with a discussion of open problems and hints at possible
future developments and applications.
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2. Local proper scoring rules. Initially, we consider predictive distributions
on a general sample space, �. Let A be a σ -algebra of subsets of �, and let M be a
class of probability measures on (�, A). A function on � is M-quasi-integrable if
it is measurable with respect to A and quasi-integrable with respect to all Q ∈ M
[Bauer (2001), page 64]. A probabilistic forecast or a predictive distribution is any
probability measure Q ∈ M. A scoring rule is any extended real-valued function
S :� × M → R such that S(·,Q) is M-quasi-integrable for all Q ∈ M. Hence, if
the predictive distribution is Q and the event ω materializes, the forecaster’s loss
is S(ω,Q). We define

S(P,Q) =
∫

S(ω,Q)dP (ω)

as the expected score under P when the probabilistic forecast is Q. This is a well-
defined extended real-valued quantity, because S(·,Q) is quasi-integrable with re-
spect to P .

DEFINITION 2.1. The scoring rule S is proper relative to M if

S(P,P ) ≤ S(P,Q) for all P,Q ∈ M.

It is strictly proper relative to M if S(P,P ) ≤ S(P,Q) with equality if and only
if Q = P .

The term proper was coined by Winkler and Murphy (1968), while the general
idea can be traced to Brier (1950) and Good (1952). Dawid (2008) provides a
concise history of proper scoring rules, which includes major contributions by the
subjective school of probability as well as meteorologists.

A scoring rule can be thought of as local if S(ω,Q) depends on the predic-
tive distribution, Q, only through its behavior in an infinitesimal neighborhood
of the verifying observation, ω. Bernardo [(1979), page 689] argued in this vein,
noting that “when assessing the worthiness of a scientist’s final conclusions, only
the probability he attaches to a small interval containing the true value should be
taken into account.” In the context of predictive densities, the class M is a family
of probability measures that are absolutely continuous with respect to a σ -finite
measure μ on (�, A). We then identify a probabilistic forecast Q ∈ M with its
μ-density, q , which we call a predictive density or a density forecast. The classical
example of a local proper scoring rule is the aforementioned logarithmic score,
which can be interpreted as a predictive likelihood, and is strictly proper relative
to any such class M.

Hereinafter, we restrict attention to the case in which the sample space � is the
real line, A is the Borel σ -algebra, μ is the Lebesgue measure, and M corresponds
to some class of Borel probability measures that admit a unique smooth Lebesgue
density, q . Accordingly, we will consider M as a class of densities rather than
measures, and we may write S(·, q). The logarithmic score (1) and the Hyvärinen
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score (2) admit particularly simple analytic forms in terms of the log-likelihood,
lnq(x), and its derivatives, which are fundamental objects of statistical inference.
Therefore, we define locality in terms of these quantities.

DEFINITION 2.2. Let k be a nonnegative integer, and let M be a class of prob-
ability densities with respect to the Lebesgue measure on R that are everywhere
strictly positive and admit derivatives up to order k. A scoring rule S for the class
M then is local of order k if there exists a function s : R2+k → R, which we call a
scoring function, such that

S(x, q) = s
(
x, lnq(x), . . . , (lnq)(k)(x)

)
for every q ∈ M and x ∈ R.

An alternative notion of locality, which allows the predictive density, q , to have
zeroes, would take the arguments of the scoring function as x, q(x), . . . , q(k)(x).
However, in addition to being natural and facilitating the technicalities, the as-
sumption of strict positivity avoids pathologies, as will be seen in Remark 3.9
below.

As propriety can only be assessed relative to a specified class of predictive den-
sities, we now introduce a suitable family.

DEFINITION 2.3. Let P denote the class of all probability densities, p, with
respect to the Lebesgue measure on R that satisfy the following conditions:

(P1) p is strictly positive on R;
(P2) p admits four continuous derivatives on R;
(P3) for every m > 0 and j = 0,1, . . . ,4,

lim
x→±∞|x|mp(j)(x) = 0;

(P4) there exists a constant a = a(p) > 0 such that

lim
x→±∞|x|−a p(j)(x)

p(x)
= 0 for j = 1, . . . ,4.

The class P is quite broad and includes many well-known densities, such as all
normal and logistic densities, the corresponding skew variants [Genton (2004)],
and finite mixtures of these densities. In particular, the class P is convex, as im-
plied by the following result.

LEMMA 2.4. For every k = 1,2, . . . there exists a polynomial M = M(y1, . . . ,

yk) of degree k such that for all p,q ∈ P and α ∈ [0,1], the density rα = αp +
(1 − α)q satisfies

∣∣(ln rα)(k)(x)
∣∣ ≤ M

(
max

{ |p′(x)|
p(x)

,
|q ′(x)|
q(x)

}
, . . . ,max

{ |p(k)(x)|
p(x)

,
|q(k)(x)|

q(x)

})
pointwise in x ∈ R.
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PROOF. Let the polynomial L(y1, . . . , yk) of degree k be such that the kth
logarithmic derivative of a smooth function g > 0 can be written as

(lng)(k) = L

(
g′

g
, . . . ,

g(k)

g

)
,

where here and in the following we suppress the argument x ∈ R. Define the poly-
nomial M as L with all coefficients replaced by their absolute values. Evidently
then,

∣∣(ln rα)(k)
∣∣ ≤ M

( |r ′
α|

rα
, . . . ,

|r(k)
α |
rα

)
,

and it suffices to show that

|r(j)
α |
rα

≤ max
{ |p(j)|

p
,
|q(j)|

q

}
for j = 1, . . . , k.

Consider the function f (α) = (αc1 +(1−α)c0)/(αd1 +(1−α)d0), where c0, c1 ∈
R and d0, d1 > 0 are constants. Then

|f (α)| ≤ max{|f (0)|, |f (1)|} for α ∈ [0,1],
because f ′(α) = (c1d0 − c0d1)/(αd1 + (1 − α)d0)

2 does not change sign. The
desired inequality follows on setting c0 = q(j)(x), c1 = p(j)(x), d0 = q(x) and
d1 = p(x). �

COROLLARY 2.5. The class P is convex.

In the following, we do not systematically distinguish a scoring rule, S, and
the corresponding scoring function, s, both of which will simply be referred to as
scores.

3. Characterization of the local proper scores of order 2. Along with the
logarithmic and the Hyvärinen score, any convex combination thereof is a local
proper score of order 2. However, the class of the local proper scoring rules of
order 2 on the real line, R, has a much richer structure, and allows for a character-
ization in terms of concave functionals.

3.1. Main results. We first introduce classes of functions that satisfy suitable
polynomial growth conditions.

DEFINITION 3.1. Let k be a nonnegative integer. The class Rk consists of all
functions K : R2+k → R that admit continuous partial derivatives up to order 2k,
and for which there exist finite positive constants C and r such that, whenever W

stands for K or any of its partial derivatives up to order 2k, then

|W(x,y0, . . . , yk)| ≤ C{(1 + |x|)(1 + |y0|) · · · (1 + |yk|)}r
for all (x, y0, . . . , yk) ∈ R

2+k .
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Note that the growth conditions on the functions in the class Rk , as well as the
decay conditions on the densities in the class P of Definition 2.3, apply to each
member individually. They are not required to hold uniformly.

For a function K ∈ Rk and a density p ∈ P , let

�K(p) =
∫

R

K
(
x, lnp(x), (lnp)′(x), . . . , (lnp)(k)(x)

)
p(x)dx.(3)

The integral exists and is finite by virtue of the growth and decay conditions im-
posed on K and p, respectively. Thus, any K ∈ Rk induces a well-defined func-
tional �K : P → R. The role of the function K in (3) resembles that of a kernel in
functional analysis. Hence, we will subsequently refer to K as a kernel, for ease of
reference. The properties of such kernels and the associated functionals play a key
role in our subsequent characterization. In stating it, we use standard abbreviations
to denote the partial derivatives of a function of the form g = g(x, y0, . . . , yk); for
example, we write ∂jg = ∂g/∂yj and ∂2

xjg = ∂2g/(∂x ∂yj ). The proof is given in
Section 4.

The subsequent two results are closely connected to the work of Parry, Dawid
and Lauritzen (2012); see Remark 3.4.

THEOREM 3.2. Let P denote the class of probability densities introduced in
Definition 2.3.

