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A random-walk Metropolis sampler is geometrically ergodic if its equi-
librium density is super-exponentially light and satisfies a curvature condition
[Stochastic Process. Appl. 85 (2000) 341–361]. Many applications, including
Bayesian analysis with conjugate priors of logistic and Poisson regression
and of log-linear models for categorical data result in posterior distributions
that are not super-exponentially light. We show how to apply the change-of-
variable formula for diffeomorphisms to obtain new densities that do satisfy
the conditions for geometric ergodicity. Sampling the new variable and map-
ping the results back to the old gives a geometrically ergodic sampler for
the original variable. This method of obtaining geometric ergodicity has very
wide applicability.

1. Introduction. Markov chain Monte Carlo (MCMC) using the Metropolis–
Hastings–Green algorithm [Metropolis et al. (1953), Hastings (1970), Green
(1995)] or its special case the Gibbs sampler [Geman and Geman (1984), Tanner
and Wong (1987), Gelfand and Smith (1990)] has become very widely used
[Gilks, Richardson and Spiegelhalter (1996), Brooks et al. (2011)], especially after
Gelfand and Smith (1990) pointed out that most Bayesian inference can be done
using MCMC, and little can be done without it.

In ordinary, independent and identically distributed Monte Carlo (OMC), the
asymptotic variance of estimates is easily calculated [Geyer (2011), Section 1.7].
In MCMC, the properties of estimates are more difficult to handle theoretically
[Geyer (2011), Section 1.8]. A Markov chain central limit theorem (CLT) may or
may not hold [Tierney (1994), Chan and Geyer (1994)]. If it does hold, the asymp-
totic variance of MCMC estimates is more difficult to estimate than for OMC es-
timates, but estimating the asymptotic variance of the MCMC estimates is doable
[Geyer (1992), Flegal and Jones (2010), Geyer (2011), Section 1.10]. The CLT
holds for all L2+ε functionals of a Markov chain if the Markov chain is geomet-
rically ergodic [Chan and Geyer (1994)]. For a reversible Markov chain [Geyer
(2011), Section 1.5] the CLT holds for all L2 functionals if and only if the Markov
chain is geometrically ergodic [Roberts and Rosenthal (1997)]. The CLT may hold
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for some functionals of a Markov chain when the Markov chain is not geomet-
rically ergodic [Gordin and Lifšic (1978), Maigret (1978), Kipnis and Varadhan
(1986), Chan (1993), Tierney (1994), Chan and Geyer (1994), Roberts and Rosen-
thal (1997, 2004), Jones (2004)], but then it is usually very difficult to verify that a
CLT exists for a given functional of the Markov chain. Thus geometric ergodicity
is a very desirable property for a Markov chain to have. This is especially true be-
cause most instances of the Metropolis–Hastings–Green algorithm are reversible
or can be made to be reversible [Geyer (2011), Sections 1.5, 1.12 and 1.17], so, as
stated above, geometric ergodicity implies the CLT holds for all L2 functionals of
the Markov chain, which makes reversible geometrically ergodic MCMC just as
good as OMC in this respect.

Geometric ergodicity also plays a key role in the theory of calculable nonasymp-
totic bounds for Markov chain estimators [Rosenthal (1995b), Łatuszyński and
Niemiro (2011), Łatuszyński, Miasojedow and Niemiro (2012)], but is only half
of what must be done to establish this type of result. The other half is establishing
a minorization condition. The proof techniques involved in establishing geomet-
ric ergodicity and in establishing minorization conditions, however, have little in
common. We deal only with establishing geometric ergodicity.

1.1. The random-walk Metropolis algorithm. The Metropolis–Hastings–
Green algorithm generates a Markov chain having a specified invariant proba-
bility distribution. We restrict our attention to distributions of continuous random
vectors, those having a density π with respect to Lebesgue measure on R

k . If π

is only known up to a normalizing constant, then the Metropolis–Hastings–Green
algorithm still works.

We describe only the random-walk Metropolis algorithm [terminology intro-
duced by Tierney (1994)]. This simulates a Markov chain X1, X2, . . . having π as
an invariant distribution. It is determined by π and another function q : Rk → R

that is a properly normalized probability density with respect to Lebesgue measure
on R

k and is symmetric about zero. Each iteration does the following three steps,
where Xn is the state of the Markov chain before the iteration and Xn+1 is the state
after the iteration. Simulate Zn having the distribution q , and set Yn = Xn + Zn.
Calculate

a(Xn,Yn) = min
(
1, π(Yn)/π(Xn)

)
.(1)

Set Xn+1 = Yn with probability a(Xn,Yn), and set Xn+1 = Xn with probability
1 − a(Xn,Yn).

The only requirement is π(X1) > 0. The operation of the algorithm itself then
ensures that π(Xn) > 0 almost surely for all n, so (1) always makes sense.

The proposal density q and target density π are arbitrary. The algorithm al-
ways produces a (not necessarily ergodic) reversible Markov chain having invari-
ant density π regardless of what q is chosen. If q is everywhere positive, then
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the Markov chain is necessarily ergodic [irreducible and positive Harris recurrent,
Tierney (1994), Corollary 2].

The R package mcmc [Geyer and Johnson (2012)] provides a user-friendly im-
plementation of the random-walk Metropolis algorithm combined with the vari-
able transformation methodology described in this article in its morph.metrop
function. The user provides an R function that evaluates logπ , and the metrop
function in that package does the simulation. If the user correctly codes the func-
tion that evaluates logπ , then the morph.metrop function is guaranteed to sim-
ulate a reversible ergodic Markov chain having invariant density π . This gives an
algorithm having an enormous range of application, which includes all Bayesian
inference for models with continuous parameters and continuous prior distribu-
tions. No other computer package known to us combines this range of application
with the correctness guarantees of the mcmc package, which are as strong as can
be made about arbitrary user-specified target distributions.

1.2. Geometric ergodicity and random-walk Metropolis. A random-walk
Metropolis sampler is not necessarily geometrically ergodic, but its geometric
ergodicity has received more attention [Mengersen and Tweedie (1996), Roberts
and Tweedie (1996), Jarner and Hansen (2000)] than any other MCMC sampler,
except perhaps independence Metropolis–Hastings samplers, also terminology in-
troduced by Tierney (1994), which are also studied in Mengersen and Tweedie
(1996) and Roberts and Tweedie (1996). Independence Metropolis–Hastings sam-
plers, however, do not have good properties, being either uniformly ergodic or
not geometrically ergodic and uniformly ergodic only when its proposal distribu-
tion is particularly adapted to π in a way that is difficult to achieve (whenever
independence samplers work, importance sampling also works, so MCMC is un-
necessary).

To simplify the theory, Mengersen and Tweedie (1996), Roberts and Tweedie
(1996) and Jarner and Hansen (2000) restrict attention to π that are strictly positive
and continuously differentiable. In order to build on their results, we also adopt this
restriction. The geometric ergodicity properties of the random-walk Metropolis
algorithm are related to

lim sup
|x|→∞

x

|x| · ∇ logπ(x),(2)

where the dot indicates inner product, and | · | denotes the Euclidean norm. We
say π is super-exponentially light if (2) is −∞, is exponentially light if (2) is
negative and sub-exponentially light if (2) is zero.

