
The Annals of Statistics
2012, Vol. 40, No. 5, 2697–2732
DOI: 10.1214/12-AOS1047
© Institute of Mathematical Statistics, 2012

ASYMPTOTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD
ESTIMATION IN MISSPECIFIED HIDDEN MARKOV MODELS1

BY RANDAL DOUC AND ERIC MOULINES

Télécom SudParis and Télécom ParisTech

Let (Yk)k∈Z be a stationary sequence on a probability space (�, A,P)

taking values in a standard Borel space Y. Consider the associated maximum
likelihood estimator with respect to a parametrized family of hidden Markov
models such that the law of the observations (Yk)k∈Z is not assumed to be
described by any of the hidden Markov models of this family. In this paper
we investigate the consistency of this estimator in such misspecified models
under mild assumptions.

1. Introduction. An assumption underlying most of the classical theory of
maximum likelihood is that the “true” distribution of the observations is known
to lie within a specified parametric family of distributions. In many settings, it
is doubtful that this assumption is satisfied. It is therefore natural to investigate
the convergence of the maximum likelihood estimator (MLE) and to identify the
possible limit for misspecified models. Such questions have been mainly investi-
gated for models in which observations are independent; see [15, 29]. Much less is
known on the behavior of the MLE estimate for dependent observations; see [10]
and the references therein.

For independent observations, under mild additional technical conditions, the
MLE converges to the parameter which minimizes the relative entropy rate;
see [15]. The purpose of this paper is to show that such a result remains true when
the observations are from an ergodic process and for classes of parametric dis-
tributions associated to hidden Markov models (HMM). A HMM is a bivariate
stochastic process (Xk,Yk)k≥0, where (Xk)k≥0 is a Markov chain (often referred
to as the state sequence) in a state space X and, conditionally on (Xk)k≥0, (Yk)k≥0
is a sequence of independent random variables in a state space Y such that the con-
ditional distribution of Yk given the state sequence depends on Xk only. The key
feature of HMMs is that the state sequence (Xk)k≥0 is not observable, so that sta-
tistical inference has to be carried out by means of the observations (Yk)k≥0 only.
Such problems are far from straightforward due to the fact that the observation
process (Yk)k≥0 is generally a dependent, non-Markovian time series [despite that
the bivariate process (Xk,Yk)k≥0 is itself a Markov chain].
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HMMs have been intensively used in many scientific disciplines including
econometrics [16, 23], biology [5], engineering [18], neurophysiology [11] and
the statistical inference is therefore of significant practical importance [4]. In all
these applications, misspecified models are the rule, so it is worthwhile to under-
stand the behavior of MLE under such regime.

This work extends previous results in this direction obtained by Mevel and Fi-
nesso [24], but which are restricted to discrete state-space Markov chains. Our
main result of consistency of the MLE in misspecified HMMs is derived under as-
sumptions which are quite weak, covering general state-space HMMs under con-
ditions which are much weaker than [9], where a strong mixing condition was
imposed on the transition kernels of the hidden chain. Therefore our results can
be applied to many models of practical interest, including the Gaussian linear state
space model, the discrete state-space HMM and more general nonlinear state-space
models.

The paper is organized as follows. In Section 2, we first introduce the setting
and notations that are used throughout the paper. In Section 3, we state our main
assumptions and results. In Section 4, our main result is used to establish consis-
tency in three general classes of models: linear-Gaussian state space models, finite
state models and nonlinear state space models of the vector ARCH type (this in-
cludes the stochastic volatility model and many other models of interest in time
series analysis and financial econometrics). Section 5 is devoted to the proof of
our main result.

Notation. Some notation pertaining to transition kernels is required. Let L be a
(possibly unnormalized) transition kernel on (X, X ), that is, for any x ∈ X, L(x, ·)
is a finite measure on (X, X ) and for any A ∈ X , x �→ L(x,A) is measurable
function from (X, X ) to ([0,1], B([0,1])). L acts on bounded functions f on X
and on σ -finite positive measures μ on (X, X ) via

Lf (x) = δxLf �
∫

L(x,dy)f (y), μL(A) = μL1A �
∫

μ(dx)L(x,A).

If L1 and L2 are two transition kernels on (X, X ), then L1L2 is the transition
kernel on (X, X ), given, for any x ∈ X and A ∈ X by

L1L2(x,A) =
∫

L1(x,dy)L2(y,A).

2. Problem statement. We consider a parameterized family of HMMs with
parameter space �, assumed to be a compact metric space. For each parameter
θ ∈ �, the distribution of the HMM is specified by the transition kernel Qθ of the
Markov chain (Xk)k≥0, and by the conditional distribution gθ of the observation
Yk given the hidden state Xk , referred to as the likelihood of the observation.

For any m ≤ n and any sequence {ak}k∈Z, denote an
m � (am, . . . , an), and for

any probability measure χ on (X, X ), define the likelihood of the observations
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by

pθ
χ

(
yn
m

)
�
∫

· · ·
∫

χ(dxm)gθ (xm, ym)

n∏
p=m+1

Qθ(xp−1,dxp)gθ (xp, yp),

pθ
χ

(
yn
p|yp−1

m

)
� pθ

χ

(
yn
m

)
/pθ

χ

(
yp−1
m

)
, m < p ≤ n,

with the standard convention
∏n

p=m ap = 1 if m > n.
Let (�, F ,P) be a probability space, and let (Yk)k∈Z be a stationary ergodic

stochastic process taking value in (Y, Y). We denote by PY the image probability
of P by (Yk)k∈Z on the product space (YZ, Y ⊗Z), and EY the associated expecta-
tion. We stress that the distribution PY may or may not belong to the parametric
family of distributions specified by the transition kernels {(Qθ , gθ ), θ ∈ �}. If PY

does not belong to G , the model is said to be misspecified.
If χ is a probability measure (X, X ), we define the maximum likelihood esti-

mator (MLE) associated to the initial distribution χ by

θ̂χ,n � arg max
θ∈�

lnpθ
χ

(
Yn−1

0

)
.(1)

The study of asymptotic properties of the MLE in HMMs was initiated in the
seminal work of Baum and Petrie [2, 26] in the 1960s. In these papers, the model
is assumed to be well specified, and the state space X and the observation space
Y were both presumed to be finite sets. More than two decades later, Leroux [22]
proved consistency for well-specified models in the case that X is a finite set, and
Y is a general state space. The consistency of the MLE in more general HMMs has
subsequently been investigated for well-specified models in a series of contribu-
tions [7, 9, 14, 20, 21] using different methods. A general consistency result for
HMMs has been developed in [8].

Though the consistency results above differ in the details of their proofs, all
proofs have a common thread which serves also as the starting point for this paper.
Denote by pθ

χ(Y n
0 ) the likelihood of the observations Yn

0 for the HMM with param-
eter θ ∈ � and initial distribution χ . The first step of the proof aims to establish
that for any θ ∈ �, there is a constant �(θ) such that

lim
n→∞n−1 logpθ

χ

(
Yn−1

0

)= lim
n→∞n−1

E
[
logpθ

χ

(
Yn−1

0

)]= �(θ), P-a.s.

Up to an additive constant, θ �→ �(θ) is the negated relative entropy rate between
the distribution of the observations and pθ

χ(·), respectively. When the model is
well-specified and θ = θ	 is the true value of the parameter, this convergence fol-
lows from the generalized Shannon–Breiman–McMillan theorem [1]; for misspec-
ified models or for well-specified models with θ 	= θ	 the existence of the limit is
far from obvious.

The second step of the proof aims to prove that the maximizer of the likelihood
θ �→ n−1 logpθ

χ(Y n
0 ) converges P-a.s. to the maximizer of θ �→ �(θ), that is, to the
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minimizer of the relative entropy rate. Together, these two steps show that the MLE
is a natural estimator for the parameters which minimizes the relative entropy rate
in the parametric family {(Qθ , gθ ), θ ∈ �}.

Let us note that one could write the likelihood as

n−1 logpθ
χ

(
Yn−1

0

)= 1

n

n−1∑
k=0

logpθ
χ

(
Yk|Y k−1

0

)
,

where pθ
χ(Yk|Y k−1

0 ) denotes the conditional density of Yk given Y k−1
0 under the

misspecified model with parameter θ (i.e., the one-step predictive density). If the
limit of pθ

χ(Yk|Y k−1
0 ) → πθ

Y (Y k−∞) as k → ∞ can be shown to exist P-a.s. and
to be P-integrable, the convergence of the log-likelihood to the relative entropy
rate follows from the Birkhoff ergodic theorem, since the process {Yk}k∈Z is as-
sumed to be ergodic. This result provides an explicit representation of the relative
entropy rate �(θ) as the expectation of the limit �(θ) = E[logπθ

Y (Y 0−∞)]. The limit
πθ

Y (Y k−∞) might be interpreted as the conditional likelihood of Yk given the whole
past Y k−1−∞ , but we must refrain ourselves of considering this quantity as a condi-
tional density.

Such an approach was used in [2] for finite state-space, and was later extended
by Douc, Moulines and Rydén [9] to general state-space, but under stringent tech-
nical conditions (uniform mixing of the Markov kernel, which more or less restricts
the validity of the results to compact state-spaces, leaving aside important models,
such as Linear Gaussian state-space models).

Alternatively, the predictive distribution pθ
χ(Yk|Y k−1

0 ) can be expressed as a
component of the state of a measure-valued Markov chain; in this approach, the ex-
istence of the limiting relative entropy rate �(θ), follows from the ergodic theorem
for Markov chains, provided that this Markov chain can be shown to be ergodic.
This approach was used in [7, 20, 21] and was later extended to misspecified mod-
els by White [24]. This technique is adequate for finite state-space Markov chains,
but does not extend easily to general state-space Markov chains; see [7].

In [22], the existence of the relative entropy rate is established by means of
Kingman’s subadditive ergodic theorem (the same approach is used indirectly
in [26], which invokes the Furstenberg–Kesten theory of random matrix products).
After some additional work, an explicit representation of the relative enropy rate
is again obtained. However, as is noted in [22], page 136, the latter is surprisingly
difficult, as Kingman’s ergodic theorem does not directly yield a representation of
the limit as an expectation.

For completeness, we note that a recent attempt [12] to prove consistency of
the MLE for general HMMs contains very serious problems in the proof [17] (not
addressed in [13]), and therefore fails to establish the claimed results.

In this paper, we prove consistency of the MLE for general HMMs in mis-
specified models under quite general assumptions. Our proof follows broadly the
original approach of Baum and Petrie [2] and Douc, Moulines and Rydén [9], but
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relaxes the very restrictive technical conditions used in these works and extends
the analysis to misspecified models. The key technique to obtain this result is to
establish the exponential forgetting of the filtering distribution; this result is ob-
tained by using an original coupling technique originally introduced in [19] and
refined in [6].

3. Assumptions and main results. For any integer t ≥ 1, θ ∈ � and any se-
quence yt−1

0 ∈ Yt , consider the unnormalized kernel Lθ 〈yt−1
0 〉 on (X, X ) defined

for all x0 ∈ X and A ∈ X , by

Lθ 〈yt−1
0

〉
(x0,A) =

∫
· · ·

∫ [t−1∏
i=0

gθ (xi, yi)Q
θ(xi,dxi+1)

]
1A(xt ).(2)

Note that, for any t ≥ 1, θ ∈ �, x0 ∈ X, and yt−1
0 ∈ Yt ,

Lθ 〈yt−1
0

〉
(x0,X) = pθ

x0

(
yt−1

0

)
,(3)

where for x ∈ X, s ≤ t , pθ
x(yt

s), the likelihood of the observation yt
s starting from

state x, is a shorthand notation for pθ
δx

(yt
s).

