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NEARLY ROOT-n APPROXIMATION FOR REGRESSION
QUANTILE PROCESSES

BY STEPHEN PORTNOY1

University of Illinois at Urbana-Champaign

Traditionally, assessing the accuracy of inference based on regression
quantiles has relied on the Bahadur representation. This provides an error of
order n−1/4 in normal approximations, and suggests that inference based on
regression quantiles may not be as reliable as that based on other (smoother)
approaches, whose errors are generally of order n−1/2 (or better in special
symmetric cases). Fortunately, extensive simulations and empirical applica-
tions show that inference for regression quantiles shares the smaller error
rates of other procedures. In fact, the “Hungarian” construction of Kom-
lós, Major and Tusnády [Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131,
Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58] provides an alternative expan-
sion for the one-sample quantile process with nearly the root-n error rate
(specifically, to within a factor of logn). Such an expansion is developed
here to provide a theoretical foundation for more accurate approximations
for inference in regression quantile models. One specific application of in-
dependent interest is a result establishing that for conditional inference, the
error rate for coverage probabilities using the Hall and Sheather [J. R. Stat.
Soc. Ser. B Stat. Methodol. 50 (1988) 381–391] method of sparsity estimation
matches their one-sample rate.

1. Introduction. Consider the classical regression quantile model: given in-
dependent observations {(xiYi) : i = 1, . . . , n}, with xi ∈ Rp fixed (for fixed p), the
conditional quantile of the response Yi given xi is

QYi
(τ |xi) = x′

iβ(τ ).

Let β̂(τ ) be the Koenker–Bassett regression quantile estimator of β(τ). Koenker
(2005) provides definitions and basic properties, and describes the traditional ap-
proach to asymptotics for β̂(τ ) using a Bahadur representation:

Bn(τ) ≡ n1/2(
β̂(τ ) − β(τ)

) = D(x)W(τ) + Rn,

where W(t) is a Brownian Bridge and Rn is an error term.
Unfortunately, Rn is of order n−1/4 [see, e.g., Jurečková and Sen (1996) and

Knight (2002)]. This might suggest that asymptotic results are accurate only to
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this order. However, both simulations in regression cases and one-dimensional re-
sults [Komlós, Major and Tusnády (1975, 1976)] justify a belief that regression
quantile methods should share (nearly) the O(n−1/2) accuracy of smooth statisti-
cal procedures (uniformly in τ ). In fact, as shown in Knight (2002), n1/4Rn has
a limit with zero mean and that is independent of W(τ). Thus, in any smooth in-
ferential procedure (say, confidence interval lengths or coverages), this error term
should enter only through ER2

n = O(n−1/2). Nonetheless, this expansion would
still leave an error of o(n−1/4) (coming from the error beyond the Rn term in the
Bahadur representation), and so would still fail to reflect root-n behavior. Further-
more, previous results only provide such a second-order expansion for fixed τ .

It must be noted that the slower O(n−1/4) error rate arises from the discreteness
introduced by indicator functions appearing in the gradient conditions. In fact, ex-
pansions can be carried out when the design is assumed to be random; see De An-
gelis, Hall and Young (1993) and Horowitz (1998), where the focus is on analysis
of the (x,Y ) bootstrap. Specifically, the assumption of a smooth distribution for
the design vectors together with a separate treatment of the lattice contribution of
the intercept does permit appropriate expansions. Unfortunately, the randomness
in X means that all inference must be in terms of the average asymptotic distri-
bution (averaged over X), and so fails to apply to the generally more desirable
conditional forms of inference. Specifically, unconditional methods may be quite
poor in the heteroscedastic and nonsymmetric cases for which regression quantile
analysis is especially appropriate. The main goal of this paper is to reclaim in-
creased accuracy for conditional inference beyond that provided by the traditional
Bahadur representation.

Specifically, the aim is to provide a theoretical justification for an error bound
of nearly root-n order uniformly in τ . Define

δ̂n(τ ) = √
n
(
β̂(τ ) − β(τ)

)
.