None of these conditions are necessary for geometric ergodicity. A necessary
condition for the geometric ergodicity of a random-walk Metropolis algorithm is
that the target density π have a moment generating function [Jarner and Tweedie
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(2003)]. It is possible for a density to have a moment generating function but not
be even sub-exponentially light, for example, the unnormalized density

π(x) = e−|x|(1 + cos(x)
)
, x ∈ R.

Following Roberts and Tweedie (1996) and Jarner and Hansen (2000), we also
restrict attention to q that are bounded away from zero in a neighborhood of zero.
This includes the normal proposal distributions used by the R package mcmc.

THEOREM 1 [Jarner and Hansen (2000), Theorem 4.3]. Suppose π is a super-
exponentially light density on R

k that also satisfies

lim sup
|x|→∞

x

|x| · ∇π(x)

|∇π(x)| < 0,(3)

where the dot denotes inner product; then the random-walk Metropolis algorithm
with q bounded away from zero on a neighborhood of zero is geometrically er-
godic.

We say π satisfies the curvature condition to mean (3) holds. This means the
contours of π are approximately locally linear near infinity.

Theorem 1, although useful, covers neither exponentially light densities, which
arise in Bayesian categorical data analysis with canonical parameters and con-
jugate priors (Section 3.1), nor sub-exponentially light densities, which arise in
Bayesian analysis of Cauchy location models using flat improper priors on the
location parameters (Section 3.4). Roberts and Tweedie (1996) do cover expo-
nentially light densities, but their theorems are very difficult to apply [Jarner and
Hansen (2000) show that Roberts and Tweedie (1996) incorrectly applied their
own theorem in one case].

The key idea of this paper is to use the change-of-variable theorem in con-
junction with Theorem 1 to get results that Theorem 1 does not give directly. Sup-
pose πβ is the (possibly multivariate) target density of interest. We instead simulate
a Markov chain having invariant density

πγ (γ ) = πβ

(
h(γ )

)∣∣det∇h(γ )
∣∣,(4)

where h is a diffeomorphism. If πβ is the density of the random vector β , then πγ

is the density of the random vector γ = h−1(β). We find conditions on the trans-
formation h that make πγ super-exponentially light and satisfy the curvature con-
dition. Then by Theorem 1, the simulated Markov chain γ1, γ2, . . . is geometri-
cally ergodic. It is easy to see (Appendix A) that the Markov chain βi = h(γi),
i = 1,2, . . . , is also geometrically ergodic. Thus we achieve geometric ergodicity
indirectly, doing a change-of-variable yielding a density that by Theorem 1 has
a geometrically ergodic random-walk Metropolis sampler, sampling that distribu-
tion, and then using the inverse change-of-variable to get back to the variable of
interest.
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This indirect procedure has no virtues other than that Metropolis random-walk
samplers are well-understood and user-friendly and that we have Theorem 1 to
build on. There is other literature using drift conditions to prove geometric er-
godicity of Markov chain samplers [Geyer and Møller (1994), Rosenthal (1995a),
Hobert and Geyer (1998), Jones and Hobert (2004), Roy and Hobert (2007), Tan
and Hobert (2009), Johnson and Jones (2010)] but for Gibbs samplers or other
samplers for specific statistical models, hence not having the wide applicability
of random-walk Metropolis samplers. There is also other literature about using
variable transformation to improve the convergence properties of Markov chain
samplers [Roberts and Sahu (1997), Papaspiliopoulos, Roberts and Sköld (2007),
Papaspiliopoulos and Roberts (2008)] but for Gibbs samplers not having the wide
applicability of random-walk Metropolis samplers.

It is important to understand that the necessary condition mentioned above
[Jarner and Tweedie (2003)] places a limit on what can be done without variable
transformation. If πβ does not have a moment generating function (any Student
t distribution, e.g.), then no random-walk Metropolis sampler for it can be geo-
metrically ergodic (no matter what proposal distribution is used). Thus if we use
a random-walk Metropolis sampler, then we must also use variable transformation
to obtain geometric ergodicity.

We call a function h : Rk → R
k isotropic if it has the form

h(γ ) =
⎧⎨
⎩f

(|γ |) γ

|γ | , γ �= 0,

0, γ = 0
(5)

for some function f : (0,∞) → (0,∞). To simplify the theory, we restrict atten-
tion to h that are isotropic diffeomorphisms, meaning h and h−1 are both contin-
uously differentiable, having the further property that det(∇h) and det(∇h−1) are
also continuously differentiable.

As with the restriction to π that are strictly positive and continuously differen-
tiable used by Mengersen and Tweedie (1996), Roberts and Tweedie (1996) and
Jarner and Hansen (2000), this restriction is arbitrary. It is not necessary to achieve
geometric ergodicity; it merely simplifies proofs. However, the proofs are already
very complicated even with these two restrictions. Although both these restrictions
could be relaxed, that would make the proofs even more complicated. Since many
applications can be fit into our framework, perhaps after a change-of-variable to
yield πβ that is strictly positive and continuously differentiable, we choose to not
complicate our proofs further.

Isotropic transformations (5) shrink toward or expand away from the origin of
the state space. In practice, they should be combined with translations so they can
shrink toward or expand away from arbitrary points. Since translations induce iso-
morphic Markov chains (Appendix A), they do not affect the geometric ergodicity
properties of random-walk Metropolis samplers. Hence we ignore them until Sec-
tion 4.
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Our variable-transformation method is easily implemented using the R package
mcmc [Geyer and Johnson (2012)] because that package simulates Markov chains
having equilibrium density π specified by a user-written function, which can incor-
porate a variable transformation, and outputs an arbitrary functional of the Markov
chain specified by another user-written function, which can incorporate the inverse
transformation.

A referee pointed out that one can think of our transformation method differ-
ently: as describing a Metropolis–Hastings algorithm in the original parameteriza-
tion. This seems to avoid variable transformation but does not, because its propos-
als have the form h(h−1(β)+ z), where β is the current state, and z is a simulation
from the Metropolis q . This uses h and h−1 in every iteration, whereas the scheme
we describe uses only h to run the Markov chain for γ and to map it back to β ,
needing h−1 only once to determine the inital state γ1 = h−1(β1) of the Markov
chain. Nevertheless, it is of some theoretical interest that this provides hitherto
unnoticed examples of geometrically ergodic Metropolis–Hastings algorithms.

2. Variable transformation.

2.1. Positivity and continuous differentiability. For the change-of-variable (4)
we need to know when the transformed density πγ is positive and continuously
differentiable assuming the original density πβ has these properties. If h is a dif-
feomorphism, then the first term on the right-hand side will be continuously differ-
entiable by the chain rule. Since ∇h−1 is the matrix inverse of ∇h by the inverse
function theorem, det(∇h) can never be zero. Hence h being a diffeomorphism is
enough to imply positivity of πγ .

