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TWO-STEP SPLINE ESTIMATING EQUATIONS FOR
GENERALIZED ADDITIVE PARTIALLY LINEAR MODELS

WITH LARGE CLUSTER SIZES

BY SHUJIE MA

University of California, Riverside

We propose a two-step estimating procedure for generalized additive par-
tially linear models with clustered data using estimating equations. Our pro-
posed method applies to the case that the number of observations per cluster
is allowed to increase with the number of independent subjects. We estab-
lish oracle properties for the two-step estimator of each function component
such that it performs as well as the univariate function estimator by assum-
ing that the parametric vector and all other function components are known.
Asymptotic distributions and consistency properties of the estimators are ob-
tained. Finite-sample experiments with both simulated continuous and binary
response variables confirm the asymptotic results. We illustrate the methods
with an application to a U.S. unemployment data set.

1. Introduction. The generalized estimating equations (GEE) approach has
been widely applied to the analysis of clustered data. Reference [15] introduced the
GEEs to estimate the regression parameters of generalized linear models with pos-
sible unknown correlations between responses. The GEE approach only requires
the first two marginal moments and a working correlation matrix that accounts for
the form of within-subject correlations of responses, and it can yield consistent
parameter estimators even when the covariance structure is misspecified, as long
as the mean function is correctly specified.

Parametric GEEs enjoy simplicity by assuming a fully predetermined paramet-
ric form for the mean function, but they have suffered from inflexibility in mod-
eling complicated relationships between the response and covariates in clustered
data studies. To allow for flexibility, [9, 32] and [16] proposed to model covari-
ate effects nonparametrically via GEE. The proposed nonparametric GEE method
enables us to capture the underlying structure that otherwise can be missed. Refer-
ence [17] extended the kernel estimating equations in [16] to generalized partially
linear models (GPLMs), which assume that the mean of the outcome variable de-
pends on a vector of covariates parametrically and a scalar predictor nonparamet-
rically to overcome the “curse of dimensionality” of nonparametric models. As
an extension, [6] and [14] approximated the nonparametric function in GPLMs
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by regression splines. It is pointed out in [31] and [18] that splines effectively ac-
count for the correlations of clustered data and are more efficient in nonparametric
models with longitudinal data than conventional local-polynomials. Splines also
provide optimal convergence rates in partially linear models [7, 8]. To allow the
nonparametric part in partially linear models to include multivariate covariates,
[21] extended the estimating equations method to generalized additive partially
linear models (GAPLMs) with an identity link for continuous response cases, and
obtained estimators for the parametric vector and the nonparametric additive func-
tions via a one-step spline estimation.

To introduce GAPLMs for clustered data, denote {(Yij ,Xij ,Zij ),1 ≤ i ≤ n,1 ≤
j ≤ mi} as the j th repeated observation for the ith subject or experimental unit,
where Yij is the response variable, Xij = (1,Xij1, . . . ,Xij (d1−1))

T and Zij =
(Zij1, . . . ,Zijd2)

T are d1-dimensional and d2-dimensional vectors of covariates,
respectively. The marginal model assumes that Yij = μij + εij , and the marginal
mean μij depends on Xij and Zij through a known monotonic and differentiable
link function ϑ , so that the GAPLM is given as

ηij = ϑ(μij ) = XT
ijβ +

d2∑
l=1

θl(Zijl), j = 1, . . . ,mi, i = 1, . . . , n,(1)

where β is a d1-dimensional regression parameter, and θl , l = 1, . . . , d2, are un-
known but smooth functions. We assume εi = (εi1, . . . , εimi

)T ∼ (0,�i ). For
identifiability, both the additive and linear components must be centered, that is,
Eθl(Zijl) ≡ 0, l = 1, . . . , d2, EXijk = 0, k = 1, . . . , d1. Model (1) can either be-
come a generalized additive model [5] if the parameter vector β = 0 or be a gen-
eralized linear model if θl(·) = 0,1 ≤ l ≤ d2. Model (1) is more parsimonious
and easier to interpret than purely generalized additive models by allowing a sub-
set of predictors to be discrete and unbounded, modeled as some of the variables
(Xijk)

d1−1
k=0 and more flexible than generalized linear models by allowing nonlinear

relationships.
The GEE methods have been widely applied to analyze clustered data with small

cluster sizes and a large number of subjects n. However, data with large cluster
sizes have occurred frequently in various fields such as machine learning, pattern
recognition, image analysis, information retrieval and bioinformatics. Reference
[33] first studied the asymptotics for parametric GEE estimators with large cluster
sizes. As an extension, we develop asymptotic properties of the spline GEE esti-
mators in the GAPLMs (1) when the cluster sizes are allowed to increase with n,
that is, the maximum cluster size m(n) = max1≤i≤n mi is a function of n, such that
m(n) → ∞ as n → ∞.

The one-step spline estimation in [21] for GAPLMs with identity link is fast
to compute but lacks limiting distribution. The traditional backfitting approach
has been widely used to estimate additive models for independent and identically
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distributed (i.i.d.) and weekly-dependent data [5, 23, 25]. It, however, has com-
putational burden issues, due to its iterative nature. Moreover, it is pointed out
in [12] that derivation of the asymptotic properties of a backfitting estimator for
a model with a link function is very complicated. As an alternative, [10, 12, 19]
and [11] proposed two-stage kernel based estimators for i.i.d. data including one
step backfitting of the integration estimators in [19] and one step backfitting of the
projection estimators in [10], one Newton step from the nonlinear least squares
estimators in [12], and the extension of the method in [12] to additive quantile re-
gression models. The two-stage estimator enjoys the oracle property which back-
fitting estimators do not have, that is, it performs as well as the univariate function
estimator by assuming that other components are known.

In this paper, we propose a two-step spline GEE approach to approximate θl(·)
for 1 ≤ l ≤ d2 in model (1) with m(n) going to infinity or bounded, and establish
oracle efficiency such that the two-step spline GEE estimator of θl(·) achieves the
same asymptotic distribution of the oracle estimator obtained by assuming that β

and other functions θl′(·) for 1 ≤ l′ ≤ d2 and l′ �= l are known. In the first step, the
additive components θl′(·) for 1 ≤ l′ ≤ d2 and l′ �= l are pre-estimated by their pilot
estimators through an undersmoothed spline procedure. In the second step, a more
smoothed spline estimating procedure is applied to the univariate data to estimate
θl(·) with asymptotic distribution established. The proposed two-step estimators
achieve uniform oracle efficiency by “reducing bias via undersmoothing” in the
first step and “averaging out the variance” in the second step. We establish asymp-
totic consistency and normality of the one-step estimator for the parameter vector
and the two-step estimators of the nonparametric components. The two-step spline
GEE approach is inspired by the idea of “spline-backfitted kernel/spline smooth-
ing” of [20, 26, 29] and [22] for additive models, additive coefficient models and
additive partially linear models with i.i.d or weekly-dependent data by using least
squares. The complex correlations within the clusters as well as the non-Gaussian
nature of discrete data make the estimation and development of asymptotic prop-
erties in the framework studied in this paper much more challenging.

2. Two-step spline estimating equations. For simplicity, we denote vec-
tors Yi = {(Yi1, . . . , Yimi

)T}mi×1 and η
i
= {(ηi1, . . . , ηimi

)T}mi×1, 1 ≤ mi ≤ m(n),

1 ≤ i ≤ n. Let εij = Yij − μij , and εi = (εi1, . . . , εimi
)T. Similarly, let Xi =

{(Xi1, . . . ,Ximi
)T}mi×d1 and Zi = {(Zi1, . . . ,Zimi

)T}mi×d2 . Assume that Zijl is
distributed on a compact interval [al, bl],1 ≤ l ≤ d2, and, without loss of gener-
ality, we take all intervals [al, bl] = [0,1],1 ≤ l ≤ d2. We further let θl(Zil) =
{{θl(Zi1l), . . . , θl(Zimil)}T}mi×1, for l = 1, . . . , d2. The mean function in model
(1) can be written in matrix notation as η

i
= Xiβ + ∑d2

l=1 θl(Zil), which is the

marginal model [15]. Let μ(·) = ϑ−1(·) be the inverse of the link function and
μ(η

i
) = [{μ(ηi1), . . . ,μ(ηimi

)}T]mi×1.
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As in [30], we allow Xi and Zi to be dependent. Let Vi = Vi(Xi ,Zi ) be the as-
sumed “working” covariance of Yi , where Vi = A1/2

i Ri(α)A1/2
i , Ai = Ai(Xi ,Zi )

denotes an mi × mi diagonal matrix that contains the marginal variances of Yij ,
and Ri is an invertible working correlation matrix, which depends on a nuisance
parameter vector α. Let �i = �i (Xi ,Zi ) be the true covariance of Yi . If Ri is
equal to the true correlation matrix Ri , then Vi = �i .

Following [29], we approximate the nonparametric functions θl’s by centered
polynomial splines. Let Gn be the space of polynomial splines of degree q ≥ 1.
We introduce a knot sequence with Nn interior knots

t−q = · · · = t−1 = t0 = 0 < t1 < · · · < tN < 1 = tN+1 = · · · = tN+q+1,

where N ≡ Nn increases when the number of subjects n increases, with order
assumption given in condition (A4). Then Gn consists of functions � satisfy-
ing the following: (i) � is a polynomial of degree q on each of the subinter-
vals Is = [ts, ts+1), s = 0, . . . ,Nn − 1, INn = [tNn,1]; (ii) for q ≥ 1, � is q − 1
time continuously differentiable on [0,1]. Let Jn = Nn + q + 1. Let {bs,l : 1 ≤ l ≤
d2,1 ≤ s ≤ Jn + 1}T be a basis system of the space Gn. We adopt the centered
B-spline space G0

n introduced in [34], where B(z) = {Bs,l(zl) : 1 ≤ l ≤ d2,1 ≤
s ≤ Jn}T is a basis system of the space G0

n with Bs,l(zl) = √
Nn[bs+1,l(zl) −

{E(bs+1,l)/E(b1,l)}b1,l(zl)] and z = (zl)
d2
l=1.

Equally-spaced knots are used in this article for simplicity of proof. Other reg-
ular knot sequences can also be used, with similar asymptotic results.

