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OPTIMAL TWO-STAGE PROCEDURES FOR ESTIMATING
LOCATION AND SIZE OF THE MAXIMUM OF A MULTIVARIATE

REGRESSION FUNCTION

BY EDUARD BELITSER, SUBHASHIS GHOSAL1 AND HARRY VAN ZANTEN

Eindhoven University of Technology, North Carolina State University
and University of Amsterdam

We propose a two-stage procedure for estimating the location μ and
size M of the maximum of a smooth d-variate regression function f . In the
first stage, a preliminary estimator of μ obtained from a standard nonpara-
metric smoothing method is used. At the second stage, we “zoom-in” near the
vicinity of the preliminary estimator and make further observations at some
design points in that vicinity. We fit an appropriate polynomial regression
model to estimate the location and size of the maximum. We establish that,
under suitable smoothness conditions and appropriate choice of the zoom-
ing, the second stage estimators have better convergence rates than the corre-
sponding first stage estimators of μ and M . More specifically, for α-smooth
regression functions, the optimal nonparametric rates n−(α−1)/(2α+d) and
n−α/(2α+d) at the first stage can be improved to n−(α−1)/(2α) and n−1/2,
respectively, for α > 1 + √

1 + d/2. These rates are optimal in the class of
all possible sequential estimators. Interestingly, the two-stage procedure re-
solves “the curse of the dimensionality” problem to some extent, as the di-
mension d does not control the second stage convergence rates, provided that
the function class is sufficiently smooth. We consider a multi-stage general-
ization of our procedure that attains the optimal rate for any smoothness level
α > 2 starting with a preliminary estimator with any power-law rate at the
first stage.

1. Introduction. In many applications, it is of interest to estimate the location
and size of the extremum of a univariate or multivariate regression function. For
instance, an oil company may be interested in determining the best location for
drilling a well in a confined region. Based on information obtained from drilling
at a few preliminary locations in the region, the goal is to obtain an estimate of the
best location and the amount of the reserve based on these noisy measurements.

Suppose we observe noisy measurements of an unknown regression function
f : Rd → R, sampled at points from some compact, convex set D ⊂ R

d ,

Yk = f (xk) + ξk, xk ∈ D ⊂ R
d, k = 1, . . . , n,(1)
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where the ξk’s are independent zero mean errors with Var(ξk) = σ 2. Clearly, for
estimating any feature of f , the estimation error increases with σ 2. Thus among all
error distributions satisfying Var(ξk) ≤ σ 2 for every k, the homoscedasticity con-
dition Var(ξk) = σ 2 is the least favorable. This shows that the latter condition can
be relaxed to the former without increasing the bound on error of estimation, and
the obtained rates under the homoscedasticity condition remains minimax optimal
under the larger heteroscedastic model.

Assume that f has a unique maximum at μ in the interior of D, that is,

max
x∈D

f (x) = f (μ) = M, f (x) < f (μ) for all x �= μ.(2)

If the function f is sufficiently smooth, then the gradient ∇f (μ) = 0 and the Hes-
sian matrix of f at μ is nonpositive definite. The goal is to estimate the maximum
of the regression function M = f (μ) and its location μ.

Clearly, the choice of the design points {xk , k = 1, . . . , n} significantly influ-
ences the estimation accuracy. There are two basic design settings: fixed in ad-
vance (or randomly sampled from a chosen distribution) and sequential, where
one is allowed to use the information obtained from an earlier sample to determine
subsequent design points. If the design is fixed and nothing is known about the
location of the maximum, the design points should be “almost uniformly” spread
out all over the set of interest D. The problem of estimating the location and size
of extrema of nonparametric regression functions for the fixed design situation has
been studied by many authors. The one-dimensional case is thoroughly investi-
gated, whereas the study in the multivariate situation has been limited; see Müller
(1985, 1989), Shoung and Zhang (2001), Facer and Müller (2003) and the refer-
ences therein. The minimax rate for estimating the maximum value of the function
ranging over an α-smooth nonparametric class (e.g., isotropic Hölder class defined
below) is n−α/(2α+d). As to the estimation of the location of the maximum, it is
a folklore that the minimax rate is the same as the minimax rate for estimating
the first derivative of the regression function, which is given by n−(α−1)/(2α+d).
In the setting of estimating the mode μ of a univariate twice differentiable den-
sity f , Hasminskii (1979) showed that under the assumption that f ′′(μ) < 0, the
lower bound for the minimax risk rate is of the order n−1/5 consistent with the
rate n−(α−1)/(2α+d). Klemelä (2005) considered the problem of adaptive estima-
tion of the mode of a multivariate density with a bounded support that satisfies, in
a neighborhood of the mode, a smoothness condition of a level higher than 2.

If we can choose a design point before making each observation using the data
obtained so far, then we are in the classical sequential design setting. Kiefer and
Wolfowits (1952) introduced a Robbins–Monro type of algorithm to estimate the
mode μ of f in the univariate framework. Blum (1954) proposed a multivariate
version of their algorithm which allows to estimate the location μ of the maxi-
mum of a multivariate regression function f . Since then, this Kiefer–Wolfowits–
Blum recursive algorithm has been extended in many directions by many authors.
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The main fact is that the algorithm converges to μ with the rate n−1/3 under the
assumption that the regression function f is three times differentiable. More gener-
ally, Chen (1988) and Polyak and Tsybakov (1990) established that, in the sequen-
tial design setting, the minimax rate for estimating the location of the maximum of
α-smooth regression functions is n−(α−1)/(2α). Dippon (2003) proposed a general
class of randomized gradient recursive algorithms which attain the optimal con-
vergence rate. Mokkadem and Pelletier (2007) considered the problem of simulta-
neously estimating, in the sequential design setting, the location and the size of the
maximum of a regression function that is three times continuously differentiable.
They proposed a companion recursive procedure to the Kiefer–Wolfowits–Blum
algorithm so that, by applying both the companion and the Kiefer–Wolfowits–
Blum algorithms, one can simultaneously estimate the location and size of the
maximum of regression functions in an on-line regime. Interestingly, in a se-
quential design setting, the convergence rate for estimating the maximum itself
M = f (μ) can, in principle, attain the parametric rate n−1/2. The companion pro-
cedure of Mokkadem and Pelletier (2007) for estimating the maximum can also
achieve the parametric rate n−1/2, but this companion procedure must use differ-
ent design points than those used in the Kiefer–Wolfowits–Blum procedure.

In this paper, we propose a two-stage strategy to tackle the problem of simulta-
neously estimating the location μ and size M of the maximum of the regression
function f according to the observation scheme (1). This is an approach in between
the two above described frameworks—global fixed design and a fully sequential
design. Often, from an operational point of view, fully sequential sampling can
be expensive, whereas a two-stage procedure is much simpler to implement. Our
findings establish that the two-stage procedure can be properly designed to match
the strength of a fully sequential procedure. Moreover, the same design scheme
can be used to obtain the optimal rates for estimating both μ and M .

Now we describe the two-stage procedure. We construct a preliminary estima-
tor μ̃ of μ by spending a portion of our sampling budget to make observations
over a relatively uniform grid of points in the area of interest and applying some
standard nonparametric smoothing method for the fixed design setting based on
this initial set of data. Additional prior information, if available, may also be used
to reduce the span of the design points or to more efficiently choose design points
leading to increased accuracy of the preliminary estimator. At the second stage,
we “zoom-in” on a neighborhood of μ̃ of an appropriate size δn, to be called the
localization parameter. The idea is that if this vicinity is “small enough,” that is,
the preliminary estimator μ̃ converges to μ, the regression function f can be ac-
curately approximated by a Taylor polynomial within the vicinity of μ̃. We then
spend the remaining portion of the sampling budget to gather further observations
at appropriately chosen design points in the vicinity of μ̃. Finally, we fit a polyno-
mial regression model on the new set of data and show that the remainder of the
expansion is appropriately small, provided that the preliminary estimator μ̃ has
sufficient accuracy. This procedure leads to improved estimators of μ and M and
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does not use knowledge of the noise variance σ 2. The last step in our approach
is reminiscent of the nonparametric methodology of local polynomial regression
in case of fixed design setting; see Fan and Gijbels (1996). Our two-stage proce-
dure is motivated by the recent work of Lan, Banerjee and Michailidis (2009) and
Tang, Banerjee and Michailidis (2011), who, respectively, considered such pro-
cedures for estimating change points in a regression function and the level point
of a univariate monotone regression function. Motivating grounds for a two-stage
approach were nicely described by them. The principal differences between their
and our techniques are that we consider smooth rather than step or monotone func-
tions, and we use polynomial regression of an appropriate degree in the second
stage rather than regression based on step or linear functions, respectively, used by
them.