We first develop a normal approximation for the density of δ̂ with the following
form:

f
δ̂
(δ) = ϕ�(δ)

(
1 + O

(
Lnn

−1/2))

for ‖δ‖ ≤ D
√

logn, where Ln = (logn)3/2. We then extend this result to the densi-
ties of a pair of regression quantiles in order to obtain a “Hungarian” construction
[Komlós, Major and Tusnády (1975, 1976)] that approximates the process Bn(τ)

by a Gaussian process to order O(L∗
nn

−1/2), where L∗
n = (logn)5/2 (uniformly for

ε ≤ τ ≤ 1 − ε).
Section 2 provides some applications of the results here to conditional inference

methods in regression quantile models. Specifically, an expansion is developed
for coverage probabilities of confidence intervals based on the [Hall and Sheather
(1988)] difference quotient estimator of the sparsity function. The coverage error
rate is shown to achieve the rate O(n−2/3 logn) for conditional inference, which
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is nearly the known “optimal” rate obtained for a single sample and for uncondi-
tional inference. Section 3 lists the conditions and main results, and offers some
remarks. Section 4 provides a description of the basic ingredients of the proof
(since this proof is rather long and complicated). Section 5 proves the density ap-
proximation for a fixed τ (with multiplicative error). Section 6 extends the result
to pairs of regression quantiles (Theorem 1), and Section 7 provides the “Hun-
garian” construction (Theorem 2) with what appears to be a somewhat innovative
induction along dyadic rationals.

2. Implications for applications. As the impetus for this work was the need
to provide some theoretical foundation for empirical results on the accuracy of
regression quantile inference, some remarks on implications are in order.

REMARK 1. Clearly, whenever published work assesses the accuracy of an in-
ferential method using the error term from the Bahadur representation, the present
results will immediately provide an improvement from O(n−1/4) to the nearly
root-n rate here. One area of such results is methods based directly on regres-
sion quantiles and not requiring estimation of the sparsity function [1/f (F−1(τ ))].
There are several papers giving such results, although at present it appears that their
methods have theoretical justification only under location-scale forms of quantile
regression models.

Specifically, Zhou and Portnoy (1996) introduced confidence intervals (espe-
cially for fitted values) based on using pairs of regression quantiles in a way
analogous to confidence intervals for one-sample quantiles. They showed that the
method was consistent, but the accuracy depended on the Bahadur error term.
Thus, results here now provide accuracy to the nearly root-n rate of Theorem 2.

A second approach directly using the dual quantile process is based on the re-
gression ranks of Gutenbrunner et al. (1993). Again, the error terms in the theoret-
ical results there can be improved using Theorem 1 here, though the development
is not so direct.

For a third application, Neocleous and Portnoy (2008) showed that the regres-
sion quantile process interpolated along a grid of mesh strictly larger than n−1/2 is
asymptotically equivalent to the full regression quantile process to first order, but
(because of additional smoothness) will yield monotonic quantile functions with
probability tending to 1. However, their development used the Bahadur represen-
tation, which indicated that a mesh of order n−1/3 balanced the bias and accu-
racy and bounded the difference between β̂(τ ) and its linear interpolate by nearly
O(n−1/6). With some work, use of the results here would permit a mesh slightly
larger than the nearly root-n rate here to obtain an approximation of nearly root-n
order.

REMARK 2. Inference under completely general regression quantile models
appears to require either estimation of the sparsity function or use of resampling
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methods. The most general methods in the quantreg package [Koenker (2012)]
use the “difference quotient” method with the [Hall and Sheather (1988)] band-
width of order n−1/3, which is known to be optimal for coverage probabilities
in the one-sample problem. As noted above, expansions using the randomness of
the regressors can be developed to provide analogous results for unconditional in-
ference. The results here (with some elaboration) can be used to show that the
Hall–Sheather estimates provide (nearly) the same rates of accuracy for coverage
probabilities under the conditional form of the regression quantile model.