Step I. Pilot estimators of β and θl(·). Suppose that θl can be approximated well
by a spline function in G0

n, so that

θl(zl) ≈ θ̃l(zl) =
Jn∑

s=1

γslBs,l(zl).(2)

Let γ = (γsl : s = 1, . . . , Jn, l = 1, . . . , d2)
T be the collection of the coeffi-

cients in (2), and denote Bij l = [{Bs,l(Zijl) : s = 1, . . . , Jn}T]Jn×1 and Bij =
{(BT

ij1, . . . ,BT
ijd2

)T}d2Jn×1, then we have an approximation ηij ≈ η̃ij = XT
ijβ +

BT
ijγ . We can also write the approximation in matrix notation as η

i
≈ η̃

i
=

Xiβ + Biγ , where Bi = {(Bi1, . . . ,Bimi
)T}mi×d2Jn . Let μ(̃η

i
) = [{μ(η̃i1), . . . ,

μ(η̃imi
)}T]mi×1. Let β̂n = (β̂n,1, . . . , β̂n,d1)

T and γ̂ n = {γ̂n,sl : s = 1, . . . , Jn, l =
1, . . . , d2}T be the minimizer of

Qn(β,γ ) = 1

2

n∑
i=1

{
Yi − μ(Xiβ + Biγ )

}TV−1
i (β,γ )

{
Yi − μ(Xiβ + Biγ )

}
,(3)

which is corresponding to the class of working covariance matrices {Vi ,1 ≤ i ≤
n}. Then β̂n and γ̂ n solve the estimating equations

gn(β,γ ) =
n∑

i=1

DT
i 	i(β,γ )V−1

i (β,γ )
{
Yi − μ(Xiβ + Biγ )

}= 0,(4)
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where Di = (Xi ,Bi )mi×(d1+d2Jn), and

	i(β,γ ) = diag
(
	i1(β,γ ), . . . ,	imi

(β,γ )
)

is a diagonal matrix with the diagonal elements being the first derivative of μ(·)
evaluated at η̃ij , j = 1, . . . ,mi . Then we let β̂n be the estimator of the param-
eter vector β . For each 1 ≤ l ≤ d2, the pilot estimator of the lth nonparametric
function θl(zl) is θ̂n,l(zl) = ∑Jn

s=1 γ̂n,slBs,l(zl). The one-step spline estimator of
each function component has consistency properties, but lacks limiting distribu-
tion [21, 22, 29].

Step II. Two-step spline GEE estimator of θl(·). Next, we propose a two-step
spline estimator of θl(·) for given 1 ≤ l ≤ d2. The basic idea is that for every
1 ≤ l ≤ d2, we estimate the lth function θl(·) in model (1) nonparametrically with
the GEE method by assuming that the parameter vector β and other nonparametric
components θ−l = {θl′(·) : 1 ≤ l′ ≤ d2, l

′ �= l} are known. The problem turns into a
univariate function estimation problem. Because the true parameter vector β and
functions θ−l are not known in reality, we replace them by their pilot estimators
from step I to obtain the two-step estimator of θl(·). Both kernel and spline based
methods can be employed in the second step to estimate θl(·). Here we choose
the spline method described in the beginning of this section. We use the splines of
the same degree q as in step I. Denote BS

ij l = [{BS
s,l(Zijl) : s = 1, . . . , J S

n }T]J S
n ×1,

where BS
s,l(zl) is the spline function defined in the same way as Bs,l(zl) in step I,

but with N S ≡ N S
n the number of interior knots and let J S

n = N S + q + 1. Denote
BS

l (zl) = {BS
s,l(zl), s = 1, . . . , J S

n }T, BS
i·l = {(Bi1l , . . . ,Bimi l)

T}mi×J S
n

, and γ S
l =

(γsl : s = 1, . . . , J S
n )T. By assuming that β and θ−l = {θl′(·) : l′ �= l, 1 ≤ l′ ≤ d2}

are known, θl(zl) is estimated by the oracle estimator

θ̂ S
n,l(zl,β, θ−l) =

Jn∑
s=1

γ̂ S
n,sl(β, θ−l)B

S
s,l(zl) = BS

l (zl)
Tγ̂ S

n,l(β, θ−l)(5)

with γ̂ S
n,l(β, θ−l) = {γ̂ S

n,sl(β, θ−l)}J
S
n

s=1 solving the estimating equation

gS
n,l

(
γ S

l ,β, θ−l

)
=

n∑
i=1

(
BS

i·l
)T

	i

(
β, θ−l ,γ

S
l

)
V−1

i

(
β, θ−l ,γ

S
l

)
(6)

×
{

Yi − μ

(
Xiβ +

d2∑
l′=1,l′ �=l

θl′(Zil′) + (
BS

i·l
)T

γ S
l

)}

= 0,

where 	i(β, θ−l ,γ
S
l ) = diag(	i1(η

S
i1), . . . ,	imi

(ηS
imi

)), and 	ij (η
S
ij ) is the first

derivative of μ(·) evaluated at ηS
ij = XT

ijβ +∑d2
l′=1,l′ �=l θl′(Zijl′) + (BS

ij l)
Tγ S

l , j =
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1, . . . ,mi . We replace the true parameter vector β and the true functions θ−l =
{θl′(·),1 ≤ l′ ≤ d2, l

′ �= l} with the pilot estimators β̂n and θ̂n,−l = {θ̂n,l′(·),1 ≤
l′ ≤ d2, l

′ �= l}, where θ̂n,l′(zl′) = ∑Jn

s=1 γ̂n,sl′Bs,l′(zl′), so that θl(zl) is estimated
by the two-step spline estimator

θ̂ S
n,l(zl, β̂n, θ̂n,−l) = BS

l (zl)
Tγ̂ S

n,l(β̂n, θ̂n,−l).(7)

The Newton–Raphson algorithm of GEE is applied to obtain γ̂ S
n,l . Define

Dn(β,γ ) = {−∂gn(β,γ )/∂
(
βT,γ T)}

(d1+d2Jn)×(d1+d2Jn),

�n(β,γ ) =
{

n∑
i=1

DT
i 	i(β,γ )V−1

i (β,γ )	i(β,γ )Di

}
(d1+d2Jn)×(d1+d2Jn)

.

3. Asymptotic properties of the estimators. For any s × s symmetric ma-
trix A, denote by λmin(A) and λmax(A) its smallest and largest eigenvalues. For

any vector α = (α1, . . . , αs)
T, let its Euclidean norm be ‖α‖ =

√
α2

1 + · · · + α2
s .

Let C0,1(Xw) be the space of Lipschitz continuous functions on Xw , that is,

C0,1(Xw) =
{
ϕ :‖ϕ‖0,1 = sup

w �=w′,w,w′∈Xw

|ϕ(w) − ϕ(w′)|
|w − w′| < +∞

}
,

in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. Throughout the paper, we assume the fol-
lowing regularity conditions:

(C1) The random variables Zijl are bounded, uniformly in 1 ≤ j ≤ mi , 1 ≤ i ≤
n, 1 ≤ l ≤ d2. The marginal density fijl(·) of Zijl is bounded away from 0 and
∞ on [0,1], uniformly in 1 ≤ j ≤ mi , 1 ≤ i ≤ n. The joint density fijlj ′l′(·, ·) of
(Zijl,Zij ′l′) is bounded away from 0 and ∞ on [0,1], uniformly in 1 ≤ i ≤ n,
1 ≤ j, j ′ ≤ mi , and 1 ≤ l �= l′ ≤ d2.

(C2) The eigenvalues of the true correlation matrices Ri are bounded away
from 0, uniformly in 1 ≤ i ≤ n.

(C3) The eigenvalues of the inverse of the working correlation matrices
Ri(α)−1 are bounded away from 0, uniformly in 1 ≤ i ≤ n.

(C4) Let nT =∑n
i=1 mi . There are constants 0 < c < C < ∞, such that cnT ≤

λmin(
∑n

i=1 XT
i Xi ) ≤ λmax(

∑n
i=1 XT

i Xi ) ≤ CnT.

(C5) For 1 ≤ l ≤ d2, θ(p−1)
l (zl) ∈ C0,1[0,1], for given integer p ≥ 1. The spline

degree satisfies q + 1 ≥ p, and μ′(η) ∈ C0,1(Xη). The number of interior knots
Nn → ∞, as nT → ∞.

Conditions (C1)–(C4) are similar to conditions (A1)–(A4) in [21], and condi-
tion (C5) is weaker than the first part of condition (A5) in [21]. Let β0 be the true
parameter vector and θl0(·) be the true lth additive function in model (1). Accord-
ing to the result on page 149 of [3], for θl0(·) satisfying condition (C5), there is a
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function

θ̃l0(zl) =
Jn∑

s=1

γsl,0Bs,l(zl) ∈ G0
n,(8)

such that supzl∈[0,1] |θ̃l0(zl)− θl0(zl)| = O(J
−p
n ). Thus, by letting γ 0 = (γsl,0 : s =

1, . . . , Jn, l = 1, . . . , d2)
T,

sup
z∈[0,1]d2

∣∣∣∣∣B(z)Tγ 0 −
d2∑
l=1

θl0(zl)

∣∣∣∣∣≤
d2∑
l=1

sup
zl∈[0,1]

∣∣θ̃l0(zl) − θl0(zl)
∣∣= O

(
d2J

−p
n

)
.

In addition to the regularity conditions above, we need extra conditions to
ensure the existence and weak consistency of the estimators in (4).
Let λmin

n = min1≤i≤n λmin{R−1
i (α)}, λmax

n = max1≤i≤n λmax{R−1
i (α)}, τmax

n =
max1≤i≤n{λmax(R

−1
i (α)Ri )} and τmin

n = min1≤i≤n{λmin(R
−1
i (α)Ri )}. The addi-

tional conditions are as follows:

(A1) (λmin
n /τmax

n )nT/J
1/2
n → ∞.

(A2) There is a constant c0 > 0, for any r > 0, such that P {Dn(β,γ ) ≥
c0�n(β0,γ 0) and Dn(β,γ ) is nonsingular, for all (βT,γ T)T ∈ ξn(r)} → 1, where
ξn(r) = {(βT,γ T)T :‖{�n(β0,γ 0)}1/2((β − β0)

T, (γ − γ 0)
T)T‖ ≤ (τmax

n )1/2r}.
Conditions (A1) and (A2) are used to ensure the existence and weak consistency

of the solutions in (4). Condition (A2) corresponds to condition (L∗
w) in [33] for

generalized linear models. Conditions (A1) and (C4) imply condition (I∗w) in [33],
which will be proved in the Appendix. Condition (A2) relates to the true and the
working correlation structures Ri and Ri(α). Since the true correlations Ri are of-
ten not completely specified and max1≤i≤n λmax(Ri ) ≤ m(n), then condition (A1)
is implied by

(A1∗) (λmin
n /λmax

n )m−1
(n)nT/J

1/2
n → ∞.

Condition (A1∗) does not contain Ri . Thus, the order requirements of n, m(n)

and Jn depend on the choice of the working correlations Ri (α). For instance, if
the working correlation structures are independent or AR(1) within each subject,
then there exist constants 0 < cR ≤ CR < ∞, such that cR ≤ (λmax

n )−1λmin
n ≤ CR .

Thus, condition (A1∗) is equivalent to m−1
(n)nT/J

1/2
n → ∞. For exchangeable

working correlation structures, there exist constants 0 < C′
R < ∞, such that

max1≤i≤n λmax{Ri(α)} ≤ C′
Rm(n), then (λmax

n )−1λmin
n ≥ c′

Rm−1
(n), for some con-

stant 0 < c′
R < ∞. Condition (A1∗) is implied by m−2

(n)nT/J
1/2
n → ∞.