(a) Consider a kernel K of the form

K(x, y0, y1) = cy0 + K0(x, y1),(4)

where c is a real constant and K0 is a real function on R
2. If K ∈ R1 and the

functional �K is concave, the function s : R4 → R, defined by

s(x, y0, y1, y2) = cy0 + (1 − y1∂1 − ∂2
x1 − y2∂

2
11)K0(x, y1),(5)

represents a local score of order 2 that is proper relative to P .
(b) Conversely, if s ∈ R2 represents a local score of order 2 that is proper rel-

ative to P , there exists a kernel K ∈ R1 of the form (4), where c is a real constant
and K0 is a real function on R

2, such that the functional �K is concave and s
admits the representation (5).

(c) The above statements remain valid with concave replaced by strictly con-
cave, and proper replaced by strictly proper.

The following sufficient condition for the functional �K to be concave will be
proved in Section 5.1.

PROPOSITION 3.3. Suppose that K is a kernel of the form (4) such that (i)
K ∈ R1, (ii) c ≤ 0, and (iii) the map y1 	→ K0(x, y1) is concave for every x ∈ R.
Then the functional �K : P → R is concave. The statement continues to hold if
concave is replaced by strictly concave.
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The criterion provides a straightforward method of constructing local proper
scores of order 2 via the basic relationship (5). For example, the kernel K(x, y0,

y1) = −y0 yields the scoring function, s(x, y0, y1, y2) = −y0, that represents the
logarithmic score (1). The associated functional

�(p) = S(p,p) = −
∫

R

p(x) lnp(x)dx

is the Shannon entropy, and the associated divergence

dKL(p, q) = S(p, q) − S(p,p) =
∫

p(x) ln
p(x)

q(x)
dx

is the Kullback–Leibler divergence. Similarly, the kernel K(x, y0, y1) = −y2
1

yields the scoring function, s(x, y0, y1, y2) = y2
1 + 2y2, that represents the Hyväri-

nen score (2). The associated functional and divergence

−
∫

R

(
p′(x)

p(x)

)2

p(x)dx and dFI(p, q) =
∫ (

p′(x)

p(x)
− q ′(x)

q(x)

)2

p(x)dx

are minus the Fisher information and the Fisher information distance [DasGupta
(2008), Definitions 2.5 and 2.6, pages 25 and 26], respectively. For further exam-
ples, see Section 5.3.

3.2. Remarks. It has to be emphasized that the present work owes a great deal
to interactions with Philip Dawid, Steffen Lauritzen and Matthew Parry, which be-
gan with their kindly pointing out an error in our previous work [Ehm and Gneiting
(2009)].

REMARK 3.4 (Acknowledgment of priority). In the compact notation ex-
plained in Section 4, any second-order local proper scoring rule can be written
as

s = K −
[
z1 + d

dx

]
∂1K.(6)

We learned about this representation in a personal communication [Dawid, Parry
and Lauritzen (2009)]. Detail on the relation of our work to the paper by Parry,
Dawid and Lauritzen (2012) is provided in the next remark.

REMARK 3.5. Employing an elegant approach based on operator algebra,
Parry, Dawid and Lauritzen (2012) investigate local proper scoring rules on a gen-
eral open interval on the real line of any order k ≥ 0. In a tour de force, they
establish the existence of key local score functions for any even order, and their
nonexistence for odd orders, in addition to studying their invariance under data
transformations. In the case k = 2 the general form (39) of the key local scoring
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rules in Parry, Dawid and Lauritzen (2012) is essentially equivalent to ours, up to
the parameterization in terms of densities rather than log densities.

Despite the many parallels to the work of Parry, Dawid and Lauritzen (2012),
there are important differences, including the basic approach and techniques em-
ployed. A key local score derives from the homogeneous Euler–Lagrange equa-
tion, which characterizes the scores for which every density p is a stationary point
of the mapping q 	→ S(p, q). Accordingly, Parry, Dawid and Lauritzen’s (2012)
analysis is in terms of differential calculus, which leads to separate discussions of
the boundary terms from partial integrations and of sufficient conditions for (strict)
propriety. The latter occur in Theorem 9.1 of Parry, Dawid and Lauritzen (2012) in
the form of concavity conditions on homogeneous q-functions, which correspond
to our kernels; Proposition 3.3 states essentially the same result in the case k = 2.

In a different ansatz, our work starts from the characterization of proper scoring
rules via concave functionals and their (super-)gradients [Hendrickson and Buehler
(1971), Gneiting and Raftery (2007)]. This readily yields the basic form (18) of the
second-order local proper scoring rules in a natural tangent construction, up to a
possibly nonlocal term. Only then we apply the calculus of variations to show
that the possibly nonlocal term vanishes, which establishes the definite form (5).
Control of the boundary terms from partial integrations is vital, and is achieved
through our particular choice of the classes of scoring functions and predictive
densities. The explicit specification of the classes S and D, along with the tangent
construction, allow us to give a rigorous, yet full-fledged and practically relevant
characterization of the second-order local proper scoring rules, hence constitute
the main original contributions of our work.

We continue with comments relating to the choice of the class P and the com-
plementary roles of the kernel K as a function and a functional, thereby touching
on the generality of Theorem 3.2 and Proposition 3.3.

REMARK 3.6. There is a slight asymmetry in Theorem 3.2, in that under
the conditions of the sufficiency part (a) the scoring function is continuous only,
whereas the necessity part (b) requires it to be four times continuously differen-
tiable. Other than this, the theorem accomplishes a full characterization of the local
proper scoring rules of order 2 relative to the class P of Definition 2.3.

REMARK 3.7. Part (a) of Theorem 3.2 expresses a local proper score of or-
der 2, s, in terms of a kernel, K , with suitable properties. Similarly, part (b) admits
a constructive extension that finds and expresses a suitable kernel, K , in terms of
a local proper score of order 2, s. See Section 4.3 for the explicit construction and
Example 5.2 for an illustration.

REMARK 3.8. Theorem 3.2 has been stated for the special class P of Defini-
tion 2.3. Propriety relative to such a broad class is a fairly demanding requirement,
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and from this perspective, part (a) is a strong result. In contrast, part (b) would
be stronger if propriety was required relative to a subclass P0 ⊂ P only. On the
other hand, P0 must not be too narrow. An inspection of Section 4 shows that part
(b) remains valid relative to any convex subclass P0 ⊂ P with the following two
additional properties:

(P5) if a continuous function f on R with at most polynomial growth at ±∞
satisfies

∫
R

f (x)(p(x) − q(x)) dx ≥ 0 for all p,q ∈ P0, then f is constant;
(P6) the richness properties of Lemma 4.9 hold for P0.

The inequality in condition (P5) can be replaced by equality, making (P5) a variant
of the classical property of completeness of the family P0. Property (P5) is needed
in Section 4.2, while property (P6) is required in Section 4.4. The full class P does
satisfy these conditions.

REMARK 3.9. The sufficiency part of Theorem 3.2 would be stronger if the
statement applied relative to larger classes P1 ⊃ P . The following adaptation of
an example of Huber (1974) shows that any such extension may entail unexpected
effects for strict propriety, with undesirable consequences in applications. Suppose
that P is augmented to a convex class P1 that includes the densities

pα(x) =
{

αg(x), if x ≥ 0,
(1 − α)g(−x), if x < 0,

where α ∈ (0,1) and g(x) = x5e−x/�(6) for x ≥ 0. The densities pα satisfy all
conditions for the class P except for property (P1), since pα(x) = 0 at x = 0. As
the logarithmic derivatives, p′

α(x)/pα(x), do not depend on α, the Fisher informa-
tion of pα does not depend on α either, hence its negative is not strictly concave as
a functional on P1. Accordingly, the Fisher information distance does not distin-
guish the densities pα , that is, dFI(pα,pβ) = 0 for α,β ∈ (0,1), and the Hyvärinen
score (2) fails to be strictly proper relative to the augmented class P1. In partic-
ular, strict concavity of the function K0(x, y1) of Proposition 3.3 in y1 does not
imply strict concavity of the associated functional, unless we restrict the class of
densities under consideration.

REMARK 3.10. By Proposition 3.3, concavity of a kernel K of the form (4) in
y1 implies concavity of the associated functional �K on the class P . Conversely,
what are the consequences of concavity of the functional �K on the kernel K? The
example of the logarithmic score (1) demonstrates that matters are not straightfor-
ward; here the functional �K is strictly concave, yet the kernel K(x, y0, y1) = −y0
is not.