To be specific, consider the problem of confidence interval estimation for a fixed
linear combination of regression parameters: a′β(τ). The asymptotic variance is
the well-known sandwich formula

s2
a(δ) = τ(1 − τ)a′(X′DX

)−1(
X′X

)(
X′DX

)−1
a, D ≡ diag

(
x′
iδ

)
,(2.1)

where δ is the sparsity, δ = β ′(τ ) (with β ′ being the gradient), and where X is the
design matrix.

Following Hall and Sheather (1988), the sparsity may be approximated by the
difference quotient δ̃ = (β(τ + h) − β(τ − h))/(2h). Standard approximation the-
ory (using the Taylor series) shows that

δ = δ̃ + O
(
h2)

.

The sparsity may be estimated by

δ̂ ≡ �(h)/(2h) ≡ (
β̂(τ + h) − β̂(τ − h)

)
/(2h),(2.2)

and the sparsity (2.1) may be estimated by inserting δ̂ in D.
Then, as shown in the Appendix, the confidence interval

a′β(τ) ∈ a′β̂(τ ) ± zαsa(δ̂)(2.3)

has coverage probability 1 − 2α + O((logn)n−2/3), which is within a factor of
logn of the optimal Hall–Sheather rate in a single sample. Furthermore, this rate is
achieved at the (optimal) h-value h∗

n = c
√

lognn−1/3, which is the optimal Hall–
Sheather bandwidth except for the

√
logn term.

Since the optimal bandwidth depends on R∗
n , the optimal constant for the h∗

n

cannot be determined, as it can when X is allowed to be random [and for which
the O(1/(nhn)) term is explicit]. This appears to be an inherent shortcoming for
using inference conditional on the design.

Note also that it is possible to obtain better error rates for the coverage proba-
bility by using higher order differences. Specifically, using the notation of (2.2),

4
3�(h) − 1

6�(2h) = β ′(τ ) + O
(
h4)

.

As a consequence, the optimal bandwidth for this estimator is of order n−1/5, and
the coverage probability is accurate to order n−4/5 (except for logarithmic factors).
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REMARK 3. A third approach to inference applies resampling methods. As
noted in the Introduction, while the (x,Y ) bootstrap is available for unconditional
inference, the practicing statistician will generally prefer to use inference condi-
tional on the design. There are some resampling approaches that can obtain such
inference. One method is that of Parzen, Wei and Ying (1994), which simulates
the binomial variables appearing in the gradient condition. Another is the “Markov
Chain Marginal Bootstrap” of He and Hu (2002) [see also Kocherginsky, He and
Mu (2005)]. However, this method also involves sampling from the gradient con-
dition. The discreteness in the gradient condition would seem to require the error
term from the Bahadur representation, and thus leads to poorer inferential approx-
imation: the error would be no better than order n−1/2 even if it were the square
of the Bahadur error term. While some evidence for decent performance of these
methods comes from (rather limited) simulations, it is often noticed that these
methods perform perhaps somewhat more poorly than the other methods in the
quantreg package of Koenker (2012). Clearly, a more complete analysis of in-
ference for regression quantiles based on the more accurate stochastic expansions
here would be useful.

3. Conditions, fundamental theorems and remarks. Under the regression
quantile model of Section 1, the following conditions will be imposed:

Let ẋi denote the coordinates of xi except for the intercept (i.e., the last p − 1
coordinates, if there is an intercept). Let φ̇i(t) denote the conditional characteristic
function of the random variable ẋi(I (Yi ≤ x′

iβ(τ ) + δ/
√

n) − τ), given xi . Let
fi(y) and Fi(y) denote the conditional density and c.d.f. of Yi given xi .

CONDITION X1. For any ε > 0, there is η ∈ (0,1) such that

inf‖t‖>ε

∏
φ̇i(t) ≤ ηn(3.1)

uniformly in ε ≤ τ ≤ 1 − ε.

CONDITION X2. ‖xi‖ are uniformly bounded, and there are positive definite
p × p matrices G = G(τ) and H such that for any ε > 0 (as n → ∞)

Gn(τ) ≡ 1

n

n∑
i=1

fi

(
x′
iβ(τ )

)
x′
ixi = G(τ)

(
1 + O

(
n−1/2))

,(3.2)

Hn ≡ 1

n

n∑
i=1

x′
ixi = H

(
1 + O

(
n−1/2))

(3.3)

uniformly in ε ≤ τ ≤ 1 − ε.