THEOREM 1. Under conditions (A1) and (A2) or (A1∗) and (A2), as
nT → ∞, there exist sequences of random variables β̂n and γ̂ n, such that
P {gn(β̂n, γ̂ n) = 0} → 1, and ‖β̂n − β0‖ → 0 and ‖γ̂n − γ 0‖ → 0 in probabil-
ity.
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Next we derive the asymptotic properties of β̂n. Let X and Z be the col-
lections of all Xijk’s and Zijl’s, respectively, that is, XnT×d1 = (XT

1 , . . . ,XT
n)T

and ZnT×d2 = (ZT
1 , . . . ,ZT

n)T. Let 	i be the diagonal matrix with the diagonal
elements being the first derivative of μ(·) evaluated at XT

ijβ0 + ∑d2
l=1 θl0(Zijl),

j = 1, . . . ,mi , and Vi = A1/2
i Ri(α)A1/2

i with Ai being the marginal variance
of Yi evaluated at the true parameters and additive functions. To make β es-
timable, we need a condition to ensure X and Z not functionally related, which
is similar to the condition given in [21]. Define the Hilbert space H = {ψ(z) =∑d2

l=1 ψl(zl),Eψl(zl) = 0,‖ψl‖2 < ∞} of theoretically centered L2 additive func-
tions on [0,1]d2 , where ‖ψl‖2 = {∫ 1

0 ψ2
l (zl) dzl}1/2. Let ψ∗

k be the function ψ ∈ H
that minimizes

∑n
i=1 E[{X(k)

i − ψ(Zi )}T	iV
−1
i 	i{X(k)

i − ψ(Zi )}], where X(k)
i =

(Xi1k, . . . ,Ximik)
T,1 ≤ k ≤ d1. Some other assumptions needed are given as fol-

lows.

(A3) Given 1 ≤ k ≤ d1, ψ∗(p−1)

k ∈ C0,1[0,1], for 1 ≤ p ≤ q + 1.

The order requirements of the number of interior knots N and N S in steps I
and II are given in the following assumption:

(A4) (i)
√

(lognT)N S /nT(τmax
n /λmin

n )1/2 = o(1), (N S )−p−1/2n
1/2
T (λmax

n /

λmin
n )(λmax

n /τmin
n )1/2 = O(1), and (ii) (λmax

n /τmin
n )1/2(λmax

n /λmin
n )2(nT/N S )1/2 ×

N−p = o(1), (λmax
n /τmin

n )1/2(λmax
n /λmin

n )2(lognT/N S )1/2 = o(1), (N S
n Nn ×

lognT)1/2n−1
T = o(1).

Since λmin
n ≤ τmin

n ≤ τmax
n ≤ m(n)λ

max
n , condition (A4) is implied by a stronger

condition as below:

(A4∗) (i)
√

(lognT)N S /nTm
1/2
(n) (λ

max
n /λmin

n )1/2 = o(1), (N S )−p−1/2 ×
n

1/2
T (λmax

n /λmin
n )3/2 = O(1), and (ii) (λmax

n /λmin
n )5/2(nT/N S )1/2N−p = o(1),

(λmax
n /λmin

n )5/2(lognT/N S )1/2 = o(1), (N S
n Nn lognT)1/2n−1

T = o(1).

Condition (A3) is weaker than the second part of condition (A5) in [21]. Con-
dition (A4∗) does not depend on the true correlation matrices Ri , which are not
specified. It is clear that the first conditions in (A4) and (A4∗) ensure conditions
(A1) and (A1∗), respectively.

REMARK 1. (A4)(i) lists the order requirements for N S to obtain the
asymptotic results of the oracle estimator in Theorem 3. (A4)(ii) ensures the
uniform oracle efficiency of the two-step spline estimator. It will be shown
in Theorem 4 that the difference between the two-step spline and the or-
acle estimators is of uniform order OP {(λmax

n /λmin
n )2(J

−p
n + √

lognT/nT)}
with OP {(λmax

n /λmin
n )2√lognT/nT} and OP {(λmax

n /λmin
n )2J

−p
n } caused by the

noise and bias terms, respectively, in the first step spline estimation. The in-
verse of the asymptotic standard deviation of the oracle estimator is of order
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O{
√

nT/J S
n (λmax

n /τmin
n )1/2}. The first two conditions of (A4)(ii) ensure that the

difference is asymptotically uniformly negligible. If we let N have the order
n

1/(2p)
T , then the difference is of uniform order OP {(λmax

n /λmin
n )2√lognT/nT}.

Therefore, an undersmoothing procedure is applied in the first step to reduce
the bias. When λmin

n , λmax
n , τmin

n and τmax
n are finite numbers, (A4)(i) becomes√

(lognT)N S /nT = o(1) and (N S )−p−1/2n
1/2
T = O(1). The optimal order of N S

is n
1/(2p+1)
T . Define

X̃ik = X(k)
i − ψ∗

k (Zi), 1 ≤ k ≤ d1, X̃i = (X̃i1, . . . , X̃id1)mi×d1 .

Define �̃n =∑n
i=1 X̃T

i 	iV
−1
i 	iX̃i , �̃n =∑n

i=1 X̃T
i 	iV

−1
i �iV

−1
i 	iX̃, and

�̃n = {
E(�̃n)

}−1
E(�̃n)

{
E(�̃n)

}−1
.(9)

The following result gives the asymptotic distribution and consistency rate of
β̂n for general working covariance matrices.

THEOREM 2. Under conditions (A2)–(A4), as nT → ∞, �̃
−1/2
n (β̂n − β0) →

Normal(0, Id1), and ‖β̂n − β0‖ = Op{n−1/2
T (τmax

n )1/2(λmin
n )−1/2}. If condition

(A4) is replaced by (A4∗), then

‖β̂n − β0‖ = Op

{
n

−1/2
T m

1/2
(n)

(
λmax

n

)1/2(
λmin

n

)−1/2}
.

REMARK 2. It is easy to show that the covariance �̃n in (9) is minimized when
the working covariance matrices are equal to the true covariance matrices such that
Vi = �i for all 1 ≤ i ≤ n, and in this case equal to {E(�̃n)}−1. To construct the
confidence sets for β , �̃n is consistently estimated by �̂n = �̂−1

n �̂n�̂
−1
n , where

�̂n = ∑n
i=1 X̂T

i 	iV
−1
i 	iX̂i , �̂n = ∑n

i=1 X̂T
i 	iV

−1
i �̂iV

−1
i 	iX̂i , and X̂i = Xi −

ProjG∗
n

Xi , i = 1, . . . , n, in which ProjG∗
n

is the projection onto the empirically

centered spline inner product space and �̂i is a consistent estimator of �i .

For 1 ≤ l ≤ d2, let γ S
l,0 = (γsl,0)

J S
n

s=1, with γsl,0 defined in the same fashion as
given in (8), and θ−l0 = {θl′0(·), 1 ≤ l′ ≤ d2, l

′ �= l}. Define

D∗
n,l

(
γ S

l

)= {−∂g∗
n,l

(
γ S

l

)
/∂
(
γ S

l

)T}
J S
n ×J S

n
,

�∗
n,l

(
γ S

l,0
)=

{
n∑

i=1

(
BS

i·l
)T

	i

(
β0, θ−l0,γ

S
l,0
)
V−1

i

(
β0, θ−l0,γ

S
l,0
)

× 	i

(
β0, θ−l0,γ

S
l,0
)
BS

i·l

}
J S
n ×J S

n

.

In order to ensure the existence and uniformly weak convergence of the oracle
estimator θ̂ S

n,l(zl,β0, θ−l0), we need the following conditions:
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(A5) For 1 ≤ l ≤ d2, there is a constant cl > 0, for any r > 0, such that
P {D∗

n,l(γ
S
l ) ≥ cl�

∗
n,l(γ

S
l,0) and D∗

n,l(γ
S
l ) is nonsingular, for all γ S

l ∈ ξn(r)} → 1,
where ξn(r) = {γ S

l :‖{�∗
n,l(γ

S
l,0)}1/2(γ S

l − γ S
l,0)‖ ≤ (τmax

n )1/2r}.
For 1 ≤ l ≤ d2, define �∗

n,l = {E(�∗
n,l)}−1E(�∗

n,l){E(�∗
n,l)}−1, where

�∗
n,l =

n∑
i=1

(
BS

i·l
)T

	iV
−1
i �iV

−1
i 	iBS

i·l , �∗
n,l =

n∑
i=1

(
BS

i·l
)T

	iV
−1
i 	iBS

i·l .

THEOREM 3. Let θ∗
l0(zl) = E{θ̂ S

n,l(zl,β0, θ−l0)|X , Z}. Under conditions
(A3), (A4)(i) and (A5), for 1 ≤ l ≤ d2 and zl ∈ [0,1], as nT → ∞,(

BS
l (zl)

T�∗
n,lB

S
l (zl)

)−1/2{
θ̂ S
n,l(zl,β0, θ−l0) − θ∗

l0(zl)
}−→ N(0,1),

sup
zl∈[0,1]

∣∣θ̂ S
n,l(zl,β0, θ−l0) − θ∗

l0(zl)
∣∣= OP

{√
(lognT)J S

n /nT
(
τmax
n /λmin

n

)1/2
}
,

(10)
sup

zl∈[0,1]
∣∣θ∗

l0(zl) − θl0(zl)
∣∣= OP

{(
λmax

n /λmin
n

)(
J S

n

)−p}
,

and there are constants 0 < cl,� ≤ Cl,� < ∞, such that for all zl ∈ [0,1],{
BS

l (zl)
T�∗

n,lB
S
l (zl)

}1/2 ≥ cl,�

√
J S

n /nT
(
τmin
n /λmax

n

)1/2
,

(11) {
BS

l (zl)
T�∗

n,lB
S
l (zl)

}1/2 ≤ Cl,�

√
J S

n /nT
(
τmax
n /λmin

n

)1/2
.

Replacing (A4)(i) by (A4∗)(i), one has supzl∈[0,1] |θ̂ S
n,l(zl,β0, θ−l0) − θ∗

l0(zl)| =
OP {

√
(lognT)J S

n m(n)/nT(λmax
n /λmin

n )1/2}.