Now consider any kernel K of the form (4) for which the associated functional
�K is concave on P . Do we necessarily have c ≤ 0 then? This is indeed true if
K0(x, y1) = −y2

1 represents the Hyvärinen score (2). Then by propriety

0 ≤ S(p, q) − S(p,p) = dFI(p, q) − cdKL(p, q)
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for all p,q ∈ P , so that c ≤ 0 is necessary if the ratio r = dFI(p, q)/dKL(p, q) can
attain arbitrarily small values. However, P contains all normal densities, and if p

and q are normal with mean zero and standard deviations σ and τ , then

dKL(p, q) = 1

2

[
σ 2

τ 2 − 1 − ln
σ 2

τ 2

]
and dFI(p, q) = (1 − σ 2/τ 2)2

σ 2 ,

whence r can attain any positive value. The argument clearly depends on the
class P ; it fails if P is replaced by a narrower class P0 for which the ratio r is
bounded away from zero. Such is in fact possible due to a logarithmic Sobolev
inequality, which asserts that for certain classes P0 ⊂ P one has dKL(p, q) ≤
CdFI(p, q) for p,q ∈ P0 with a constant C that depends only on P0. A correspond-
ing reference is Villani (2009): put u = √

p/q and dν(x) = q(x) dx in equation
(21.3) and consider Remark 21.4.

4. Proof of Theorem 3.2. Our point of departure is Theorem 1 of Gneiting
and Raftery (2007), which can be traced to Hendrickson and Buehler (1971) and
characterizes proper scoring rules by means of the supergradients of concave func-
tionals on convex classes of probability measures. We state it in the special case
where that class corresponds to the set P of Lebesgue densities introduced in Def-
inition 2.3. Throughout this section propriety is understood as propriety relative
to P .

THEOREM 4.1. Let � be a real-valued concave functional on P with super-
gradient �∗(·,p) : R → R at p ∈ P , that is,

�(q) − �(p) −
∫

R

�∗(x,p)
(
q(x) − p(x)

)
dx ≤ 0 for p,q ∈ P .

Then the scoring rule

S(·,p) = �∗(·,p) −
∫

R

�∗(x,p)p(x) dx + �(p)(7)

is proper, and

S(p,p) =
∫

R

S(x,p)p(x) dx = �(p) for p ∈ P .

Conversely, if S is proper, then �(p) = S(p,p) is a concave functional on P with
supergradient �∗(·,p) = S(·,p) at p ∈ P , whence S is of the form (7). Further-
more, the above continues to hold with concave replaced by strictly concave, and
proper replaced by strictly proper.

For sufficiently regular local proper scoring rules we can compute gradients of
the corresponding functionals. Specifically, a function G(·,p) : R → R is a weak
gradient, or simply a gradient, of the functional � at p ∈ P if for every q ∈ P

d

dt
[�(qt )]

∣∣∣∣
t=0

=
∫

R

G(x,p)
(
q(x) − p(x)

)
dx,(8)
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where

qt = (1 − t)p + tq for t ∈ [0,1].(9)

Any (super-)gradient is defined only modulo an arbitrary additive constant that
may depend on p, which does not affect the construction (7).

Theorem 4.1 along with such tangent calculations gives us a construction
method for local proper scores that readily elucidates their particular form. We
refer to this approach as the tangent construction and give details in the follow-
ing section, before completing the proof of Theorem 3.2 in a series of subsequent
steps.

4.1. Tangent construction of proper scores. In what follows we use com-
pactified notation whenever possible. As noted, we do not systematically distin-
guish scoring rules, S, and the corresponding scoring functions, s, both of which
are referred to as scores. Log-likelihoods and their derivatives are denoted by
z0(x,p) = lnp(x) and

zj (x,p) = (lnp)(j)(x) for j = 1,2, . . .

or simply z0 and zj if the density p is fixed. Clearly then,

z′
j = zj+1 = z

(j+1)
0 for j = 0,1,2, . . . ,

where the prime denotes differentiation with respect to x. We usually suppress the
differential, dx, in integrals over x ∈ R, and in the corresponding integrands we
omit all or part of the arguments whenever these are clear from the context. For
example, given K ∈ Rk and p,q ∈ P we may abbreviate∫

R

K
(
x, lnq(x), . . . , (lnq)(k)(x)

)
p(x)dx

as ∫
Kp (K = Kq),

where, evidently, Kq = Kq(x) = K(x, lnq(x), . . . , (lnq)(k)(x)).
We now develop the tangent construction. The first step consists in calculating

the gradients of (not necessarily concave) functionals of kernel type.

LEMMA 4.2. Let K ∈ R2. Then a gradient G of the associated functional
�K : P → R exists at any p ∈ P and is given uniquely by

G = K + ∂0K − 1

p

d

dx
[p∂1K] + 1

p

d2

dx2 [p∂2K] (G = Gp,K = Kp)(10)

up to an arbitrary additive constant that may depend on p.
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Recall that according to our notational conventions, (10) means that the relation
holds whenever the functions G, K and ∂jK are evaluated at arguments

(x, z0, z1, z2) = (x, lnp(x), (lnp)′(x), (lnp)′′(x)),

where p ∈ P and x ∈ R.

PROOF OF LEMMA 4.2. Let p ∈ P be fixed. In calculating a gradient of � =
�K at p we initially ignore all technicalities, that is, we assume that integrals
are well defined and finite, that the order of integration and differentiation can be
interchanged, and that boundary terms in partial integrations vanish. Then

d

dt
[�(qt )] =

∫
d

dt
[Ktqt ] =

∫
Kt(q − p) +

∫ [
d

dt
Kt

]
qt ,(11)

where qt denotes the mixture density (9) and

Kt = Kqt = K(x, lnqt (x), (lnqt )
′(x), (lnqt )

′′(x)).

Since d
dt

lnqt = (q − p)/qt , the mixed derivative with respect to t and x of order
j is given by

d

dt

[
(lnqt )

(j)] =
(

q − p

qt

)(j)

.

The second term on the right-hand side of (11) can then be computed using partial
integration, in that∫ [

d

dt
Kt

]
qt

=
∫ [

(∂0Kt)

(
q − p

qt

)
+ (∂1Kt)

(
q − p

qt

)′
+ (∂2Kt)

(
q − p

qt

)′′]
qt

=
∫

(∂0Kt)(q − p) −
∫ (

d

dx
[qt∂1Kt ]

)(
q − p

qt

)
(12)

+
∫ (

d2

dx2 [qt∂2Kt ]
)(

q − p

qt

)

=
∫ [

∂0Kt − 1

qt

d

dx
[qt∂1Kt ] + 1

qt

d2

dx2 [qt∂2Kt ]
]
(q − p).

Evaluating at t = 0, and noting that q0 = p and K0 = Kp = K , (11) and (12) yield

d

dt
[�(qt )]

∣∣∣∣
t=0

=
∫ [

K + ∂0K − 1

p

d

dx
[p∂1K] + 1

p

d2

dx2 [p∂2K]
]
(q − p),

showing that G from (10) is indeed a gradient of � at p.
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It remains to settle the technicalities. Generally, if a family {h(x, t) :x ∈ R, t ∈
[0,1]} is such that h(x, t) is integrable with respect to x for every t , and the fam-
ily {∂th(x, t) :x ∈ R, t ∈ [0,1]} of partial derivatives is uniformly integrable and
continuous in t for every x, then H(t) = ∫

h(x, t) dx is differentiable with

dH

dt
(0) =

∫
∂th(x,0) dx.

Here we consider (11) and identify h(·, t) = Ktqt , so that

∂th(·, t) = (Kt + ∂0Kt)(q − p)
(13)

+
[
(∂1Kt)

(
q − p

qt

)′
+ (∂2Kt)

(
q − p

qt

)′′]
qt .

Now ∂th(·, t) is continuous in t , because K and its partial derivatives are con-
tinuous, and their arguments depend continuously on t . Concerning uniform in-
tegrability, each of the terms Kt , ∂0Kt , ∂1Kt , ∂2Kt grows at most polynomially
as x → ±∞. This is because by Lemma 2.4 and property (P4) of the class P the
arguments of the terms grow at most polynomially; as K ∈ R2, the same is true for
the functions themselves. Furthermore, by property (P3) and the above, the terms
q − p,(

q − p

qt

)′
qt =

(
q ′ − p′

qt

− q − p

qt

q ′
t

qt

)
qt = q ′ − p′ − (q − p)(lnqt )

′

and (
q − p

qt

)′′
qt = q ′′ − p′′ − 2(q ′ − p′)(lnqt )

′ − (q − p)(lnqt )
′′

+ (q − p)((lnqt )
′)2,

decay faster than the reciprocal of any polynomial as x → ±∞. Therefore, the
corresponding products in (13) with the terms involving K decay faster than the
reciprocal of any polynomial as well. By Lemma 2.4, this property holds uniformly
in t ∈ [0,1]. Thus, the family (13) is uniformly integrable, and we may interchange
the order of the integration and differentiation. Similar growth and decay consid-
erations show that the boundary terms in the partial integrations in (12) vanish.