DEFINITION 1. Let r be an integer. A set C ∈ X is a r-local Doeblin set
with respect to the family {Qθ,gθ }θ∈�, if there exist positive functions ε−

C : Yr →
R

+, ε+
C : Yr → R

+ and a family of probability measures {λθ
C〈z〉}θ∈�,z∈Yr and of

positive functions {ϕθ
C〈z〉}θ∈�,z∈Yr such that for any θ ∈ �, z ∈ Yr , λθ

C〈z〉(C) = 1
and, for any A ∈ X , and x ∈ C,

ε−
C (z)ϕθ

C〈z〉(x)λθ
C〈z〉(A) ≤ Lθ 〈z〉(x,A ∩ C) ≤ ε+

C (z)ϕθ
C〈z〉(x)λθ

C〈z〉(A).(4)

This implies that for any measurable nonnegative function f on (X, X ), x ∈ C
and any z ∈ Yr ,

ε−
C (z)ϕθ

C〈z〉(x)λθ
C〈z〉(1Cf ) ≤ δxLθ 〈z〉(1Cf ) ≤ ε+

C (z)ϕθ
C〈z〉(x)λθ

C〈z〉(1Cf ).

We require that the condition is satisfied for any θ ∈ �, but this is not a serious
restriction since � is assumed to be compact.

REMARK 1. To illustrate this condition, consider the case r = 1. Assume that
for some set C, there exist positive constants ε−

C , ε+
C and a family of probability

measures {λθ
C}θ∈� such that for any θ ∈ �, λθ

C(C) = 1 and, for any A ∈ X , and
x ∈ C,

ε−
C λθ

C(A) ≤ Qθ(x,A ∩ C) ≤ ε+
C λθ

C(A).

Then, clearly Lθ 〈y〉(x,A) = gθ (x, y)Qθ(x,A) satisfies (4) where ε−
C and ε+

C are
positive constants. In this case C is a 1-local Doeblin set with respect to Qθ ; see
[6] and [19].
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REMARK 2. Local Doeblin sets share some similarities with 1-small set in the
theory of Markov chains over general state spaces; see [25], Chapter 5. Recall that
a set C is 1-small for the kernel Qθ , θ ∈ � if there exists a probability measure
λ̃θ

C and a constant ε̃C > 0, such that λ̃θ
C(C) = 1, and for all x ∈ C and A ∈ X ,

Qθ(x,A ∩ C) ≥ ε̃Cλ̃θ
C(A ∩ C). In particular, a local Doeblin set is 1-small with

ε̃C = ε−
C and λ̃θ

C = λθ
C. The main difference stems from the fact that we impose

both a lower and an upper bound, and we impose that the minorizing and the
majorizing measures are the same.

(A1) There exist an integer r ≥ 1 and a set K ∈ Y ⊗r such that:

(i) P[Y r−1
0 ∈ K] > 2/3.

(ii) For all η > 0, there exists a r-local Doeblin set C ∈ X such that for all
θ ∈ � and for all yr−1

0 ∈ K,

sup
x0∈Cc

pθ
x0

(
yr−1

0

)≤ η sup
x0∈X

pθ
x0

(
yr−1

0

)
< ∞(5)

and

inf
yr−1

0 ∈K

ε−
C (yr−1

0 )

ε+
C (yr−1

0 )
> 0,(6)

where the functions ε+
C and ε−

C are defined in Definition 1.
(iii) There exists a set D such that

E

[
ln− inf

θ∈�
inf
x∈D

Lθ 〈Y r−1
0

〉
(x,D)

]
< ∞.(7)

(A2) (i) For any θ ∈ �, the function gθ : (x, y) ∈ X × Y �→ gθ (x, y) is positive,
(ii) E[ln+ supθ∈� supx∈X gθ (x,Y0)] < ∞.

(A3) There exists p ∈ N such that for any x ∈ X and n ≥ p, P-a.s. the function
θ �→ pθ

x(Y n
0 ) is continuous on �.

REMARK 3. Assumption (A2) assumes that the conditional likelihood gθ is
positive. The case where gθ can vanish typically requires different conditions; see
[3, 27]. The second condition can be read as a generalized moment condition on Y0.
It is satisfied in many examples of interest.

REMARK 4. To check (A1)(iii), one may, for example, check that:

(i) infx∈D infθ∈� Qθ(x,D) > 0;
(ii) E[ln− infθ∈� infx∈D gθ (x,Y0)] < ∞.

This condition is satisfied if (x, θ) �→ gθ (x, y) is continuous and D is a compact
small set for all θ ∈ �, there exists a probability measure νθ such that νθ (D) = 1
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and a constant δ > 0, such that, for all x ∈ D and A ∈ X , Qθ(x,A) ≥ δνθ (A).
Note, however, that (A1)(iii) is far weaker than imposing that the set D is 1-small.
This is important to deal with examples for which the transition kernel Qθ(x, ·)
does not admit a density with respect to to some fixed dominating measure; see,
for example, Section 4.1.

REMARK 5. Assumption (A3) is in general the consequence of the continu-
ity of the kernel θ �→ Qθ(x, ·) and of the function θ �→ gθ (x, ·), using classical
techniques to deal with integrals depending on a parameter.

REMARK 6. According to (3), bound (5) may also be rewritten in terms of the
kernel Lθ 〈yr−1

0 〉 as

sup
x0∈Cc

Lθ 〈yr−1
0

〉
(x0,X) ≤ η sup

x0∈X
Lθ 〈yr−1

0

〉
(x0,X) < ∞.

The convergence of the relative entropy is achieved for initial distributions belong-
ing to a particular class of initial probability distributions. For the integer r and the
set D ∈ X defined in (A1), let M(D, r) be the subset P(X, X ) of probability mea-
sures on (X, X ) satisfying

M(D, r) =
{
χ ∈ P(X, X ),

(8)
E

[
ln− inf

θ∈�
χLθ 〈Yu−1

0

〉
1D

]
< ∞ for all u ∈ {1, . . . , r}

}
.

PROPOSITION 1. Assume (A1) and (A2). Then:

(i) for any θ ∈ �, there exists a measurable function πθ
Y : YZ

− → R such that
for any probability measure χ ∈ M(D, r),

P

[
lim

m→∞pθ
χ

(
Y0|Y−1−m

)= πθ
Y

(
Y 0−∞

)]= 1;
moreover,

E
[∣∣lnπθ

Y

(
Y 0−∞

)∣∣]< ∞;(9)

(ii) for any θ ∈ � and any probability measure χ ∈ M(D, r),

lim
n→∞n−1 lnpθ

χ

(
Yn−1

0

)= �(θ), P-a.s.,

where �(θ) � E[lnπθ
Y (Y 0−∞)].

THEOREM 2. Assume (A1)–(A3). Then, θ �→ �(θ) is upper semi-continuous
and defining �	 ⊂ � by �	 � arg maxθ∈� �(θ), we have for any probability mea-
sure χ ∈ M(D, r),

lim
n→∞d

(
θ̂χ,n,�

	)= 0, P-a.s.
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REMARK 7. When the model is well specified, the law of the observations
belongs to the parametric family of distributions on which the maximization occurs
and is therefore associated to a specific parameter θ∗. In this particular case, under
some appropriate assumptions, the set �∗ is reduced to the singleton {θ∗}, and
the consistency result of the MLE in well specified models can then be written as
(see [8])

lim
n→∞d

(
θ̂χ,n, θ

	)= 0, P-a.s.

A simple sufficient condition can be proposed to ensure that χ ∈ M(D, r).

PROPOSITION 3. Assume there exist a sequence of sets Du ∈ X , u ∈ {0, . . . ,

r − 1}, such that (setting Dr = D for notational convenience), for some δ > 0,

inf
xu−1∈Du−1

inf
θ∈�

Qθ(xu−1,Du) ≥ δ, u ∈ {1, . . . , r},(10)

and

E

[
ln− inf

θ∈�
inf

x∈Du

gθ (x,Y0)
]
< ∞ for u ∈ {0, . . . , r}.(11)

Then, any initial distribution χ on (X, X ) satisfying χ(D0) > 0 belongs to
M(D, r).

REMARK 8. To check (11), we typically assume that, for any given y ∈ Y,
the function (x, θ) �→ gθ (x, y) is continuous and that Di × � is a compact set,
i ∈ {0, . . . , r − 1}. This condition then translates into an assumption on some gen-
eralized moments of the process Y .

To check (10), the following lemma is useful.

LEMMA 4. Assume that X = R
d for some integer d > 0 and that X is the

associated Borel σ -field. Assume in addition that, for any open subset O ∈ X , the
function (x, θ) → Qθ(x,O) is lower semi-continuous on the product space X ×�.
Then, for any δ > 0 and any compact subset D0 ∈ X , there exists a sequence of
compact subsets Du, u ∈ {0, . . . , r − 1} satisfying (10).

4. Applications. In this section, we develop three classes of examples. In Sec-
tion 4.1 we consider linear Gaussian state space models. This is obviously a very
important model, which is used routinely to analyze time-series models. We ana-
lyze this model under assumptions which are very general and might serve to il-
lustrate the stated assumptions. In Section 4.2, we consider the classic case where
state space of the underlying Markov chain is a finite set. Finally, in Section 4.3,
we develop a general class of nonlinear state space models. In all these exam-
ples, we will find that the assumptions of Theorem 2 are satisfied under general
assumptions.
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4.1. Gaussian linear state space models. Gaussian linear state space models
form an important class of HMMs. In this setting, let X = R

dx , and Y = R
dy for

some integers and let � be a compact parameter space. The model is specified by

Xk+1 = AθXk + RθUk,(12)

Yk = BθXk + SθVk,(13)

where {(Uk,Vk)}k≥0 is an i.i.d. sequence of Gaussian vectors with zero mean and
identity covariance matrix, independent of X0. Here Uk is du-dimensional, Vk is
dy -dimensional and the matrices Aθ,Rθ ,Bθ , Sθ have the appropriate dimensions.

For any integer n, define Oθ,n and Cθ,n the observability matrix and the control-
lability matrices

Oθ,n �

⎡
⎢⎢⎢⎢⎢⎣

Bθ

BθAθ

BθA
2
θ

...

BθA
n−1
θ

⎤
⎥⎥⎥⎥⎥⎦ and Cθ,n �

[
An−1

θ RθA
n−2
θ Rθ · · ·Rθ

]
.(14)

It is assumed in the sequel that for any θ ∈ �, the following hold:

(L1) The pair [Aθ,Bθ ] is observable, and the pair [Aθ,Rθ ] is controllable; that
is, there exists an integer r such that, the observability matrix Oθ,r and the con-
trollability matrix Cθ,r are full rank.

(L2) The measurement noise covariance matrix Sθ is full rank.

(L3) The functions θ �→ Aθ , θ �→ Rθ , θ �→ Bθ and θ �→ Sθ are continuous
on �.

(L4) E[‖Y0‖2] < ∞.

We now check the assumptions of Theorem 2.
The dimension du of the state noise vector Uk is in many situations smaller

than the dimension dx of the state vector Xk and hence Rθ
tRθ (where tA is the

transpose of the matrix A) may be rank deficient.
Some additional notation is needed. For any positive matrix A and any vector z

of appropriate dimension, denote ‖z‖2
A = t zA−1z. Define for any integer n

Fθ,n = Dθ,n
t Dθ,n + Sθ,n

t Sθ,n,(15)

where t denotes the transpose and

Dθ,n �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

BθRθ
. . . 0

BθAθRθ BθRθ
. . .