REMARK 3. Pointwise confidence intervals for θl0(zl) can be constructed
based on the results in Theorem 3. By (10) and (11), the bias term in (10) is asymp-
totically uniformly negligible through undersmoothing if (N S )−p−1/2n

1/2
T (λmax

n /

λmin
n )(λmax

n /τmin
n )1/2 = o(1). Thus, N S is of the form [(λmax

n /λmin
n )2(λmax

n /τmin
n ) ×

nT]1/(2p+1)N∗, where the sequence N∗ satisfies N∗ → ∞ and n−τ
T N∗ → 0 for any

τ > 0. Under (A4∗)(i), N S is of the form [(λmax
n /λmin

n )3nT]1/(2p+1)N∗.
Theorem 3 presents asymptotic normality and uniform convergence rate of the

oracle estimator θ̂ S
n,l(zl,β0, θ−l0). The oracle estimator achieves the convergence

rate of univariate spline regression function estimation. References [35] and [13]
studied asymptotic normality of spline estimators for nonparametric regression
functions with i.i.d. data. Reference [14] established the asymptotic distribution
for the univariate spline estimator in partially linear models for clustered data with
m(n) < ∞. Reference [13] discussed the difficulty of obtaining asymptotic normal-
ity of spline estimators for additive models. Reference [21] studied convergence
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rate of the one-step additive spline estimator for clustered data with m(n) < ∞, but
it lacks the limiting distribution. The next theorem will present the uniform conver-
gence rate of the two-step spline estimator θ̂ S

n,l(zl, β̂, θ̂n,−l) to the oracle estimator
θ̂ S
n,l(zl,β0, θ−l0), and establish the asymptotic normality of θ̂ S

n,l(zl, β̂, θ̂n,−l).

THEOREM 4. Under conditions (A2)–(A5), for 1 ≤ l ≤ d2,

sup
zl∈[0,1]

∣∣θ̂ S
n,l(zl, β̂, θ̂n,−l) − θ̂ S

n,l(zl,β0, θ−l0)
∣∣

= Op

{(
λmax

n /λmin
n

)2(√lognT/nT + J−p
n

)}
(12)

= op

{(
J S

n /nT
)1/2(

τmin
n /λmax

n

)1/2}
and replacing (A4) by (A4∗),

sup
zl∈[0,1]

∣∣θ̂ S
n,l(zl, β̂, θ̂n,−l) − θ̂ S

n,l(zl,β0, θ−l0)
∣∣

= op

{(
J S

n /nT
)1/2(

λmin
n /λmax

n

)1/2}
.

Hence, for 1 ≤ l ≤ d2 and zl ∈ [0,1], as nT → ∞,(
BS

l (zl)
T�∗

n,lB
S
l (zl)

)−1/2{
θ̂ S
n,l(zl, β̂, θ̂n,−l) − θ∗

l0(zl)
}−→ N(0,1).

REMARK 4. Similarly as �̃n in (9), �∗
n,l is minimized when Vi = �i for

all 1 ≤ i ≤ n, and in this case is equal to {E(�∗
n,l)}−1. To construct a point-

wise confidence interval for θl0(zl) at zl ∈ [0,1], �∗
n,l is consistently estimated

by �̂∗
n,l = �̂∗−1

n,l �̂∗
n,l�̂

∗−1
n,l , where �̂∗

n,l = ∑n
i=1(B

S
i·l)T	iV

−1
i 	iBS

i·l and �̂∗
n,l =∑n

i=1(B
S
i·l)T	iV

−1
i �̂iV

−1
i 	iBS

i·l . Then under the assumption given in Remark 3,
for any α ∈ (0,1), an asymptotic 100(1 − α)% pointwise confidence interval for
θl0(zl) is

θ̂ S
n,l(zl, β̂, θ̂n,−l) ± zα/2

(
BS

l (zl)
T�∗

n,lB
S
l (zl)

)1/2
.(13)

REMARK 5. By letting N have order n
1/(2p)
T , the difference in (12) is of uni-

form order OP {(λmax
n /λmin

n )2√lognT/nT}. So undersmoothing is applied to re-
duce the approximation error caused by the bias in the first step.

4. Simulation. In this section we conduct simulations to illustrate the finite-
sample behavior of the proposed GEE estimators for both normal and binary
responses. For each procedure, we consider three different working correla-
tion structures: independence (IND), exchangeable (EX) and first order auto-
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correlation (AR(1)). For notation simplicity, denote the two-step spline estima-
tor θ̂ S

n,l(zl, β̂n, θ̂n,−l) defined in (7) as θ̂ S S
n,l (zl) = BS

l (zl)
Tγ̂ S S

n,l , and the oracle

estimator θ̂ S
n,l(zl,β, θ−l) in (5) as θ̂OR

n,l (zl) = BS
l (zl)

Tγ̂ OR
n,l . In the first step, the

pilot estimators are obtained by an undersmoothed spline procedure to reduce
bias. By the order requirements of the number of interior knots, we select a rel-
atively large N by letting N = [2n

1/(2p)
T ], where [a] denotes the nearest integer

to a. In the second step, N S is selected from the interval IN S = [[an], [5an]],
an = (nT lognT)1/(2p+1), minimizing the BIC criterion

BIC
(
N S)= log

{
2Q∗

n,l

(
γ̂ S

n,l

)
/n
}+ J S

n log(n)/n,(14)

where Q∗
n,l(γ̂

S
n,l) = 2−1∑n

i=1(Yi − μ̂
i
)TV−1

i (β̂n, θ̂n,−l , γ̂
S
n,l)(Yi − μ̂

i
) with μ̂

i
=

μ(Xi β̂n + ∑d2
l′=1,l′ �=l θ̂n,l′(Zil′) + (BS

i·l)Tγ̂ S
n,l). The optimal number of interior

knots N S is chosen as N̂ S = arg minN S ∈I
N S BIC(N S ). We use cubic B-splines

(q = 3) to estimate the additive nonparametric functions. We generate nsim = 500
replications for each simulation study.

Given 1 ≤ l ≤ d2, to compare the performance of the two-step estimator θ̂ S S
n,l (zl)

with the pilot spline estimator θ̂n,l(zl) and the oracle estimator θ̂OR
n,l (zl), we de-

fine the mean integrated squared error (MISE) for θ̂ S S
n,l (zl) as MISE(θ̂ S S

n,l ) =
1

nsim
∑nsim

α=1 ISE(θ̂ S S
n,l,α), where ISE(θ̂ S S

n,l,α) = n−1
T

∑n
i=1

∑mi

j=1(θ̂
S S
n,l,α(Zijl,α) −

θl(Zijl,α))2, and θ̂ S S
n,l,α is the estimator of θl and Zijl,α is the observation

of Zijl in the αth sample. The MISEs for θ̂n,l(zl) and θ̂OR
n,l (zl) denoted as

MISE(θ̂n,l) and MISE(θ̂OR
n,l ) are defined in the same way. The empirical rela-

tive efficiency for the two-step estimator in the αth sample is defined as effl,α =
{ISE(θ̂ S S

n,l,α)/ ISE(θ̂OR
n,l,α)}1/2. To construct confidence intervals for coefficient pa-

rameters (β0,0, . . . , β0,(d1−1)) by using the first result in Theorem 2 and to con-
struct pointwise confidence intervals for the lth nonparametric function θl0(zl)

given in (13), the true correlation matrix R is consistently estimated by

R̂ = n−1
n∑

i=1

A−1/2
i (β̂n, γ̂ n)

[
Yi − μ

{
η̃

i
(β̂n, γ̂ n)

}]
× [

Yi − μ
{
η̃

i
(β̂n, γ̂ n)

}]TA−1/2
i (β̂n, γ̂ n).

And the covariance matrix �i is estimated by �̂i = A1/2
i R̂A1/2

i . Let β0 =
(β0,k)

(d1−1)
k=0 and β̂n = (β̂n,k)

(d1−1)
k=0 . For evaluating estimation accuracy of each co-

efficient parameter, we report the root mean squared error (RMSE) defined as
{∑nsim

α=1(β̂α
n,k − β0,k)

2/nsim}1/2, for 0 ≤ k ≤ d1 − 1, where β̂α
n,k is the estimate

of β0,k obtained from the αth sample.
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EXAMPLE 1 (Continuous response). The correlated normal responses are gen-
erated from the model Yij = XT

ijβ + θ1(Zij1) + θ2(Zij2) + θ3(Zij3) + εij , where

β = (1,−1,0.5), Xij = (Xij,1,Xij,2,Xij,3)
T, θl(Zl) = sin(2πZl), 1 ≤ l ≤ 3. For

the covariates, let Zijl = �(Z∗
ij l), 1 ≤ l ≤ 3, with Z∗

ij = (Z∗
ij1,Z

∗
ij2,Z

∗
ij3)

T gener-
ated from the multivariate normal distribution with mean 0 and an AR(1) covari-
ance with marginal variance 1 and autocorrelation coefficient 0.5, Xij,1 = ±1/2
with probability 1/2, and (Xij,2,Xij,3)

T ∼ N[(0,0)T,diag(a(Zij1), a(Zij2))] with
a(z) = 5−0.5 sin(2πz)

5+0.5 sin(2πz)
. The error term εi = (εi1, . . . , εimi

)T is generated from the
multivariate normal distribution with mean 0, marginal variance 1 and an ex-
changeable correlation matrix with parameter ρ = 0.5. We let n = 250 and cluster
size mi = m = 20,50,100, respectively. For computational simplicity, we choose
the same cluster size for each subject. The computational algorithm can be easily
extended to the case with varying cluster sizes. Table 1 lists the empirical coverage
rates of the 95% confidence intervals of the estimators (β̂n,k)

3
k=1 for coefficients

(β0,k)
3
k=1, the RMSE and the absolute value of the empirical bias denoted as Bias

for IND, EX and AR(1) and m = 20,50,100.
The empirical coverage rates are close to the nominal coverage probabilities

95% for all cases. The results are confirmative to Theorem 2. EX has the smallest
RMSE, since it is the true correlation structure, which leads to the most efficient
estimators (Remark 2). The RMSEs decrease as cluster size increases for all three
working correlation structures. The last three columns show that the empirical bi-
ases are close to zero for all cases.