Since det(A) is continuous in A, being a polynomial function of the components
of A, det(∇h) can never change sign. We restrict attention to h such that det(∇h)

is always positive, so the absolute value in (4) is unnecessary. Then we have

logπγ (γ ) = logπβ

(
h(γ )

) + log det
(∇h(γ )

)
,(6)

∇ logπγ (γ ) = ∇(logπβ)
(
h(γ )

)∇h(γ ) + ∇ log det
(∇h(γ )

)
.(7)

It is clear from (7) that logπγ , and hence πγ is continuously differentiable if h is
a diffeomorphism, and det(∇h) is continuously differentiable.

2.2. Isotropic functions. In the transformation method, the induced density,
πγ will need to satisfy the smoothness conditions of Theorem 1. We require
the original density, πβ to satisfy the smoothness conditions of Theorem 1. The
smoothness conditions will be satisfied for πγ if the isotropic transformations are
diffeomorphisms with continuously differentiable Jacobians. The assumptions of
the following lemma provide conditions on isotropic functions to guarantee that
πγ is positive and continuously differentiable whenever πβ is.
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LEMMA 1. Let h : Rk → R
k be an isotropic function given by (5) with

f : [0,∞) → [0,∞) invertible and continuously differentiable with one-sided
derivative at zero such that

f ′(s) > 0, s ≥ 0.(8)

Then

γ

|γ | = h(γ )

|h(γ )| , γ �= 0,(9)

f is a diffeomorphism, h is a diffeomorphism and

h−1(β) =
⎧⎨
⎩f −1(|β|) β

|β| , β �= 0,

0, β = 0
(10)

and

∇h(γ ) = f (|γ |)Ik
|γ | +

[
f ′(|γ |) − f (|γ |)

|γ |
]
γ γ T

|γ |2 , γ �= 0,(11)

where Ik is the k × k identity matrix, and

∇h(0) = f ′(0)Ik.(12)

Moreover

det
(∇h(γ )

) =
⎧⎪⎨
⎪⎩

f ′(|γ |)(f (|γ |)
|γ |

)k−1

, γ �= 0,

f ′(0)k, γ = 0

(13)

and, under the additional assumption that f is twice continuously differentiable
with one-sided derivatives at zero and

f ′′(0) = 0,(14)

(13) is continuously differentiable.

The proof of this lemma is in Appendix B.

2.3. Inducing lighter tails. Define f : [0,∞) → [0,∞) by

f (x) =
{

x, x < R,
x + (x − R)p, x ≥ R,

(15)

where R ≥ 0 and p > 2. It is clear that (15) satisfies the assumptions of Lemma 1.

THEOREM 2. Let πβ be an exponentially light density on R
k , and let h be

defined by (5) and (15). Then πγ defined by (4) is super-exponentially light.
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Proof of Theorem 2 is in Appendix C.
Now define f : [0,∞) → [0,∞) by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

ebx − e

3
, x >

1

b
,

x3 b3e

6
+ x

be

2
, x ≤ 1

b
,

(16)

where b > 0. It is clear that (16) satisfies the assumptions of Lemma 1.

THEOREM 3. Let πβ be a sub-exponentially light density on R
k , and suppose

there exist α > k and R < ∞ such that
β

|β| · ∇ logπβ(β) ≤ − α

|β| , |β| > R.(17)

Let h be defined by (5) and (16). Then πγ defined by (4) is exponentially light.

Proof of Theorem 3 is in Appendix C.
Condition (17) is close to sharp. For example, if πβ looks like a multivariate t

distribution

πβ(t) = [
1 + (t − μ)T �−1(t − μ)

]−(v+k)/2(18)

[compare with (27) in Section 3.3], then (17) holds with α = k + v, and (18) is
integrable if and only if v > 0.

Moreover, an exponential-type isotropic transformation like (16) is necessary
to obtain a super-exponentially light πγ when πβ is a multivariate t distribution.
Direct calculation shows that no polynomial-type isotropic transformation like (15)
does the job.

COROLLARY 1. Let πβ satisfy the conditions of Theorem 3, and let h be de-
fined as the composition of those used in Theorems 2 and 3; that is, if we de-
note the h used in Theorem 2 by h1 and denote the h used in Theorem 3 by h2,
then in this corollary we are using h = h2 ◦ h1 and the change of variable is
γ = h−1

1 (h−1
2 (β)). Then πγ defined by (4) is super-exponentially light.

PROOF. The proof follows directly from Theorems 2 and 3. �

2.4. Curvature conditions. As seen in Jarner and Hansen (2000), Example 5.4,
being super-exponentially light is not a sufficient condition for the geometric er-
godicity of a random-walk Metropolis algorithm. Jarner and Hansen (2000) pro-
vide sufficient conditions for super-exponentially light densities. In this section,
we provide sufficient conditions for sub-exponentially light and exponentially light
densities, such that, using the transformations from Section 2.3 the induced super-
exponential densities will satisfy the Jarner and Hansen (2000) sufficient condi-
tions.
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THEOREM 4. Let πβ be an exponentially light density on R
k , and suppose

that πβ satisfies either of the following conditions:

(i) πβ satisfies the curvature condition (3), or
(ii) |∇ logπβ(β)| is bounded as |β| goes to infinity.

Let h be defined by (5) and (15). Then πγ defined by (4) satisfies the curvature
condition (3).

Proof of Theorem 4 is in Appendix D.
For exponentially light πβ , condition (ii) implies condition (i). In practice, con-

dition (ii) may be easier to check than condition (i) (as in Section 3.1).

THEOREM 5. Let πβ be a sub-exponentially light density on R
k , and suppose

there exist α > k and R < ∞ such that

∣∣∇ logπβ(β)
∣∣ ≤ α

|β| , |β| > R.(19)

Let h be defined by (5) and (16). Then πγ defined by (4) satisfies condition (ii) of
Theorem 4 with β replaced by γ .

Proof of Theorem 5 is in Appendix D.
Condition (19), like (17), is close to sharp. If πβ has the form (18), then (19)

holds with α = k + v, and (18) is integrable if and only if v > 0.

COROLLARY 2. Let πβ satisfy the conditions of Theorems 3 and 5, and let
h be defined as the composition of those used in Theorems 4 and 5, that is, if we
denote the h used in Theorem 4 by h1 and denote the h used in Theorem 5 by
h2, then in this corollary we are using h = h2 ◦ h1 and the change of variable is
γ = h−1

1 (h−1
2 (β)). Then πγ defined by (4) satisfies the curvature condition (3).

PROOF. This follows directly from Theorems 5 and 4. �

To verify that a variable transformation (5) produces geometric ergodicity, one
uses Theorems 2 and 4 when the given target density πβ is exponentially light.
To verify that a variable transformation (5) produces geometric ergodicity, one
uses Corollaries 1 and 2 when the given target density πβ is sub-exponentially
light. (When the given target density πβ is super-exponentially light one does not
need variable transformation to obtain geometric ergodicity if πβ also satisfies the
curvature condition.)
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3. Examples.