The results for estimating μ and M under the fully sequential setting, which we
are aware of, all follow the Robbins–Monro procedure, where the next design point
depends only on the previous observation and does not incorporate all available
information up to the current moment. In this setting, one makes observations only
along a certain path of design points, eventually leading to the location of the
maximum. In our two-stage approach, one also gets the global estimate of the
regression function from the first stage all over the area of interest, which may be
useful in some practical situations. We also get an accompanying estimator for the
size of the maximum M (in fact, for all the relevant derivatives at the location of the
maximum) in a natural way, while in a Robbins–Monro type sequential design, one
needs to adjust the design points to estimate M . This can place serious constraints
on the available budget since typically both μ and M need to be estimated.

Our main result gives a decomposition of the convergence rate of the second
stage estimator as the sum of an approximation term and a stochastic term, similar
to the classical bias-variance trade-off. An implication of the main result is as fol-
lows. Suppose we take a preliminary nonparametric estimator μ̃ with the optimal
single-stage convergence rate n−(α−1)/(2α+d). Then by applying our two-stage pro-
cedure with an appropriate choice of the localization parameter δn, we obtain opti-
mal (for the sequential design setting) convergence rates, n−(α−1)/(2α) and n−1/2,
respectively, under the condition on the smoothness parameter α > 1 +√

1 + d/2.
Note that n−1/2 is also the “oracle rate” for estimating M corresponding to taking n

samples at the “perfect location” μ. Thus, for α-smooth regression functions, the
second stage improves the rates in estimating μ and M from the nonparametric
rates n−(α−1)/(2α+d) and n−α/(2α+d) to the optimal sequential rates n−(α−1)/(2α)

and n−1/2, respectively. Curiously, the dimension d disappears from powers in
the second stage convergence rates. However, the curse of dimensionality is still
present in a milder form through the constraint α > 1 + √

1 + d/2. For instance,
if α > 3, then the second stage rates are optimal for d = 1, . . . ,6. We can resolve
the curse of dimensionality completely by considering a multi-stage generaliza-
tion of the two-stage procedure, obtained by iterating the second stage operation
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on the estimator obtained in the second stage, and continuing the iteration suffi-
ciently many times. We shall show that after an appropriate number of stages, the
optimal convergence rates are attained for any α > 2. In fact, even if we start with
a not necessarily optimal preliminary estimator at the first stage (as long as it has
a convergence rate of a power-law type), this multi-stage approach will lead to
the optimal resulting stage after a finite number of stages. The number of stages
depends on the smoothness of the regression function and the quality (conver-
gence rate) of the preliminary estimator from the first stage. The method still uses
knowledge of the smoothness level α in its formulation, and hence is not adaptive
for estimating μ. Nevertheless, the multi-stage procedure achieves the optimal rate
n−1/2 for estimating M without using the knowledge of α.

The paper is organized as follows. In Section 2, we introduce the notation and
assumptions. Section 3 describes the two-stage procedure and states the main re-
sult. The multi-stage generalization is discussed in Section 4, and some simulation
results are given in Section 5. Proofs are presented in Section 6. Some auxiliary
results are given in the Appendix.

2. Notation, preliminaries and assumptions. We describe the notation and
conventions to be used in this paper. All asymptotic relations and symbols [like
O(δn), o(δn), Op(δn), op(δn) etc.] will refer to the asymptotic regime n → ∞;
here cn = O(δn) [resp., cn = o(δn)] means that that cn/δn is bounded (resp.,
cn/δn → 0) and for a stochastic sequence Xn, Xn = Op(δn) [resp., Xn = op(δn)]
means that that P{|Xn| ≤ Kcn} → 1 for some constant K (resp., P{|Xn| < εδn} →
1 for all ε > 0). For numerical sequences βn and β ′

n, by βn � β ′
n (or β ′

n � βn) we
mean that βn = o(β ′

n), while by β ′
n � βn, we mean that βn = O(β ′

n). By βn 
 β ′
n

we mean that βn = O(β ′
n) and β ′

n = O(βn). Let N stand for {0,1,2, . . .}. For a
set S, denote by |S| the number of elements in S. Vectors are represented by bold
symbols and can be upper or lowercase English or Greek letters. All vectors are in
the column format with the corresponding nonbold letters with subscripts denoting
the components, that is, for x,xk ∈ R

d , x = (x1, . . . , xd) and xk = (xk,1, . . . , xk,d).
By ‖x‖ for a vector x, we mean the usual Euclidean norm of x ∈ R

d . Matrices are
also written in bold and only uppercase English letters are used to denote them. If A
is a matrix, ‖A‖ will stand for a norm on the space of matrices such as the opera-
tor norm defined by ‖A‖ = sup‖x‖≤1 ‖Ax‖. Let B(c,R) = {z ∈ R

d :‖z − c‖ ≤ R}
denote a ball in R

d with center c ∈ R
d and radius R > 0. Define a cube around a

point a = (a1, . . . , ad) ∈ R
d with an edge length 2δ by

C(a, δ) = {
x ∈ R

d :xk ∈ [ak − δ, ak + δ], k = 1, . . . , d
} ⊂ R

d .(3)

If a = 0, then we write C(δ) for C(0, δ).
We shall use the multi-index notation i = (i1, . . . , id) ∈ N

d . For a multi-index i,
a vector x ∈ R

d and a sufficiently smooth function f of d variables, define

|i| =
d∑

k=1

ik, i! =
d∏

k=1

ik!, xi =
d∏

k=1

x
ik
k , Dif (x0) = ∂ |i|f (x)

∂x
i1
1 · · · ∂x

id
d

∣∣∣
x=x0

.
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For k, d, r ∈ N, define

Ik(d) = {
i ∈ N

d : i1 + · · · + id = k
}
, I(r, d) =

r⋃
k=0

Ik(d),

with I0(d) = {(0, . . . ,0)}. For convenience in writing, I(r, d) will be enumerated
by stacking elements of I0(d), I1(d), . . . , Ir (d), in that order. Within each Ik(d),
the elements are arranged following the lexicographic (or dictionary) ordering.
Observe that Ik(d) and Il(d) introduced above are disjoint if k �= l. The cardinality
|Ik(d)| is the number of d-tuples (k1, . . . , kd) ∈ N

d such that k1 + · · · + kd = k,
or equivalently, the number of ways to put k balls in d boxes. Thus |Ik(d)| =(d+k−1

k

) = (d+k−1
d−1

)
, and hence

∣∣I(r, d)
∣∣ =

r∑
k=0

∣∣Ik(d)
∣∣ =

r∑
k=0

(
d + k − 1

d − 1

)
.

In particular, |I(r,1)| = r + 1.
For an α ∈ R, let �α� be the smallest integer bigger than or equal to α. Then

rα = �α − 1� stands for the largest integer which is strictly less than α. Clearly, if
α ∈ N, then rα = α − 1.

For α,L > 0 and a compact, convex set D ⊆ R
d , introduce an isotropic

Hölder functional class Hd(α,L,D), consisting of rα-times differentiable func-
tions f :D → R such that

∣∣f (x) − Pf,x0(x)
∣∣ ≤ L‖x − x0‖α, x,x0 ∈ D,(4)

where

Pf,x0(x) = ∑
i∈I(rα,d)

1

i!D
if (x0)(x − x0)

i(5)

is the Taylor polynomial of order rα obtained by expansion of f about the point x0.
Put q(α, d) = |I(rα, d)| − 1. Observe that the total number of terms in the d-

variate Taylor polynomial Pf,x0(x) of order rα defined in (5) is q(α, d) + 1.
For a function g : Rd → R such that all second-order partial derivatives of g

exist at a point x0 ∈ R
d , denote by Hg(x0) the Hessian matrix of the function g at

the point x0, whose (i, j)th entry is given by ∂2g(x0)
∂xj ∂xi

, i, j = 1, . . . , d . Notice that
if g has continuous second order partial derivatives at x0, then the Hessian matrix
Hg(x0) is symmetric, and hence its eigenvalues must be real. For a symmetric ma-
trix M, denote by λmin(M) and λmax(M) the smallest and the largest eigenvalues
of M, respectively.

Consider the model (1) with f :D → R. We now describe the assumptions on f

to be used throughout the paper.
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(A1) The function f (x), x ∈ D ⊆ R
d , allows extension on a slightly bigger

set Dε = ⋃
x∈D B(x, ε) for some ε > 0 (in order to avoid boundary effects) and

belongs to an isotropic Hölder functional class Hd(α,L,Dε) defined by (4), with
L > 0 and α > 2.

(A2) There is a unique point μ in the interior
◦

D of D that maximizes
the function f on D, that is, M = supx∈D f (x) = max

x∈ ◦
D

f (x) = f (μ) and
λmax(Hf (μ)) < 0.

Note that conditions (A1) and (A2) imply that ∇f (μ) = 0, and the Hessian
Hf (μ) is a symmetric and negative definite matrix. Besides, as α > 2, the Hessian
matrix Hf (x) is continuous and therefore for some κ,λ0 > 0,

sup
x∈B(μ,κ)

λmax
(
Hf (x)

) ≤ −λ0.(6)

Notice that constants κ , λ0 depend on f . If we do not pursue any uniformity over f

in our results, then the condition (6) follows from (A1), (A2) and can therefore be
used in the proofs. However, when uniformizing the results over a functional class,
this condition becomes autonomous and must be added to the description of the
functional class; see Remark 1 below.