...
...

. . . 0
BθA

n−2
θ Rθ BθA

n−3
θ Rθ · · · BθRθ

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Sθ,n �

⎡
⎢⎢⎢⎣

Sθ 0 · · · 0

0 Sθ
. . .

...
...

. . .
. . . 0

0 · · · 0 Sθ

⎤
⎥⎥⎥⎦ .

Under (L2), for any n ≥ r , the matrix Fθ,n is positive definite. The likelihood of
the observations yn−1

0 ∈ Yn starting from x0 is given by

pθ
x0

(
yn−1

0

)= (2π)−ndy det−1/2(Fθ,n) exp
(−1

2‖yn−1 − Oθ,nx0‖2
Fθ,n

)
,(16)

where yn−1 = t [t y0,
ty1, . . . ,

t yn−1], and Oθ,n is defined in (14).
Consider first (A1). Under (L1), the observability matrix Oθ,r is full rank, we

have, for any compact subset K ⊂ Yr ,

lim‖x0‖→∞ inf
yr−1

0 ∈K
‖yr−1 − Oθ,rx0‖Fθ,r = ∞,

showing that, for all η > 0, we may choose a compact set C in such a way that (5) is
satisfied. It remains to prove that any compact set C is a r-local Doeblin satisfying
the condition (6). For any yr−1

0 ∈ Yr−1 and x0 ∈ X the measure Lθ 〈yr−1
0 〉(x0, ·)

is absolutely continuous with respect to the Lebesgue measure on X with Radon–
Nikodym denoted �θ 〈yr−1

0 〉(x0, xr) given (up to an irrelevant multiplicative factor)
by

�θ 〈yr−1
0

〉
(x0, xr) ∝ det−1/2(Gθ,r ) exp

(
−1

2

∥∥∥∥
[

yr−1
xr

]
−
[Oθ,r

Ar
θ

]
x0

∥∥∥∥
2

Gθ,r

)
,(17)

where the covariance matrix Gθ,r is given by

Gθ,r =
[Dθ,r

Cθ,r

] [
t Dθ,r

t Cθ,r

]+ [Sθ,r

0

] [
t Sθ,r

t0
]
.

The proof of (17) relies on the positivity of Gθ,r , which requires further discussion.
By construction, the matrix Gθ,r is nonnegative. For any yr−1 ∈ Yr and x ∈ X, the
equation

[tyr−1
t x
]

Gθ,r

[
yr−1
x

]
= ∥∥t Dθ,ryr−1 + t Cθ,rx

∥∥2 + ∥∥t Sθ,ryr−1
∥∥2 = 0

implies that ‖t Dθ,ryr−1 + t Cθ,rx‖2 = 0 and ‖t Sθ,ryr−1‖2 = 0. Since the matrix
Sθ,r is full rank, this implies that yr−1 = 0. Since Cθ,r is full-rank (the pair [Aθ,Rθ ]
is controllable), this implies that x = 0. Therefore, the matrix Gθ,r is positive defi-
nite and, for any yr−1, the function

(x0, xr) �→
∥∥∥∥
[

yr−1
xr

]
−
[Oθ,r

Ar
θ

]
x0

∥∥∥∥
2

Gθ,r
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is continuous, and is therefore bounded on any compact subset of X × X. This
implies that every nonempty compact set C ⊂ R

dx is a r-local Doeblin set, with
λθ

C(·) = λLeb(·)/λLeb(C) and

ε−
C

(
yr−1

0

)= (
λLeb(C)

)−1 inf
θ∈�

inf
(x0,xr )∈C×C

�θ 〈yr−1
0

〉
(x0, xr),

ε+
C

(
yr−1

0

)= (
λLeb(C)

)−1 sup
θ∈�

sup
(x0,xr )∈C×C

�θ 〈yr−1
0

〉
(x0, xr).

Therefore, condition (6) is satisfied with any compact set K ⊆ Yr−1. It remains to
show (A1)(iii). Under (L1), Lθ 〈yr−1

0 〉(x0, ·) is absolutely continuous with respect
to the Lebesgue measure λLeb. Therefore, for any set D,

inf
θ∈�

inf
x0∈D

Lθ 〈yr−1
0

〉
(x0,D) ≥ inf

θ∈�
inf

(x0,xr )∈D×D
�θ 〈yr−1

0

〉
(x0, xr)λ

Leb(D).

Take D to be any compact set with positive Lebesgue measure.

sup
θ∈�

sup
(x0,xr )∈D×D

∥∥∥∥
[

yr−1
xr

]
−
[Oθ,r

Ar
θ

]
x0

∥∥∥∥
2

Gθ,r

≤ 2λmax(Gθ,r )
{
‖yr−1‖2 + max

x∈D
‖x‖2[1 + λmax

(t Oθ,r Oθ,r + tAr
θA

r
θ

)]}
,

where λmax(A) is the largest eigenvalue of A. Under (L3), θ �→ λmax(Gθ,r ) and
θ �→ λmax(

t Oθ,r Oθ,r + tAr
θA

r
θ ) are bounded. Under (L4), E[‖Y0‖2] < ∞, then

(A1)(iii) is satisfied for any compact set.
Consider now (A2). Under (L2), Sθ is full rank, and choosing the reference

measure μ to be the Lebesgue measure on Y, we find that gθ (x, y) is a Gaussian
density for each x ∈ X with covariance matrix Sθ

tSθ . We therefore have

sup
θ∈�

sup
x∈X

gθ (x, y) = (2π)−dy/2 sup
θ∈�

det−1/2(Sθ
tSθ

)
< ∞,

so that (A2)(i) and (ii) are satisfied.
We finally check (A3). For any n ≥ r , and x ∈ X the function θ �→ pθ

x0
(yn−1

0 ) is
given by (16). Under (L3), the functions θ �→ Oθ,n [where Oθ,n is the observabil-
ity matrix defined in (14)] and θ �→ det−1/2(Fθ,n) [where Fθ,n is the covariance
matrix defined in (15)], are continuous on � for any n ≥ r . Thus, for any x ∈ X,
θ �→ pθ

x(yn−1
0 ) is continuous for every n ≥ r , showing (A3).

To conclude this discussion, we need to specify more explicitly the set M(D, r)

[see (8)] of possible initial distributions. Using Proposition 3, we have to check the
sufficient conditions (10) and (11). To check (10), we use Lemma 4. Note that, for
any open subset O,

Qθ(x,O) = E
[
1O(Aθx + RθU)

]
,

where the expectation is taken with respect to the standard normal random vari-
able U . Let {(xn, θn)}∞n=1 be any sequence converging to (x, θ). By the Fatou
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lemma, using that function 1O is lower semi-continuous and that θ �→ Aθ is con-
tinuous under (L3), we have

lim inf
n→∞ Qθn(xn,O) ≥ E

[
lim inf
n→∞ 1O(Aθnx + RθnU)

]

≥ E

[
lim inf
n→∞ 1O(Aθnx + RθnU)

]
= Qθ(x,O),

showing that, for any open subset O, the function (x, θ) �→ Qθ(x,O) is lower
semi-continuous.

Assumption (L2) implies that, for all (x, y) ∈ X × Y,

lngθ (x, y) ≥ −dy

2
ln(2π) − 1

2
inf
θ∈�

ln det−1/2(Sθ
tSθ

)

−
[

inf
θ∈�

λmin
(
Sθ

tSθ

)]−1[‖y‖2 + sup
θ∈�

‖Bθx‖2
]
,

where λmin(Sθ
tSθ ) is the minimal eigenvalue of Sθ

tSθ . Therefore, under (L4),
(11) is satisfied because Du is a compact set, u ∈ {0, . . . , r}.

We can therefore apply Theorem 2 to show that the MLE is consistent for
any initial measure χ as soon as the process {Yk}k∈Z is stationary ergodic and
E[|Y0|2] < ∞.

4.2. Finite state models. One of the most widely used classes of HMMs is
obtained when the state-space is finite, that is, X = {1, . . . , d} for some integer d ,
Y is any Polish space and � is a compact metric space. For each parameter θ ∈ �,
the transition kernel Qθ is determined by the corresponding transition probability
matrix Qθ , while the observation density gθ is given as in the general setting of
this paper.

It is assumed in the sequel that:

(F1) There exists an integer r > 0, such that, infθ∈� inf(x,x′)∈X×X Qr
θ (x, x′) > 0.

(F2) There exists a set M ⊂ Y such that infθ∈� infy∈M infx∈X gθ (x, y) > 0 and
supθ∈� supy∈M supx∈X gθ (x, y) < ∞.

(F3) For any θ ∈ �, the function gθ : (x, y) ∈ X × Y �→ gθ (x, y) is positive and

E

[
ln+ sup

θ∈�

sup
x∈X

gθ (x,Y0)
]
< ∞.

(F4) E[ln− infθ∈� infx∈X gθ (x,Y0)] < ∞.

(F5) θ �→ Qθ and θ �→ gθ (x, y) are continuous for any x ∈ X, y ∈ Y.

Consider first (A1). We set C = X. Since Cc = ∅, (5) is trivially satisfied. Un-
der (F1), equation (4) is satisfied with ϕX〈yr−1

0 〉(x) ≡ 1, λθ
X = d−1∑d

i=1 δi , and

ε−
X

[
yr−1

0

]= d

d−1∏
i=0

inf
θ∈�

inf
x∈X

gθ (x, yi) × inf
θ∈�

inf
(x,x′)∈X×X

Qr
θ

(
x, x′),
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ε+
X

[
yr−1

0

]= d

d−1∏
i=0

sup
θ∈�

sup
x∈X

gθ (x, yi) × sup
θ∈�

sup
(x,x′)∈X×X

Qr
θ

(
x, x′).

Hence, the state space X is a r-local Doeblin set. Assumption (F2) implies that (6)
is satisfied with K = Mr . Now, note that for all u ∈ {1, . . . , r} and yu−1

0 ∈ Yr ,

inf
θ∈�

inf
x∈X

Lθ 〈yu−1
0

〉≥ u−1∏
i=0

inf
θ∈�

inf
x∈X

gθ (x, yi).(18)

Using the previous inequality with u = r and noting that (F4) implies that
E[ln− infθ∈� infx∈X gθ (x,Y0)] < ∞, we see that equation (7) is satisfied with
D = X. The same argument for any u ∈ 1, . . . , r shows that all the probability
measures on (X, X ) belong to the set M(X, r), defined in (8).

Assumption (A2) is a direct consequence of (F3). Finally, we note that the con-
tinuity of θ �→ Qθ and θ �→ gθ (x, y) yield immediately that θ �→ pθ

x(yn
0 ) is a con-

tinuous function for every n ≥ 0 and yn
0 ∈ Yn+1, establishing (A3).

We can therefore apply Theorem 2 under (F1)–(F5) to show that the MLE is
consistent for any initial measure χ as soon as the process {Yk}k∈Z is stationary
ergodic.

4.3. Nonlinear state space models. In this section, we consider a class of non-
linear state space models. Let X = R

d , Y = R
� and X and Y be the associated

Borel σ -fields. Let � be a compact metric space. For each θ ∈ � and each x ∈ X,
the Markov kernel Qθ(x, ·) has a density qθ (x, ·) with respect to the Lebesgue
measure on X.