Finally, uniqueness follows from the property (P5) satisfied by the class P (cf.
Remark 3.8) and the at most polynomial growth of G as |x| → ∞. �

For use later on, we also state a version of Lemma 4.2, in which K ∈ R1 so that
∂2K vanishes. The proof is analogous.

LEMMA 4.3. Suppose that the kernel K depends on arguments x, z0 and z1
only and belongs to R1. Then a gradient G of the associated functional �K : P →
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R exists at any p ∈ P , and is given uniquely by

G = K + ∂0K − 1

p

d

dx
[p∂1K] (G = Gp,K = Kp)(14)

up to an arbitrary additive constant that may depend on p.

Hereafter we will ignore the irrelevant additive constant and refer to the expres-
sion in (10) and (14), respectively, as the tangent of � at p. A common form of
the tangent valid for both k = 1 and k = 2 is

G = K + ∂0K + L0K,(15)

where the differential operator L0 is formally defined via the infinite sum

L0K =
∞∑

j=1

(−1)j
1

p

dj

dxj
[p∂jK],(16)

and L0 and K depend tacitly on p. If K ∈ Rk , all but the first k terms in the
sum vanish, and so the definition makes good sense. In terms of the operator L in
equation (19) of Parry, Dawid and Lauritzen (2012) we have L = −p(∂0 + L0).

For the second step of the tangent construction let again � = �K be a kernel
type functional associated with some kernel K in R1 or R2. If � is concave, then
the tangent G of � at p ∈ P is easily seen to be also a supergradient, and by
Theorem 4.1 a proper score is obtained by setting

s = G −
∫

Gp + �(p) (s = sp,G = Gp)

(17)
= K + ∂0K + L0K −

∫
(∂0K)p (K = Kp,L0 = L0,p).

As for the step leading to (17), note that in view of (3) and (15) we have

�(p) −
∫

Gp =
∫

Kp −
(∫

Kp +
∫

(∂0K)p +
∫

(L0K)p

)
= −

∫
(∂0K)p

on using the fact that
∫
(L0K)p = 0. This latter equality holds because the inte-

grand is a total derivative, the primitive of which vanishes as x → ±∞, due to the
growth and decay properties of the functions in Rk and densities in P . We will
refer to this trivial observation as the vanishing argument. Since it will be used
several times we state it as a lemma, despite its simplicity.

LEMMA 4.4 (Vanishing argument). Let p ∈ P , and let W be a real, differen-
tiable function such that the function g = p−1 d

dx
[pW ] is p-integrable,

∫ |g|p <

∞, and limx→±∞ p(x)W(x) = 0. Then
∫

gp = 0.

This concludes the tangent construction of a proper score s from a concave func-
tional � = �K where K ∈ Rk (k = 1,2). We summarize the foregoing discussion.
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PROPOSITION 4.5 (Tangent construction). Suppose that K ∈ Rk where k = 1
or k = 2, and that the associated functional �K is concave. Then

s = K + L0K + ∂0K −
∫

(∂0K)p (s = sp,K = Kp,L0 = L0,p)(18)

is a proper score relative to P . It is local of order 2k if ∂0K is constant in x for
every p ∈ P , or if

∫
(∂0K)p does not depend on p.

PROOF. The first claim has already been proved. Locality under the stated
conditions is obvious: if ∂0K = ∂0K(x, lnp(x), (lnp)′(x)) (for k = 1, say) does
not depend on x, it equals its expectation,

∫
(∂0K)p. Finally, an explicit evaluation

of the total differential(s) in the term L0K yields partial derivatives of order ≤ 2k

only, thereby proving the order 2k claim. �

4.2. Variational calculus. A score s is proper if the functional P � q 	→
S(p, q) achieves its minimum at q = p, for every p ∈ P . This circumstance al-
lows a variational characterization of—in fact, a necessary condition for—the local
proper scores.

LEMMA 4.6. Suppose that s ∈ R2 is a local proper score relative to P . Then
for every p ∈ P one has

∂0s + L0s = ∂0s − 1

p

d

dx
[p∂1s] + 1

p

d2

dx2 [p∂2s] = cp

(19)
(s = sp,L0 = L0,p)

on R, where

cp =
∫

(∂0s)p (s = sp).(20)

PROOF. Fix p ∈ P and consider convex combinations of the form qt = (1 −
t)p + tq where q ∈ P and t ∈ (0,1). As the score is proper, we have (S(p, qt ) −
S(p,p))/t ≥ 0 for every t . Let us compute the limit as t → 0. Putting st = sqt , we
have at first

t−1(
S(p, qt ) − S(qt , qt )

) = t−1
∫

st (p − qt ) = −
∫

st (q − p).

Arguing in the same way as in the proof of Lemma 4.2, we find that the integrand is
uniformly integrable and continuous in t , so the limit exists and equals − ∫

s(q−p)

where s = s0 = sp . Thus writing

S(p, qt ) − S(p,p) = S(p, qt ) − S(qt , qt ) + S(qt , qt ) − S(p,p)
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and using Lemma 4.2 and (16), we get

lim
t→0

t−1(
S(p, qt ) − S(p,p)

)

= −
∫

s(q − p) +
∫ (

s + ∂0s − 1

p

d

dx
[p∂1s] + 1

p

d2

dx2 [p∂2s]
)
(q − p)

=
∫

(∂0s + L0s)(q − p).

It follows that ∫
(∂0s + L0s)(q − p) ≥ 0(21)

for every q ∈ P . We proceed to show that this is possible only if ∂0s + L0s equals
some constant cp almost everywhere, hence everywhere by continuity. To this end,
let f = ∂0s + L0s and g = f − ∫

fp. Then
∫

gq ≥ 0 for every q ∈ P . Suppose g

were not constant. Since
∫

gp = 0, the Lebesgue measure of the (open) set {g < 0}
is strictly positive. Thus, there exists a probability density q1 ∈ C∞ with compact
support such that

∫
gq1 < 0. Then q = 1

2(q1 + p) ∈ P and
∫

gq = 1
2

∫
gq1 < 0,

in contradiction to (21). Finally, the constant cp is easily identified by integrating
(19) against p and noting that

∫
(L0s)p = 0, by the vanishing argument. �

Equation (19) essentially is the Euler equation of the calculus of variations
[Gelfand and Fomin (1963), pages 40–42] and corresponds to equation (24) of
Parry, Dawid and Lauritzen (2012). Its slightly different form here results from the
fact that in our case the integrand of the functional to be optimized is of the form
F(x, lny, (lny)′, (lny)′′) rather than of the common form F(x, y, y′, y′′).

As a first application of the Euler equation we show that local proper scores are
fixed points of the tangent construction. To this end, let s ∈ R2 be a local proper
score of order 2. By Theorem 4.1 and Lemma 4.2, the functional �s : P → R

associated with the kernel s is concave. The tangent construction then gives

s̃ = s + L0s + ∂0s −
∫

(∂0s)p(22)

on substituting s for K in Proposition 4.5. Initially, this is another proper score,
possibly of higher order, and possibly nonlocal. However, by Lemma 4.6 the right-
hand side of (22) reduces to s, whence in fact s̃ = s.

PROPOSITION 4.7. For a local proper score s ∈ R2 the tangent construction
based on the (concave) functional �s leads back to s. That is, any local proper
score of order 2 is a fixed point of the tangent construction.
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4.3. Construction of a z2-independent kernel. The vanishing argument of
Lemma 4.4 enables us to modify a given kernel without changing the associated
functional. This strategy is utilized in the following explicit construction of a z2-
independent kernel from a given local proper score. It is analogous to the idea of
gauge choice developed in Sections 7.3 and 7.4 of Parry, Dawid and Lauritzen
(2012). Again, it is tacitly assumed that the quantities zj refer to a fixed density
p ∈ P , that is, zj = zj (x,p). As before, we frequently suppress these quantities
when they serve merely as arguments.

PROPOSITION 4.8. Given the local proper score s ∈ R2, let the kernel K be
defined as

K = s − 1

p

d

dx
[pV ] = s −

[
z1 + d

dx

]
V,(23)

where

V =
∫ z1

0
∂2s(x, z0, t, z2) dt.(24)

Then K ∈ R1 and �K = �s. In particular, the score s can be reconstructed from
the kernel K via the tangent construction.

PROOF. The kernel K inherits the polynomial growth properties from s, and it
is twice continuously differentiable since s ∈ C4. In particular, K is well defined.
An application of the vanishing argument to the term 1

p
d
dx

[pV ] shows that K

and s give rise to the same functional. Thus �K = �s, and the last claim follows
from Propositions 4.5 and 4.7. Therefore, to complete the proof it remains to show
that the kernel K from (23) does not depend on z2, that is, we need to show that
∂2K = 0.