3. The two-stage procedure. For a column vector ϑ = (ϑi : i ∈ I(rα, d))T ,
introduce the multivariate polynomial function

fϑ (x) = ∑
i∈I(rα,d)

ϑixi =
rα∑

k=0

∑
i∈Ik(d)

ϑixi.(7)

We now describe the two-stage procedure for estimating the parameters (μ,M).
The first stage consists of the first two steps and the steps 3–5 comprise the second
stage.

(1) The first stage starts as follows. For υ ∈ (0,1), choose first stage design
budget, that is, n1 ∈ N such that 0 < n1 < n, n1/n → υ . Find n1 design points
{x̃i , i = 1, . . . , n1} approximately uniformly over the set D in the sense that, for
some c1, c2 > 0, the family of balls {B(x̃i , c1n

−1/d), i = 1, . . . , n1} covers D and
‖x̃i − x̃j‖ ≥ c2n

−1/d for i �= j .
Observe the data D∗

1 = {(x̃k, Ỹk), k = 1, . . . , n1}, Ỹk = f (x̃k) + ξ̃k , k =
1, . . . , n1, according to the model (1).

(2) Using D∗
1 , construct a preliminary consistent estimator μ̃ of μ. For d = 1,

one may use the kernel estimator of Müller (1989) and for d ≥ 2, its multivariate
generalization given by Facer and Müller (2003).

(3) Let n2 = n − n1 be the remaining portion of the design budget, and let l be
the smallest integer that satisfies 2l ≥ rα . Assume that n2 = n3(2l + 1)d for some
n3 ∈ N, which is always possible to arrange. Note that n3 ≥ cn for some constant
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c > 0. Introduce a localization parameter δn > 0, δn → 0, and define the set

d∏
i=1

{μ̃k + jiδn, ji = 0,±1,±2, . . . ,±l} = {d̃1, . . . , d̃(2l+1)d },

which consists of (2l + 1)d different points from the d-dimensional cube
C(μ̃, lδn).

Now introduce the second stage design points {xk, k = 1, . . . , n2} in such a way
that |Ij | = n3 for all j = 1, . . . , (2l + 1)d , where Ij = {1 ≤ k ≤ n2 : xk = d̃j }.
In other words, each point among the (2l + 1)d different points from the set
{d̃1, . . . , d̃(2l+1)d } is repeated n3 = n2/(2l + 1)d times in the second stage de-
sign {xk, k = 1, . . . , n2}. Observe the data D∗

2 = {(xk, Yk), k = 1, . . . , n2}, Yk =
f (xk) + ξk, k = 1, . . . , n2, according to the model (1).

(4) Introduce the column vectors Y = (Y1, . . . , Yn2)
T , x̄k = (xi

k : i ∈ I(rα, d))T ,
k = 1, . . . , n2, and form the data-matrix X = (x̄1, . . . , x̄n2)

T of dimension n2 ×
(q(rα, d) + 1). Now using D∗

2 , fit a polynomial regression model of order rα by

ϑ̃ = arg min
ϑ

n2∑
k=1

(
Yk − fϑ (xk)

)2 = arg min
ϑ

‖Y − Xϑ‖2,

where the polynomial fϑ is introduced by (7). The unique least squares solution is
given by ϑ̃ = (XT X)−1XT Y, since X is full-rank by Lemma 1 below. Intuitively,
this is expected since the number of observations n2 ≥ (2l + 1)d ≥ (rα + 1)d ≥
|I(rα, d)| = q(α, d) + 1.

(5) Finally, define the two-stage estimator (μ̂, M̂) of (μ,M) by

μ̂ = arg max
x∈C(μ̃,lδn)

fϑ̃ (x), M̂ = fϑ̃ (μ̂).(8)

Note that (μ̂, M̂) depends on the first-stage estimator and the localization parame-
ter δn introduced in step 3.

Clearly the construction of the two-stage procedure does not assume the knowl-
edge of the error variance σ 2 provided that the preliminary estimator μ̃ also does
not use this knowledge. Furthermore, the two-stage approach simultaneously esti-
mates μ and M , since the same design points for both estimators are used in the
procedure. The two-stage procedure also provides improved estimators for all the
relevant derivatives of f at μ; see Remark 7 below.

The following theorem gives the rate of convergence of the two-stage procedure
for any smoothness level α > 2.

THEOREM 1. Suppose that the localization parameter δn satisfies
√

nδ2
n → ∞

and ‖μ̃ − μ‖ = op(δn). Then under conditions (A1) and (A2),

‖μ̂ − μ‖ = Op

(
n−1/2δ−1

n

) + Op

(
δα−1
n

)
(9)
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and

M̂ − M = Op

(
n−1/2) + Op

(
δα
n

)
.(10)

Condition ‖μ̃ − μ‖ = op(δn) has a clear heuristic interpretation: at the sec-
ond stage, one should not localize more than what the accuracy of the estima-
tion procedure allows at the first stage. Actually, it is sufficient to assume that
P(‖μ̃ − μ‖ ≤ Kδn) → 1 for some K , but the dependence of K on unknown quan-
tities will complicate the analysis.

We first observe that there is always a rate improvement from the first stage to
the second if δn is chosen properly. To see this, let εn be the rate of convergence
of μ̃. Since εn cannot be better than the optimal rate of convergence of all possible
sequential procedures, which is n−(α−1)/2α , we have εn � n−(α−1)/(2α). Choose
δn = max(mnεn, n

−1/(2α)), where mn is a positive sequence going to infinity suf-
ficiently slowly. Then ‖μ̃ − μ‖ = op(δn) and

√
nδ2

n → ∞ (as α > 2) are satis-
fied, and hence it remains to show that δα−1

n = O(εn) and n−1/2δ−1
n = O(εn). If

εn � n−1/(2α), then δn = n−1/(2α) and the second stage rate is n−1/2δ−1
n = δα−1

n =
n−(α−1)/(2α) = O(εn), and the order improves strictly unless εn 
 n−(α−1)/(2α).
Clearly, in this case, the choice of δn is optimal as it balances the “order of
variability” n−1/2δ−1

n and the “order of bias” δα−1
n . On the other hand, if εn �

n−1/(2α), δn = mnεn, so n−1/2δ−1
n = o(δα−1

n ) and the second stage rate is δα−1
n =

mα−1
n εα−1

n � εn, since α > 2 and mn grows sufficiently slowly. Note that the “op-
timal choice” δn = n−1/(2α) is prohibited in this case since we need εn = o(δn).
For estimating M , the rate of convergence of the two-stage procedure clearly is
max(n−1/2,mα

nεα
n ), which matches the optimal rate n−1/2 if εn � n−1/(2α). Of

course, if the choice of δn is too big, then the rates for estimating μ or M may
deteriorate in the second stage.

Clearly, it is natural to use a preliminary estimator μ̃ with the fastest possible
convergence rate εn = n−(α−1)/(2α+d) for any nonsequential procedure. Then the
two-stage estimator will lead to the best possible convergence rates n−(α−1)/(2α)

and n−1/2 for estimating μ and M , respectively, among all sequential procedures,
provided that εn = o(n−1/(2α)). This condition holds when α−1

2α+d
> 1

2α
, or equiv-

alently, α > 1 + √
1 + d/2. Indeed, under this condition, the two-stage procedure

achieves the optimal rates n−(α−1)/(2α) and n−1/2 for estimating μ and M , re-
spectively, even when a rate-optimal estimator is not used, as long as the conver-
gence rate εn of the preliminary estimator is faster than n−1/(2α). If the condition
εn = o(n−1/(2α)) fails, the two-stage procedure does not give the optimal rate. In
Section 4, we discuss a multi-stage generalization that can achieve optimal rate
starting with almost any first-stage estimator.

The following corollary summarizes our conclusions.

COROLLARY 1. Suppose that α > 1 + √
1 + d/2 and conditions (A1), (A2)

hold. If the convergence rate of the preliminary estimator is faster than n−1/(2α)
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and the localization parameter is δn = n−1/(2α), then

‖μ̂ − μ‖ = Op

(
n−(α−1)/2α)

, M̂ − M = Op

(
n−1/2)

.

Interestingly, dimension d , which affects the first-stage optimal convergence
rates n−(α−1)/(2α+d) and n−α/(2α+d) for estimating μ and M , respectively, does
not affect the corresponding two-stage and fully sequential optimal convergence
rates n−(α−1)/(2α) and n−1/2. Thus the curse of dimensionality is nearly avoided
by the two-stage procedure, provided that the regression function is sufficiently
smooth to ensure α > 1 + √

1 + d/2. The lower bound in this inequality increases
with the dimension d . Notice that if α > 3, the corollary yields the optimal rates
for estimating μ and M for all the dimensions for which 3 ≥ 1 + √

1 + d/2, that
is, up to dimension d = 6, including the most important dimensions d = 1,2,3.