For example, (Xk)k≥0 may be defined through the nonlinear recursion

Xk = Tθ(Xk−1) + �θ(Xk−1)ζk,

where (ζk)k≥1 is an i.i.d. sequence of d-dimensional random vectors which are as-
sumed to possess a density ρζ with respect to the Lebesgue measure λLeb on R

d ,
and Tθ : Rd → R

d , �θ : Rd → R
d×d are given (measurable) matrix-valued func-

tions such that for each θ ∈ � and x ∈ X, �θ(x) is full-rank. Such a model for
(Xk)k≥0 is sometimes known as a vector ARCH model, and covers many models
of interest in time series analysis and financial econometrics. We let the refer-
ence measure μ be the Lebesgue measure on R

�, and define the observed process
(Yk)k≥0 by means of a given observation density gθ (x, y).

We now introduce the basic assumptions of this section.

(NL1) The function (x, x′, θ) �→ qθ (x, x′) is a positive continuous function on
X × X × �. In addition, supθ∈� sup(x,x′)∈X×X qθ (x, x′) < ∞.

(NL2) For any compact subset K ⊂ Y, and θ ∈ �,

lim|x|→∞ sup
y∈K

gθ (x, y)

supx′∈X gθ (x′, y)
= 0.
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(NL3) For each (x, y) ∈ X → Y, the function θ �→ gθ (x, y) is positive and con-
tinuous on �. Moreover,

E

[
ln+ sup

θ∈�

sup
x∈X

gθ (x,Y0)
]
< ∞.

(NL4) There exists a compact subset D ⊂ Y such that

E

[
ln− inf

θ∈�
inf
x∈D

gθ (x,Y0)
]
< ∞.

We have made no attempt at generality here: for sake of example, we have chosen a
set of conditions under which the assumptions of Theorem 2 are easily verified. Of
course, the applicability of Theorem 2 extends far beyond the simple assumptions
imposed in this section.

REMARK 9. Nonetheless, the present assumptions already cover a broad class
of nonlinear models. Consider, for example, the stochastic volatility model [16]{

Xk+1 = φθXk + σθζk,

Yk = βθ exp(Xk/2)εk,
(19)

where (ζk, εk) are i.i.d. Gaussian random variables in R
2 with zero mean and iden-

tity covariance matrix, βθ > 0, σθ > 0 for every θ ∈ �, and the functions θ �→ φθ ,
θ �→ σθ , and θ �→ βθ are continuous. Then, assumptions (NL1)–(NL4) are satisfied
as noted by Douc et al. [8], Remark 10.

Under (NL1), every compact set C ⊂ X = R
d with λLeb(C) > 0 is a 1-small set

and therefore a local Doeblin with λθ
C(·) = λLeb(·∩C)/λLeb(C), ϕθ

C〈y0〉 = λLeb(C)

and

ε−
C = inf

θ∈�
inf

(x,x′)∈C×C
qθ (x, x′),

ε+
C = sup

θ∈�

sup
(x,x′)∈C×C

qθ (x, x′).
Under (NL1) and (NL2), (5) and (6) are satisfied with r = 1; equation (7) follows
from (NL1) and (NL4). Thus assumption (A1) holds.

Assumption (A2) follows directly from (NL3). To establish (A3), it suffices
to note that, under (NL1), for any (x, x′) ∈ X × X, θ �→ qθ (x, x′) is continuous,
under (NL3), for any (x, y) ∈ X × Y, θ �→ gθ (x, y) is continuous and for any
n ∈ N, supθ∈� supx∈X

∏n
k=0 gθ (x,Yk) < ∞, P-a.s. The bounded convergence the-

orem shows that, P-a.s. the function θ �→ pθ
x(Y n

0 ) is continuous.
Finally, under (NL1)–(NL4) according to Theorem 2 and Proposition 3 the MLE

is consistent for any initial measure χ such that χ(D) > 0.
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5. Proofs of Proposition 1 and Theorem 2.

5.1. Block decomposition. The first step of the proof consists of splitting the
observations into blocks of size r where r is defined in (A1). More precisely, we
will first show the equivalent of Proposition 1 and Theorem 2 with Yi replaced by
Zi � Y

(i+1)r−1
ir . With this notation,

θ̂χ,nr = arg max
θ∈�

lnpθ
χ

(
Ynr−1

0

)= arg max
θ∈�

lnpθ
χ

(
Zn−1

0

)
.

In the following, θ̂χ,nr is called the block maximum likelihood estimator (denoted
hereafter as the block MLE) associated to the observations Z0, . . . ,Zn−1.

5.1.1. Forgetting of the initial distribution for the block conditional likelihood.
Denote, for i ∈ Z,

zi = y
(i+1)r−1
ir ∈ Yr .(20)

Then, the likelihood pθ
χ(zn−1

0 ) may be rewritten as

pθ
χ

(
zn−1

0

)= pθ
χ

(
ynr−1

0

)= χLθ 〈z0〉 · · ·Lθ 〈zn−1〉1X = χLθ 〈zn−1
0

〉
1X,(21)

where Lθ 〈zn−1
0 〉 = Lθ 〈ynr−1

0 〉 is defined in (2).
For any sequence {zi}i≥0 ∈ ZN where Z � Yr , any probability measures χ and

χ ′ on (X, X ) and any measurable nonnegative functions f and h from X to R
+,

define

�θ
χ,χ ′

〈
zn−1

0

〉
(f,h) = (

χLθ 〈zn−1
0

〉
f
)(

χ ′Lθ 〈zn−1
0

〉
h
)

(22)
− (

χLθ 〈zn−1
0

〉
h
)(

χ ′Lθ 〈zn−1
0

〉
f
)
.

Let X̄ = X×X and X̄ = X ⊗ X . For P a (possibly unnormalized) kernel on (X, X ),
we denote by P̄ the transition kernel on (X̄, X̄ ) defined, for any (x, x′) ∈ X̄ and A,
A′ ∈ X , by

P̄
[(

x, x′),A × A′]= P(x,A)P
(
x′,A′).(23)

If χ and χ ′ are two probability measures on (X, X ) and f,g are real valued mea-
surable functions on (X, X ), define for Ā ∈ X̄ and w̄ = (w,w′) ∈ X̄,

χ ⊗ χ ′(Ā) =
∫ ∫

χ(dx)χ ′(dx′)1Ā

(
x, x′), f ⊗ h(w̄) = f (w)g

(
w′).(24)

With the notation introduced above, (22) can be rewritten as follows:

�θ
χ,χ ′

〈
zn−1

0

〉
(f,h) =

∫
· · ·

∫
χ ⊗ χ ′(dw̄′

0
)(n−1∏

i=0

L̄θ 〈zi〉(w̄i,dw̄i+1)

)

(25)
× {f ⊗ h − h ⊗ f }(w̄n).

The following proposition extends [6], Proposition 12.
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PROPOSITION 5. Assume (A1). Let 0 ≤ γ − < γ + ≤ 1. Then, for any η > 0,
there exists ρ ∈ (0,1) such that, for any sequence (zi)i≥0 ∈ ZN satisfying

n−1
n−1∑
i=0

1K(zi) ≥ max
(
1 − γ −,

(
1 + γ +)/2

)
(26)

for any β ∈ (γ −, γ +), any nonnegative bounded functions f and h, any probability
measures χ and χ ′ on (X, X ) and any θ ∈ �,∣∣�θ

χ,χ ′
〈
zn−1

0

〉
(f,h)

∣∣
≤ ρ�n(β−γ −)�{(χLθ 〈zn−1

0

〉
f
)(

χ ′Lθ 〈zn−1
0

〉
g
)+ (

χ ′Lθ 〈zn−1
0

〉
f
)(

χLθ 〈zn−1
0

〉
g
)}

+ 2η�n(γ +−β)�/2

[
n−1∏
i=0

∣∣Lθ 〈zi〉(·,X)
∣∣2∞
]
|f |∞|h|∞.

PROOF. Let η > 0. According to (A1), there exists a set C ⊂ Y such that (5)
and (6) hold. Denote C̄ � C × C and for z = yr−1

0 , set ϕ̄θ
C〈z〉 = ϕθ

C〈z〉 ⊗ ϕθ
C〈z〉 and

λ̄θ
C〈z〉 � λθ

C〈z〉⊗λθ
C〈z〉 where ϕθ

C〈z〉 and λθ
C〈z〉 are defined in Definition 1. For any

measurable nonnegative function f̄ on (X̄, X̄ ), θ ∈ � and x̄ ∈ C̄,

(
ε−

C (z)
)2

ϕ̄θ
C〈z〉(x̄)λ̄θ

C〈z〉(1C̄f̄ )
(27)

≤ δx̄L̄θ 〈z〉(1C̄f̄ ) ≤ (
ε+

C (z)
)2

ϕ̄θ
C〈z〉(x̄)λ̄θ

C〈z〉(1C̄f̄ ).

Define the unnormalized kernel L̄θ,0〈z〉 and L̄θ,1〈z〉 on (X̄, X̄ ) as follows: for all
x̄ ∈ X̄ and Ā ∈ X̄ ,

L̄θ,0〈z〉(x̄, Ā) � 1C̄(x̄)
(
ε−

C (z)
)2

ϕ̄θ
C〈z〉(x̄)λ̄θ

C〈z〉(C̄ ∩ Ā),(28)

L̄θ,1〈z〉(x̄, Ā) � L̄θ 〈z〉(x̄, Ā) − L̄θ,0〈z〉(x̄, Ā).(29)

Equation (27) implies that, for all x̄ ∈ C̄, and any measurable nonnegative func-
tion f̄ ,

0 ≤ δx̄L̄θ,1〈z〉(1C̄f̄ ) ≤ rC(z)δx̄L̄θ 〈z〉(1C̄f̄ ),

where rC(z) � 1 − (ε−
C (z)/ε+

C (z))2. It then follows

δx̄L̄θ,1〈z〉(f̄ )

= 1C̄(x̄)δx̄L̄θ,1〈z〉(1C̄f̄ ) + 1C̄(x̄)δx̄L̄θ,1〈z〉(1C̄c f̄ ) + 1C̄c (x̄)δx̄L̄θ,1〈z〉(f̄ )
(30)

≤ rC(z)1C̄(x̄)δx̄L̄θ 〈z〉(1C̄f̄ ) + 1C̄(x̄)δx̄L̄θ 〈z〉(1C̄c f̄ ) + 1C̄c (x̄)δx̄L̄θ 〈z〉(f̄ )

≤ δx̄L̄θ 〈z〉(rC(z)1C̄(x̄)1C̄ f̄
)
.
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Note that �θ
χ,χ ′ 〈zn−1

0 〉(f,h) may be decomposed as

�θ
χ,χ ′

〈
zn−1

0

〉
(f,h) = ∑

tn−1
0 ∈{0,1}n

�
θ,tn−1

0
χ,χ ′

〈
zn−1

0

〉
(f,h),

where

�
θ,tn−1

0
χ,χ ′

〈
zn−1

0

〉
(f,h) =

∫
· · ·

∫
χ ⊗ χ ′(dw̄′

0
)(n−1∏

i=0

L̄θ,ti 〈zi〉(w̄i,dw̄i+1)

)
�(w̄n)

with � � f ⊗h−h⊗ f . First assume that there exists an index i ∈ {0, . . . , n− 1}
such that ti = 0. Then

�
θ,tn−1

0
χ,χ ′

〈
zn−1

0

〉
(f,h) = χ ⊗ χ ′(L̄θ,t0〈z0〉 · · · L̄θ,ti−1〈zi−1〉(1C̄ × ϕ̄θ

C〈zi〉))
× (

ε−
C (zi)

)2
λ̄θ

C〈zi〉(1C̄L̄θ,ti+1〈zi+1〉 · · · L̄θ,tn−1〈zn−1〉�).
By symmetry,

λ̄θ
C〈zi〉(1C̄L̄θ,ti+1〈zi+1〉 · · · L̄θ,tn−1〈zn−1〉�)= 0,

showing that �
θ,tn−1

0
χ,χ ′ 〈zn−1

0 〉(f,h) = 0 except if for all i ∈ {0, . . . , n − 1}, ti = 1.
Therefore,

�θ
χ,χ ′

〈
zn−1

0

〉
(f,h) = χ ⊗ χ ′(L̄θ,1〈z0〉 · · · L̄θ,1〈zn−1〉�).