A comparison of the two differential operators

∂2
d

dx
= ∂2(∂x + z1∂0 + z2∂1 + z3∂2)

= ∂2
x2 + z1∂

2
02 + ∂1 + z2∂

2
12 + z3∂

2
22

and
d

dx
∂2 = ∂2

x2 + z1∂
2
02 + z2∂

2
12 + z3∂

2
22

yields the commutation relation

∂2
d

dx
= d

dx
∂2 + ∂1.(25)

Therefore, using ∂1V = ∂2s [see (24)] we get

∂2K = ∂2s − z1∂2V − ∂1V − d

dx
∂2V = −

[
z1 + d

dx

]
∂2V,
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where

∂2V =
∫ z1

0
∂2

22s(x, z0, t, z2) dt.(26)

Thus if

∂2
22s(x, z0(x,p), t, z2(x,p)) = 0 for all x ∈ R,p ∈ P, |t | ≤ |z1(x,p)|,(27)

then ∂2V = 0 and hence ∂2K = 0, that is, K ∈ R1, as claimed. The somewhat
lengthy proof of (27) is given in the next subsection.

4.4. Proof of the independence condition (27). The proof primarily rests upon
the Euler equation (19). An evaluation of the total derivatives in (19) shows that
the Euler equation can be written in the form

z
(4)
0 · a(x, z0, z

′
0, z

′′
0, z

′′′
0 ) − b(x, z0, z

′
0, z

′′
0, z

′′′
0 ) = cp (z0 = lnp)(28)

with

a = ∂2
22s [so that in fact a = a(x, z0, z

′
0, z

′′
0)]

and a function b, which depends (only) on the scoring function s and its partial
derivatives up to order 3, other than x, z0 and the logarithmic derivatives z1, z2
and z3 = z′

2. Therefore, and because s is of smoothness class C4, the function
b is continuously differentiable. The same holds for a = ∂2

22s, of course, so that
a, b ∈ C1.

A step critical to the remainder of the proof consists in showing that the constant
cp is independent of p. We state this below as Proposition 4.10; its proof hinges
on an argument due to Parry, Dawid and Lauritzen (2012). The ensuing fact that
one and the same equation, (28) with cp = c, holds for every p ∈ P is then utilized
to complete the proof of (27). For each of these steps it is important that the class
P be sufficiently rich. Let

Z(x, q, k) = (z0(x, q), z1(x, q), . . . , zk(x, q))

for k = 0,1, . . . with zj (x, q) = (lnq)(j)(x) as above.

LEMMA 4.9 (P -richness). Let k ∈ {0,1, . . . ,4}. (a) For every x ∈ R and y ∈
R

k+1 there exists q ∈ P such that Z(x, q, k) = y. (b) For every pair q1, q2 ∈ P
there exist q ∈ P and x ∈ R such that Z(x, q, k) = Z(x, q1, k) and q(u) = q2(u)

for u outside some neighborhood of x.

PROOF. This is fairly obvious from the definition of P . For completeness, we
include a proof. As concerns part (a), let x ∈ R and y ∈ R

k+1 be fixed. There is
some p ∈ P such that z0(x,p) = y0. We will construct q as a perturbation q =
p(1 + ψ) of p such that ψ(x) = 0. Certainly q ∈ P if ψ has compact support
and is such that 1 + ψ > 0,

∫
ψp = 0, and ψ ∈ C4. It suffices to show that it is
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possible to prescribe arbitrary values for the first k derivatives of ψ at x, subject
to those conditions. To that end, let ψ = QM in the sense that ψ(u) = Q(u)M(u)

for u ∈ R, where

Q(u) =
r∑

j=1

aj (u − x)j

is a polynomial vanishing at x and 0 ≤ M ∈ C4 is a mollifier type function with
(small) compact support S such that M(x) = 1 and M(j)(x) = 0 for j = 1, . . . , k.
Then ψ(j)(x) = Q(j)(x) for j = 1, . . . , k, thereby confirming that arbitrary values
can indeed be prescribed if r ≥ k. By increasing r if necessary, one can further
assume that Q attains both positive and negative values on S.

Let any such Q be fixed. We show that the conditions QM > −1 and
∫

QMp =
0 can be satisfied, too. In fact, since Q(x) = 0 one can modify M such that QM >

−1 everywhere without affecting its local behavior at x. Since
∫
{Q<0} QMp < 0

there is δ > 0 such that the interval J = [x − δ, x + δ] is contained in the interior
of S and

∫
J QMp + ∫

J c∩{Q<0} QMp < 0. Finally, on the set S ∩ J c ∩ {Q > 0} one
can modify M such that∫

QMp =
∫
J

QMp +
∫
J c∩{Q<0}

QMp +
∫
J c∩{Q>0}

QMp = 0

without affecting the condition QM > −1. This concludes the proof of (a). For
part (b), note that because q1, q2 are continuous probability densities, there is x ∈ R

such that q1(x) = q2(x). The above construction then yields a local perturbation
q ∈ P of q2 satisfying Z(x, q, k) = Z(x, q1, k). �

PROPOSITION 4.10. The constant cp in (28) does not depend on the den-
sity p: there is a constant c ∈ R such that cp = c for every p ∈ P .

PROOF. We use an argument in Section 4 (around Condition 4.1) of Parry,
Dawid and Lauritzen (2012). Equation (28) [resp., (19)] can be condensed to a
statement of the form

F(x,Z(x,p,4)) = cp (x ∈ R,p ∈ P),(29)

where the function F is determined by the score s alone. Suppose that cp is
not independent of p. Then there are q1, q2 ∈ P such that cq1 �= cq2 . By Lem-
ma 4.9(b) there exist p ∈ P and x1 �= x2 ∈ R such that Z(x1,p,4) = Z(x1, q1,4)

and Z(x2,p,4) = Z(x2, q2,4). By (29) it follows that for both j = 1 and j = 2

cqj
= F(xj ,Z(xj , qj ,4)) = F(xj ,Z(xj ,p,4)) = cp.

The contradiction implies that cp is indeed independent of p. �

The following lemma is an easy consequence of the uniqueness theorem for
higher-order differential equations.
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LEMMA 4.11 (Reduction principle). Let k ∈ {0,1,2,3}, and let a and b be
C1 functions of arguments x, y0, . . . , yk . Suppose that the function z0 = lnp(x),
x ∈ R is, for every p ∈ P , a solution of the differential equation

z(k+1) · a(
x, z, . . . , z(k)) = b

(
x, z, . . . , z(k)).(30)

Then a(x,Z(x,p, k)) = 0 for every x ∈ R,p ∈ P .

PROOF. Fix p ∈ P and x ∈ R, and suppose that a(x,Z(x,p, k)) �= 0. Then
there is an open interval containing x on which a(·,Z(·,p, k)) does not vanish
and b(·,Z(·,p, k))/a(·,Z(·,p, k)) is continuously differentiable. Therefore lnp

is, perhaps in a smaller neighborhood of x, the only solution to the equation (30)
whose derivatives up to order k at x are given by the components of the vec-
tor Z(x,p, k). On the other hand, by Lemma 4.9(a) there exists q ∈ P such that
Z(x, q, k) = Z(x,p, k) but zk+1(x, q) �= zk+1(x,p). By assumption this q is a so-
lution of (30), too, with the same initial conditions. This contradiction to unique-
ness is resolved only if a(x,Z(x,p, k)) = 0. Since p ∈ P and x ∈ R were arbitrary,
the proof of the lemma is complete. �

Let us combine these facts. Absorbing the (universal) constant cp = c in (28)
into the function b, we see that every p ∈ P satisfies a differential equation of
the form (30) with a = ∂2

22s. Therefore ∂2
22s(x,Z(x,p,2)) = 0 for all p ∈ P and

x ∈ R by the reduction principle. The proof of (27) is completed on noting that
for any x ∈ R, p ∈ P , |t | ≤ |z1(x,p)| there is a q ∈ P such that Z(x, q,2) =
(z0(x,p), t, z2(x,p)), by Lemma 4.9(a).

4.5. Linear dependence on z0. The fact that a local proper score s ∈ R2 can
be represented by means of a z2-independent kernel K ∈ R1 will now be utilized
to show that both s and K depend linearly on the logarithmic score, z0.

PROPOSITION 4.12 (Linearity in z0). Let K ∈ R1 be the kernel constructed
in Section 4.3 from a given local proper score s ∈ R2. Then K is of the form
K(x, z0, z1) = cz0 + K0(x, z1) where c is a real constant, and s is of the form (5)
with the same c.