3.1. Exponential families and conjugate priors. In this section we study
Bayesian inference for exponential families using conjugate priors, in particular,
the case where the natural statistic is bounded in some direction, and the natu-
ral parameter space is all of R

k . Examples include logistic regression, Poisson
regression with log link function and log-linear models in categorical data analy-
sis. In this case, we find that the posterior density, when it exists, is exponentially
light and satisfies the curvature condition. Hence variable transformation using (5)
and (15) makes the random-walk Metropolis sampler geometrically ergodic.

An exponential family is a statistical model having log likelihood of the form

y · β − c(β),

where the dot denotes inner product, y is a vector statistic, β is a vector parameter
and the function c is called the cumulant function of the family. A statistic y and
parameter β that give a log likelihood of this form are called natural or canoni-
cal. If y1, . . . , yn are independent and identically distributed observations from the
family and ȳn their average, then the log likelihood for the sample of size n is

nȳn · β − nc(β).

The log unnormalized posterior when using conjugate priors is

w(β) = (nȳn + νη) · β − (n + ν)c(β),(20)

where ν is a scalar hyperparameter, and η is a vector hyperparameter [Diaconis
and Ylvisaker (1979), Section 2]. When simulating the posterior using MCMC,
the unnormalized density of the target distribution is π(β) = ew(β).

The convex support of an exponential family is the smallest closed convex set
containing the natural statistic with probability one. (This does not depend on
which distribution in the exponential family we use because they are all mutu-
ally absolutely continuous.) Theorem 1 in Diaconis and Ylvisaker (1979) says that
the posterior exists; that is, ew(β) is integrable, where w(β) is given by (20), if and
only if n+ν > 0 and (nȳn +νη)/(n+ν) is an interior point of the convex support.
(Of course, this always happens when using a proper prior, i.e., when ν > 0 and
η/ν is an interior point of the convex support.)

Theorem 9.13 in Barndorff-Nielsen (1978) says that this same condition holds if
and only if the log unnormalized posterior (20) achieves its maximum at a unique
point, the posterior mode, call it β̃n. (Ostensibly, this theorem applies only to log
likelihoods of exponential families not to log unnormalized posteriors with con-
jugate priors, but since the latter have the same algebraic form as the former, it
actually does apply to the latter.)

From the properties of exponential families [Barndorff-Nielsen (1978), Theo-
rem 8.1],

∇c(β) = Eβ(Y ).(21)
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It follows that

∇ logπ(β) = ∇w(β) = nȳn + νη − (n + ν)Eβ(Y ).(22)

Suppose that the natural statistic is bounded in some direction, that is, there exists
a nonzero vector δ and real number b such that y · δ ≤ b for all y in the convex
support. It follows that Eβ(Y ) · δ ≤ b. Then

lim sup
|β|→∞

β

|β| · ∇ logπ(β) ≥ lim sup
s→∞

sδ

|sδ| · [
nȳn + νη − (n + ν)Esδ(Y )

]

≥ (nȳn + νη) · δ − (n + ν)b

|δ| .

Hence (2) is not −∞ and the target distribution is not super-exponentially light.
When the convex support has nonempty interior, the cumulant function c is

strictly convex [Barndorff-Nielsen (1978), Theorem 7.1]. Hence (20) is a strictly
concave function. It follows from this that ∇c is a strictly multivariate monotone
function, that is,[∇c(β1) − ∇c(β2)

] · (β1 − β2) > 0, β1 �= β2(23)

[Rockafellar and Wets (1998), Theorem 2.14 and Chapter 12]. It follows that

∇w(β) · β − β̃n

|β − β̃n|
< 0, β �= β̃n,(24)

where w is given by (20), because ∇w(β̃n) = 0. Let B denote the boundary and E

denote the exterior of the ball of unit radius centered at β̃n. Since c is infinitely
differentiable [Barndorff-Nielsen (1978), Theorem 7.2], so is w, and the left-hand
side of (24) is a continuous function of β . Since B is compact, the left-hand side
of (24) achieves its maximum over B , which must be negative, say −ε. For any
β ∈ E we have tβ + (1 − t)β̃n ∈ B when t = 1/|β − β̃n|. By (23) we have

[∇w(β) − ∇w
(
tβ + (1 − t)β̃n

)] · β − β̃n

|β − β̃n|
< 0

because

β − [
tβ + (1 − t)β̃n

] = (1 − t)(β − β̃n)

is parallel to β − β̃n. Thus

∇w(β) · β − β̃n

|β − β̃n|
< −ε, β ∈ E

and

lim sup
β→∞

∇w(β) · β − β̃n

|β − β̃n|
≤ −ε,
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and this is easily seen to be equivalent to the unnormalized density (20) being
exponentially light.

Now we check the curvature condition (3) for exponential families. In case the
natural statistic is bounded in all directions, as in logistic regression and log-linear
models, the curvature condition follows directly because the family satisfies condi-
tion (ii) of Theorem 4 because ∇ logπ(β) is (22), and this is bounded. In case the
natural statistic is bounded in some directions but not all directions, as in Poisson
regression, we have to work harder and use condition (i) of Theorem 4. Because

∇ logπ(β) = ∇π(β)

π(β)
,

we have

∇π(β)

|∇π(β)| = ∇w(β)

|∇w(β)| ,

where ∇w(β) is given by (22). And from (24) and ∇w(β) �= 0 for β �= β̃n, we
obtain

∇w(β)

|∇w(β)| · β − β̃n

|β − β̃n|
< 0, β �= β̃n,(25)

and the rest of the proof that π satisfies the curvature condition is just like the
proof that it is exponentially light given above except that (25) replaces (24).

3.2. Multinomial logit regresion with a conjugate prior. This example is a spe-
cial case of the example in Section 3.1.

In multinomial logit regression, using a conjugate prior is equivalent to adding
prior counts to the data cells. For observations 1, . . . ,L, represent these prior
counts as ξlνl where ξl is a vector giving the prior probability for each response
for the lth observation, and νl is the prior sample size. For the lth observation, let
the vector Y l represent the counts in each response category, Nl = ∑

i Y
l
i be the

sample size and Ml be the model matrix. The log unnormalized posterior density
for the regression parameter β is given by

π(β|y,n, ξ, ν) ∝ exp

{
L∑

l=1

(
yl + ξ lνl) · Mlβ − (

nl + νl) log
(∑

j

e
Ml

j ·β
)}

,(26)

where Ml
j · is the j th row of the matrix Ml . So long as yl

i + ξ l
i ν

l is positive for
all i and l—there is data (actual plus prior) in all cells—π will be exponentially
light, and satisfy condition (3). Hence a random-walk Metropolis algorithm for
the density induced by the approach in Theorems 2 and 4 will be geometrically
ergodic.
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3.3. Multivariate T distributions. The density of a multivariate t distribution
on R

k with v degrees of freedom, location parameter vector μ and scale parameter
matrix � is given by