REMARK 1. We can formulate a uniform version of Theorem 1. By inspecting
the proofs, we see that all the bounds for the two-stage procedure can be made
uniform over the Hölder class Hd(α,L,D) if we additionally require relation (6)
for some κ,λ0 > 0, the uniform boundedness of all the partial derivatives involved
in the definition of Hd and the uniformity of the first stage estimator.

To be more specific, for some positive α, L, L1, κ , λ0, κ1, δ and ε, such that
α > 2 and κ1 ≤ κ , and a compact convex D ⊆ R

d , introduce the following condi-
tions:

(Ã1) f ∈ Hd(α,L,Dε) and supx∈Dε |Dif (x)| ≤ L1 for all i ∈ I(rα, d).

(Ã2) There is a unique point μ ∈ ◦
D that maximizes the function f on D,

supx∈D f (x) = max
x∈ ◦

D
f (x) = f (μ). Moreover, f (μ) ≥ f (x) + δ for all x /∈

B(μ, κ1) and supx∈B(μ,κ) λmax(Hf (x)) ≤ −λ0.

Let H̃d be the class of functions which satisfy (Ã1) and (Ã2). Then Theorem 1
holds uniformly in f ∈ H̃, provided ‖μ̃ − μ‖ = op(δn) holds uniformly over H̃.
Condition (Ã1) is a strengthened version of (A1), namely (A1) is complemented
by the requirement of uniform boundedness of all the relevant partial derivatives.
Condition (Ã2) is in turn a stronger version of (A2): relation (6) is included in (Ã2)
with common κ and λ for the whole class, and the existence of a unique location μ
of maximum is strenthened by the requirement of the uniform separation of the
maximum function value f (μ) from the function values outside B(μ, κ1). Inside
this vicinity, as κ1 ≤ κ , the separation of the maximum can be characterized by the
Taylor expansion and (6); see the arguments in (32) below. This uniform separation
condition is essential to make the first stage rate for μ̃ uniform over the functional
class. Note that the separation condition for any particular function holds by the
compactness of D and the uniqueness of the location of the maximum.

On the other hand, the two-stage procedure can achieve improved rates only
under a local Hölder condition satisfied in a neighborhood of μ provided that a first
stage estimator with sufficiently good rate is available as a preliminary estimator.
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This is due to the fact that the second stage design points are chosen close to the
preliminary estimate, and hence close to the true maximum location μ.

REMARK 2. Almost sure convergence of μ̂ and M̂ can be obtained assuming
that the preliminary estimator convergence rate is given in the almost sure sense.
This will follow from the estimates given in Lemmas 2 and 3. Under additional
moment conditions on the error distribution, almost sure convergence rate of a
kernel-type estimator can be found.

4. Multi-stage procedures and resolving the curse of dimensionality. The-
orem 1 shows that for estimating the maxima μ and maximum value M of a
Hölder α-smooth function f , α > 2, starting with an estimator μ̃ having conver-
gence rate εn and localization parameter δn, a two-stage estimator has an improved
rate of convergence, unless εn is already equal to the optimal rate n−(α−1)/(2α).
More precisely, assuming that εn = O(n−γ ) for some γ > 0 and choosing
δn = max(mnεn, n

−1/(2α)), where mn → ∞ is a slowly varying sequence, the
convergence rate for estimating μ improves to the optimal rate n−(α−1)/(2α) if
εn = o(n−1/(2α)) and to εα−1

n up to a slowly varying factor, if εn � n−1/(2α). Al-
though the latter rate is not optimal, further improvement in rate can be achieved
by applying the two-stage technique again, using the estimator obtained in the sec-
ond stage as the new preliminary estimator, and repeating the procedure until the
optimal rate is obtained. After k iterations of the two-stage procedure, the con-

vergence rate thus becomes ε
(α−1)k

n up to a slowly varying factor, provided that

ε
(α−1)k

n � n−(α−1)/(2α). Let k1 be the largest integer such that the last relation
holds for k = k1. Then iterating the two-stage procedure k1 + 1 times, the result-
ing estimator will have the optimal convergence rate n−(α−1)/(2α). Thus the final
multi-stage procedure has convergence rate completely free of the dimension d and
applies to any smoothness level α > 2. In order to apply the procedure in k1 + 1
stages, one will need to split the observation budget in k1 + 1 parts following the
description given in step 3 of the procedure.

If we are interested only in estimating the maximum M , we may be able
to stop earlier when applying the multi-stage procedure. In this case, the target
optimal rate is n−1/2. The two-stage estimator has convergence rate given by
max{εα

n , n−1/2}. Hence the optimal rate will be obtained at stage k2 + 1, where

k2 is the largest integer integer such that εαk

n � n−1/2.

REMARK 3. The smoothness level α needs to be strictly greater than 2 to
control the error in the second-order Taylor approximation of the underlying mul-
tivariate regression function. As α gets closer to 2, the required number of stages
in the multi-stage procedure increases without bound.

Consider now the adaptive version of our original estimation problem, where
the problem is to estimate μ at the optimal rate n−(α−1)/(2α) and M at rate n−1/2
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without knowing the smoothness level α. Since the choice of the localization pa-
rameter δn depends on the knowledge of α it is not possible to apply the two-stage
procedure, and hence a multi-stage adaptive estimator for μ is not possible. How-
ever, for estimating M , it is possible to construct a multi-stage procedure with
convergence rate n−1/2 without knowing α, as long as α > 2. Start with an estima-
tor for μ which converges at rate n−β for all Hölder 2-smooth functions. For in-
stance, the rate n−1/(4+d) is possible in dimension d by the results of Müller (1989)
and Facer and Müller (2003). Then by applying Theorem 1 with δn = mnn

−β ,
where mn → ∞ is a slowly varying sequence, the rate of convergence for esti-
mating M improves to max{m2

nn
−2β, n−1/2} in stage two. Repeating the two-stage

procedure k times, thus the rate will improve to n−1/2, whenever 2kβ > 1
2 , or

k > (log(1/β)/ log 2) − 1. In particular, starting with the one-stage optimal esti-
mator having convergence rate n−1/(4+d), the required number of stages to achieve
n−1/2 rate at all Hölder 2-smooth functions is the smallest integer greater than
(log(4 + d)/ log 2) − 1, since repeating the two-stage procedure beyond k given
above does not hurt the rate.

5. Simulations. In this section, we compare the performance of the two-stage
procedure with an equivalent single-stage procedure. We consider the bivariate
case d = 2 and take a regression function f : [0,1]2 → R defined by

f (x, y) = 5x(x − 1)y(y − 1) sin(11x) sin(11y)

(the smooth surface in the top left panel of Figure 1). In the first stage the function
is observed with Gaussian noise with standard deviation σ = 0.1 on a regular 25
by 25 grid (gray points in the same panel). Using standard local linear regression,
a surface is fit through these points (the surface in the top right panel of Figure 1)
and the point where this fitted function is maximal serves as the stage one esti-
mator μ̃ (the red point in the same panel). Next we take δ = 0.1 and generate 70
new observations at each of the nine points (μ̃1 + j1δ, μ̃2 + j2δ), j1, j2 = 0,±1
(gray points in the top right panel of Figure 1). Finally a quadratic surface is fitted
through these new data points (the surface in the lower panel of Figure 1) and the
location of the maximum is the final second stage estimator μ̂ (the green point in
the figure). The implementation of the procedure is rather straightforward. In the
statistical language R, we used the standard function loess in the first stage to
fit the surface using the first stage observations, and we used the function lm to fit
the quadratic surface using the second stage observations.

Note that in total we have used 25 × 25 + 9 × 70 = 1255 observations. It is
illustrative to compare our procedure to a single stage estimator that uses about the
same amount of regularly spaced observations. The closest is a regular 36 by 36
grid, which contains 1296 points. We make noisy observations of the function f

at these grid points, again corrupted by centered Gaussian noise with standard de-
viation 0.1. We consider the estimator for the location of the maximum of f that



2862 E. BELITSER, S. GHOSAL AND H. VAN ZANTEN

FIG. 1. Top left: true regression function (surface) and stage one observations (gray points). Top
right: surface fitted through stage one observations, the initial estimator (red point) and the stage
two observations (gray points). Bottom: quadratic surface fitted through the stage two observations
and final estimator (green point).

is obtained by fitting a locally linear surface through these data points and com-
puting the location where this is maximal. Obviously, the quality of this estimator
depends on the bandwidth that is used (or span parameter, as it is called in the R
function loess). To obtain a fair comparison with our two-stage estimator, we
should make an optimal choice. We achieve this by repeating the experiment a
large number of times with different bandwidths and computing numerical mean
squared errors (MSEs). The result is shown in the left panel of Figure 2. The nu-
merical MSE is minimal for the bandwidth choice h = 0.085.