Table 2 shows the MISE(×10−3) for the two-step spline estimator θ̂ S S
n,l (·), the

pilot estimator θ̂n,l(·) and the oracle estimator θ̂OR
n,l (·), l = 1,2,3, for IND, EX and

TABLE 1
The empirical coverage rates of the 95% confidence intervals for (β0,k)

3
k=1, the RMSE and Bias for

the IND, EX and AR(1) working correlation structures with m = 20,50,100

Coverage frequency RMSE Bias

m β0,1 β0,2 β0,3 β0,1 β0,2 β0,3 β0,1 β0,2 β0,3

20 IND 0.948 0.956 0.950 0.0279 0.0137 0.0137 0.0050 0.0002 0.0008
EX 0.954 0.950 0.948 0.0196 0.0098 0.0108 0.0018 0.0000 0.0006

AR(1) 0.936 0.954 0.956 0.0260 0.0123 0.0121 0.0026 0.0003 0.0011

50 IND 0.948 0.952 0.948 0.0177 0.0092 0.0091 0.0006 0.0001 0.0009
EX 0.946 0.950 0.948 0.0126 0.0063 0.0066 0.0002 0.0001 0.0002

AR(1) 0.944 0.956 0.948 0.0157 0.0079 0.0081 0.0003 0.0002 0.0003

100 IND 0.948 0.956 0.958 0.0126 0.0063 0.0064 0.0001 0.0003 0.0002
EX 0.950 0.954 0.948 0.0084 0.0044 0.0045 0.0001 0.0002 0.0001

AR(1) 0.946 0.954 0.956 0.0111 0.0056 0.0055 0.0001 0.0004 0.0001
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TABLE 2
The MISE(×10−3) for θ̂ S S

n,l (·), θ̂n,l (·) and θ̂OR
n,l (·), l = 1,2,3, for the IND, EX and AR(1) working

correlation structures with m = 20,50,100

m ̂θSS
n,1

̂θn,1
̂θOR
n,1

̂θSS
n,2

̂θn,2
̂θOR
n,2

̂θSS
n,3

̂θn,3
̂θOR
n,3

20 IND 1.678 2.231 1.588 1.659 2.278 1.517 1.516 2.118 1.448
EX 0.883 1.228 0.836 0.943 1.232 0.848 0.849 1.167 0.811

AR(1) 1.249 1.710 1.186 1.324 1.790 1.205 1.252 1.713 1.182

50 IND 0.633 0.862 0.601 0.677 0.927 0.608 0.631 0.881 0.601
EX 0.342 0.463 0.328 0.348 0.475 0.321 0.353 0.465 0.335

AR(1) 0.473 0.664 0.459 0.513 0.690 0.478 0.486 0.679 0.464

100 IND 0.319 0.440 0.306 0.346 0.461 0.317 0.315 0.436 0.299
EX 0.173 0.234 0.166 0.176 0.237 0.162 0.172 0.227 0.164

AR(1) 0.247 0.333 0.235 0.252 0.348 0.230 0.244 0.338 0.232

AR(1) structures and cluster size m = 20,50,100. θ̂ S S
n,l (·) and θ̂OR

n,l (·) have similar
MISE values, while θ̂n,l(·) has the largest MISE value. The EX structure has the
smallest MISEs, and the MISEs decrease as the cluster size increases.

We plotted the kernel density estimates in Figure 1 of 500 empirical efficiencies
effl,α for the estimators of the first function θ1(·) for IND (dashed lines), EX (thick
lines) and AR(1) (thin lines) structures with m = 20,50 and n = 250. The vertical
line at efficiency = 1 is the standard line for the comparison of the two-step estima-
tor (7) and the oracle estimator (5). The centers of density distributions are close
to 1 for all working correlation structures, and EX has the narrowest distribution.

FIG. 1. Kernel density plots of the 500 empirical efficiencies of the two-step estimator to the oracle
estimator of the first function θ1(·) for the IND (dashed lines), EX (thick lines) and AR(1) (thin lines)
working correlation structures with m = 20,50.
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EXAMPLE 2 (Binary response). The correlated binary responses {Yij } are gen-
erated from a marginal logit model

logitP(Yij = 1|Xij ,Zij ) = XT
ijβ + θ1(Zij1) + θ2(Zij2),

where β = (0.5,−0.3,0.3), Xij = (1,Xij,1,Xij,2)
T, θ1(Z1) = 0.5 × sin(2πZ1),

and θ2(Z2) = −0.5 × {Z2 − 0.5 + sin(2πZ2)}. For the covariates, we generate
Xijk and Zijl independently from standard normal and uniform distributions, re-
spectively, such that Xijk ∼ N(0,1) and Zijl ∼ Uniform[0,1]. We use the R pack-
age “mvtBinaryEP” to generate the correlated binary responses with exchangeable
correlation structure with a correlation parameter of 0.1 within each cluster. We
let the number of clusters be n = 100,200,500, respectively, and let the cluster
size be equal and increase with n, such that m(n) = mi = �2n1/2�, for 1 ≤ i ≤ n,
where �a� denotes the largest integer no greater than a. So m = 20,28,44 for
n = 100,200,500, respectively. Table 3 shows the empirical coverage rates of the
95% confidence intervals of the estimators (β̂n,k)

2
k=0 for the coefficients (β0,k)

2
k=0

and the RMSEs for IND, EX and AR(1) and n = 100,200,500. Table 4 shows that
the empirical coverage rates are close to the nominal coverage probabilities 95%
for all cases. EX has the smallest RMSE values, and the RMSEs decrease as n

increases.
Table 4 shows the MISE for the two-step spline estimator θ̂ S S

n,l (·), the pilot esti-

mator θ̂n,l(·) and the oracle estimator θ̂OR
n,l (·), l = 1,2, for the IND, EX and AR(1)

structures and n = 100,200,500. The MISE values for θ̂ S S
n,l (·) and θ̂OR

n,l (·) are close
and θ̂n,l(·) has the largest MISE values. EX has the smallest MISEs among the
three working correlation structures, and the MISEs decrease as n increases.

TABLE 3
The empirical coverage rates of the 95% confidence intervals for (β0,k)

2
k=0 and the estimated MSE

for the IND, EX and AR(1) working correlation structures with n = 100,200,500

Coverage frequency RMSE

β0,0 β0,1 β0,2 β0,0 β0,1 β0,2

n = 100,m = 20 IND 0.960 0.946 0.940 0.0821 0.0549 0.0506
EX 0.940 0.946 0.946 0.0763 0.0469 0.0454

AR(1) 0.966 0.930 0.940 0.0773 0.0540 0.0488

n = 200,m = 28 IND 0.944 0.946 0.940 0.0559 0.0299 0.0328
EX 0.948 0.952 0.942 0.0554 0.0289 0.0310

AR(1) 0.940 0.950 0.940 0.0556 0.0291 0.0325

n = 500,m = 44 IND 0.952 0.946 0.942 0.0340 0.0157 0.0154
EX 0.948 0.952 0.946 0.0336 0.0136 0.0142

AR(1) 0.952 0.952 0.942 0.0340 0.0153 0.0153
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TABLE 4
The MISE for θ̂ S S

n,l (·), θ̂n,l (·) and θ̂OR
n,l (·), l = 1,2, for the IND, EX and AR(1) working correlation

structures with n = 100,200,500

n ̂θSS
n,1

̂θn,1
̂θOR
n,1

̂θSS
n,2

̂θn,2
̂θOR
n,2

100 IND 0.0172 0.0243 0.0174 0.0158 0.0222 0.0159
EX 0.0148 0.0223 0.0148 0.0139 0.0204 0.0137

AR(1) 0.0178 0.0265 0.0176 0.0161 0.0234 0.0163

200 IND 0.0059 0.0086 0.0059 0.0056 0.0082 0.0056
EX 0.0048 0.0069 0.0048 0.0054 0.0075 0.0053

AR(1) 0.0058 0.0085 0.0058 0.0056 0.0081 0.0056

500 IND 0.0015 0.0022 0.0015 0.0015 0.0021 0.0015
EX 0.0013 0.0019 0.0013 0.0014 0.0019 0.0013

AR(1) 0.0015 0.0022 0.0015 0.0015 0.0020 0.0014

For visualization of the actual function estimates, in Figure 2 we plotted the ora-
cle estimator given in (5) (dashed curve), the two-step estimator given in (7) (thick
curve) and the 95% pointwise confidence intervals constructed in (13) (upper and
lower curves) of θ1(·) (thin curve) for n = 200 based on one simulated sample.
The proposed two-step estimator seems satisfactory.

5. Application. In this section we apply the proposed estimation procedure
to analyze unemployment-economic growth and employment relationship at the
U.S. state level for the 1970–1986 period. Reference [2] has first studied the
effect of economic growth on unemployment rate by establishing a paramet-

FIG. 2. Plots of oracle estimator (dashed curve), the two-step estimator (thick curve) and the 95%
pointwise confidence intervals (upper and lower curves) of θ1(·) (thin curve) for n = 200.
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ric unemployment-growth model. They concluded that relatively high economic
growth is more likely to show reduced unemployment rates when compared to
states in which the economy is growing more slowly by obtaining a negative co-
efficient for growth. Reference [27] demonstrated a strong negative correlation
between the change of unemployment rate and employment. We restudy their rela-
tionship by considering possible nonlinear relations of the unemployment rate with
economic growth and time. The economic growth rate is calculated from the loga-
rithm difference of the gross state product (GSP). The data for the unemployment
rate, gross state product and employment are available for the U.S. 48 contiguous
states over the period 1970–1986. Details on this data set can be found in [24]. The
number of time periods for each state in estimation is m = 16, since the year 1970
is taken as the initial observation. We consider the following GAPLM:

Uij = β0 + β1Eij + θ1(Tij ) + θ2(Gij ) + εij , j = 2, . . . ,17, i = 1, . . . ,48,

where Uij is the change in the unemployment rate for the j th year in the ith state,
Eij is the empirically centered value of the relative change in employment, Gij is
the GSP growth, and Tij is time. θ1(·) and θ2(·) are nonparametric functions of
time and GSP growth, respectively.

To test whether θl(·), l = 1,2, has a specific parametric form, we construct si-
multaneous confidence bands according to Theorem 2 of [28]. For any α ∈ (0,1),
an asymptotic 100(1 − α)% conservative confidence band for θl0(zl) over the do-
main of zl is given as

θ̂ S
n,l(zl, β̂, θ̂n,−l) ± {

2 log
(
Ns + 1

)− 2 logα
}1/2(BS

l (zl)
T�∗

n,lB
S
l (zl)

)1/2

with θ̂ S
n,l obtained by linear splines with degree q = 1. We use linear splines in

both steps of estimation.
We use three working correlation structures to analyze this data set, including

the working independence Ri(α) = Im, where Im is an m × m identity matrix, the
exchangeable Ri (α) = α × 1m1T

m + (1 − α)Im, where 1m is the m-dimensional
vector with 1’s, and the AR(1) Ri(α) = (Rijj ′)mj,j ′=1 with Rijj ′ = α|j−j ′|. The pa-
rameter α is estimated by the R package geepack from the first spline estimation
step. We obtain the estimated values for α which are α̂ = 0.088 for the EX structure
and α̂ = −0.199 for the AR(1) structure, respectively. Table 5 shows the estimated
values β̂0 and β̂1 of β0 and β1 and the corresponding standard errors SE(β̂0) and
SE(β̂1) for the three working correlation structures. The estimation results are very
similar for the three structures. The negative values of β̂1 imply a negative relation-
ship between Uij and Eij , confirmative to the result in [27]. Both of the estimators
are significant with p-values close to 0 for the three different working correlation
structures. The correlation coefficient r = 0.785, 0.822 and 0.762 for the IND, EX
and AR(1) structures, respectively.



2960 S. MA

TABLE 5
The estimated values β̂0 and β̂1 of β0 and β1 and the standard
errors SE(β̂0) and SE(β̂1) for the IND, EX and AR(1) working

correlation structures

̂β0 SE(̂β0) ̂β1 SE(̂β1)

IND 0.127 0.0417 −0.219 0.0230
EX 0.127 0.0494 −0.249 0.0220
AR(1) 0.127 0.0484 −0.250 0.0216

Figure 3 displays the two-step spline estimators θ̂ S S
n,1 (·) (dashed lines) and

θ̂ S S
n,2 (·) (dashed lines) of θ1(·) and θ2(·) and the corresponding 95% pointwise con-

fidence intervals (thin lines) and simultaneous confidence bands (thick lines) for
the three working structures. Figure 3 shows that the change patterns of Uij with
Tij and Gij are very similar for the three working structures. In the upper panel
of Figure 3, we can observe a declining trend for θ̂ S S

n,1 (·) in general. The values of
θ̂ S S
n,1 (·) were all positive before the year 1976, which means that the unemployment

rate was increasing with time during that period. The increasing unemployment
rate was caused by a severe economic recession that happened in the years 1973–
1975. A local peak of θ̂ S S

n,1 (·) is observed around 1980, when another recession
happened.