πβ(t) = �[(v + k)/2]
�[v/2](vπ)k/2 det(�)1/2

[
1 + 1

v
(t − μ)T �−1(t − μ)

]−(v+k)/2

(27)

so

∇ logπβ(t) = −(v + k)�−1(t − μ)

v + (t − μ)T �−1(t − μ)
,(28)

which implies

t · ∇ logπβ(t) → −(v + k), as t → ∞,(29)

so (27) is sub-exponentially light.
The condition of Theorem 3 is also implied by (29). To check the condition of

Theorem 5 we calculate

∣∣∇ logπβ(t)
∣∣2 ≤ (v + k)2λ2

max|t − μ|2
(λmin|t − μ|2)2 ,

where λmax and λmin are the largest and smallest eigenvalues of �−1. Hence

∣∣∇ logπβ(t)
∣∣ ≤ (v + k)λmax

λmin|t − μ| ,

and the condition of Theorem 5 also holds. So a random-walk Metropolis algo-
rithm for the induced density πγ that uses the transformation described in Corol-
laries 1 and 2 will be geometrically ergodic, and the inverse transformed Markov
chain will be geometrically ergodic for πβ . Since the multivariate t distribution
does not have a moment generating function, no random-walk Metropolis algo-
rithm for πβ is geometrically ergodic [Jarner and Tweedie (2003)]. Variable trans-
formation is essential.

The case k = 1 gives the univariate t distribution, which has been widely used
as an example of a Harris ergodic random-walk Metropolis algorithm that is not
geometrically ergodic [Mengersen and Tweedie (1996), Jarner and Hansen (2000),
Jarner and Tweedie (2003), Jarner and Roberts (2007)].

3.4. Cauchy location models and flat priors. The t distribution with one de-
gree of freedom is the Cauchy distribution. Consider a Cauchy location family with
flat prior, so the posterior density for sample size one is again a Cauchy distribution

πβ(μ) = 1

π
· 1

1 + (x − μ)2 ,

and, this being a special case of the preceding section, this density is sub-
exponentially light.
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For a sample of size n the unnormalized posterior density is

πβ(μ) =
n∏

i=1

1

1 + (xi − μ)2

and the posterior distribution is no longer a brand name distribution. It is still easily
shown to be sub-exponentially light and to satisfy the conditions of Theorems 3
and 5.

4. Discussion. The transformations in Theorems 2 and 3 will always induce
a density with tails at least as light as the original density. If the original density
satisfies the curvature condition, then the transformation using the transformation
from Theorem 2 will induce a density that satisfies the curvature condition. Thus
applying the transformation from Theorem 2 to a super-exponentially light density
that satisfies the curvature condition will induce another super-exponentially light
density that satisfies the curvature condition. We do not recommend transforma-
tion when the original density already satisfies the conditions of Theorem 1, but it
seems this will do no harm.

The transformation method introduced here can be mixed blessing. It can pro-
duce geometric ergodicity, but may cause other problems. For example, πγ given
by (4) can be multimodal when πβ is unimodal. Thus we want a less extreme
member of the family of transformations that does the job. The idea is to pull in
the tails enough to get geometric ergodicity without much affecting the main part
of the distribution. Although very extreme transformations work in theory, they are
problematic in practice due to inexactness of computer arithmetic.

As mentioned in the Introduction, in practice one combines the transforma-
tions introduced in Section 2.3 with translations. Let tλ denote the translation
x �→ x + λ. Then in the exponentially light πβ case, we use the transformation
h = tλ ◦ hR,p , where hR,p is the h defined by (5) and (15), so the change-of-
variable is γ = h−1

R,p(β − λ). This gives users three adjustable constants, λ, R and
p, to experiment with to improve the mixing of the sampler. If πβ satisfies the
assumptions of Theorems 2 and 4, then any valid values of λ, R and p result in
a geometrically ergodic sampler. Observe that the restriction of this h to the ball
of radius R centered at λ is a translation, which does not affect the shape of the
distribution. Thus one wants to choose λ near the center of the distribution (per-
haps the mode of πβ , if it has one) and R large enough so that a large part of the
probability is in this ball where the shape is unchanged. The parameter p should
always be chosen to be small, say 3 or 2.5 (recall p > 2 is required), 3 is a good
choice as then f has a closed-form expression for its inverse.

In the sub-exponentially light πβ case, we use the transformation h = tλ ◦ hb ◦
hR,p , where hb is the h defined by (5) and (16), and the other two transformations
are as above, so the change-of-variable is γ = h−1

R,p(h−1
b (β − λ)). This gives users

four adjustable constants, λ, R, p and b to experiment with to improve the mixing
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of the sampler. If πβ satisfies the assumptions of Corollaries 1 and 2, then any
valid values of λ, R, p and b result in a geometrically ergodic sampler. One should
choose the first three as discussed above, and b should be chosen to be small, say
0.1 or 0.01.

Admittedly, our methods do not guarantee geometric ergodicity without any the-
oretical analysis. Users must understand the tail behavior of the target distribution
in order to select the correct transformation. For distributions with well behaved
tails, this analysis may be easy, as in our examples. We can say that our methods
are no more difficult to apply than the current state of the art [Jarner and Hansen
(2000)] and are applicable to a much larger class of models.

APPENDIX A: ISOMORPHIC MARKOV CHAINS

We say measurable spaces are isomorphic if there is an invertible bimeasurable
mapping between them (h bimeasurable means both h and h−1 are measurable).
We say probability spaces (S, A,P ) and (T , B,Q) are isomorphic if there is an
invertible bimeasurable mapping h :S → T such that P = Q ◦ h, meaning

P(A) = Q
(
h(A)

)
, A ∈ A,

which also implies Q = P ◦h−1. We say Markov chains on state spaces (S, A) and
(T , B) are isomorphic if there is an invertible bimeasurable mapping h :S → T

such that the corresponding initial distributions μ and ν and the transition proba-
bility kernels P and Q satisfy μ = ν ◦ h and

P(x,A) = Q
(
h(x), h(A)

)
, x ∈ S and A ∈ A.(30)

By the change-of-variable theorem for measures, (30) implies

P n(x,A) = Qn(
h(x), h(A)

)
, n ∈ N and x ∈ S and A ∈ A.(31)

It follows that P has an irreducibility measure if and only if Q has an irreducibility
measure. It also follows from the change-of-variable theorem that η is an invariant
measure for P if and only if η ◦ h−1 is an invariant measure for Q. Thus P is null
recurrent if and only if Q is, and P is positive recurrent if and only if Q is. Also P

is reversible with respect to η if and only if Q is reversible with respect to η ◦h−1.
For Harris recurrence we use the criterion that a recurrent Markov chain is Har-

ris if and only if every bounded harmonic function is constant [Nummelin (1984),
Theorem 3.8 combined with his Proposition 3.9 and Theorem 8.0.1 of Meyn and
Tweedie (2009)]. A function g is harmonic for a kernel P if g = Pg, meaning

g(x) =
∫

P(x, dy)g(y), x ∈ S.