To compare the mean-squared error of the single-stage estimator based on this
regular grid, we replicated the experiment 10,000 times and computed the Monte-
Carlo average of the squared difference between the estimate and the true max-
imum. The results are shown in the left boxplot in the right panel of Figure 2.
Similarly we carried out the two-stage procedure 10,000 times (with bandwidth
h = 0.085 in stage one and δ = 0.1) and computed the errors as well. These are
shown in the right boxplot in the right panel of Figure 2. It is clear that the two-
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FIG. 2. Left: MSE of the single-stage estimator against the bandwidth used. Right: boxplot of the
errors of the single-stage estimator (with optimal bandwidth choice h = 0.085) and the errors of our
two-stage procedure (with the same bandwidth choice and δ = 0.1).

stage estimator performs better in this situation, in terms of the mean-squared error.
This is in spite of the fact that the two-stage estimator has used less observations,
namely 1255 in total compared to 1296 used by the single-stage estimator.

In practice the quality of our procedure clearly depends on the quality of the
estimator that is used in the first stage and also on the choice of the localization
parameter δ. In this simulation example, where we use local linear regression in
the first stage, the quality of the estimator therefore depends on the bandwidth used
in stage one. To investigate the dependence of the performance on this parameter
we carried out the simulation study described above for a range of bandwidths.
The results are shown in the left panel of Figure 3. The solid line gives the MSE
of our estimator as a function of the bandwidth used in stage one. The dashed line
is the MSE of the optimal single stage estimator described above. The plot shows

FIG. 3. MSE of the two-stage estimator against the bandwidth h used in the first stage (left), and
against the localization parameter δ (right). The dashed line is the MSE of the single-stage estimator
with optimal bandwidth choice.
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that in fact for a range of bandwidths the two stage procedure performs better than
the single stage procedure. Similarly, the right panel of Figure 3 describes the per-
formance of the two-stage procedure as a function of the localization parameter δ.
Again there is a range of possible δ’s for which we obtain an improved perfor-
mance, but choosing δ too small or too large deteriorates the quality. In practice
one might, for instance, use cross-validation type methods to set the tuning param-
eters h and δ. Further research is needed to find theoretically sound methods.

6. Proofs. Throughout this section, α and d are are kept fixed. To simplify
notation, we abbreviate I(rα, d) by I, Ik(d) by Ik and q(α, d) by q .

First we introduce several quantities we are going to use in the sequel. De-
fine zk = xk − μ̃, k = 1, . . . , n2, and reformulate definition (8) by representing
the involved quantities in terms of the newly defined shifted design points zk ,
k = 1, . . . , n2. Let dj = d̃j − μ̃, j = 1, . . . , (2l + 1)d . Then for all k = 1, . . . , n2,

zk ∈ {0,±δn, . . . ,±lδn}d = {d1, . . . ,d(2l+1)d } ⊂ C(lδn),(11)

so that each of the distinct (2l +1)d points are repeated n3 = n2/(2l +1)d times in
the new design set {zk, k = 1, . . . , n2}. Using definition (7), define an estimator θ̂
by equating the two polynomials

f
θ̂
(x − μ̃) = fϑ̃ (x) equivalently θ̂ = (

ZT Z
)−1ZT Y,(12)

where

Z = (z̄1, . . . , z̄n2)
T , z̄k = (

zi
k : i ∈ I

)T(13)

and zk = xk − μ̃, k = 1, . . . , n2. The matrix ZT Z is invertible by Lemma 1 below.
We thus obtain an equivalent description of the estimator (μ̂, M̂) given by (8) in
terms of the polynomial f

θ̂
(z) defined by (7), with θ̂ defined by (12),

μ̂ = μ̃ + ◦
μ, M̂ = f

θ̂
(

◦
μ) where

◦
μ = arg max

z∈C(lδn)
f

θ̂
(z),(14)

C(lδn) = [−lδn, lδn]d ⊂ R
d . In doing this shifting trick, we make the computa-

tions easier because the matrix ZT Z will have a lot of zero entries as the design
points zk’s are symmetrically centered around zero in each dimension rather than
being centered around μ̃.

Next, let the vector θ = (θi : i ∈ I)T be defined by the equality of the two poly-
nomials fθ (x − μ̃) = Pf,μ(x), where Pf,μ is the Taylor expansion of f of order
rα around μ defined by (5),

∑
i∈I

θi(x − μ̃)i = f (μ) + ∑
i∈I,|i|≥2

Dif (μ)

i! (x − μ)i,(15)

here we have used the condition ∇f (μ) = 0, due to (A1) and (A2). Thus, θ is a
random vector depending on f , μ and μ̃. From (15) it follows that

i!θi = DiPf,μ(μ̃), Dif (μ) = Difθ (μ − μ̃), i ∈ I.(16)
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The next lemma ensures that the estimator (12) is well defined; that is, ZT Z is
invertible.

LEMMA 1. The columns of matrix Z (and X) defined by (13) are linearly
independent.

PROOF. Consider the matrix Z; the same proof applies to X.
For multi-indices i ∈ N

p and j ∈ N
s , define the concatenation operation

(i, j) = (i1, . . . , ip, j1, . . . , js) ∈ N
p+s . In particular, for k ∈ N, i ∈ N

p , (k, i) =
(k, i1, . . . , ip). Introduce the following notation: for l = 0,1, . . . , d − 1 and z =
(z1, . . . , zd) ∈ R

d , define i−l = (il+1, . . . , id) ∈ N
d−l , z−l = (zl+1, . . . , zd) ∈ R

d−l

and the set I−l(i1, . . . , il) = {i ∈ N
d−l : (i1, . . . , il, i) ∈ I}.

Let Ci, i ∈ I, be the columns of the matrix Z. We need to show that
∑

i∈I λiCi =
0 implies that λi = 0 for all i ∈ I. The equality

∑
i∈I λiCi = 0 is equivalent to

0 = ∑
i∈I

λizi
k, k = 1,2, . . . , n2.

Among {z1, . . . , zn2}, only (2l + 1)d are distinct—{d1, . . . ,d(2l+1)d } given
by (11). Thus, for all z ∈ {d1, . . . ,d(2l+1)d },

0 = ∑
i∈I

λizi =
rα∑

i1=0

z
i1
1

∑
i−1∈I−1(i1)

λi1i−1zi−1
−1 .

For a fixed z−1 = (z2, . . . , zd), the right-hand side of the last relation is a polyno-
mial of order rα in variable z1. But we have 2l + 1 > rα different design values
{jδn : j = 0,±1,±2, . . . ,±l} of the variable z1 for which this polynomial must
take the zero value. This forces all the coefficients of this polynomial to be zero.
Thus we have that

0 = ∑
i−1∈I−1(i1)

λi1i−1zi−1
−1, i1 = 0,1, . . . , rα

for all possible design values of z−1 = (z2, . . . , zd). Iterating the above rea-
soning up to the variable zd leads to, for all i1, . . . , id−1 = 0,1, . . . , rα , zd ∈
{0,±δn,±2δn, . . . ,±lδn},

0 = ∑
id∈I−(d−1)(i1,i2,...,id−1)

λi1i2,...,id−1id z
id
d ,

from which we derive that λi = 0 for all i ∈ I. �

REMARK 4. In the case d = 1, X and Z are Vandermonde matrices.

The next lemma shows that the second stage data D∗
2 can be regarded as coming

approximately from a certain polynomial regression model.
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LEMMA 2. Assume (A1) and let the data {(xk, Yk), k = 1, . . . , n2} and
ξ = (ξ1, . . . , ξn2)

T be given by the second stage observation scheme, Y =
(Y1, . . . , Yn2)

T , η = (η1, . . . , ηn2)
T with ηk = f (xk) − Pf,μ(xk). Then Y = Zθ +

η + ξ , where Z and θ are defined by (13) and (15), respectively, and η is indepen-
dent of ξ . Moreover, for some constants C1,C2 and uniformly in k ∈ {1,2, . . . , n2},

|ηk| ≤ C1δ
α
n + C2‖μ̃ − μ‖α.(17)

PROOF. Since ηk = f (xk) − Pf,μ(xk), by (13) and (15),

Yk = f (xk) + ξk = Pf,μ(xk) + ηk + ξk

= fθ (xk − μ̃) + ηk + ξk = z̄T
k θ + ηk + ξk.

Clearly, η is independent of ξ by definition. It remains to show (17). Apply the
cr -inequality, |a + b|r ≤ max(1,2r−1)(|a|r + |b|r ), r > 0, (4) and the fact that
‖xk − μ̃‖ ≤ √

dlδn, k = 1, . . . , n2, to obtain (17)

|ηk| = ∣∣f (xk) − Pf,μ(xk)
∣∣ ≤ L‖xk − μ‖α

≤ Lcα

(‖xk − μ̃‖α + ‖μ̃ − μ‖α) ≤ C1δ
α
n + C2‖μ̃ − μ‖α. �

Lemma 1 ensures that the matrix ZT Z is nonsingular. The following lemma de-
scribes the asymptotic behavior of the elements of its inverse. For notational con-
venience, below we enumerate the rows and columns of matrices starting from 0.