This implies, using (30), that∣∣�θ
χ,χ ′

〈
zn−1

0

〉
(f,h)

∣∣
≤ χ ⊗ χ ′(L̄θ,1〈z0〉 · · · L̄θ,1〈zn−1〉|�|)

(31)

≤
∫

· · ·
∫

χ ⊗ χ ′(dw̄0)

(
n−1∏
i=0

L̄θ 〈zi〉(w̄i,dw̄i+1)
(
rC(zi)

)1C̄×C̄(w̄i ,w̄i+1)

)

× |�|(w̄n).

Note that
n−1∏
i=0

(
rC(zi)

)1C̄×C̄(w̄i ,w̄i+1) ≤ �

∑n−1
i=0 1C̄×C̄(w̄i ,w̄i+1)1K(zi)

C ,(32)

where �C � supz∈K rC(z) < 1 under (A1). For any sequence zn−1
0 such that

n−1∑n−1
i=0 1K(zi) ≥ (1 − γ −), we have

∑n−1
i=0 1Kc (zi) ≤ nγ −, so that

n−1∑
i=0

1Kc (zi) ≤ ⌊
nγ −⌋.
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Moreover, we have

n−1∑
i=0

1C̄×C̄(w̄i, w̄i+1)1K(zi)

=
n−1∑
i=0

1C̄×C̄(w̄i, w̄i+1) −
n−1∑
i=0

1C̄×C̄(w̄i, w̄i+1)1Kc (zi)

(33)

≥ NC̄,n(w̄
n
0) −

n−1∑
i=0

1Kc (zi)

≥ NC̄,n(w̄
n
0) − ⌊

nγ −⌋,
where, for any set Ā ∈ X̄ , NĀ,n(w̄

n
0) =∑n−1

i=0 1Ā×Ā(w̄i, w̄i+1). By combining (32)
and (33) and using that �nβ� − �nγ −� ≥ �n(β − γ −)�, we therefore obtain, for
any β ∈ (γ −,1],

n−1∏
i=0

(
rC(zi)

)1C̄×C̄(w̄i ,w̄i+1) ≤ �
�n(β−γ −)�
C + 1

{
NC̄,n

(
w̄n

0
)
< �nβ�}.(34)

For any sequence w̄n−1
0 ∈ X̄n and any Ā ∈ X̄ , denote

MĀ,n

(
w̄n−1

0

)
�

n−1∑
i=0

1Ā(w̄i).

Using [6], Lemma 17, for any sequence w̄n
0 satisfying NC̄,n(w̄

n
0) < �nβ� which is

equivalent to NC̄,n(w̄
n
0) ≤ �nβ�− 1, we have MC̄,n(w̄

n−1
0 ) ≤ (�nβ�+n)/2, so that

NC̄,n

(
w̄n

0
)
< �nβ� ⇒ MC̄c,n

(
w̄n−1

0

)≥ an � n − �nβ�
2

.(35)

In words, either the number of consecutive visits to the set C̄ at most �nβ�, or the
number of visits to the complementary of the set C̄ is larger than an. Plugging (35)
into (34) and combining it with (31) yields

∣∣�θ
χ,χ ′

〈
zn

0
〉
(f,h)

∣∣≤ �
�n(β−γ −)�
C χ ⊗ χ ′(L̄θ 〈z0〉 · · · L̄θ 〈zn−1〉|�|)

+ 2|f |∞|h|∞�θ
χ,χ ′

(
zn−1

0

)
,

where

�θ
χ,χ ′

(
zn−1

0

)
�
∫

· · ·
∫

χ ⊗χ ′(dw̄0)

n−1∏
i=0

L̄θ 〈zi〉(w̄i,dw̄i+1)1
{
MC̄c,n

(
w̄n−1

0

)≥ an

}
.
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We finally have to bound this last term. First rewrite �θ
χ,χ ′(zn−1

0 ) as follows:

�θ
χ,χ ′(zn−1

0 ) =
(

n−1∏
i=0

∣∣Lθ 〈zi〉(·,X)
∣∣2∞
)∫

χ ⊗ χ ′(dw̄0)
(
η
∑n−1

i=0 1C̄c (w̄i )1K(zi)
)

×
(

n−1∏
i=0

L̄θ 〈zi〉(w̄i,dw̄i+1)

η1C̄c (w̄i )1K(zi )|Lθ 〈zi〉(·,X)|2∞

)
1
{
MC̄c,n

(
w̄n−1

0

)≥ an

}
.

Note that (26) implies that
∑n−1

i=0 1K(zi) ≥ (n + �nγ +�)/2. Then, for any γ + > β ,
the inequality MC̄c,n(w̄

n−1
0 ) ≥ an implies that

n−1∑
i=0

1C̄c (x̄i)1K(zi) ≥
n−1∑
i=0

1C̄c (x̄i) −
n−1∑
i=0

1Kc (zi) ≥ �nγ +� − �nβ�
2

≥ �n(γ + − β)�
2

,

showing that(
η
∑n−1

i=0 1C̄c (x̄i )1K(zi)
)
1
{
MC̄c,n

(
x̄n−1

0

)≥ an

}≤ η�n(γ +−β)�/2.

The proof follows noting that, for any w̄ = (w,w′) ∈ X̄ and z ∈ Yr , (3) and (5)
imply ∫ ∫ L̄θ 〈z〉(w̄,dw̄i+1)

η1C̄c (w̄)1K(z)|Lθ 〈z〉(·,X)|2∞
= Lθ 〈z〉(w,X)Lθ 〈z〉(w′,X)

η1C̄c (w̄)1K(z)|Lθ 〈z〉(·,X)|2∞
≤ 1. �

LEMMA 6. Let (Uk)k∈Z, (Vk)k∈Z, (Wk)k∈Z be stationary sequences such that

E
[
ln+ U0

]
< ∞, E

[
ln+ V0

]
< ∞, E

[
ln+ W0

]
< ∞.

Then, for all η,ρ in (0,1) such that − lnη > E[ln+ V0], there exists a P-a.s. finite
random variable D and a constant � ∈ (0,1) such that for all k ≥ 1,m ≥ 0,

ρk+m + ηk+mW−m

(
k−1∏

i=−m

Vi

)
Uk ≤ �k+mD, P-a.s.

PROOF. Let α ∈ (0,1) such that E[ln+ V0] < − lnα < − lnη, and let α̃ > 0
such that (η/α) ∨ ρ < α̃ < 1. Then

ρk+m + ηk+mW−m

(
k−1∏

i=−m

Vi

)
Uk

=
[(

ρ

α̃

)k+m

α̃m +
(

η

αα̃

)k+m(
α̃mW−m

)( k−1∏
i=−m

(Viα)

)(
α̃kUk

)]

≤
(

ρ

α̃
∨ η

αα̃

)k+m

D
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with

D � 1 +
(

sup
m≥0

α̃mW−m

)(
sup
m≥0

0∏
i=−m

(Viα)

)(
sup
k≥1

k−1∏
i=1

(Viα)

)(
sup
k≥1

α̃kUk

)
.

We now show that D is P-a.s. finite. First note that combining the bound
E[ln+ U0 < ∞] with Lemma 7 (stated and proved below), we obtain that the ran-
dom variable supk≥1 α̃kUk is P-a.s. finite; in the same way, supm≥0 α̃mW−m is
P-a.s. finite. Moreover, since E[ln+ V0] < ∞, Birkoff’s ergodic theorem ensures
that

1

k − 1

k−1∑
i=1

ln+ Vi →k→∞ E[ln+ V0] < −lnα, P-a.s.

By taking the exponential function in the previous limit, we obtain that

k−1∏
i=1

(Viα) ≤ exp

{
(k − 1)

(
1

k − 1

k−1∑
i=1

ln+ Vi + lnα

)}
→k→∞ 0, P-a.s.

so that supk≥1
∏k−1

i=1 (Viα) is P-a.s. finite. Following the same arguments,

sup
m≥0

0∏
i=−m

(Viα)

is P-a.s. finite. Finally D is P-a.s. finite. The proof is complete. �

LEMMA 7. Let {Zk}k∈Z be a sequence of nonnegative random variables on a
probability space (�, A,P) having the same marginal distribution, that is, for any
k ∈ Z and any measurable nonnegative function f , E[f (Zk)] = E[f (Z0)].

(i) Assume that E[(lnZ0)
+] < ∞. Then, for all β ∈ (0,1), supk≥0 βkZk < ∞,

P-a.s.
(ii) Assume that E[| lnZ0|] < ∞. Then, for all β ∈ (0,1), supk∈Z β |k|Zk < ∞

and infk∈Z β−|k|Zk > 0, P-a.s.

PROOF. Let β ∈ (0,1). Since

P
[
βkZk > 1

]= P
[
lnZk/(−lnβ) ≥ k

]= P
[
lnZ0/(−lnβ) ≥ k

]
,

it follows that
∞∑

k=0

P
[
βkZk > 1

]= ∞∑
k=0

P
[
lnZ0/(−lnβ) ≥ k

]≤ E
[
(lnZ0)

+]/(−lnβ) < ∞.

The proof of (i) is completed by using the Borel–Cantelli lemma. Now, (ii) can be
easily derived by noting that if E[|lnZ0|] < ∞, then one may use twice (i), first by
replacing Zk by Z−k and then by replacing Zk by 1/Zk . �
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PROPOSITION 8. Assume (A1) and (A2). There exist a constant κ ∈ (0,1), an
integer-valued random variable K satisfying PY [K < ∞] = 1 such that, for any
initial distributions χ,χ ′ ∈ M(D, r) [where M(D, r) is defined in (8)],

sup
θ∈�

sup
k≥K

sup
m≥0

κ−(m+k)
∣∣lnpθ

χ

(
Zk|Zk−1−m

)− lnpθ
χ ′
(
Zk|Zk−1−m

)∣∣< ∞,

(36)
P-a.s.,

sup
θ∈�

sup
k≥K

sup
m≥0

κ−(m+k)
∣∣lnpθ

χ

(
Zk|Zk−1−m

)− lnpθ
χ

(
Zk|Zk−1

−m−1

)∣∣< ∞,

(37)
P-a.s.,

sup
θ∈�

sup
m≥0

κ−m
∣∣lnpθ

χ

(
Z0|Z−1−m

)− lnpθ
χ

(
Z0|Z−1

−m−1

)∣∣< ∞,

(38)
P-a.s.

PROOF. Proof of (36). It follows from (21) that, for any integer (m, k) ∈ N

and any sequence zk−m,

pθ
χ

(
zk|zk−1−m

)= χLθ 〈zk−1−m 〉(Lθ 〈zk〉1X)

χLθ 〈zk−1−m 〉(1X)
.