It is clear that g is harmonic for P if and only if g ◦h−1 is harmonic for Q. Thus P

is Harris recurrent if and only if Q is.
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Suppose P is irreducible and periodic. This means [Meyn and Tweedie (2009),
Proposition 5.4.1] there are disjoint sets D0, . . . , Dd−1 with d ≥ 2 that are a parti-
tion of S such that

P(x,Di+1 mod d) = 1, x ∈ Di, i = 0, . . . , d − 1.

But then

Q
(
y,h−1(Di+1 mod d)

) = 1, y ∈ h−1(Di), i = 0, . . . , d − 1,

and the sets h−1(Di) partition T , so Q is also periodic. Thus isomorphic irre-
ducible Markov chains are both periodic or both aperiodic.

Finally suppose π is an invariant probability measure for P , and μ is any prob-
ability measure on the state space. Then ψ = π ◦ h−1 is an invariant probability
measure for Q, and it is clear that∥∥π − μP n

∥∥= ∥∥ψ − νQn
∥∥, n ∈ N,

where ‖ · ‖ denotes total variation norm and ν = μ ◦ h−1. A Markov chain is
geometrically ergodic if there exists a nonnegative-real-valued function M and
constant r < 1 such that∥∥P n(x, ·) − π(·)∥∥ ≤ M(x)rn, for all x(32)

[Meyn and Tweedie (2009), Chapter 15]. If M is bounded, then the Markov chain
is uniformly ergodic [Meyn and Tweedie (2009), Chapter 16]. If (32) holds with
rn replaced by nr for some r < 0, then the Markov chain is polynomially ergodic
[Jarner and Roberts (2002)]. Thus, if a Markov chain is polynomially ergodic,
geometrically ergodic, or uniformly ergodic, then any isomorphic Markov chain
has the same property.

The following summarizes the discussion in this appendix.

THEOREM 6 (Isomorphic Markov chains). If a Markov chain has one of the
following properties, irreducibility, reversibility, null recurrence, positive recur-
rence, Harris recurrence, aperiodicity, polynomial ergodicity, geometric ergodic-
ity, uniform ergodicity, then so does any isomorphic Markov chain.

APPENDIX B: PROOF OF LEMMA 1

That f is a diffeomorphism follows from the inverse function theorem

df −1(t)

dt
= 1

f ′(s)
whenever t = f (s)

and (8). It is clear from (5) that |h(γ )| = f (|γ |) for all γ , from which (9), (10) and
the invertibility of h follow.
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Now for γ �= 0 we have

∂

∂γk

(
d∑

i=1

γ 2
i

)1/2

=
(

d∑
i=1

γ 2
i

)−1/2

γk

so

∇|γ | = γ T

|γ | ,

and now (11) follows straightforwardly from (5), and it is clear that h is continu-
ously differentiable everywhere except perhaps at zero and similarly for h−1.

The term in square brackets on the right-hand side of (11) goes to zero as |γ | →
0 by the definition of derivative and that the term that multiplies it is bounded,
thus, if we can show (12), then ∇h is also continuous at zero. By the definition of
derivative, what must be shown to prove (12) is that

h(γ ) − f ′(0)γ

|γ | = f (|γ |)(γ /|γ |) − f ′(0)γ

|γ |
=

[
f (|γ |)

|γ | − f ′(0)

]
γ

|γ |
converges to zero as γ → 0. Since the term in square brackets converges to zero
by the definition of derivative and γ /|γ | is bounded, this proves (12). Since the
formulas for h and h−1 have the same form, this shows h is a diffeomorphism.

The determinant of a symmetric matrix is the product of its eigenvalues
[Harville (1997), Theorem 21.6.1]. First, γ is an eigenvector of ∇h(γ ) with eigen-
value f ′(|γ |). Second, any vector v orthogonal to γ is also an eigenvector of
∇h(γ ) with eigenvalue f (|γ |)/|γ | when γ �= 0 and eigenvalue f ′(0) when γ = 0.
Since the subspace orthogonal to γ has dimension k − 1, the multiplicity of the
second kind of eigenvalue is k − 1. This proves (13).

For γ �= 0 we have

∇ det
(∇h(γ )

) = f ′′(|γ |)(f (|γ |)
|γ |

)k−1 γ T

|γ |
(33)

+ (k − 1)f ′(|γ |)(f (|γ |)
|γ |

)k−2[
f ′(|γ |)

|γ | − f (|γ |)
|γ |2

]
γ T

|γ | .

Since (13) depends on γ only through |γ |, it has circular contours, and we must
have

∇ det
(∇h(0)

) = 0(34)

if the derivative exists. We claim the derivative (34) does exist, and (13) is contin-
uously differentiable under the “additional assumptions” about second derivatives
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of f of the lemma. To prove this claim we need to first show that (33) converges
to zero as γ → 0 and second show that (34) is the derivative at zero.

Except for the behavior of the term in square brackets, the limit of (33) is ob-
vious from f (s)/s → f ′(0) as s → 0 and γ /|γ | being bounded. For the term in
square brackets we use Taylor’s theorem [Stromberg (1981), Theorem 4.34]

f (s) = cs + o
(
s2)

,

f ′(s) = c + o(s),

where c = f ′(0), so

f ′(s)
s

− f (s)

s2 = o(1),

and the term in square brackets in (33) goes to zero as γ → 0 proving that all
of (33) goes to zero as γ → 0.

What must be shown to establish (34) is that

det(∇h(γ )) − det(∇h(0))

|γ | = 1

|γ |
[
f ′(|γ |)[f (|γ |)

|γ |
]k−1

− [
f ′(0)

]k]

converges to zero as γ → 0. Applying L’Hospital’s rule, we have

lim
s↓0

f ′(s)[f (s)/s]k−1 − [f ′(0)]k
s

= lim
s↓0

[
f ′′(s)

[
f (s)

s

]k−1

+ f ′(s)(k − 1)

[
f (s)

s

]k−2(
f ′(s)

s
− f (s)

s2

)]
,

and we have already shown that the limit on the right-hand side is zero.

APPENDIX C: PROOFS FROM SECTION 2.3

Before we prove Theorem 2 we need two additional lemmas.

LEMMA 2. Let h be defined by (5) and (15). Then

lim|γ |→∞
γ

|γ | · ∇ log det
(∇h(γ )

) = 0,(35)

where the dot indicates inner product.

PROOF. Recalling the value of det(∇h(γ )) for γ �= 0 from (13) we can rewrite
the dot product in (35) as

f ′′(|γ |)
f ′(|γ |) + (k − 1)

(
f ′(|γ |)
f (|γ |) − 1

|γ |
)
.(36)
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From (15) for |γ | > R we have

f ′(x) = 1 + p(x − R)p−1,(37)

f ′′(x) = p(p − 1)(x − R)p−2(38)

and, plugging these into (36), we see that, because p > 2, all terms in (36) go to
zero like |γ |−1 as |γ | → ∞. �

LEMMA 3. Under the assumptions of Lemma 1,

∇h(γ )γ = f ′(|γ |)γ, γ ∈ R
k,(39)

[∇h(γ )
]2 = f (|γ |)2

|γ |2 Ik +
[
f ′(|γ |)2 − f (|γ |)2

|γ |2
]
γ γ T

|γ |2 , γ �= 0,(40)

∇h(γ ) being a symmetric matrix, and

xT [∇h(γ )
]2

x = f (|γ |)2

|γ |2 |x|2 +
[
f ′(|γ |)2 − f (|γ |)2

|γ |2
](

h(γ ) · x
|h(γ )|

)2

,

(41)
x ∈ R

k, γ �= 0.