Enumerate I by arranging their elements in the order described in Section 2,
which we denote by i0, . . . , iq , respectively.

LEMMA 3. The (i, j)th element hij of (ZT Z)−1 satisfies

hij = O
(
n−1δ

−(|ii |+|ij |)
n

)
, i, j = 0,1, . . . , q.

PROOF. Since z0
k = 1 for all k = 1, . . . , n2, we have

ZT Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n2

n2∑
k=1

zi1
k · · ·

n2∑
k=1

z
iq
k

n2∑
k=1

zi1
k

n2∑
k=1

zi1
k zi1

k · · ·
n2∑
i=1

zi1
k z

iq
k

· · ·
n2∑

k=1

z
iq
k

n2∑
i=1

zi1
k z

iq
k · · ·

n2∑
i=1

z
iq
k z

iq
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, for some constants aij , i, j = 0,1, . . . , q , we rewrite the symmetric matrix
ZT Z as follows:

ZT Z = n3

⎛
⎜⎜⎜⎜⎝

a00 a01δ
|i1|
n · · · a0qδ

|iq |
n

a10δ
|i1|
n a11δ

|i1|+|i1|
n · · · a1qδ

|i1|+|iq |
n

· · ·
aq0δ

|iq |
n aq1δ

|iq |+|i1|
n · · · aqqδ

|iq |+|iq |
n

⎞
⎟⎟⎟⎟⎠ .
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Some entries are easy to compute. For example, a00 = (2l + 1)d since n2 =
(2l + 1)dn3. Moreover, there are many zeros due to the symmetry of the design. In
particular, aij = 0 for all i, j ∈ {0,1, . . . , q} such that |ii | + |ij | is an odd number.
However we are not concerned about the exact values aij but only about nonsin-
gularity of the matrix A with (i, j)th entry equal to aij , i, j = 0, . . . , q .

Let � be the diagonal matrix with elements δ
|ij |
n , j = 0,1, . . . , q , in that order.

Now notice that ZT Z = n3�A�. Since ZT Z is nonsingular by Lemma 1, it fol-
lows that A is also invertible. Therefore (ZT Z)−1 = n−1

3 �−1A−1�−1. Denote by
aij the (i, j)th entry of the constant matrix A−1 and recall that n3 ≥ cn. Then for
i, j = 0,1, . . . , q ,

hij = n−1
3 aij δ

−(|ii |+|ij |)
n = O

(
n−1δ

−(|ii |+|ij |)
n

)
. �

REMARK 5. For d = 1 and even rα , we have 2l + 1 = rα + 1. Put b0 = rα + 1,
bm = 0 for all odd m ∈ {1, . . . ,2rα}, and for each even m ∈ {1, . . . ,2rα}

bm = 2
(
1 + 2m + 3m + · · · + lm

) = 2
{
1 + 2m + · · · + (rα/2)m

}
.

Then the entries of A can be computed as follows: Since n2 = (2l + 1)n3,∑n2
k=1 zm

k = 0 for each odd m ∈ {1, . . . ,2rα} and

n2∑
k=1

zm
k = 2n3

{
lmδm

n + (l − 1)mδm
n + · · · + δm

n

} = n3δ
m
n bm

for each even m ∈ {1, . . . ,2rα}, we obtain that aij = bi+j .
The case of odd rα can be treated similarly leading to slightly different con-

stants.

LEMMA 4. Assume (A1), and let θ̂ and θ be defined by (12) and (15), respec-
tively. Then

θ̂i = θi + Op

(
n−1/2δ−|i|

n

) + O
(
δα−|i|
n

) + O
(‖μ̃ − μ‖αδ−|i|

n

)
, i ∈ I.

PROOF. Using (12) and Lemma 2, write

θ̂ − θ = (
ZT Z

)−1ZT Y − θ = (
ZT Z

)−1ZT (η + ξ).(18)

Since E(ξ) = 0 and Cov((ZT Z)−1ZT ξ) = σ 2(ZT Z)−1, the order of the term
(ZT Z)−1ZT ξ is determined by the diagonal entries of the matrix (ZT Z)−1. Hence,
by Lemma 3, we have

(
ZT Z

)−1ZT ξ = (
Op

(
n−1/2)

,Op

(
n−1/2δ−|i1|

n

)
, . . . ,Op

(
n−1/2δ

−|iq |
n

))T
.(19)
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In view of (11), zk ∈ C(lδn), so that |zi
k| ≤ cδ

|i|
n , k = 1, . . . , n2, i ∈ I. Using this,

(17), n2 ≤ n and Lemma 3, we obtain that

(
ZT Z

)−1ZT η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h00

n2∑
k=1

zi0
k ηk + · · · + h0q

n2∑
k=1

z
iq
k ηk

h10

n2∑
k=1

zi0
k ηk + · · · + h1q

n2∑
i=k

z
iq
k ηk

...

hq0

n2∑
k=1

zi0
k ηk + · · · + hqq

n2∑
k=1

z
iq
k ηk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

=

⎛
⎜⎜⎜⎜⎝

O
(
δα
n

) + O
(‖μ̃ − μ‖α

)
O

(
δ
α−|i1|
n

) + O
(‖μ̃ − μ‖αδ

−|i1|
n

)
...

O
(
δ
α−|iq |
n

) + O
(‖μ̃ − μ‖αδ

−|iq |
n

)

⎞
⎟⎟⎟⎟⎠ .

Combining relations (18), (19) and (20) completes the proof of the lemma. �

Let 1j , j = 1, . . . , d , be the d standard unit vectors of R
d , that is, 1j has 1 at

the j th coordinate and zeros at other d − 1 coordinates. Notice that I1 = {1j : j =
1, . . . , d}.

LEMMA 5. Assume (A1) and let fϑ , θ̂ and θ be defined by (7), (12) and (15),
respectively. If ‖μ − μ̃‖ = op(δn), then

∇f
θ̂
(μ − μ̃) − ∇fθ (μ − μ̃) = Op

(
n−1/2δ−1

n

) + Op

(
δα−1
n

)
.

PROOF. The j th coordinate of the vector ∇fθ (x) is

∂fθ (x)

∂xj

= ∑
i∈I

θ i
∂xi

∂xj

= ∑
i∈I : ij≥1

θ i
∂xi

∂xj

= ∑
i∈I : ij≥1

ij θixi−1j

= θ1j
+ ∑

i∈I : ij≥1,|i|≥2

ij θixi−1j ,

where 1j ∈ I1. Then, for each j = 1, . . . , d ,

∂f
θ̂
(μ − μ̃)

∂xj

− ∂fθ (μ − μ̃)

∂xj
(21)

= θ̂1j
− θ1j

+ ∑
i∈I : ij≥1,|i|≥2

ij (θ̂i − θi)(μ − μ̃)i−1j .



OPTIMAL TWO-STAGE PROCEDURE 2869

Now we bound the right-hand side of (21). Since 1j ∈ I1, that is, |1j | = 1 for
j = 1, . . . , d , and ‖μ − μ̃‖ = op(δn), we obtain by Lemma 4 that

θ̂1j
− θ1j

= Op

(
n−1/2δ−1

n

) + O
(
δα−1
n

) + O
(‖μ̃ − μ‖αδ−1

n

)
(22)

= Op

(
n−1/2δ−1

n

) + Op

(
δα−1
n

)
, j = 1, . . . , d.

The same argument applies to each term of the sum in the right-hand side of (21):
for all i ∈ I such that ij ≥ 1 and |i| ≥ 2

∣∣(θ̂i − θi)(μ − μ̃)i−1j
∣∣

≤ |θ̂i − θi|‖μ − μ̃‖|i−1j |

= [
Op

(
n−1/2δ−|i|

n

) + O
(
δα−|i|
n

) + O
(‖μ̃ − μ‖αδ−|i|

n

)]‖μ − μ̃‖|i|−1(23)

= op

(
n−1/2δ−1

n

) + op

(
δα−1
n

) + op

(‖μ̃ − μ‖αδ−1
n

)
= op

(
n−1/2δ−1

n

) + op

(
δα−1
n

)
.

There are fixed number of terms in the sum from (21) and the constant ij is at
most rα . Combining this with (22) and (23), we see that the main term in (21) is
θ̂1j

− θ1j
and therefore
∥∥∇f

θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)

∥∥ = Op

(
n−1/2δ−1

n

) + Op

(
δα−1
n

)
. �

For an (s × p)-matrix A, let ‖A‖ = supx∈Rp : ‖x‖≤1 ‖Ax‖ be the operator norm
for the rest of this section and define the maximum norm ‖A‖max = maxi,j |aij |,
where aij are the entries of the matrix A. These norms are related by

‖A‖max ≤ ‖A‖ ≤ √
sp‖A‖max.(24)

LEMMA 6. Assume (A1), (A2), ‖μ− μ̃‖ = op(δn) and
√

nδ2
n → ∞. For μ∗ ∈

R
d such that ‖μ∗‖ = op(1) and for any fixed ε ∈ (0,1), let

Bn = {∥∥Hf (μ) − Hf
θ̂

(
μ∗)∥∥ ≤ (1 − ε)

∥∥(
Hf (μ)

)−1∥∥−1}
.(25)

Then P(Bn) → 1 as n → ∞, on the event Bn, (Hf
θ̂
(μ∗))−1 exists and

∥∥(
Hf (μ)

)−1 − (
Hf

θ̂

(
μ∗))−1∥∥ = op(1).