PROOF. We already know that the score s can be represented as in (18), with K

not depending on z2. Furthermore, by the Euler equation (19) and Proposition 4.10
there is some constant c such that

∂0s − c = 1

p

d

dx

(
p∂1s − d

dx
[p∂2s]

)
.(31)
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Using these facts along with the commutation relation ∂1
d
dx

= d
dx

∂1 +∂0 [cf. (25)],
we get

∂1s = ∂1K − ∂1K − z1∂
2
11K − ∂1

(
d

dx
[∂1K]

)
+ ∂2

01K

= −z1∂
2
11K − d

dx
[∂2

11K] − ∂2
01K + ∂2

01K

= −z1∂
2
11K − d

dx
[∂2

11K].
On the other hand, we have

∂2s = −∂2
d

dx
∂1K = −∂2(∂

2
x1K + ∂2

01K · z1 + ∂2
11K · z2) = −∂2

11K,

and hence

p−1 d

dx
[p∂2s] = −z1∂

2
11K − d

dx
[∂2

11K].

Thus p∂1s = d
dx

[p∂2s], the right-hand side of (31) vanishes, and ∂0s is constant,
∂0s = c. It follows that s = cz0 + g(x, z1, z2) for some function g independent
of z0, and it remains to verify the particular forms of K and s.

By (23) and the special form of s we have K − cz0 = g − z1V − d
dx

V

where now V = ∫ z1
0 ∂2g(x, t, z2) dt . But ∂2V = 0, by (26) and (27), and clearly

∂2(K − cz0) = 0, since K ∈ R1. Therefore K0 = g − z1V − d
dx

V does not de-
pend on z2, and it also does not depend on z0 (since neither g nor V depend
on z0), so K0 = K0(x, z1). This completes the proof of the first claim. The tan-
gent construction based on K = cz0 + K0(x, z1) then implies, upon observing
∂0K − ∫

(∂0K)p = 0, that

s = K − z1∂1K − d

dx
[∂1K]

= cz0 + K0 − z1∂1K0 − ∂2
x1K0 − z2∂

2
11K0,

which is the desired representation. �

4.6. Completion of the proof of Theorem 3.2. The tangent construction based
on a concave functional �K with K ∈ R1 yields a proper score, which is of the
form (5) if the kernel K is of the form (4). This proves part (a). Part (b) follows
from Propositions 4.8 and 4.12. Finally, part (c) is immediate from Theorem 4.1.

5. Remaining proofs, supplements and examples.

5.1. Proof of Proposition 3.3. Initially, suppose that K ∈ R1 does not depend
on y0, so that K = K(x, y1), and is concave in y1 for every fixed x. Given p0,p1 ∈
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P and t ∈ [0,1], let pt = tp1 + (1 − t)p0 and put α = tp1/pt , pointwise for every
x ∈ R. Then p′

t /pt = αp′
1/p1 + (1 − α)p′

0/p0, whence

K(·,p′
t /pt ) ≥ αK(·,p′

1/p1) + (1 − α)K(·,p′
0/p0)

and so

�K(pt) =
∫

K

(
x,

p′
t

pt

(x)

)
pt(x) dx

≥
∫ [

α(x)K

(
x,

p′
1

p1
(x)

)
+ (

1 − α(x)
)
K

(
x,

p′
0

p0
(x)

)]
pt(x) dx

=
∫

K

(
x,

p′
1

p1
(x)

)
tp1(x) dx +

∫
K

(
x,

p′
0

p0
(x)

)
(1 − t)p0(x) dx

= t�K(p1) + (1 − t)�K(p0).

The general case follows by the strict concavity of the entropy functional p 	→
− ∫

p lnp. Concerning the claim about strict propriety, the pathology described
in Remark 3.9 does not occur within the class P , because all densities p ∈ P are
strictly positive. Thus, the primitive of p′/p exists throughout R and equals lnp

up to a constant, so that p′/p = q ′/q implies p = q . �

5.2. Local proper scoring rules of order 1. The representation (5) suggests
that local proper scores of exact order k = 1 do not exist. In fact, Parry, Dawid
and Lauritzen (2012) show that there are no key local score functions of odd order.
Within our framework, we can prove the following.

PROPOSITION 5.1. Any local score s ∈ R1 that is proper relative to P is of
the form s = cz0 + k(x) for some c ≤ 0.

PROOF. Suppose that s ∈ R1 is proper. The Euler equation reduces to

∂0s − 1

p

d

dx
[p∂1s] = ∂0s + z1∂1s − ∂2

x1s − z1∂
2
01s − z2∂

2
11s = cp (s = sp)

in this case. Arguing as in Section 4.4, we find that cp = c is independent of p

and that ∂2
11s vanishes on R

3. Therefore there are functions g,h depending only
on x, z0 such that s = z1g +h. Plugging this representation into the Euler equation
gives

c = z1∂0g + ∂0h + z1g − ∂xg − z1∂0g = z′
0g − ∂xg + ∂0h,

whence g = 0 by another application of the reduction principle. Thus ∂0h = c,
which means that s = cz0 + k(x). Since −z0 represents the logarithmic score,
s can be proper only if c ≤ 0. �
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5.3. Examples. In the subsequent examples, we keep the notation to a mini-
mum and suppress arguments whenever possible.

EXAMPLE 5.2. For n ≥ 2 even and c ≤ 0, let K = cz0 − zn
1 . Then K ∈ R1,

the functional �K is stricly concave on P , and the tangent construction of Propo-
sition 4.5 yields the score

s = K − z1∂1K − d

dx
∂1K + ∂0K −

∫
(∂0K)q

= cz0 − zn
1 + nzn

1 + n(n − 1)zn−2
1 z2 + c − c

= cz0 + (n − 1)(zn
1 + nzn−2

1 z2),

which is local of order 2 and strictly proper relative to P .
Conversely, if s is as above, let us carry out the construction of the associated

kernel K described in Section 4.3. We set

V =
∫ z1

0
∂2s(x, z0, t, z2) dt = nzn−1

1

and then define K as

K = s −
[
z1 + d

dx

]
V

= s − nzn
1 − n(n − 1)zn−2

1 z2

= cz0 + (n − 1)(zn
1 + nzn−2

1 z2) − nzn
1 − n(n − 1)zn−2

1 z2

= cz0 − zn
1 .

The construction indeed recovers the kernel K from the score s.

EXAMPLE 5.3. The special case K = −z2
1 in the previous example gives

the Hyvärinen score, s = z2
1 + 2z2. Being quadratic in the log-likelihood deriva-

tive, z1 = p′/p, and linear in the second derivative, z2 = p′′/p − (p′/p)2, this
score generally is sensitive to outliers. For example, within the Gaussian shift-
scale family with mean μ and variance σ 2, the Hyvärinen score reduces to
s = (x − μ)2/σ 4 − 2/σ 2.

As an alternative, let us consider the kernel K = − ln cosh z1, which grows only
linearly as z1 becomes large. The corresponding score

s = − ln cosh z1 + z1 tanh z1 + z2(1 − tanh2 z1)(32)

appears to be more robust, because as |y| → ∞,

y tanhy − ln coshy → ln 2,

and the factor of z2 tends to zero exponentially, in that 1− tanh2 y ∼ 4 exp (−2|y|).
Of course, the log cosh score (32) is strictly proper relative to P , since K is strictly
concave.
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6. Data example: Probabilistic weather forecasting. The data example in
this section illustrates the use of local and nonlocal scoring rules in an applied
forecasting problem.

Weather forecasting has traditionally been viewed as a deterministic enter-
prise that draws on highly sophisticated, numerical models of the atmosphere.
The advent of ensemble prediction systems in the early 1990s marks a change of
paradigms toward probabilistic forecasting [Palmer (2002), Gneiting and Raftery
(2005)]. An ensemble prediction system consists of multiple runs of numerical
weather prediction models, which differ in the initial conditions and/or the math-
ematical representation of the atmosphere. As ensemble forecasts are subject to
dispersion errors and biases, some form of statistical postprocessing is required,
for a happy marriage of mechanistic and statistical modeling.

Wilks and Hamill (2007) and Bröcker and Smith (2008) review statistical post-
processing techniques for ensemble weather forecasts. State-of-the-art methods
include the Bayesian model averaging (BMA) approach developed by Raftery
et al. (2005) and Sloughter et al. (2007), Sloughter, Gneiting and Raftery (2010),
and the heterogeneous regression, or ensemble model output statistics (EMOS),
technique of Gneiting et al. (2005) and Thorarinsdottir and Gneiting (2010). The
BMA approach employs a mixture distribution, where each mixture component is
a parametric probability density associated with an individual ensemble member,
with the mixture weight reflecting the member’s relative contributions to predic-
tive skill over a training period. In contrast, the EMOS predictive distribution is a
single parametric distribution.