In order to test the linearity of the nonparametric function θ2, we plotted straight
solid lines in the lower panel of Figure 3, which are the regression lines obtained by
solving the GEE in (6) by assuming that θ1(·) is a linear function of GSP growth.
All the three plots in the lower panel of Figure 3 show that the confidence bands
with 95% confidence level do not totally cover the straight regression lines, that is,
the linearity of the component function for GSP growth is rejected at the signifi-
cance level 0.05. The lower panel of Figure 3 indicates a general negative relation
between the GSP growth and the change in unemployment rate.

6. Discussion. In this paper we propose a two-step spline estimating equa-
tions procedure for generalized additive partially linear models with large clus-
ter sizes. We develop asymptotic distributions and consistency properties for the
two-step estimators of the additive functions and the one-step estimator of the
parametric vector. We establish the oracle properties of the two-step estimators.
Because the two-step estimator is a mixture of two different spline bases, and an
infinite number of observations within clusters are correlated in complex ways,
we encountered challenging tasks when developing the theories. We demonstrate
our proposed method by two simulated examples and one real data example. Our
proposed method can be extended to generalized additive models and generalized
additive coefficient models, and it provides a useful tool for studying clustered
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FIG. 3. Plots of the two-step spline estimated functions (dashed line), the 95% pointwise confidence intervals (thin lines) and the 95% confidence bands
(thick lines) for θ1(·) (upper panel) and θ2(·) (lower panel), and the GEE estimator of θ2(·) by assuming linearity (straight solid line).
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data. The theoretical development in this paper helps us further investigate semi-
parametric models with clustered data. In the real data example, we constructed
confidence bands to test the linearity of the nonparametric function. To establish
confidence bands with rigorous theoretical proofs will be our future work.

In this paper we focus on the two-step spline estimation procedure, which is
computationally expedient and theoretically reliable. As mentioned in Section 2,
that kernel smoothing method can be applied to the second step. Let Kh(·) be a ker-
nel weight function, where Kh(z) = h−1K(z/h) with bandwidth h. Let G1(zl) =
(1, zl)

T. If we use local linear kernel estimation, then by assuming that β and θ−l

are known, θl(·) is estimated by the oracle estimator θ̂OR
l (Zl) = G1(Zl − zl)

Tγ̂ OR
l

at any given point zl , where γ̂ OR
l = (γ̂ OR

l0 , γ̂ OR
l1 )T with γ̂ OR

l solving the kernel es-
timating equations

n∑
i=1

Gi1(zl)
T	i

(
β, θ−l , γ̂

OR
l

)
V−1

i

(
β, θ−l , γ̂

OR
l

)
Kih(zl)

×
{

Yi − μ

(
Xiβ +

d2∑
l′=1,l′ �=l

θl′(Zil′) + Gi1(zl)γ̂
OR
l

)}
= 0,

where Kih(zl) = diag{Kh(Zijl − zl)} and Gi1(zl) = {G1(Zi1l − zl), . . . ,

G1(Zimil − zl)}T. Then θl(zl) is estimated by θ̂OR
l (zl) = γ̂ OR

l0 . The two-step spline
backfitted kernel (SBK) estimator θ̂SBK

l (zl) is obtained by replacing β and θ−l

with the pilot estimators β̂n and θ̂n,−l from step I. The asymptotic normality of
the oracle estimator θ̂OR

l (zl) which is a pure local linear kernel estimator of θl(zl)

by GEE can be obtained following the same idea in the proofs for Theorem 3 and
the results in [16] for kernel estimators using GEE. The uniform oracle efficiency
of the SBK estimator θ̂SBK

l (zl) is achievable by following the same procedure as
the proofs for Theorem 4 and by studying the properties of spline-kernel combi-
nation. See [20, 29] and [22] for the oracle properties of the SBK estimators in
additive models, additive coefficient models and additive partially linear models
with weekly-dependent data and a continuous response variable. The asymptotic
distributions and the oracle properties of the SBK estimators for GAPLMs with
large cluster sizes still need us to explore as future work.

APPENDIX

We denote by the same letters c,C, any positive constants without distinction.
For any s × s ′ matrix M, let ‖M‖∞ = max1≤i≤s

∑s′
j=1

|Mij |. For any vector α =
(α1, . . . , αs)

T, denote‖α‖∞ = max1≤i≤s |αi | as the maximum norm. Let Is be the
s × s identity matrix. Let �̂n, �n denote, respectively, the projection onto G0

n

relative to the empirical and the theoretical inner products. For any function φ,
define the empirical norm as ‖φ‖2

nT
= n−1

T
∑n

i=1
∑mi

j=1 φ(Xij ,Zij )
2. For positive

numbers an and bn, let an � bn denote that limn→∞ an/bn = c, where c is some
nonzero constant.
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A.1. Proof of Theorem 1. It can be proved following the similar reasoning as
in [21] that under condition (A1) with nT → ∞, Jn → ∞, and Jnn

−1 = o(1), there
exist constants 0 < c′ < C′ < ∞, such that with probability 1, for nT sufficiently
large,

c′nT ≤ λmin

(
n∑

i=1

BT
i Bi

)
≤ λmax

(
n∑

i=1

BT
i Bi

)
≤ C′nT

and ‖∑n
i=1 XT

i Bi‖∞ = Oa.s.{(nT lognT)1/2}. By these results together with condi-
tion (C4), one has with probability 1,

c′′nT ≤ λmin

(
n∑

i=1

DT
i Di

)
≤ λmax

(
n∑

i=1

DT
i Di

)
≤ C′′nT(15)

for some constants 0 < c′′ < C′′ < ∞. Then by condition (A2),(
τmax
n

)−1
λmin

{
�n(β0,γ 0)

}≥ cc′′(τmax
n

)−1
λmin

n nT → ∞.

Results in Theorem 1 can be proved similarly as Theorems 1 and 2 in [33] with
r = √

2(d1 + d2Jn)/c0ε for any given ε > 0.

A.2. Proof of Theorem 2. By Taylor’s expansion, one has

gn(β̂n, γ̂ n) − gn(β0,γ 0) = −Dn

(
β∗

n,γ
∗
n

)( β̂n − β0
γ̂ n − γ 0

)
,(16)

where β∗
n = t1β̂n + (1− t1)β0, and γ ∗

n = t2γ̂ n + (1− t2)γ 0 for some t1, t2 ∈ (0,1).
Let �i(β,γ ) = 	i(β,γ )V−1

i (β,γ ), for 1 ≤ i ≤ n. Then

Dn

(
β∗

n,γ
∗
n

)= �n(β0,γ 0) + �n,1
(
β∗

n,γ
∗
n

)+ �n,2
(
β∗

n,γ
∗
n

)+ �n,3 + O
(
nTJ−p

n

)
,

where �n,1(β
∗
n,γ

∗
n) = −∑n

i=1 DT
i �̇i(β

∗
n,γ

∗
n)εi ,

�n,2
(
β∗

n,γ
∗
n

)=
n∑

i=1

DT
i �̇i

(
β∗

n,γ
∗
n

)
	i

(
β∗∗

n ,γ ∗∗
n

)
Di

(
β∗

n − β0
γ ∗

n − γ 0

)
,

�n,3 = �n(β0,γ 0) − �n(β
∗
n,γ

∗
n), where �̇i(β

∗
n,γ

∗
n) is the first order deriva-

tive of �i(β,γ ) evaluated at (β∗T
n ,γ ∗T

n )T, which is a mi × mi × (d1 + d2Jn)-
dimensional array, β∗∗

n is between β∗
n and β0, and γ ∗∗

n is between γ ∗
n and γ 0.

By conditions (C3) and (C4) and (15), for any given vector αn ∈ R(d1+d2Jn)

with ‖αn‖ = 1, there exists a constant 0 < c < ∞, such that with proba-
bility approaching 1, αT

n�n(β0,γ 0)αn ≥ cnTλmin
n . By Theorem 1 and (15),

αT
n�n,2(β

∗
n,γ

∗
n)αn = op(λmax

n ). Since E{�n,1(β
∗
n,γ

∗
n)|X , Z} = 0, it can be

proved by Bernstein’s inequality of [1] αT
n�n,1(β

∗
n,γ

∗
n)αn = OP {(nT lognT)1/2}.

By condition (C1), λmax
n = O(τmax

n ) = o(nTλmin
n J

−1/2
n ). Therefore, �n(β0,γ 0)
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dominates �n,1(β
∗
n,γ

∗
n) and �n,2(β

∗
n,γ

∗
n), and by Theorem 1, �n(β0,γ 0) domi-

nates �n,3(β
∗
n,γ

∗
n). Thus, from (16), one has(
β̂n − β0
γ̂ n − γ 0

)
= �n(β0,γ 0)

−1gn(β0,γ 0)
{
1 + op(1)

}
.(17)

Let 	i0 = 	i(β0,γ 0) and Vi0 = Vi (β0,γ 0). To obtain the closed-form ex-
pression of β̂n − β0, we need the following block form of the inverse of∑n

i=1 DT
i 	i0V−1

i0 	i0Di :⎛⎜⎜⎜⎜⎝
n∑

i=1

XT
i 	i0V−1

i0 	i0Xi

n∑
i=1

XT
i 	i0V−1

i0 	i0Bi

n∑
i=1

BT
i 	i0V−1

i0 	i0Xi

n∑
i=1

BT
i 	i0V−1

i0 	i0Bi

⎞⎟⎟⎟⎟⎠
−1

(18)

=
(

HXX HXB
HBX HBB

)−1
=
(

H11 H12

H21 H22

)
,

where H11 = (HXX − HXBH−1
BBHBX)−1, H22 = (HBB − HBXH−1

XXHXB)−1, H12 =
−H11HXBH−1

BB, and H21 = −H22HBXH−1
XX. Consequently, β̂n − β0 = (β̃n,e +

β̃n,μ){1 + op(1)}, in which

β̃n,e = H11

{
n∑

i=1

XT
i 	i0V−1

i0 εi − HXBH−1
BB

n∑
i=1

BT
i 	i0V−1

i0 εi

}
,

β̃n,μ = H11

[
n∑

i=1

XT
i 	i0V−1

i0

{
μ

(
Xiβ0 +

d2∑
l=1

θl0(Zil)

)
− μ(Xiβ0 + Biγ 0)

}

− HXBH−1
BB

n∑
i=1

BT
i 	i0V−1

i0

{
μ

(
Xiβ0 +

d2∑
l=1

θl0(Zil)

)

− μ(Xiβ0 + Biγ 0)

}]
.