PROOF. Clearly, by the smoothness of a polynomial,

Hfθ (z) = Hfθ (0) + O
(‖z‖)

as ‖z‖ → 0.(26)

We note that the elements of the matrix Hfθ (0) [resp., Hf
θ̂
(0)] are linear com-

binations of θi (resp., θ̂i), i ∈ I2. From Lemma 4 and the conditions α > 2,
‖μ − μ̃‖ = op(δn) and

√
nδ2

n → ∞, we obtain that

θ̂i − θi = Op

(
n−1/2δ−2

n

) + O
(
δα−2
n

) + O
(‖μ̃ − μ‖αδ−2

n

) = op(1), i ∈ I2,
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where vector θ is defined by (15). Therefore, entry-wise

Hf
θ̂
(0) = Hfθ (0) + op(1).(27)

By (A1), (A2) and the definition (15) of θ , Hf (μ) = Hfθ (μ − μ̃). This and (26)
imply that entry-wise

Hf (μ) = Hfθ (μ − μ̃) = Hfθ (0) + O
(‖μ − μ̃‖)

.(28)

Combining (26), (27) and (28) leads to the following entry-wise relation:

Hf
θ̂

(
μ∗) = Hf

θ̂
(0) + O

(‖μ∗‖)
= Hfθ (0) + op(1) + O

(‖μ∗‖)
= Hf (μ) + O

(‖μ − μ̃‖) + op(1) + O
(‖μ∗‖)

= Hf (μ) + op(1).

Then ‖Hf
θ̂
(μ∗) − Hf (μ)‖max = op(1) and hence, by (24),

∥∥Hf (μ) − Hf
θ̂

(
μ∗)∥∥ = op(1).(29)

Next, since (A1) and (A2) imply (6), λmin(Hf (μ)) ≤ · · · ≤ λmax(Hf (μ)) ≤
−λ0 < 0. Hence, ‖(Hf (μ))−1‖ = −(λmax(Hf (μ)))−1 ≤ λ−1

0 , or

λ0 ≤ ∥∥(
Hf (μ)

)−1∥∥−1
.(30)

Define the event Cn = {‖Hf (μ) − Hf
θ̂
(μ∗)‖ ≤ (1 − ε)λ0}. Using (30) and

Lemma 11, we obtain that

Cn ⊂ Bn ⊂ {(
Hf

θ̂

(
μ∗))−1 exists

}
.

In view of (29), P(Cn) → 1 and hence P(Bn) → 1. Finally, by applying (29), (30)
and Lemma 11 again, we get that on the event Bn∥∥(

Hf (μ)
)−1 − (

Hf
θ̂

(
μ∗))−1∥∥ ≤ ε−1∥∥(

Hf (μ)
)−1∥∥2∥∥Hf (μ) − Hf

θ̂

(
μ∗)∥∥

≤ ε−1λ−2
0

∥∥Hf (μ) − Hf
θ̂

(
μ∗)∥∥ = op(1). �

REMARK 6. Lemma 6 would still hold if we only assumed that ‖μ − μ̃‖ =
Op(δn) instead of ‖μ − μ̃‖ = op(δn).

LEMMA 7. Assume (A1), (A2), ‖μ − μ̃‖ = op(δn),
√

nδ2
n → ∞ and let An =

{ ◦
μ ∈ C(2lδn/3)}, where the estimator

◦
μ is defined by (14). Then P(An) → 1 as

n → ∞.

PROOF. Bound P(Ac
n) by

P
( ◦
μ /∈ C(2lδn/3),μ − μ̃ ∈ C(lδn/3)

) + P
(
μ − μ̃ /∈ C(lδn/3)

)
.(31)
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The second term converges to zero by the condition ‖μ − μ̃‖ = op(δn).
For a symmetric matrix M and any x ∈ R

d , λmin(M)‖x‖2 ≤ xT Mx ≤
λmax(M)‖x‖2. Recall that ∇f (μ) = 0 and (6) follow from (A1) and (A2). Then,
for μ ∈ C(μ̃, lδn/3) and x ∈ C(μ̃, lδn) \ C(μ̃,2lδn/3), by using Taylor’s expan-
sion, ∇f (μ) = 0 and (6), we have

f (x) = f (μ) + 1

2
(x − μ)T Hf

(
μ∗)

(x − μ)

(32)

≤ f (μ) − λ0

2
‖x − μ‖2 ≤ f (μ) − cδ2

n

for some positive constant c = c(λ0, l) and sufficiently large n such that ‖μ∗ −
μ‖ ≤ κ , with κ > 0 from (6).

Next, by using (4), (15) and the cr -inequality,

fθ (z) = Pf,μ(z + μ̃) = f (z + μ̃) + O
(‖z‖α) + O

(‖μ̃ − μ‖α)
.

Now we combine this with Lemma 4 and the conditions α > 2, ‖μ − μ̃‖ = op(δn)

and
√

nδ2
n → ∞ to obtain that, uniformly in z ∈ C(lδn),

f
θ̂
(z) = fθ (z) + Op

(
n−1/2) + O

(
δα
n

)

= f (z + μ̃) + O
(‖z‖α) + O

(‖μ̃ − μ‖α) + Op

(
n−1/2) + O

(
δα
n

)
(33)

= f (z + μ̃) + op

(
δ2
n

)
.

Recall that
◦
μ ∈ C(lδn) by the definition (14). By (32) and (33), we see that the

event
{ ◦
μ /∈ C(2lδn/3),μ − μ̃ ∈ C(lδn/3)

}
= { ◦

μ + μ̃ ∈ C(μ̃, lδn) \ C(μ̃,2lδn/3),μ ∈ C(μ̃, lδn/3)
}

implies the event

f (μ) − cδ2
n ≥ f (

◦
μ + μ̃) = f

θ̂
(

◦
μ) + op

(
δ2
n

)

≥ f
θ̂
(μ − μ̃) + op

(
δ2
n

) = f (μ) + op

(
δ2
n

)
,

leading to

P
( ◦
μ /∈ C(2lδn/3),μ − μ̃ ∈ C(lδn/3)

) ≤ P
(
cδ2

n ≤ op

(
δ2
n

)) → 0

as n → ∞. Combined with (31), this completes the proof of the lemma. �

PROOF OF THEOREM 1. By (A1) and (A2), ∇f (μ) = 0. According to the
definition (15) of the polynomial fθ ,

0 = ∇f (μ) = ∇Pf,μ(μ) = ∇fθ (μ − μ̃).(34)
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By (14), maxz∈C(lδn) fθ̂
(z) = f

θ̂
(

◦
μ). If this maximum is not attained on the

boundary of C(lδn), then ∇f
θ̂
(

◦
μ) must be zero. Hence we have that on the event

An = { ◦
μ ∈ C(2lδn/3)}

0 = ∇f
θ̂
(

◦
μ) = ∇f

θ̂
(μ − μ̃) + Hf

θ̂

(
μ∗)( ◦

μ − (μ − μ̃)
)
,(35)

where μ∗ = (μ∗
1, . . . ,μ

∗
d) = λ

◦
μ + (1 − λ)(μ − μ̃) for some λ ∈ [0,1]. Thus

‖μ∗‖ = O(‖ ◦
μ‖) + O(‖μ − μ̃‖) = Op(δn) = op(1).

By Lemma 6, (Hf
θ̂
(μ∗))−1 exists on the event Bn defined by (25). Rela-

tions (34) and (35) imply that on the event An ∩ Bn

μ̂ − μ = −(
Hf

θ̂

(
μ∗))−1∇f

θ̂
(μ − μ̃)

= −(
Hf

θ̂

(
μ∗))−1(∇f

θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)

)
(36)

= −(
Hf (μ)

)−1(∇f
θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)

) + rn,

where rn = [(Hf (μ))−1 − (Hf
θ̂
(μ∗))−1](∇f

θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)) is the re-

mainder term.
By Lemma 5 and (30), we bound the norm of the first term on the right-hand

side of (36) as ∥∥(
Hf (μ)

)−1(∇f
θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)

)∥∥
≤ λ−1

0

∥∥∇f
θ̂
(μ − μ̃) − ∇fθ (μ − μ̃)

∥∥ = Op(γn),

where γn = n−1/2δ−1
n + δα−1

n . Therefore ‖rn‖ = op(1)Op(γn) = op(γn) on the
event Bn by Lemmas 5 and 6. Consequently on the event An ∩ Bn, we have

‖μ̂ − μ‖ = Op

(
n−1/2δ−1

n + δα−1
n

) = Op(γn).(37)

For any constant ρ > 0,

P
(‖μ̂ − μ‖ > ργn

) ≤ P
({‖μ̂ − μ‖ > ργn

} ∩ An ∩ Bn

) + P
(
Ac

n

) + P
(
Bc

n

)
.