For concreteness, consider an ensemble of point forecasts, f1, . . . , fk , for sur-
face temperature, x, at a given time and location. The goal is to fit predictive dis-
tributions that are as sharp as possible, subject to them being calibrated [Gneiting,
Balabdaoui and Raftery (2007)]. Let φ(x;μ,σ 2) denote the normal density with
mean μ ∈ R and variance σ 2 > 0 evaluated at x ∈ R. The BMA approach of
Raftery et al. (2005) employs Gaussian components with a linearly bias-corrected
mean. The BMA predictive density for temperature then becomes

q(x|f1, . . . , fk) =
k∑

i=1

wiφ(x;ai + bifi, σ
2)

with BMA weights, w1, . . . ,wk , that are nonnegative and sum to 1, bias parame-
ters a1, . . . , ak and b1, . . . , bk , and a common variance parameter, σ 2. The EMOS
approach of Gneiting et al. (2005) employs a single Gaussian predictive density,
in that

q(x|f1, . . . , fk) = φ(x;a + b1f1 + · · · + bkfk, c + ds2)

with regression parameters a and b1, . . . , bk , and spread parameters c and d , where
s2 is the variance of the ensemble values. The EMOS technique thus is more par-
simonious, while the BMA method is more flexible.
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TABLE 1
Mean logarithmic score (LS), Hyvärinen score (HS), log cosh score (LCS), quadratic score (QS)

and spherical score (SphS) for statistically postprocessed ensemble forecasts of surface temperature
over the North American Pacific Northwest in April–June 2000, using Bayesian model averaging

(BMA) and ensemble model output statistics (EMOS), respectively. See the text for details

Scoring rule LS HS LCS QS SphS

BMA 2.502 −0.113 −0.0572 −0.101 −0.319
EMOS 2.486 −0.118 −0.0595 −0.103 −0.321

Following the original development in Raftery et al. (2005) and Gneiting et al.
(2005), we apply the BMA and EMOS methods to the five-member University
of Washington Mesoscale Ensemble over the North American Pacific Northwest
[Grimit and Mass (2002)], at a prediction horizon of 48 hours. Here we compare
the predictive performance of the BMA and EMOS density forecasts for surface
temperature verifying in the period of 24 April to 30 June 2000, which is the largest
period common to those used by Raftery et al. (2005) and Gneiting et al. (2005).
The predictive models were fitted on trailing training periods of length 25 days
for BMA and length 40 days for EMOS, as recommended and described in the
aforementioned papers. Overall, there were 23,691 individual forecast cases at in-
dividual meteorological stations and valid times, when aggregated temporally and
spatially over the test period and the Pacific Northwest, comprising the states of
Washington, Oregon and Idaho, and the southern part of the Canadian province of
British Columbia. All scores reported are averaged over the 23,691 forecast cases.

In Table 1 we assess these forecasts, by computing the mean score under various
local proper scoring rules, namely the logarithmic score (LS), the Hyvärinen score
(HS) and the log cosh score (LCS) introduced in (32). In addition, we consider two
popular nonlocal scores, namely the quadratic score (QS) and the spherical score
(SphS), defined as

QS(x, q) = ‖q‖2
2 − 2q(x) and SphS(x, q) = − q(x)

‖q‖2
,

respectively, where ‖ · ‖2 denotes the L2-norm. These scores are strictly proper
relative to the class of the probability measures with square-integrable Lebesgue
densities [Matheson and Winkler (1976), Gneiting and Raftery (2007)].

Under all scoring rules, the EMOS technique shows a slightly lower (i.e., better)
mean score than the BMA method. However, the differences pale when compared
to those between the unprocessed ensemble forecast and the statistically postpro-
cessed density forecasts. The unprocessed five-member ensemble gives a discrete
predictive distribution, namely the empirical measure in f1, . . . , f5, to which the
above scores do not apply directly. However, we can compute the mean score for
a smoothed ensemble forecast, which we take to be normal, with the first two mo-
ments identical to those of the empirical measure. Under this natural approach, the
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mean scores for the smoothed ensemble forecast are very high, reaching 21.4 for
the logarithmic score, 1.14 × 104 for the Hyvärinen score, 0.230 for the log cosh
score, 0.194 for the quadratic score, and −0.217 for the spherical score, thereby
attesting to the benefits of statistical postprocessing.

7. Discussion. A scoring rule on the real line is local of order k if the score
depends on the predictive density only through its value, and the values of its
derivatives of order up to k, at the realizing event. It is proper if the expected score
is minimized whenever the predictive density coincides with the density underly-
ing the realizing event. Supplementing the fundamental work in the recent paper
by Parry, Dawid and Lauritzen (2012), we have elaborated a suitable framework
for a formal characterization of the local proper scoring rules in the particular, but
most relevant, case of order k ≤ 2.

A practically useful characterization depends on the judicious choice of a class
S of scoring functions, and a class D of predictive densities, within which scores
and densities may vary freely. Involved therein is a delicate trade-off, in that narrow
classes D allow for weak assumptions on the members of S , but have little, if any,
practical relevance. Our choice of S —the class R2 of scoring functions growing at
most polynomially at infinity—and of D—the class P of densities decaying faster
than the reciprocal of any polynomial, with log-likelihood derivatives growing at
most polynomially—appears to be usefully general and achieving a reasonable
balance. The balance could easily be shifted, for example, in favor of more heavy-
tailed densities, by adapting the polynomial growth order in S .

Counterexamples show that proper scoring rules of practical interest, such as the
Hyvärinen score (2), may no longer be strictly proper relative to any class D that
contains a convex family of densities with a single common zero. It is thus natural
to assume that all densities in D are strictly positive on their common support, �,
which then is an interval. The case of finite boundary points, for example, when
� = (0,∞), appears to be tractable similarly to the case � = R considered here,
and resulting in essentially the same characterization. It suffices to impose suitable
boundary conditions at x = 0 on the classes S and D, guaranteeing the existence
of integrals and causing the boundary terms in the proof of Lemma 4.2 to vanish.

With the resurgence of interest in probabilistic forecasting [Gneiting (2008)],
scoring rules for density forecasts are in increasing demand. In this context, lo-
cality is an appealing property, which we have studied in this work. A different
argument posits that a scoring rule for probabilistic forecasts ought to be sensitive
to distance, in the sense that it rewards the assignment of greater mass not just
to exactly the event or value that is observed, but also to nearby events [Staël von
Holstein (1969), Jose, Nau and Winkler (2009)]. While either approach has appeal,
locality and sensitivity to distance appear to be mutually exclusive properties, and
it is not clear which one is more compelling [Mason (2008), Winkler and Jose
(2008)]. However, in our meteorological data example as well as in other experi-
ence, local and nonlocal proper scoring rules generally yield comparable results.
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In addition to their use in the assessment of predictive performance, proper scor-
ing rules play major roles in the theory and practice of estimation [Dawid (2007),
Gneiting and Raftery (2007)]. A striking aspect is that local proper scoring rules
of order k ≥ 2 allow for statistical inference without knowledge of normalization
constants [Parry, Dawid and Lauritzen (2012)]. Indeed, this was the motivation for
the initial development by Hyvärinen (2005). The example of the log cosh score
(32) shows that local scores can be less nonrobust than one might expect. These
facets suggest exciting opportunities and novel prospects particularly in complex
settings. Undoubtedly, the pioneering work of Hyvärinen (2005, 2007), Dawid and
Lauritzen (2005) and Parry, Dawid and Lauritzen (2012) has laid the groundwork
for a wide range of promising future work, both theoretically and methodologi-
cally, and including discrete and multivariate settings [Dawid, Lauritzen and Parry
(2012), Ehm (2011)], where the tangent approach may continue to be useful and
provide new insight.

Acknowledgments. The authors are grateful to Philip Dawid, Steffen Lau-
ritzen and Matthew Parry for helpful discussions, and sharing manuscripts and
presentations (cf. Remark 3.4), to Peter J. Huber for alerting us to the counterex-
ample in Remark 3.9, to Chris Fraley for providing R code used in Section 6, and
to the Editor, Peter Bühlmann, an Associate Editor and a referee for constructive
feedback. Tilmann Gneiting thanks the Institute for Frontier Areas of Psychology
and Mental Health in Freiburg, Germany for hospitality and travel support.

REFERENCES

BAUER, H. (2001). Measure and Integration Theory. de Gruyter Studies in Mathematics 26. de
Gruyter, Berlin. MR1897176

BERNARDO, J.-M. (1979). Expected information as expected utility. Ann. Statist. 7 686–690.
MR0527503

BRIER, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather
Review 78 1–3.