Since, for any a, b > 0, ln(a) − ln(b) ≤ (a − b)/b, definition (22) implies that

lnpθ
χ

(
zk|zk−1−m

)− lnpθ
χ ′
(
zk|zk−1−m

)
(39)

≤ �θ
χ,χ ′ 〈zk−1−m 〉(Lθ 〈zk〉1X,1X)

χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(Lθ 〈zk〉1X)
.

Let 0 ≤ γ − < γ + ≤ 1. By Proposition 5, for any η > 0 and β ∈ (γ −, γ +) there
exists � ∈ (0,1) such that, for any sequence zk−1−m satisfying

(m + k)−1
k−1∑

i=−m

1K(zi) ≥ max
(
1 − γ −,

(
1 + γ +)/2

)
,(40)

we have

�θ
χ,χ ′ 〈zk−1−m 〉(Lθ 〈zk〉1X,1X)

χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(1X)

≤ �a(m+k)

[
1 + χLθ 〈zk−1−m 〉(Lθ 〈zk〉1X) × χ ′Lθ 〈zk−1−m 〉(1X)

χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(Lθ 〈zk〉1X)

]
(41)

+ 2ηb(m+k)Cm,k,
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where a(n) = �n(β − γ −)�, b(n) = �n(γ + − β)�/2 and

Cm,k �
∏k−1

i=−m |Lθ 〈zi〉(·,X)|2∞
χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(Lθ 〈zk〉1X)

∣∣Lθ 〈zk〉(·,X)
∣∣∞.(42)

Moreover, by (22),

χLθ 〈zk−1−m 〉(Lθ 〈zk〉1X) × χ ′Lθ 〈zk−1−m 〉(1X)

χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(Lθ 〈zk〉1X)

= �θ
χ,χ ′ 〈zk−1−m 〉(Lθ 〈zk〉1X,1X)

χLθ 〈zk−1−m 〉(1X) × χ ′Lθ 〈zk−1−m 〉(Lθ 〈zk〉1X)
+ 1.

Plugging this identity into (41) and then using (39) yields

lnpθ
χ

(
zk|zk−1−m

)− lnpθ
χ ′
(
zk|zk−1−m

)
(43)

≤ 2
(
1 − �a(m+k))−1[

�a(m+k) + ηb(m+k)Cm,k

]
.

For any sequence zk−1−m , we have

χLθ 〈zk−1−m

〉
(1X) ≥ χ(D)

k−1∏
i=−m

{
inf
x∈D

Lθ 〈zi〉(x,D)
}
,

(44)

χ ′Lθ 〈zk−1−m

〉(
Lθ 〈zk〉1X

)≥ χ ′(D)

k∏
i=−m

{
inf
x∈D

Lθ 〈zi〉(x,D)
}
.

Exchanging χ and χ ′ in (43) allows us to obtain an upper bound for |lnpθ
χ(zk|

zk−1−m ) − lnpθ
χ ′(zk|zk−1−m )|. More precisely, for any sequence zk−1−m satisfying (40),

we have

sup
θ∈�

∣∣lnpθ
χ

(
zk|zk−1−m

)− lnpθ
χ ′
(
zk|zk−1−m

)∣∣
≤ 2

(
1 − �a(m+k))−1(45)

×
{
�a(m+k) + ηb(m+k)

χ(D)χ ′(D)

[
k−1∏

j=−m

(Dzj
)2

]
Dzk

}
,

where, for z ∈ Yr ,

Dz = supθ∈� |Lθ 〈z〉(·,X)|∞
infθ∈� infx∈D Lθ 〈z〉(x,D)

.(46)

Assume that E[ln+(DZ0)] < ∞, and set η small enough so that E[ln+(DZ0)] ≤
− lnη. By Lemma 6, there exists a P-a.s. finite random variable C, and a constant
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κ ∈ (0,1) such that, for all k ≥ 1, m ≥ 0,

2

1 − �a(m+k)

{
�a(m+k) + ηb(m+k)

χ(D)χ ′(D)

[
k−1∏

j=−m

(Dzj
)2

]
Dzk

}
≤ Cκk+m, P-a.s.

It remains to show that E[ln+(DZ0)] < ∞. Since for any a, b > 0, ln+(a/b) ≤
ln+(a) + ln−(b),

ln+(Dz) ≤ ln+(sup
θ∈�

∣∣Lθ 〈z〉(·,X)
∣∣∞)+ ln−( inf

θ∈�
inf
x∈D

Lθ 〈z〉(x,D)
)
.(47)

Since, for any z = yr−1
0 ∈ Yr , supθ∈� |Lθ 〈z〉(·,X)|∞ ≤∏r−1

i=0 supθ∈� |gθ (·, yi)|∞,
(A1)(iii) and (A2) imply that E[ln+(DZ0)] < ∞. Finally, according to (45),

sup
θ∈�

∣∣lnpθ
χ

(
Zk|Zk−1−m

)− lnpθ
χ ′
(
Zk|Zk−1−m

)∣∣≤ Cκm+k, P-a.s.,

provided that

(m + k)−1
k−1∑

j=−m

1K(Zj ) ≥ max
(
1 − γ −,

(
1 + γ +)/2

)
, P-a.s.(48)

It thus remains to show the existence of a P-a.s. finite random variable K such that
for any k ≥ K and any m ≥ 0, (48) holds P-a.s. Under (A1)(i), 1 − P[Z0 ∈ K] <

2P[Z0 ∈ K] − 1. Then, choose γ̃ −, γ −, γ + and γ̃ + such that

1 − P[Z0 ∈ K] < γ̃ − < γ − < γ + < γ̃ + < 2P[Z0 ∈ K] − 1.(49)

By construction (1 + γ̃ +)/2 < PY [Z0 ∈ K] and 1 − γ̃ − < P[Z0 ∈ K]. Since
(Zk)k∈Z is stationary and ergodic, the Birkhoff ergodic theorem ensures that there
exists a P-a.s. finite random variable B such that for any k ≥ B and m ≥ B , P-a.s.,

max
(

1 − γ̃ −,
1 + γ̃ +

2

)
< k−1

k−1∑
i=0

1K(Zi),(50)

max
(

1 − γ̃ −,
1 + γ̃ +

2

)
< m−1

−1∑
i=−m

1K(Zi).(51)

Set K+ � B(1+γ +)/(γ̃ + −γ +). If m ≥ B and k ≥ K+, then using that K+ ≥ B ,
P-a.s.,∑k−1

i=−m 1K(Zi)

k + m
>

k(1 + γ̃ +)/2 + m(1 + γ̃ +)/2

k + m
= (

1 + γ̃ +)/2 >
(
1 + γ +)/2.

Now, if 0 ≤ m < B and k ≥ K+,∑k−1
i=−m 1K(Zi)

k + m
≥
∑k−1

i=0 1K(Zi)

k + m
>

k(1 + γ̃ +)/2

k + m

>
K+(1 + γ̃ +)/2

K+ + B
= (

1 + γ +)/2.
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Similarly, setting K− � B(1 − γ −)/(γ̃ − − γ −), we obtain, for all m ≥ 0 and all
k ≥ K− that, P-a.s., ∑k−1

i=−m 1K(Zi)

k + m
≥ 1 − γ −.

The proof of (36) is now completed by setting K = K+ ∨ K−.

Proof of (37). Note that

pθ
χ

(
zk|zk−1

−m−1

)= pθ
χ ′
(
zk|zk−1−m

)
with χ ′(A) = χ(Lθ 〈z−m−1〉1A)/χ(Lθ 〈z−m−1〉1X). Since

1

χ ′(D)
= χ(Lθ 〈z−m−1〉1X)

χ(Lθ 〈z−m−1〉1D)
≤ Dz−m−1

χ(D)
,

where Dz is defined in (46), (45) writes

sup
θ∈�

∣∣lnpθ
χ

(
zk|zk−1−m

)− lnpθ
χ

(
zk|zk−1

−m−1

)∣∣
≤ 2

(
1 − �a(m+k))−1

×
[
�a(m+k) + ηb(m+k)

[χ(D)]2 Dz−m−1

k−1∏
j=−m

(Dzj
)2Dzk

]
.

And the rest of the proof of (37) follows the same lines as (36) and is omitted for
brevity.

Proof of (38). Noting that, when k = 0, equation (48) follows immediately
from (51), the proof of (38) follows the same lines as the proof of (37) and is
omitted for brevity. �

COROLLARY 9 (Corollary of Proposition 8). Assume (A1) and (A2). For any
θ ∈ �, there exists a measurable function πθ

Z : ZZ
− → R such that for any proba-

bility measure χ satisfying χ(D) ∈ M(D, r) [where M(D, r) is defined in (8)],

PY

[
lim

m→∞pθ
χ

(
Z0|Z−1−m

)= πθ
Z

(
Z0−∞

)]= 1.(52)

In the sequel, we denote pθ(Z0|Z−1−∞) � πθ
Z(Z0−∞) and for n ≥ 0, pθ(Zn

0 |
Z−1−∞) �∏n

i=0 πθ
Z(Zi−∞).

5.1.2. Consistency of the block MLE.

PROPOSITION 10. Assume (A1) and (A2). Then:
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(i) For any θ ∈ �,

E
[∣∣lnpθ (Z0|Z−1−∞

)∣∣]< ∞.(53)

(ii) For any probability measure χ ∈ M(D, r) [where M(D, r) is defined
in (8)],

lim sup
n→∞

sup
θ∈�

∣∣n−1 lnpθ
χ

(
Zn−1

0

)− n−1 lnpθ (Zn−1
0 |Z−1−∞

)∣∣= 0, P-a.s.

(iii) For any θ ∈ �, and for any probability measure χ ∈ M(D, r),

lim
n→∞n−1 lnpθ

χ

(
Zn−1

0

)= E
[
lnpθ (Z0|Z−1−∞

)]
, P-a.s.

PROOF. Proof of (i). It follows from (52) that, P-a.s.,

pθ (Z0|Z−1−∞
)= lim

m→∞pθ
χ

(
Z0|Z−1−m

)≤ ∣∣Lθ 〈Z0〉(·,X)
∣∣∞ ≤

r−1∏
i=0

∣∣gθ (·, Yi)
∣∣∞.(54)

Then, (A2) shows that

E
[
ln+ pθ (Z0|Z−1−∞

)]≤ E
[
ln+∣∣Lθ 〈Z0〉(·,X)

∣∣∞]< ∞.

We now show that E[ln− pθ(Z0|Z−1−∞)] < ∞ by establishing that E[lnpθ(Z0|
Z−1−∞)] > −∞. For that purpose, introduce the sequence

Lθ
m � m−1

m∑
�=1

[
ln+∣∣Lθ 〈Z0〉(·,X)

∣∣∞ − lnpθ
χ

(
Z0|Z−1

−�

)]
.