CONDITION F. The derivative of log(fi(y)) is uniformly bounded on the in-
terval {y : ε ≤ Fi(y) ≤ 1 − ε}.
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Two fundamental results will be developed here. The first result provides a den-
sity approximation with multiplicative error of nearly root-n rate. A result for fixed
τ is given in Theorem 5, but the result needed here is a bivariate approximation for
the joint density of one regression quantile and the difference between this one and
a second regression quantile (properly normalized for the difference in τ -values).

Let ε ≤ τ1 ≤ 1 − ε for some ε > 0, and let τ2 = τ1 + an with an > cn−b for
some b < 1. Here, one may want to take b near 1 [see remark (1) below], though
the basic result will often be useful for b = 1

2 , or even smaller. Define

Bn = Bn(τ1) ≡ n1/2(
β̂(τ1) − β(τ1)

)
,(3.4)

Rn = Rn(τ1, τ2) ≡ (nan)
1/2[(

β̂(τ1) − β(τ1)
) − (

β̂(τ2) − β(τ2)
)]

.(3.5)

THEOREM 1. Under Conditions X1, X2 and F, there is a constant D such
that for |Bn| ≤ D(logn)1/2 and |Rn| ≤ D(logn)1/2, the joint density of Rn and Bn

at δ and s, respectively, satisfies

fRn,Bn(δ, s) = ϕ�n(δ, s)
(
1 + O

((
nan(logn)3)−1/2))

,

where ϕ�n is a normal density with covariance matrix �n having the form given
in (7.3).

The second result provides the desired “Hungarian” construction:

THEOREM 2. Assume Conditions X1, X2 and F. Fix an = n−b with b < 1,
and let {τj } be dyadic rationals with denominator less than nb. Define B∗

n(τ ) to
be the piecewise linear interpolant of {Bn(τj )} [as defined in (3.4)]. Then for any
ε > 0, there is a (zero-mean) Gaussian process, {Zn(τj )}, defined along the dyadic
rationals {τj } and with the same covariance structure as B∗

n(τ ) (along {τj }) such
that its piecewise linear interpolant Z∗

n(τ ) satisfies

sup
ε≤τ≤1−ε

∣∣B∗
n(τ ) − Z∗

n(τ )
∣∣ = O

(
(logn)5/2

√
n

)

almost surely.

Some remarks on the conditions and ramifications are in order:

(1) The usual construction approximates Bn(τ) by a “Brownian Bridge” pro-
cess. Theorem 2 really only provides an approximation for the discrete processes
at a sufficiently sparse grid of dyadic rationals. That the piecewise linear inter-
polants converge to the usual Brownian Bridge follows as in Neocleous and Port-
noy (2008). The critical impediment to getting a Brownian Bridge approximation
to Bn(τ) with the error in Theorem 2 is the square root behavior of the modulus
of continuity. This prevents approximating the piecewise linear interpolant within
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an interval of length greater than (roughly) order 1/n if a root-n error is desired.
In order to approximate the density of the difference in Bn(τ) over an interval be-
tween dyadic rationals, the length of the interval must be at least of order n−b (for
b < 1). Clearly, it will be possible to approximate the piecewise linear interpolant
by a Brownian Bridge with error

√
n−b = n−b/2, and thus to get arbitrarily close

to the value of 1
2 for the exponent of n. For most purposes, it might be better to

state the final result as

sup
ε≤τ≤1−ε

∥∥Bn(τ) − Z(τ)
∥∥ = O

(
n−a)

for any a < 1/2 (where Z is the appropriate Brownian Bridge); but the stronger
error bound of Theorem 2 does provide a much closer analog of the result for the
one-sample (one-dimensional) quantile process.

(2) The one-sample result requires only the first power of logn, which is known
to give the best rate for a general result. The extra addition of 3/2 in the exponent
is clearly needed for the density approximation, but this may be only a technical
assumption. Nonetheless, I conjecture that some extra amount is needed in the
exponent.