BRÖCKER, J. and SMITH, L. A. (2008). From ensemble forecasts to predictive distribution func-
tions. Tellus Ser. A 60 663–678.

DASGUPTA, A. (2008). Asymptotic Theory of Statistics and Probability. Springer, New York.
MR2664452

DAWID, A. P. (1984). Statistical theory. The prequential approach. J. Roy. Statist. Soc. Ser. A 147
278–292. MR0763811

DAWID, A. P. (2007). The geometry of proper scoring rules. Ann. Inst. Statist. Math. 59 77–93.
MR2396033

DAWID, A. P. (2008). Comments on: Assessing probabilistic forecasts of multivariate quantities,
with an application to ensemble predictions of surface winds [MR2434318]. TEST 17 243–244.
MR2434322

DAWID, A. P. and LAURITZEN, S. L. (2005). The geometry of decision theory. In Proceedings of
the Second International Symposium on Information Geometry and Its Applications 22–28. Univ.
Tokyo, Tokyo, Japan.

DAWID, A. P., LAURITZEN, S. and PARRY, M. (2012). Proper local scoring rules on discrete sample
spaces. Ann. Statist. 40 593–608.

http://www.ams.org/mathscinet-getitem?mr=1897176
http://www.ams.org/mathscinet-getitem?mr=0527503
http://www.ams.org/mathscinet-getitem?mr=2664452
http://www.ams.org/mathscinet-getitem?mr=0763811
http://www.ams.org/mathscinet-getitem?mr=2396033
http://www.ams.org/mathscinet-getitem?mr=2434322


636 W. EHM AND T. GNEITING

DAWID, A. P., PARRY, M. and LAURITZEN, S. (2009). Personal communication.
EHM, W. (2011). Unbiased risk estimation and scoring rules. C. R. Math. Acad. Sci. Paris 349 699–

702. MR2817395
EHM, W. and GNEITING, T. (2009). Local proper scoring rules. Technical Report 551, Dept. Statis-

tics, Univ. Washington. (Addendum 2010.)
GELFAND, I. M. and FOMIN, S. V. (1963). Calculus of Variations. Prentice Hall International,

Englewood Cliffs, NJ. MR0160139
GENTON, M. G., ed. (2004). Skew-elliptical Distributions and Their Applications: A Journey Beyond

Normality. Chapman & Hall/CRC, Boca Raton, FL. MR2156754
GNEITING, T. (2008). Editorial: Probabilistic forecasting. J. Roy. Statist. Soc. Ser. A 171 319–321.

MR2427336
GNEITING, T., BALABDAOUI, F. and RAFTERY, A. E. (2007). Probabilistic forecasts, calibration

and sharpness. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 243–268. MR2325275
GNEITING, T. and RAFTERY, A. E. (2005). Atmospheric science. Weather forecasting with ensem-

ble methods. Science 310 248–249.
GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.

J. Amer. Statist. Assoc. 102 359–378. MR2345548
GNEITING, T., RAFTERY, A. E., WESTVELD, A. H. and GOLDMAN, T. (2005). Calibrated prob-

abilistic forecasting using ensemble model output statistics and minimum CRPS estimation.
Monthly Weather Review 133 1098–1118.

GOOD, I. J. (1952). Rational decisions. J. Roy. Statist. Soc. Ser. B. 14 107–114. MR0077033
GRIMIT, E. P. and MASS, C. F. (2002). Initial results of a mesoscale short-range ensemble system

over the Pacific Northwest. Weather and Forecasting 17 192–205.
HENDRICKSON, A. D. and BUEHLER, R. J. (1971). Proper scores for probability forecasters. Ann.

Math. Statist. 42 1916–1921. MR0314430
HUBER, P. J. (1974). Fisher information and spline interpolation. Ann. Statist. 2 1029–1033.

MR0356352
HYVÄRINEN, A. (2005). Estimation of non-normalized statistical models by score matching.

J. Mach. Learn. Res. 6 695–709 (electronic). MR2249836
HYVÄRINEN, A. (2007). Some extensions of score matching. Comput. Statist. Data Anal. 51 2499–

2512. MR2338984
JOSE, V. R. R., NAU, R. F. and WINKLER, R. L. (2009). Sensitivity to distance and baseline

distributions in forecast evaluation. Management Science 55 582–590.
MASON, S. J. (2008). Understanding forecast verification statistics. Meteorological Applications 15

31–40.
MATHESON, J. E. and WINKLER, R. L. (1976). Scoring rules for continuous probability distribu-

tions. Management Science 22 1087–1096.
PALMER, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment:

From days to decades. Quarterly Journal of the Royal Meteorological Society 128 747–774.
PARRY, M., DAWID, A. P. and LAURITZEN, S. (2012). Proper local scoring rules. Ann. Statist. 40

561–592.
RAFTERY, A. E., GNEITING, T., BALABDAOUI, F. and POLAKOWSKI, M. (2005). Using Bayesian

model averaging to calibrate forecast ensembles. Monthly Weather Review 133 1155–1174.
SLOUGHTER, M., GNEITING, T. and RAFTERY, A. E. (2010). Probabilistic wind spread forecasting

using ensembles and Bayesian model averaging. J. Amer. Statist. Assoc. 105 25–35. MR2757189
SLOUGHTER, J. M., RAFTERY, A. E., GNEITING, T. and FRALEY, C. (2007). Probabilistic quan-

titative precipitation forecasting using Bayesian model averaging. Monthly Weather Review 135
3209–3220.

STAËL VON HOLSTEIN, C. A. S. (1969). A family of strictly proper scoring rules which are sensitive
to distance. Journal of Applied Meteorology 9 360–364.

http://www.ams.org/mathscinet-getitem?mr=2817395
http://www.ams.org/mathscinet-getitem?mr=0160139
http://www.ams.org/mathscinet-getitem?mr=2156754
http://www.ams.org/mathscinet-getitem?mr=2427336
http://www.ams.org/mathscinet-getitem?mr=2325275
http://www.ams.org/mathscinet-getitem?mr=2345548
http://www.ams.org/mathscinet-getitem?mr=0077033
http://www.ams.org/mathscinet-getitem?mr=0314430
http://www.ams.org/mathscinet-getitem?mr=0356352
http://www.ams.org/mathscinet-getitem?mr=2249836
http://www.ams.org/mathscinet-getitem?mr=2338984
http://www.ams.org/mathscinet-getitem?mr=2757189


LOCAL PROPER SCORING RULES 637

THORARINSDOTTIR, T. L. and GNEITING, T. (2010). Probabilistic forecasts of wind speed: En-
semble model ouput statistics by using heteroscedastic censored regression. J. Roy. Statist. Soc.
Ser. A 173 371–388. MR2751882

VILLANI, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin.
MR2459454

WILKS, D. S. and HAMILL, T. M. (2007). Comparison of ensemble-MOS methods using GFS
reforecasts. Monthly Weather Review 135 2379–2390.

WINKLER, R. L. and JOSE, V. R. R. (2008). Comments on: Assessing probabilistic forecasts of mul-
tivariate quantities, with an application to ensemble predictions of surface winds [MR2434318].
TEST 17 251–255. MR2434325

WINKLER, R. L. and MURPHY, A. H. (1968). “Good” probability assessors. Journal of Applied
Meteorology 7 751–758.

INSTITUTE FOR FRONTIER AREAS

OF PSYCHOLOGY

AND MENTAL HEALTH

WILHELMSTR. 3A

79098 FREIBURG

GERMANY

E-MAIL: ehm@igpp.de

INSTITUTE FOR APPLIED MATHEMATICS

UNIVERSITY OF HEIDELBERG

IM NEUENHEIMER FELD 294
69120 HEIDELBERG

GERMANY

E-MAIL: t.gneiting@uni-heidelberg.de

http://www.ams.org/mathscinet-getitem?mr=2751882
http://www.ams.org/mathscinet-getitem?mr=2459454
http://www.ams.org/mathscinet-getitem?mr=2434325
mailto:ehm@igpp.de
mailto:t.gneiting@uni-heidelberg.de

	Introduction
	Local proper scoring rules
	Characterization of the local proper scores of order 2
	Main results
	Remarks

	Proof of Theorem 3.2
	Tangent construction of proper scores
	Variational calculus
	Construction of a z2-independent kernel
	Proof of the independence condition (27)
	Linear dependence on z0
	Completion of the proof of Theorem 3.2

	Remaining proofs, supplements and examples
	Proof of Proposition 3.3
	Local proper scoring rules of order 1
	Examples

	Data example: Probabilistic weather forecasting
	Discussion
	Acknowledgments
	References
	Author's Addresses