LEMMA 1. Under condition (A4), there are constants 0 < cH1 < CH1 < ∞,
such that with probability approaching 1, for nT sufficiently large, cH1(λ

max
n ×

nT)−1Id1 ≤ H11 ≤ CH1(λ
max
n nT)−1Id1 with H11in (18).

PROOF. The proof of Lemma 1 follows the same fashion as the proof of
Lemma A.4 in [21], and is hence omitted. �

LEMMA 2. Under conditions (A2) and (A4), ‖β̃n,μ‖ = OP {(λmax
n /λmin

n ) ×
J

−2p
n }.
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PROOF. Let 	μ(η
i
) = μ(Xiβ0 + ∑d2

l=1 θl0(Zil)) − μ(Xiβ0 + Biγ 0) =
{	μ(ηij )}mi

j=1, then

β̃n,μ = H11

[
n∑

i=1

XT
i 	i0V−1

i0

{
	μ(η

i
)
}− HXBH−1

BB

n∑
i=1

BT
i 	i0V−1

i0

{
	μ(η

i
)
}]

= H11
n∑

i=1

XT
i 	i0V−1

i0

[{
	μ(η

i
)
}− �̂n

{
	μ(η

i
)
}]= nTH11W,

where W = (W1, . . . ,Wd1), with

|Wk| = n−1
T

∣∣∣∣∣
n∑

i=1

(
X(k)

i

)T
	i0V−1

i0

[{
	μ(η

i
)
}− �̂n

{
	μ(η

i
)
}]∣∣∣∣∣

≤ Cλmax
n n−1

T

n∑
i=1

mi∑
j=1

∣∣Xijk

{
	μ(ηij )

}− �̂n

{
	μ(ηij )

}∣∣.
Following similar reasoning as in the proof of Lemma A.5 in [21], it can be proved
that n−1

T
∑n

i=1
∑mi

j=1 |Xijk{	μ(ηij )} − �̂n{	μ(ηij )}| = OP (J
−2p
n ). Therefore,

|Wk| = OP (λmax
n J

−2p
n ). By the above result and Lemma 1, one has ‖β̃n,μ‖ =

OP {(λmin
n )−1λmax

n J
−2p
n }. �

LEMMA 3. Under conditions (A2)–(A4), as nT → ∞, �̃
−1/2
n (β̃n,e) −→

N(0, Id1), where �̃n is defined in (9).

PROOF. Lemma 3 can be proved by using the Linderberg–Feller CLT and
similar techniques for the proofs of Lemmas A.6 and A.7 in [21]. �

LEMMA 4. Under conditions (A2) and (A4), there exist constants 0 < c� ≤
C� < ∞, such that

c�n−1
T
(
λmax

n

)−1
τmin
n Id1 ≤ �̃n ≤ C�n−1

T τmax
n

(
λmin

n

)−1Id1

and ‖β̃n,e‖ = Op{n−1/2
T (τmax

n )1/2(λmin
n )−1/2}.

PROOF. For any vector a ∈ Rd1 with ‖a‖ = 1, one has

aT�̃na ≤ τmax
n aT

{
E

(
n∑

i=1

X̃T
i 	i0V−1

i0 	i0X̃i

)}−1

a ≤ C�n−1
T τmax

n

(
λmin

n

)−1
,

aT�̃na ≥
{
E

(
n∑

i=1

X̃T
i 	i0V−1

i0 	i0X̃i

)}−1

τmin
n ≥ c�n−1

T
(
λmax

n

)−1
τmin
n ,
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and the second result in Lemma 4 follows from Chebyshev’s inequality. �

PROOF OF THEOREM 2. By Lemmas 2 and 4, for any vector a ∈ Rd1 with
‖a‖ = 1, one has

aT�̃−1/2
n β̃n,μa ≤ c

−1/2
� n

1/2
T

(
λmax

n

)1/2(
τmin
n

)−1/2
OP

{(
λmin

n

)−1
λmax

n J−2p
n

}
= OP

{
n

1/2
T J−2p

n

(
λmax

n

)3/2(
λmin

n

)−1(
τmin
n

)−1/2}= op(1).

Therefore, Theorem 2 follows from Lemma 3, the above result and Slutsky’s the-
orem. �

A.3. Proof of Theorem 3. Following the same reasoning as deriving (17), it
can be proved that

γ̂ S
n,l(β0, θ−l0) − γ S

l,0 = �∗
n,l

(
γ S

l,0
)−1g∗

n,l(γ l,0)
(
1 + op(1)

)
(19)

= (
γ̃ S

n,e,l + γ̃ S
n,μ,l

)(
1 + op(1)

)
,

where

γ̃ S
n,e,l = γ̃ S

n,e,l(β0, θ−l0)

= �∗
n,l

(
γ S

l,0
)−1

n∑
i=1

(
BS

i·l
)T

	i

(
β0, θ−l0,γ

S
l,0
)
V−1

i

(
β0, θ−l0,γ

S
l,0
)
εi ,

γ̃ S
n,μ,l = γ̃ S

n,μ,l(β0, θ−l0) = (
γ̃ S
n,μ,sl

)J S
n

s=1

= �∗
n,l

(
γ S

l,0
)−1

n∑
i=1

(
BS

i·l
)T

	i

(
β0, θ−l0,γ

S
l,0
)
V−1

i

(
β0, θ−l0,γ

S
l,0
)

×
{
μ

(
Xiβ0 +∑

l′ �=l

θl′0(Zil′) + θl0(Zil)

)

− μ

(
Xiβ0 +∑

l′ �=l

θl′0(Zil′) + BS
i·lγ S

l,0

)}
.

By the decomposition in (19),

θ̂ S
n,l(zl,β0, θ−l0) − θ∗

l0(zl) = BS
l (zl)

Tγ̃ S
n,e,l

(
1 + op(1)

)
,

θ∗
l0(zl) − θl0(zl) = {

BS
l (zl)

Tγ̃ S
n,μ,l + BS

l (zl)
Tγ S

l,0 − θl0(zl)
}

× (
1 + op(1)

)
.

It can be proved by the Linderberg–Feller CLT that as nT → ∞,(
BS

l (zl)
T�∗

n,lB
S
l (zl)

)−1/2(BS
l (zl)

Tγ̃ S
n,e,l

)−→ N(0,1).
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Following similar reasoning as in the proofs in Lemma 5, it can be proved

sup
1≤s≤J S

n

∣∣γ̃ S
n,μ,sl

∣∣= OP

{(
λmin

n

)−1
λmax

n

(
J S

n

)−p−1/2}
and ∥∥γ̃ S

n,ε,l

∥∥∞ = OP

{
(lognT/nT)1/2(τmax

n

)1/2(
λmin

n

)−1/2}
.

By B-spline properties, supzl∈[0,1] |BS
l (zl)

Tγ̃ S
n,μ,l| = OP {(λmax

n /λmin
n )(J S

n )−p},
and supzl∈[0,1] |BS

l (zl)
Tγ̃ S

n,ε,l| = OP {
√

(lognT)J S
n /nT(τmax

n /λmin
n )1/2}, so

sup
zl∈[0,1]

∣∣θ∗
l0(zl) − θl0(zl)

∣∣ ≤ sup
zl∈[0,1]

∣∣BS
l (zl)

Tγ̃ S
n,μ,l

∣∣
+ sup

zl∈[0,1]
∣∣BS

l (zl)
Tγ S

l,0 − θl0(zl)
∣∣

= OP

{(
λmin

n

)−1
λmax

n

(
J S

n

)−p}
,

supzl∈[0,1] |θ̂ S
n,l(zl,β0, θ−l0) − θ∗

l0(zl)| = OP {
√

(lognT)J S
n /nT(τmax

n /λmin
n )1/2}.

A.4. Proof of Theorem 4.

LEMMA 5. Under conditions (A2)–(A4),

‖γ̂ n − γ 0‖ = OP

{
J 1/2

n n
−1/2
T

(
τmax
n /λmin

n

)1/2 + (
λmax

n /λmin
n

)
J−p

n

}
,

‖γ̂ n − γ 0‖∞ = OP

{
(lognT/nT)1/2(τmax

n /λmin
n

)1/2 + (
λmax

n /λmin
n

)
J−p−1/2

n

}
.

PROOF. From (17) and (18), one obtains γ̂ n −γ 0 = (γ̃ n,e + γ̃ n,μ)(1+op(1)),
where

γ̃ n,e = H22

{
n∑

i=1

BT
i 	i0V−1

i0 εi − HBXH−1
XX

n∑
i=1

XT
i 	i0V−1

i0 εi

}
,

γ̃ n,μ = H22

[
n∑

i=1

BT
i 	i0V−1

i0

{
μ

(
Xiβ0 +

d2∑
l=1

θl0(Zil)

)
− μ(Xiβ0 + Biγ 0)

}

− HBXH−1
XX

n∑
i=1

XT
i 	i0V−1

i0

{
μ

(
Xiβ0 +

d2∑
l=1

θl0(Zil)

)

− μ(Xiβ0 + Biγ 0)

}]
.

It can be proved that there exist constants 0 < cH2 < CH2 < ∞, such that with
probability approaching 1, for nT sufficiently large,

cH2

(
λmax

n

)−1
n−1

T Id1 ≤ H22 ≤ CH2

(
λmin

n

)−1
n−1

T Id1 .
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Letting �̂n,X be the projection on {Xi}ni=1 to the empirical inner product,

γ̃ n,μ = H22
n∑

i=1

BT
i 	i0V−1

i0

[{
	μ(η

i
)
}− �̂n,X

{
	μ(η

i
)
}]= nTH22W,

where W = (W1, . . . ,WJnd2), with

Ws,l = n−1
T

n∑
i=1

(
B(s,l)

i

)T
	i0V−1

i0

[{
	μ(η

i
)
}− �̂n,X

{
	μ(η

i
)
}]

,

B(s,l)
i = [{Bs,l(Zi1l), . . . ,Bs,l(Zimil)}T]. The Cauchy–Schwarz inequality implies

|Ws,l| ≤ Cλmax
n n−1

T

n∑
i=1

mi∑
j=1

∣∣Bs,l(Zijl)
{
	μ(ηij )

}− �̂n,X
{
	μ(ηij )

}∣∣
≤ Cλmax

n ‖Bs,l‖nT

∥∥	μ − �̂n,X(	μ)
∥∥
nT

= OP

(
λmax

n J−p−1/2
n

)
,

thus, ‖γ̃ n,μ‖ = OP {(λmax
n /λmin

n )J
−p
n }, ‖γ̃ n,μ‖∞ = OP {(λmax

n /λmin
n )J

−p−1/2
n }.