By (54), the sequence (Lθ
m)m≥0 is nonnegative and the Fatou lemma implies that

lim inf
m→∞ E

[
Lθ

m

]≥ E

[
lim inf
m→∞ Lθ

m

]
.(55)

By definition,

lim inf
m→∞ E

[
Lθ

m

]= E
[
ln+∣∣Lθ 〈Z0〉(·,X)

∣∣∞]
(56)

− lim sup
m→∞

m−1
m∑

�=1

E
[
lnpθ

χ

(
Z0|Z−1

−�

)]

and

E

[
lim inf
m→∞ Lθ

m

]
= E

[
ln+∣∣Lθ 〈Z0〉(·,X)

∣∣∞]
(57)

− E

[
lim sup
m→∞

m−1
m∑

�=1

lnpθ
χ

(
Z0|Z−1

−�

)]
.
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Since (Yk)k∈Z is stationary, for any � ∈ N,E[lnpθ
χ(Z0|Z−1

−� )] = E[lnpθ
χ(Z�|Z�−1

0 )]
showing that

m−1
m∑

�=1

E
[
lnpθ

χ

(
Z0|Z−1

−�

)]= m−1
m∑

�=1

E
[
lnpθ

χ

(
Z�|Z�−1

0

)]
.(58)

The Cesaro mean convergence lemma implies that, P-a.s.,

lim sup
m→∞

m−1
m∑

�=1

lnpθ
χ

(
Z0|Z−1

−�

)= lim
�→∞ lnpθ

χ

(
Z0|Z−1

−�

)= lnpθ (Z0|Z−1−∞
)
.(59)

Combining (55), (56), (57), (58) and (59) yields to

E
[
lnpθ (Z0|Z−1−∞

)]
≥ lim sup

m→∞
m−1

m∑
�=1

E
[
lnpθ

χ

(
Z�|Z�−1

0

)]
(60)

= lim sup
m→∞

{
E
[
m−1 lnpθ

χ

(
Zm

0
)]− m−1

E
[
lnpθ

χ(Z0)
]}

> −∞,

where the last bound follows from (A1)(iii) and the minorization

lnpθ
χ

(
Zm

0
)≥ lnχ(D) +

m∑
i=0

ln inf
x∈D

Lθ 〈Zi〉(x,D).

The proof of (i) follows.

Proof of (ii). According to Proposition 8 (36), there exists a random variable C

satisfying PY [C < ∞] = 1 such that for all k ≥ K and m ≥ 0,

sup
θ∈�

∣∣lnpθ
χ

(
Zk|Zk−1−m

)− lnpθ
χ

(
Zk|Zk−1

−m−1

)∣∣≤ Cκk+m, P-a.s.,

which implies that

sup
θ∈�

∣∣lnpθ
χ

(
Zk|Zk−1

0

)− lnpθ (Zk|Zk−1−∞
)∣∣≤ Cκk/(1 − κ), P-a.s.

The proof of (ii) follows from the obvious decomposition

n−1 lnpθ
χ

(
Zn−1

0

)= n−1
n−1∑
k=1

lnpθ
χ

(
Zk|Zk−1

0

)+ n−1 lnpθ
χ(Z0),

(61)

n−1 lnpθ (Zn−1
0 |Z−1−∞

)= n−1
n−1∑
k=0

lnpθ (Zk|Zk−1−∞
)
.

The proof of (iii) follows from (53) and (61) using the Birkhoff theorem; see, for
example, [28], Theorem 1.14. �
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PROPOSITION 11. Assume (A1)–(A3). Let χ be a probability measure such
that χ ∈ M(D, r) [where M(D, r) is defined in (8)].

(i) For any θ0 ∈ � and any ρ > 0,

lim sup
n→∞

sup
θ∈B(θ0,ρ)

1

n
lnpθ

χ

(
Zn−1

0

)≤ E

[
sup

θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)]

, P-a.s.

(ii) The function θ �→ E[lnpθ(Z0|Z−1−∞)] is upper semi-continuous.
(iii) For any compact set � ⊂ �, the sequence (supθ∈�

1
n

lnpθ
χ(Zn−1

0 ))n≥0 con-
verges P-a.s. and

lim
n→∞ sup

θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)= sup
θ∈�

E
[
lnpθ (Z0|Z−1−∞

)]
, P-a.s.

PROOF. Proof of (i). Proposition 10(ii) shows that

lim sup
n→∞

sup
θ∈B(θ0,ρ)

1

n
lnpθ

χ

(
Zn−1

0

)
(62)

≤ lim sup
n→∞

1

n

n−1∑
i=0

sup
θ∈B(θ0,ρ)

lnpθ (Zi |Zi−1−∞
)
, P-a.s.

By (54), for any θ0 ∈ � and ρ > 0,

lnpθ0
(
Z0|Z−1−∞

)≤ sup
θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)

(63)

≤
r−1∑
i=0

sup
θ∈�

ln+∣∣g(·, Yi)
∣∣∞, P-a.s.,

which shows using (53) and (A2) that

E

[∣∣∣ sup
θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)∣∣∣]< ∞.

The Birkhoff theorem therefore implies

lim sup
n→∞

1

n

n−1∑
i=0

sup
θ∈B(θ0,ρ)

lnpθ (Zi |Zi−1−∞
)

(64)
= E

[
sup

θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)]

, P-a.s.,

which completes the proof of (i).

Proof of (ii). First note that

sup
θ∈B(θ0,ρ)

E
[
lnpθ (Z0|Z−1−∞

)]≤ E

[
sup

θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)]

.(65)
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Now, since under (A3), for any m ≥ p, P-a.s., the function θ �→ lnpθ
χ(Z0|Z−1−m)

is continuous, then P-a.s., the function θ �→ lnpθ(Z0|Z−1−∞) is continuous as a
uniform limit of continuous functions. Using (63),

r−1∑
i=0

sup
θ∈�

ln+∣∣g(·, Yi)
∣∣∞ − sup

θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)≥ 0,

the monotone convergence theorem therefore implies that

lim
ρ↓0

E

[
sup

θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)]= E

[
lim
ρ↓0

sup
θ∈B(θ0,ρ)

lnpθ (Z0|Z−1−∞
)]

(66)
= E

[
lnpθ0

(
Z0|Z−1−∞

)]
.

Combining (65) and (66) shows that

lim
ρ↓0

sup
θ∈B(θ0,ρ)

E
[
lnpθ (Z0|Z−1−∞

)]≤ E
[
lnpθ0

(
Z0|Z−1−∞

)]
.

Proof of (iii). By taking the limit of both sides of (i) with respect to ρ ↓ 0,
(66) shows that for any θ0 ∈ �,

lim
ρ↓0

lim sup
n→∞

sup
θ∈B(θ0,ρ)

1

n
lnpθ

χ

(
Zn−1

0

)≤ E
[
lnpθ0

(
Z0|Z−1−∞

)]
, P-a.s.(67)

Therefore, for any δ > 0 and θ0 ∈ �, there exists ρθ0 > 0 such that

lim sup
n→∞

sup
θ∈B(θ0,ρθ0 )

1

n
lnpθ

χ

(
Zn−1

0

)≤ E
[
lnpθ0

(
Z0|Z−1−∞

)]+ δ, P-a.s.

Since � is compact, by extracting a finite covering, the latter inequality shows that

lim sup
n→∞

sup
θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)≤ sup
θ0∈�

E
[
lnpθ0

(
Z0|Z−1−∞

)]+ δ, P-a.s.

Since δ is arbitrary, we therefore have

lim sup
n→∞

sup
θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)≤ sup
θ0∈�

E
[
lnpθ0

(
Z0|Z−1−∞

)]
.(68)

Now, since for any θ0 ∈ �,

sup
θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)≥ 1

n
lnpθ0

χ

(
Zn−1

0

)
.

Proposition 10(iii) yields

lim inf
n→∞ sup

θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)≥ E
[
lnpθ0

(
Z0|Z−1−∞

)]
, P-a.s.
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θ0 being arbitrary in �, we finally obtain

lim inf
n→∞ sup

θ∈�

1

n
lnpθ

χ

(
Zn−1

0

)≥ sup
θ0∈�

E
[
lnpθ0

(
Z0|Z−1−∞

)]
, P-a.s.

Combining this inequality with (68) completes the proof. �

THEOREM 12. Assume (A1)–(A3). Then, for any probability measure χ ∈
M(D, r),

lim
n→∞d

(
θ̂χ,nr ,�

	
b

)= 0, P-a.s.,

where �	
b ⊂ � is defined by �	

b � arg maxθ∈� E[lnpθ(Z0|Z−1−∞)].

PROOF. By Proposition 11(ii) the function θ �→ E[lnpθ(Z0|Z−1−∞)] is upper
semi-continuous. Therefore the set �	

b is compact as a closed subset of a the com-
pact set � so that for any δ > 0, �δ = {θ ∈ �;d(θ,�	

b) ≥ δ} is also a compact
set. In addition, as a upper semi-continuous function, θ �→ E[lnpθ(Z0|Z−1−∞)] re-
stricted to �δ attains its maximum which implies that

sup
θ∈�δ

E
[
lnpθ (Z0|Z−1−∞

)]= max
θ∈�δ

E
[
lnpθ (Z0|Z−1−∞

)]
< E

[
lnpθ	(

Z0|Z−1−∞
)]

,

where θ	 is any point in �	
b. Combining this with Proposition 10(iii) yields

lim
n→∞ sup

θ∈�δ

1

n
lnpθ

χ

(
Zn−1

0

)
< E

[
lnpθ	(

Z0|Z−1−∞
)]

, P-a.s.

Using that

lim
n→∞

1

n
lnpθ	

χ

(
Zn−1

0

)= E
[
lnpθ	(

Z0|Z−1−∞
)]

, P-a.s.

we finally obtain that P-a.s., θ̂χ,n ∈ �δ finitely many times. The proof is complete.
�

5.2. Proofs of Proposition 1 and Theorem 2. We have now all the tools for
obtaining the consistency of the MLE as a byproduct of the results obtained for the
block MLE. We first state and prove the forgetting of the initial distribution for the
predictive filter.

LEMMA 13. Assume (A1). Let 0 < γ − < γ + ≤ 1. Then, for all η > 0, there
exists ρη ∈ (0,1) such that, for all sequence (zi)i≥0 satisfying

n−1
n−1∑
i=0

1K(zi) ≥ max
(
1 − γ −,

(
1 + γ +)/2

)
,(69)
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all β ∈ (γ −, γ +), all measurable function f , all probability measures χ and χ ′
and all θ ∈ �,∣∣∣∣ χLθ 〈zn−1

0 〉f
χLθ 〈zn−1

0 〉1X

− χ ′Lθ 〈zn−1
0 〉f

χ ′Lθ 〈zn−1
0 〉1X

∣∣∣∣
≤ 2

{
ρ�n(β−γ −)� + η�n(γ +−β)�/2

χ(D)χ ′(D)

[
n−1∏
i=0

D2
zi

]}
|f |∞,

where Dz is defined in (46).

PROOF. By Proposition 5,
∣∣∣∣ χLθ 〈zn−1

0 〉f
χLθ 〈zn−1

0 〉1X

− χ ′Lθ 〈zn−1
0 〉f

χ ′Lθ 〈zn−1
0 〉1X

∣∣∣∣
= |�θ

χ,χ ′ 〈zn−1
0 〉(f,1X)|

χLθ 〈zn−1
0 〉1X × χ ′Lθ 〈zn−1

0 〉1X

≤ 2ρ�n(β−γ −)�|f |∞ + 2η�n(γ +−β)�/2
∏n−1

i=0 |Lθ 〈zi〉(·,X)|2∞
χLθ 〈zn−1

0 〉1X × χ ′Lθ 〈zn−1
0 〉1X

|f |∞,

where we have used that

χLθ 〈zn−1
0 〉f

χLθ 〈zn−1
0 〉1X

∨ χ ′Lθ 〈zn−1
0 〉f

χ ′Lθ 〈zn−1
0 〉1X

≤ |f |∞.