PROOF. From (11) and (12), we straightforwardly obtain (39) and for γ �= 0

[∇h(γ )
]2 = ∇h(γ )

(
f (|γ |)

|γ | Ik +
[
f ′(|γ |)
|γ |2 − f (|γ |)

|γ |3
]
γ γ T

)
(42)

= f (|γ |)
|γ | ∇h(γ ) +

[
f ′(|γ |)2

|γ |2 − f (|γ |)f ′(|γ |)
|γ |3

]
γ γ T

and

f (|γ |)
|γ | ∇h(γ ) = f (|γ |)2

|γ |2 Ik +
[
f ′(|γ |)f (|γ |)

|γ |3 − f (|γ |)2

|γ |4
]
γ γ T ,

which plugged into (42) gives (40), and (41) is straightforward from (40). �

PROOF OF THEOREM 2. Since ∇h(γ ) is a symmetric matrix, it follows
from (7) that

γ · ∇ logπγ (γ ) = ∇h(γ )γ · logπβ

(
h(γ )

) + γ · ∇ log det
(∇h(γ )

)
.

Hence we can bound (2) by the sum of

lim sup
|γ |→∞

∇h(γ )γ

|γ | · ∇ logπβ

(
h(γ )

)
(43)

and

lim sup
|γ |→∞

γ

|γ | · ∇ log det
(∇h(γ )

)
.(44)
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It follows from (9) and (39) that for large |γ | the dot product in (43) can be rewrit-
ten as

f ′(|γ |) h(γ )

|h(γ )| · ∇ logπβ

(
h(γ )

)
.(45)

Since f ′(|γ |) is always positive, and πβ is exponentially light, there is an ε > 0
such that (45) is bounded above by −f ′

1(|γ |)ε. It is clear that f ′(|γ |) → ∞ as
|γ | → ∞, so (43) is equal to −∞. It follows from Lemma 2 that (44) is equal to
zero, so (2) is equal to −∞ and πγ is a super-exponentially light density. �

Before we prove Theorem 3 we need a lemma.

LEMMA 4. Let h be defined by (5) and (16). Then

lim sup
|γ |→∞

γ

|γ | · ∇ log det
(∇h(γ )

) = bk,(46)

where the dot indicates inner product.

PROOF. As in in the proof of Lemma 2, the dot product in (46) can be written
as (36). Clearly, (k − 1)/|γ | goes to zero as |γ | goes to infinity. Hence, (46) is
equal to

lim sup
x→∞

[
f ′′(x)

f ′(x)
+ (k − 1)

f ′(x)

f (x)

]
(47)

if the limit exists. For x > 1/b, it follows from (16) that

f ′(x) = bebx,

f ′′(x) = b2ebx

and plugging these into (47) gives

lim sup
x→∞

[
b2ebx

bebx
+ (k − 1)

bebx

ebx − e/3

]
,

which equals bk. �

PROOF OF THEOREM 3. As in the proof of Theorem 2, (2) can be rewritten as
the sum of (43) and (44), and for large |γ | the dot product in (43) can be rewritten
as (45). By (17) and the fact that |h(γ )| = f (|γ |), (45) is bounded above

lim sup
|γ |→∞

(
−α

f ′(|γ |)
f (|γ |)

)
,

which when f is given by (16) is equal to −bα. It follows that the limit superior
in (2) is bounded above by −b(α −k). Since α > k, this upper bound is less than 0,
so πγ is exponentially light. �
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APPENDIX D: PROOFS FROM SECTION 2.4

Some lemmas are needed to prove the curvature conditions for exponentially
light densities.

LEMMA 5. Let πβ be an exponentially light density on R
k , and let h be defined

by (5) and (15). Then∣∣∇ logπβ

(
h(γ )

)∇h(γ )
∣∣ → ∞ as |γ | → ∞,(48)

and πγ defined by (4) has the property

lim|γ |→∞
|∇ logπγ (γ )|

|∇ logπβ(h(γ ))∇h(γ )| = 1.(49)

PROOF. The square of the left-hand side of (48) is, by (41),

f (|γ |)2

|γ |2
∣∣∇ logπβ

(
h(γ )

)∣∣2
(50)

+
[
f ′(|γ |)2 − f (|γ |)2

|γ |2
](

h(γ ) · ∇ logπβ(h(γ ))

|h(γ )|
)2

,

hence (48) holds if and only if (50) goes to infinity. Since the left-hand term of (50)
is nonnegative, it is sufficient to show that the right-hand term goes to infinity to
show that all of (50) goes to infinity. By assumption πβ is exponentially light, and
since |h(γ )| = f (|γ |), there exists an ε > 0 and M < ∞ such that

h(γ ) · ∇ logπβ(h(γ ))

|h(γ )| ≤ −ε, |γ | ≥ M.

Thus in order to prove (50) goes to infinity as |γ | goes to infinity, it is sufficient
to prove that the term in square brackets in (50) goes to infinity. Plugging in the
definitions of f and f ′ from (15) and (37) for large x, we obtain

f ′(x)2 − f (x)2

x2 = [
1 + p(x − R)p−1]2 − [x + (x − R)p]2

x2

= (
p2 − 1

)
x2p−2 + o

(
x2p−2)

,

and since p > 2 by assumption, this goes to infinity as x goes to infinity; hence (50)
goes to infinity as |γ | goes to infinity and (48) holds.

By (7), showing that (49) is true only requires showing that

lim|γ |→∞
|∇ log det(∇h(γ ))|

|∇ logπβ(h(γ ))∇h(γ )| = 0.(51)

It follows from (13) that for γ �= 0,

log det
(∇h(γ )

) = logf ′(|γ |) + (k − 1) log
(

f (|γ |)
|γ |

)
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and

∇ log det
(∇h(γ )

) =
(

f ′′(|γ |)
f ′(|γ |) + (k − 1)

[
f ′(|γ |)
f (|γ |) − 1

|γ |
])

γ T

|γ | .(52)

Plugging in the definitions of f , f ′ and f ′′ from (15), (37) and (38) for large x,
we see that f ′′(x)/f ′(x) and f ′(x)/f (x) go to zero as x goes to infinity, and
hence (52) goes to zero as |γ | goes to infinity. Hence the numerator in (51) goes to
zero. By (48) the denominator in (51) goes to infinity, and hence (51) holds. �

LEMMA 6. Let πβ be an exponentially light density on R
k , and let h be defined

by (5) and (15). Then πγ defined by (4) has the property that

lim sup
|γ |→∞

γ

|γ | · ∇πγ (γ )

|∇πγ (γ )|(53)

(which is the limit superior in the curvature condition) is bounded above by

lim sup
|γ |→∞

f ′(|γ |) γ

|γ | · ∇ logπβ(h(γ ))

|∇ logπβ(h(γ ))∇h(γ )| ,(54)

where the dots in both equations denote inner products.