For any ω ∈ RJnd2 with ‖ω‖ = 1, it can be proved that Var(ωTγ̃ n,e|X , Z) ≤
OP {n−1

T (τmax
n /λmin

n )}, thus, ωTγ̃ n,e = OP {n−1/2
T (τmax

n /λmin
n )1/2}. Therefore,

‖γ̃ n,e‖ ≤ J
1/2
n |ωTγ̃ n,e| = OP {J 1/2

n n
−1/2
T (τmax

n /λmin
n )1/2}, and by Bernstein’s in-

equality of [1] that ‖γ̃ n,e‖∞ = OP {(lognT/nT)1/2(τmax
n /λmin

n )1/2}. �

LEMMA 6. Under conditions (A2)–(A4),∥∥γ̂ S S
n,l − γ̂ OR

n,l

∥∥∞ = Op

{(
λmax

n /λmin
n

)2(√lognT/
(
J S

n nT
)+ (

J S
n

)−1/2
J−p

n

)}
.

PROOF. Let θ̃−l0 = {θ̃l′0(·), l′ �= l}, where θ̃l′0(·) is defined in (8). Let γ̂ n,−l =
(γ̂n,sl′ : 1 ≤ s ≤ Jn, l

′ �= l)T and γ −l0 = (γsl′,0 : 1 ≤ s ≤ Jn, l
′ �= l)T. By the Tay-

lor expansion, gS
n,l(γ̂

OR
n,l , β̂n, θ̂n,−l)−gS

n,l(γ̂
OR
n,l , β̂n, θ̃−l0) = {∂gS

n,l(γ̂
OR
n,l , β̂n, θ̃−l)/

∂ γ̃ T−l}(γ̂ n,−l − γ −l0), where γ̃ −l = tγ −l0 + (1 − t)γ̂ n,−l for t ∈ (0,1). Let
	̂i = 	i(β̂n, θ̃−l , γ̂

OR
n,l ), V̂i = Vi(β̂n, θ̃−l , γ̂

OR
n,l ), ε̃i = εi − �̂n,X(εi ), 	̃μ(η

i
) =

	μ(η
i
) − �̂n,X{	μ(η

i
)}, Bij,−l = {(BT

ij l′, l
′ �= l)T}(d2−1)Jn×1, Bi,−l = {(Bi1,−l ,

. . . ,Bimi,−l)
T}mi×(d2−1)Jn . Thus, by (6) and the proofs for Lemma 5, with proba-

bility approaching 1, there are constants 0 < C1,C2 < ∞ such that∥∥gS
n,l

(
γ̂ OR

n,l , β̂n, θ̂n,−l

)− gS
n,l

(
γ̂ OR

n,l , β̂n, θ̃−l0
)∥∥∞

≤ C1
(
λmin

n

)−1
n−1

T

×
∥∥∥∥∥
(

n∑
i=1

(
BS

i·l
)T

	̂iV̂
−1
i Bi,−l

){
n∑

i=1

BT
i,−l	i0V−1

i0

(̃
εi + 	̃μ(η

i
)
)}∥∥∥∥∥∞

≤ C2
(
λmin

n

)−1(‖ζ1‖∞ + ‖ζ2‖∞
)
,
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where ζ1 = n−1
T {∑n

i=1(B
S
i·l)T	i0V−1

i0 Bi,−l}{∑n
i=1 BT

i,−l	i0V−1
i0 (	̃μ(η

i
))}, ζ2 =

n−1
T {∑n

i=1(B
S
i·l)T	i0V−1

i0 Bi,−l}(∑n
i=1 BT

i,−l	i0V−1
i0 ε̃i ), and then ‖ζ1‖∞ ≤

(λmax
n )2‖ζ3‖∞O(J

−p
n ), where ζ3 = 	1 +	2 +	3, 	1 = (δ1s)

J S
n

s=1, 	2 = (δ2s)
J S
n

s=1

and 	3 = (δ3s)
J S
n

s=1 with δ1s = n−1
T

∑n
i=1 δ1s,i , δ2s = n−1

T
∑n

i=1 δ2s,i and δ3s =
n−1

T
∑n

i=1 δ3s,i ,

δ1s,i =
mi∑

j=1

d2∑
l′=1,l′ �=l

Jn∑
s′=1

∣∣BS
s,l(Zijl)

∣∣∣∣Bs′,l′(Zijl′)
∣∣2,

δ2s,i =
mi∑

j=1

∑
j ′�=j

∑
l′ �=l

Jn∑
s′=1

∣∣BS
s,l(Zijl)

∣∣∣∣Bs′,l′(Zijl′)
∣∣∣∣Bs′,l′(Zij ′l′)

∣∣,
δ3s,i =

mi∑
j=1

∑
i′ �=i

∑
j ′

∑
l′ �=l

Jn∑
s′=1

∣∣BS
s,l(Zijl)

∣∣∣∣Bs′,l′(Zijl′)
∣∣∣∣Bs′,l′(Zi′j ′l′)

∣∣.
Let δ∗

1s,i = δ1s,i − E(δ1s,i). It can be proved by B-spline properties that E(δ1s,i) �
miJn/

√
J S

n , E(δ∗
1s,i) = 0, E(δ∗

1s,i)
2 � miJ

2
n + m2

i J
2
n (J S

n )−1, and E(|δ∗
1s,i |k) ≤

C{miJ
k
n (J S

n )k/2−1 + m2
i J

k
n (J S

n )k/2−2} for k ≥ 3 and some constant C > 0. Thus,
E(|δ∗

1s,i |k) ≤ (C′(J S
n )1/2Jn)

k−2k!E(δ2
1s,ij l′s′) with C′ = C1/(k−2). By Bernstein’s

inequality in [1],

P

(∣∣∣∣∣
n∑

i=1

δ1s,i

∣∣∣∣∣≥ t

)
≤ 2 exp

{
− t2

4
∑n

i=1 E(δ∗
1s,i)

2 + 2C′(J S
n )1/2Jnt

}
.

Let t = c{{nTJ 2
n + (

∑n
i=1 m2

i )J
2
n (J S

n )−1} lognT}1/2 for a large constant 0 < c <

∞. There is a constant 0 < c′ < ∞ such that E(δ∗
1s,i)

2 ≤ c′{miJ
2
n +m2

i J
2
n (J S

n )−1}.
For J S

n = O((lognT)−1n
1/2
T m

1/2
(n) ), one has P(|∑n

i=1 δ1s,i | ≥ t) ≤ 2n
−c2/(4c′)
T . By

the Borel–Cantelli lemma,

max
1≤s≤J S

n

∣∣δ1s − E(δ1s)
∣∣= Oa.s.

{
n

−1/2
T Jn

(
1 + m(n)/J

S
n

)1/2
(lognT)1/2}.

Since E(δ1s) � Jn/
√

J S
n , one has ‖	1‖∞ = Oa.s.(Jn/

√
J S

n ). Since E(δ2s) �
n−1

T (
∑n

i=1 m2
i )/

√
J S

n and E(δ3s) � nT/
√

J S
n , similarly it can be proved that

‖	2‖∞ = Oa.s.(m(n)/
√

J S
n ) and ‖	3‖∞ = Oa.s.(nT/

√
J S

n ). Therefore, ‖ζ1‖∞ =
Oa.s.{(λmax

n )2nT(J S
n )−1/2J

−p
n }. Following similar reasoning, by Bernstein’s in-

equality one can prove ‖ζ2‖∞ = Oa.s.((λ
max
n )2

√
nT lognT/J S

n ). Thus,∥∥gS
n,l

(
γ̂ OR

n,l , β̂n, θ̂n,−l

)− gS
n,l

(
γ̂ OR

n,l , β̂n, θ̃−l0
)∥∥∞ = Op(an + bn),
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where an = cn(nT lognT/J S
n )1/2 and bn = cnnT(J S

n )−1/2J
−p
n with cn =

(λmin
n )−1(λmax

n )2. Following similar reasoning, one can prove that ‖gS
n,l(γ̂

OR
n,l , β̂n,

θ̃−l0) − gS
n,l(γ̂

OR
n,l ,β, θ̃−l0)‖∞ = Op(an + dn), where dn = cnnT(J S

n )−1/2J
−2p
n ,

‖gS
n,l(γ̂

OR
n,l ,β, θ̃−l0) − gS

n,l(γ̂
OR
n,l ,β, θ−l)‖∞ = Op(bn), where gS

n,l(γ̂
OR
n,l ,β, θ−l) =

0. Thus, ‖gS
n,l(γ̂

OR
n,l , β̂n, θ̂n,−l)‖∞ = Op(an + bn). By the Taylor expansion, there

is t ∈ (0,1) such that γ̃ n,l = t γ̂ OR
n,l + (1 − t)γ̂ S S

n,l ,

γ̂ S S
n,l − γ̂ OR

n,l = −{∂gS
n,l(γ̃ n,l, β̂n, θ̂n,−l)/∂ γ̃ T

n,l

}−1gS
n,l

(
γ̂ OR

n,l , β̂n, θ̂n,−l

)
.

∂gS
n,l(γ̃ n,l, β̂n, θ̂n,−l)/∂ γ̃ T

n,l = �n(1 + op(1)), with �n = ∑n
i=1(B

S
i·l)T	̃iṼ

−1
i ×

	̃iBS
i·l , 	̃i = 	i(β̂n, θ̂n,−l , γ̃ n,l) and Ṽi = Vi (β̂n, θ̂n,−l , γ̃ n,l). There exist con-

stants 0 < c3 < C3 < ∞, such that with probability 1, for nT sufficiently large,
c3λ

min
n nT ≤ λmin(�n) ≤ λmax(�n) ≤ C3λ

max
n nT. By Theorem 13.4.3 of [4], one

has ‖�−1
n ‖∞ = Oa.s.{(λmin

n nT)−1}. Therefore,∥∥γ̂ S S
n,l − γ̂ OR

n,l

∥∥∞ ≤ ∥∥{∂gS
n,l(γ̃ n,l, β̂n, θ̂n,−l)/∂ γ̃ T

n,l

}−1∥∥∞
∥∥gS

n,l

(
γ̂ OR

n,l , β̂n, θ̂n,−l

)∥∥∞

= Op

{(
λmax

n /λmin
n

)2(√lognT/(J S
n nT) + (

J S
n

)−1/2
J−p

n

)}
. �

PROOF OF THEOREM 4. By Lemma 6,

sup
zl∈[0,1]

∣∣θ̂ S
n,l(zl, β̂n, θ̂n,−l) − θ̂ S

n,l(zl,β0, θ−l0)
∣∣

≤
J S
n∑

s=1

∣∣Bs,l(zl)
∣∣∥∥γ̂ S S

n,l − γ̂ OR
n,l

∥∥∞

= Op

{(
λmax

n /λmin
n

)2(√lognT/nT + J−p
n

)}
.

By the above result and (11),

sup
zl∈[0,1]

∣∣(BS
l (zl)

T�∗
n,lB

S
l (zl)

)−1/2{
θ̂ S
n,l(zl, β̂n, θ̂n,−l)− θ̂ S

n,l(zl,β0, θ−l0)
}∣∣= op(1).

Thus, the asymptotic normality of θ̂ S
n,l(zl, β̂n, θ̂n,−l) follows from Theorem 3, the

above result and Slutsky’s theorem. �
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