The proof follows by noting that (44) implies that
∏n−1

i=0 |Lθ 〈zi〉(·,X)|2∞
χLθ 〈zn−1

0 〉1X × χ ′Lθ 〈zn−1
0 〉1X

≤ [∏n−1
i=0 D2

zi
]

χ(D)χ ′(D)
. �

PROOF OF PROPOSITION 1. Proof of (i). Let χ a probability measure such
that χ(D) > 0. The first step of the proof consists of using the forgetting prop-
erty obtained in Lemma 13 to show that P-a.s., the sequence (pθ

χ (Y0|Y−1
−� ))�≥0

converges. Denote for any t ∈ {1, . . . , r},

χθ
m,t (A) = χLθ 〈y−mr−1−mr−t 〉1A

χLθ 〈y−mr−1−mr−t 〉1X

.

Then, write for any m ≥ 0, t ∈ {1, . . . , r} and any y0−mr−t ∈ Ymr+t+1,

pθ
χ

(
y0|y−1−mr−t

)= pθ

χθ
m,t

(
y0|z−1−m

)= χθ
m,tL

θ 〈z−1−m〉(gθ (·, y0))

χθ
m,tLθ 〈z−1−m〉(1X)

.
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Let 0 < γ − < γ + < 1. Lemma 13 shows that for any t ∈ {1, . . . , r} and η > 0,
there exists ρ ∈ (0,1) such that, if

m−1
−1∑

i=−m

1K(zi) ≥ max
(
1 − γ −,

(
1 + γ +)/2

)
,

then for all β ∈ (γ −, γ +), and θ ∈ �,∣∣pθ
χ

(
y0|y−1−mr−t

)− pθ
χ

(
y0|y−1−mr

)∣∣
≤ 2

(
ρ�m(β−γ −)� + η�m(γ +−β)�/2

χθ
m,t (D)χ(D)

−1∏
j=−m

(Dzj
)2

)
sup
θ∈�

∣∣gθ (·, y0)
∣∣∞

≤ 2

(
ρ�m(β−γ −)� + η�m(γ +−β)�/2D′−m

−1∏
j=−m

(Dzj
)2

)
sup
θ∈�

∣∣gθ (·, y0)
∣∣∞,

where

D′−m = max
t=1,...,r−1

1

infθ∈� χθ
m,t (D)χ(D)

.

(D′−m)m≥0 is a stationary sequence. Using the same argument as in the proof
of (47), the condition χ ∈ M(D, r) [defined in (8)], we have E[ln+ D′−m] < ∞.
By choosing γ + and γ − such that PY [Z0 ∈ K] > max(1 − γ −, (1 + γ +)/2) and
by applying Lemma 6, it follows that there exist �χ ∈ (0,1) and a P-a.s. finite
random variable Cχ such that for any � ≥ 1,∣∣pθ

χ

(
Y0|Y−1

−�

)− pθ
χ

(
Y0|Y−1

−�−1

)∣∣≤ Cχ��
χ , P-a.s.

Similarly, for any probability measure χ ′ such that χ ′(D) > 0, there exist �χ,χ ′ ∈
(0,1) and a P-a.s. finite random variable Cχ,χ ′ such that for any � ≥ 0,∣∣pθ

χ

(
Y0|Y−1

−�

)− pθ
χ ′
(
Y0|Y−1

−�

)∣∣≤ Cχ,χ ′��
χ,χ ′, P-a.s.

This implies that for any probability measure χ satisfying χ(D) > 0, the sequence
(pθ

χ (Y0|Y−1
−� ))�≥0 converges P-a.s. and that the limit denoted by pθ(Y0|Y−1−∞) does

not depend on χ . Then, by stationarity of (Y�)�∈Z, we obtain that for all k ≥ 0 and
θ ∈ �,

lim
m→∞pθ

χ

(
Yk|Y k−1−m

)= pθ (Yk|Y k−1−∞
)
, P-a.s.,

which shows the first part of (i). To complete the proof of (i), it remains to prove
that E[| lnpθ(Yk|Y k−1−∞ )|] < ∞. Since pθ

χ(Yk|Y k−1−m ) ≤ supx∈X gθ (x,Yk), we have

ln+ pθ
χ

(
Yk|Y k−1−∞

)≤ ln+ sup
x∈X

gθ (x,Yk),
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which shows, under (A2), that

E
[
ln+ pθ (Yk|Y k−1−∞

)]
< ∞.(70)

This allows us to define E[lnpθ(Yk|Y k−1−∞ )] as

E
[
lnpθ (Yk|Y k−1−∞

)]= E
[
ln+ pθ (Yk|Y k−1−∞

)]− E
[
ln− pθ (Yk|Y k−1−∞

)]
,

so that E[ln− pθ(Yk|Y k−1−∞ )] < ∞ provided that we have shown E[lnpθ(Yk|
Y k−1−∞ )] > −∞. By stationarity of (Yk)k∈Z,

rE
[
lnpθ (Y0|Y−1−∞

)]= r
{
E
[
ln+ pθ (Y0|Y−1−∞

)]− E
[
ln− pθ (Y0|Y−1−∞

)]}

= E

[
r−1∑
k=0

ln+ pθ (Yk|Y k−1−∞
)]− E

[
r−1∑
k=0

ln− pθ (Yk|Y k−1−∞
)]

(71)

= E

[
r−1∑
k=0

lnpθ (Yk|Y k−1−∞
)]

,

where the last equality follows by applying E(A−B) = E(A)−E(B) for nonneg-
ative random variables A,B such that E(A) < ∞. Now, note that

r−1∏
k=0

pθ (Yk|Y k−1−∞
)=

r−1∏
k=0

lim
m→∞pθ

χ

(
Yk|Y k−1−mr

)= lim
m→∞

r−1∏
k=0

pθ
χ

(
Yk|Y k−1−mr

)

= lim
m→∞pθ

χ

(
Y r−1

0 |Y−1−mr

)= lim
m→∞pθ

χ

(
Z0|Z−1−m

)
= pθ (Z0|Z−1−∞

)
.

By plugging this expression into (71) and using E[| lnpθ
χ(Z0|Z−1−∞)|] < ∞ (see

Proposition 10), we finally obtain

rE
[
lnpθ (Y0|Y−1−∞

)]= E
[
lnpθ (Z0|Z−1−∞

)]
> −∞,(72)

which completes the proof of (i).

Proof of (ii). Let χ be a probability measure such that χ(D) > 0 and let t ∈
{0, . . . , r − 1}. Then, for any m ≥ 0,

m−1 lnpθ
χ

(
Zm+1

0

)≤ m−1 lnpθ
χ

(
Ymr+t

0

)+ m−1 ln+ Am,t

(73)
≤ m−1 lnpθ

χ

(
Zm

0
)+ m−1 ln+ Bm,t + m−1 ln+ Am,t ,

where

Am,t � sup
θ∈�

sup
x

pθ
Qθ (x,·)

(
Y

(m+1)r−1
mr+t+1

)
, Bm,t � sup

θ∈�

sup
x

pθ
δx

(
Ymr+t

mr

)
.
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Note that (Am,t )m≥0 and (Bm,t )m≥0 are stationary. Moreover, using (A2), it can be
easily checked that

E
[
ln+ Am,t

]
< ∞, E

[
ln+ Bm,t

]
< ∞.

Then, Lemma 7 may apply and for any β ∈ (0,1), there exist P-a.s. finite random
variables A,B such that for all m ≥ 0,

Am,t ≤ Aβ−m, Bm,t ≤ Bβ−m, P-a.s.

so that, P-a.s.,

0 ≤ lim sup
m→∞

m−1 ln+ Am,t ≤ − lnβ,

0 ≤ lim sup
m→∞

m−1 ln+ Bm,t ≤ − lnβ.

By letting β ↑ 1,

lim
m→∞m−1 ln+ Am,t = 0, lim

m→∞m−1 ln+ Bm,t = 0, P-a.s.(74)

Now, note that (Am,t )m≥0 and (Bm,t )m≥0 do not depend on θ ∈ � so that (74)
together with (73) yields

lim sup
m→∞

sup
θ∈�

m−1∣∣lnpθ
χ

(
Ymr+t

0

)− lnpθ
χ

(
Zm

0
)∣∣= 0, P-a.s.(75)

Since t is chosen arbitrarily in {0, . . . , r − 1}, we finally obtain using Proposi-
tion 10(ii),

lim
n→∞n−1 lnpθ

χ

(
Yn

0
)= r−1 lim

m→∞m−1 lnpθ
χ

(
Zm

0
)

= r−1
E
[
lnpθ (Z0|Z−1−∞

)]
= E

[
lnpθ (Y0|Y−1−∞

)]
, P-a.s.,

which completes the proof of Proposition 1. �

PROOF OF THEOREM 2. By Proposition 11(ii) and (72), the function θ �→
�(θ) is upper semi-continuous. Moreover, (72) also implies

�	 = arg max
θ∈�

E
[
lnpθ (Y0|Y−1−∞

)]= arg max
θ∈�

E
[
lnpθ (Z0|Z−1−∞

)]= �	
b.

Now let t in {0, . . . , r − 1} and recall that Zm
0 = Ymr−1

0 . Theorem 12 together with
(75) shows that

lim
n→∞d

(
θ̂χ,nr+t ,�

	)= 0, P-a.s.(76)

The proof of Theorem 2 is then complete since t is arbitrary in {0, . . . , r − 1}. �
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PROOF OF PROPOSITION 3. Under these two conditions, for any u ∈
{1, . . . , r}, and θ ∈ �,

χLθ 〈yu−1
0

〉
1D

≥
(

u−1∏
i=0

inf
xi∈Di

gθ (xi, yi)

)∫
· · ·

∫
χ(dx0)1D(xu)

u∏
i=1

1Di−1(xi−1)Q
θ(xi−1,dxi)

≥
(

u−1∏
i=0

inf
xi∈Di

gθ (xi, yi)

)
χ(D0)δ

u.
�

PROOF OF LEMMA 4. The proof proceeds by induction on u ∈ {1, . . . , r}.
Assume that Du−1 is a compact subset; we show that there exists a compact set Du

such that infxu−1∈Du−1 infθ∈� Qθ(xu−1,Du) ≥ δ.
Let (x, θ) ∈ Du−1 × � and set δ < δ′ < 1. Since X = R

d is a complete sepa-
rable metric space and X is the associated Borel σ -field, there exists a sequence
B

x,θ
1 ,B

x,θ
2 , . . . , of open balls of radius 1 covering X. Choose Nx,θ large enough

so that Qθ(x,Ox,θ ) ≥ δ′, where Ox,θ =⋃
i≤Nx,θ

B
x,θ
i . Since for any open set O the

function (x′, θ ′) �→ Qθ ′
(x′,O) is lower semi-continuous, there exists a neighbor-

hood Vx,θ (for the product topology on X × �), such that for all (x′, θ ′) ∈ Vx,θ ,
Qθ ′

(x′,Ox,θ ) ≥ δ. Since Ox,θ is totally bounded its closure, denoted Kx,θ , is a
compact subset, which satisfies, for any (x′, θ ′) ∈ Vx,θ that Qθ(x,Kx,θ ) ≥ δ.

Then,
⋃

(x,θ)∈Du−1×� Vx,θ is a covering of Du−1 × �. Since the set Du−1 × �

is compact, we may extract a finite subcover Du−1 × � ⊆⋃I
i=1 Vxi ,θi

. Take Du =⋃I
i=1 Kxi ,θi

. As a finite union of compact sets, Du is a compact set, which satisfies,
for all (x, θ) ∈ Du−1 × �, Qθ(x,Du) ≥ δ. This completes the proof. �
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