PROOF. We always assume that πβ and πγ are positive (Section 2.1), so we
may take logs, obtaining

∇ logπγ (γ )

|∇ logπγ (γ )| = ∇πγ (γ )

|∇πγ (γ )| .
Thus (53) can be rewritten as

lim sup
|γ |→∞

γ

|γ | · ∇ logπγ (γ )

|∇ logπβ(h(γ ))∇h(γ )|
|∇ logπβ(h(γ ))∇h(γ )|

|∇ logπγ (γ )| ,

and then we can use Lemma 5 as

lim sup
|γ |→∞

γ

|γ | · ∇ logπγ (γ )

|∇ logπβ(h(γ ))∇h(γ )| .

If we expand ∇ logπγ (γ ) using (7), this is bounded above by the sum of

lim sup
|γ |→∞

γ

|γ | · ∇ logπβ(h(γ ))∇h(γ )

|∇ logπβ(h(γ ))∇h(γ )|(55)

and

lim sup
|γ |→∞

γ

|γ | · ∇ log det(∇h(γ ))

|∇ logπβ(h(γ ))∇h(γ )| .(56)

It follows from Lemmas 2 and 5 that (56) is zero. Hence the lim sup in (53) is
bounded above by (55), which is equal to (54) since ∇h(γ ) is symmetric and
∇h(γ )γ = f ′(|γ |)γ . �
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LEMMA 7. Let a(γ ) and b(γ ) be functions such that both a and b are pos-
itive and bounded away from zero and infinity as |γ | goes to infinity. Then for f

from (15), the fraction

f ′(|γ |)2
/(

f (|γ |)2

|γ |2 a(γ ) +
[
f ′(|γ |)2 − f (|γ |)2

|γ |2
]
b(γ )

)
(57)

is positive and bounded away from zero and infinity as |γ | goes to infinity.

PROOF. The reciprocal of (57) is

f (|γ |)2

f ′(|γ |)2|γ |2 a(γ ) +
[
1 − f (|γ |)2

f ′(|γ |)2|γ |2
]
b(γ ).

Since a(γ ) and b(γ ) are both positive and bounded away from zero and infinity
for large |γ |, it is sufficient to show that

f (x)2

f ′(x)2x2(58)

is bounded away from zero and one for large x. For large x, it follows from (15)
and (37) that (58) is equal to

[x + (x − R)p]2

[1 + p(x − R)p−1]2x2 ,

which converges to 1/p2 as x → ∞. Since we assume p > 2, we are done. �

PROOF OF THEOREM 4. First, assume that condition (i) holds. By Lemma 6,
it is enough to show that (54) is less than zero, and (54) is equal to, using (9),

lim sup
|γ |→∞

|∇ logπβ(h(γ ))|f ′(|γ |)
|∇ logπβ(h(γ ))∇h(γ )|

h(γ )

|h(γ )| · ∇ logπβ(h(γ ))

|∇ logπβ(h(γ ))| .(59)

Since πβ satisfies condition (3), there is an ε > 0 such that (59) is bounded above
by

lim sup
|γ |→∞

|∇ logπβ(h(γ ))|f ′(|γ |)
|∇ logπβ(h(γ ))∇h(γ )| (−ε).(60)

Because f ′(|γ |) is strictly positive, the fraction in (60) is strictly positive for
large |γ |, hence showing that this fraction’s square is bounded away from zero
is enough to show that (60) is less than zero, and condition (3) holds. Let

a(γ ) = |∇ logπβ(h(γ ))|2
|∇ logπβ(h(γ ))|2 = 1

and

b(γ ) =
( ∇ logπβ(h(γ )) · h(γ )

|∇ logπβ(h(γ ))||h(γ )|
)2

.
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Then, using (41) as in deriving (50), the square of the fraction in (60) is equal
to (57). The Cauchy–Schwarz inequality bounds b(γ ) above by one, and condi-
tion (3) bounds b(γ ) away from zero. So by Lemma 7 the square of the fraction
in (60) is positive and bounded away from zero as |γ | goes to infinity. Because this
fraction itself is positive, it must also be bounded away from zero as |γ | goes to
infinity. Hence the lim sup in (60) is negative and condition (3) holds for πγ .

Now assume that condition (ii) holds and πβ is exponentially light, that is, there
exist a β0 > 0, ε > 0 and M1 > M2 > 0 such that for |β| > β0,

β

|β| · ∇ logπβ(β) < −ε

and

M2 <
∣∣∇ logπβ(β)

∣∣ < M1.

It follows that 1/|∇ logπβ(β)| > 1/M1 so πβ satisfies condition (i). �

PROOF OF THEOREM 5. By (7) and the triangle inequality, |∇ logπγ (γ )| is
bounded above by the sum∣∣∇ logπβ

(
h(γ )

)∇h(γ )
∣∣ + ∣∣∇ log det

(
h(γ )

)∣∣.(61)

Hence it is sufficient to show that both of these terms are bounded as |γ | goes to
infinity.

It follows from (52) that the right-hand term in (61) is equal to

f ′′(|γ |)
f ′(|γ |) + (k − 1)

f ′(|γ |)
f (|γ |) − (k − 1)

1

|γ | .(62)

For large y,

f (y) = eby − e

3
,(63)

f ′(y) = beby,(64)

f ′′(y) = b2eby.(65)

So (62) is equal to

b + b(k − 1)
eb|γ |

eb|γ | − e/3
− (k − 1)

1

|γ | ,
which clearly converges to bk as |γ | goes to infinity, so the right-hand term in (61)
is bounded for large |γ |.

It follows from (41) as in deriving (50) and from (9) that the square of the left-
hand term in (61) is equal to the sum of

f (|γ |)2

|γ |2
∣∣∇ logπβ

(
h(γ )

)∣∣2(66)
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and

f ′(|γ |)2
[
1 − f (|γ |)2

|γ |2f ′(|γ |)2

](
h(γ ) · ∇ logπβ(h(γ ))

|h(γ )|
)2

.(67)

It follows from (63) and (64) that the term in square brackets of (67) is positive
and less than one for large |γ |. Since the other two terms in (67) are squares,
(67) is nonnegative for large |γ |. Thus, applying the Cauchy–Schwarz inequality
to the term in parentheses in (67), one bounds (67) above by

f ′(|γ |)2∣∣∇ logπβ

(
h(γ )

)∣∣2.(68)

By f (|γ |) = |h(γ )| and by (19), for |γ | large (68) is bounded above by

α2 f ′(|γ |)2

f (|γ |)2 ,

which converges to α2b2 as |γ | goes to infinity, and that finishes the proof that (61)
is bounded for large |γ | and the proof of the theorem. �
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