The first term on the right-hand side can be made arbitrarily small by choosing ρ

sufficiently large in view of (37), uniformly in n, while the other two terms con-
verge to zero by Lemmas 6 and 7. This proves (9).

It remains to prove (10). From (15) it follows that

M = f (μ) = fθ (μ − μ̃) = ∑
i∈I

θi(μ − μ̃)i,

so that, according to (14), M̂ − M can be written as

f
θ̂
(

◦
μ) − fθ (μ − μ̃)

= ∑
i∈I

[
θ̂i

◦
μi − θi(μ − μ̃)i](38)

= θ̂i0 − θi0 + ∑
i∈I,|i|≥1

(θ̂i − θi)
◦
μi + ∑

i∈I,|i|≥1

θi
[ ◦
μi − (μ − μ̃)i].
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By Lemma 4, the first term in (38) is

θ̂i0 − θi0 = Op

(
n−1/2) + Op

(
δα
n

)
.(39)

From (14), (9) and the conditions
√

nδ2
n → ∞, α > 2, ‖μ−μ̃‖ = op(δn), it follows

that

‖ ◦
μ‖ = ‖μ̂ − μ̃‖ ≤ ‖μ̂ − μ‖ + ‖μ − μ̃‖

(40)
= Op

(
n−1/2δ−1

n

) + Op

(
δα−1
n

) + O
(‖μ − μ̃‖) = op(δn).

Using (40) and Lemma 4, each term in the second sum of (38)∣∣(θ̂i − θi)
◦
μi∣∣ ≤ |θ̂i − θi|‖ ◦

μ‖|i| = op

(
n−1/2) + op

(
δα
n

)
,

so that, as there are a fixed number of terms in the sum,∑
i∈I,|i|≥1

(θ̂i − θi)
◦
μi = op

(
n−1/2) + op

(
δα
n

)
.(41)

Now consider the third sum in (38). Combining Lemma 8 with (9), (40) and the
condition ‖μ − μ̃‖ = op(δn), we obtain that for any i ∈ I, |i| ≥ 1,

∣∣ ◦
μi − (μ − μ̃)i∣∣ ≤ ∥∥ ◦

μ − (μ − μ̃)
∥∥ |i|∑

k=1

‖ ◦
μ‖|i|−k‖μ − μ̃‖k−1

= ‖μ̂ − μ‖
|i|∑

k=1

‖ ◦
μ‖|i|−k‖μ − μ̃‖k−1(42)

= op

(
n−1/2δ|i|−2

n

) + op

(
δα+|i|−2
n

)
.

Since DiPf,μ(x), i ∈ I, are continuous, they are bounded over the compact
set D, so that θi = Op(1), i ∈ I, in view of (16). Because of this and (42),

∑
i∈I,|i|≥2

θi
[ ◦
μi − (μ − μ̃)i] = op

(
n−1/2) + op

(
δα
n

)
.(43)

It remains to handle separately the terms in the third sum of (38) over i ∈ I1,
that is, i ∈ I such that |i| = 1. Due to (16) and the condition ‖μ − μ̃‖ = op(δn),

θi = DiPf,μ(μ̃) = O
(‖μ − μ̃‖) = op(δn), i ∈ I, |i| = 1.(44)

Then (42) and (44) imply that∑
i∈I,|i|=1

θi
[ ◦
μi − (μ − μ̃)i] = op

(
n−1/2) + op

(
δα
n

)
.

Finally, combining the last display with (38), (39), (41) and (43) completes the
proof of (10). �
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REMARK 7. The above argument for estimating the parameter M = f (μ) can
be refined for the problem of estimating any mixed derivative Dif (μ), for i ∈ I,
|i| ≥ 2. One can take the estimator Dif

θ̂
(

◦
μ) and establish in a similar way that

Dif
θ̂
(

◦
μ) − Dif (μ) = Op

(
n−1/2δ−|i|

n

) + Op

(
δα−|i|
n

)
, i ∈ I, |i| ≥ 2.

APPENDIX

LEMMA 8. For any x,y ∈ R
d and any i ∈ N

d such that |i| ≥ 1,

∣∣xi − yi∣∣ ≤ ‖x − y‖
|i|∑

k=1

‖x‖|i|−k‖y‖k−1.

PROOF. We prove the lemma by induction in dimension. For d = 1,

xi − yi = (x − y)

i∑
k=1

xi−kyk−1

and the statement follows.
Now we handle the inductive step. Suppose the statement is true for all di-

mensions k = 1, . . . , d − 1. We want to show that it also holds for the dimen-
sion d . Without loss of generality assume that i1 > 0. Recall the notation x−1 =
(x2, . . . , xd), i−1 = (i2, . . . , id) that we used in Lemma 1. We have

xi − yi = xi − x
i1
1 yi−1

−1 + x
i1
1 yi−1

−1 − yi

= x
i1
1

(
xi−1
−1 − yi−1

−1

) + (
x

i1
1 − y

i1
1

)
yi−1
−1 .

Obviously, |x1| ≤ ‖x‖, ‖x−1‖ ≤ ‖x‖ and |i| = |i−1| + i1. Using these relations
and the assumption of the inductive step, we obtain that

∣∣xi1
1

(
xi−1
−1 − yi−1

−1

)∣∣ ≤ |x1|i1‖x−1 − y−1‖
|i−1|∑
k=1

‖x−1‖|i−1|−k‖y−1‖k−1

≤ ‖x − y‖
|i|−i1∑
k=1

‖x‖|i|−k‖y‖k−1

and

∣∣(xi1
1 − y

i1
1

)
yi−1
−1

∣∣ ≤ ‖y−1‖i−1 |x1 − y1|
i1∑

k=1

|x1|i1−k|y1|k−1

≤ ‖x − y‖
|i|∑

k=|i|−i1+1

‖x‖|i|−k‖y‖k−1.
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Combining the last three relations, we obtain the desired result. �

Below, we consider s × s matrices and let I denote the identity matrix of order s.
Let ‖A‖ be some norm on the space of s × s matrices satisfying the multiplicative
property ‖AB‖ ≤ ‖A‖‖B‖. For example, the operator norm satisfies this property.

LEMMA 9 (Banach’s lemma). Let M be a matrix with ‖M‖ < 1. Then I − M
is invertible, (I − M)−1 = I + M + M2 + · · · and ‖(I − M)−1‖ ≤ (1 − ‖M‖)−1.

The proof of Banach’s lemma can be found in many textbooks on functional
analysis. The next two lemmas are essentially adopted from Facer and Müller
(2003) with some modifications.

LEMMA 10. Let V be invertible and W be such that ‖W‖ < ‖V−1‖−1. Then
V + W is invertible and

(‖V‖ + ‖W‖)−1 ≤ ∥∥(V + W)−1∥∥ ≤ ‖V−1‖
1 − ‖V−1W‖ .

PROOF. Since ‖V−1W‖ < 1 due to the condition ‖W‖ < ‖V−1‖−1, the matrix
(I + V−1W) is invertible and ‖(I + V−1W)−1‖ ≤ (1 − ‖V−1W‖)−1 by Banach’s
lemma. Therefore, V + W = V(I + V−1W) is also invertible and∥∥(V + W)−1∥∥ = ∥∥(

I + V−1W
)−1V−1∥∥

≤ ∥∥V−1∥∥∥∥(
I + V−1W

)−1∥∥ ≤ ‖V−1‖
1 − ‖V−1W‖ .

Now, using ‖V + W‖ ≤ ‖V‖ + ‖W‖ and the invertibility of V + W, we obtain
‖(V + W)−1‖ ≥ ‖V + W‖−1 ≥ (‖V‖ + ‖W‖)−1. �

LEMMA 11. Let A be invertible and B be such that ‖A − B‖ ≤ (1 −
ε)‖A−1‖−1 for some ε ∈ (0,1]. Then B is invertible and∥∥B−1 − A−1∥∥ ≤ ε−1∥∥A−1∥∥2‖A − B‖.

PROOF. Write B = A + (B − A) and apply Lemma 10 with V = A and W =
B − A to conclude that B is invertible and, as ‖A−1(B − A)‖ ≤ 1 − ε by the
condition of the lemma,

∥∥B−1∥∥ ≤ ‖A−1‖
1 − ‖A−1(B − A)‖ ≤ ‖A−1‖

1 − (1 − ε)
= ε−1∥∥A−1∥∥.

By using the last relation, we complete the proof,∥∥B−1 − A−1∥∥ ≤ ‖A−1‖∥∥AB−1 − I
∥∥

≤ ∥∥A−1∥∥‖A − B‖∥∥B−1∥∥ ≤ ε−1∥∥A−1∥∥2‖A − B‖. �
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