(3) Conditions X1 and X2 can be shown to hold with probability tending to one
under smoothness and boundedness assumptions of the distribution of x. Nonethe-
less, the condition that ‖x‖ be bounded seems rather strong in the case of ran-
dom x. It seems clear that this can be weakened, though probably at the cost of
getting a poorer approximation. For example, ‖x‖ having exponentially small tails
might increase the bound in Theorem 2 by an additional factor of logn, and alge-
braic tails are likely worse. However, details of such results remain to be devel-
oped.

(4) Similarly, it should be possible to let ε, which defines the compact subin-
terval of τ -values, tend to zero. Clearly, letting εn be of order 1/n would lead to
extreme value theory and very different approximations. For slower rates of con-
vergence of εn, Bahadur expansions have been developed [e.g., see Gutenbrunner
et al. (1993)] and extension to the approximation result in Theorem 2 should be
possible. Again, however, this would most likely be at the cost of a larger error
term.

(5) The assumption that the conditional density of the response (given x) be con-
tinuous is required even for the usual first order asymptotics. However, one might
hope to avoid Condition F, which requires a bounded derivative at all points. For
example, the double exponential distribution does not satisfy this condition. It is
likely that the proofs here can be extended to the case where the derivative does
not exist on a finite set (or even on a set of measure zero), but dropping differentia-
bility entirely would require a rather different approach. Furthermore, the apparent
need for bounded derivatives in providing uniformity over τ in Bahadur expan-
sions suggests the possibility that some differentiability is required.
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(6) Theorem 1 provides a bivariate normal density approximation with error rate
(nearly) n−1/2 when τ1 and τ2 are fixed. When an ≡ τ2 − τ1 → 0, of course, the
error rate is larger. Note, however, that the slower convergence rate when an → 0
does not reduce the order of the error in the final construction since the difference
Dn = β̂(τ2) − β̂(τ1) is of order (nan)

−1/2.

4. Ingredients and outline of proof. The development of the fundamental
results (Theorems 1 and 2) will be presented in three phases. The first phase pro-
vides the density approximation for a fixed τ , since some of the more complicated
features are more transparent in this case. The second phase extends this result to
the bivariate approximation of Theorem 1. The final phase provides the “Hungar-
ian” construction of Theorem 2. To clarify the development, the basic ingredients
and some preliminary results will be presented first.

INGREDIENT 1. Begin with the finite sample density for a regression quantile
[Koenker (2005), Koenker and Bassett (1978)]: assume Yi has a density, fi(y),
and let τ be fixed. Note that β̂(τ ) is defined by having p zero residuals (if the
design is in general position). Specifically, there is a subset, h, of p integers such
that β̂(τ ) = X−1

h Yh, where Xh has rows x′
i for i ∈ h and Yh has coordinates Yi for

i ∈ h. Let H denote the set of all such p-element subsets. Define

δ̂ = √
n
(
β̂(τ ) − β(τ)

)
.

As described in Koenker (2005), the density of δ̂ evaluated at the argument
δ = √

n(b − β(τ)) is given by

f
δ̂
(δ) = n−p/2

∑
h∈H

det(Xh)P {Sn ∈ Ah}
∏
i∈h

fi

(
x′
iβ(τ ) + n−1/2δ

)
.(4.1)

Here, the event in the probability above is the event that the gradient condition
holds for a fixed subset, h :Sn ∈ Ah, where Ah = XhR, with R the rectangle that
is the product of intervals (τ − 1, τ ) [see Theorem 2.1 of Koenker (2005)], and
where

Sn = Sn(h,β, δ) ≡ ∑
i /∈h

xi

(
I
(
Yi ≤ x′

iβ + n−1/2δ
) − τ

)
.(4.2)

INGREDIENT 2. Since n−1/2Sn is approximately normal, and Ah is bounded,
the probability in (4.1) is approximately a normal density evaluated at δ. To get a
multiplicative bound, we may apply a “Cramér” expansion (or a saddlepoint ap-
proximation). If Sn had a smooth distribution (i.e., satisfied Cramér’s condition),
then standard results would apply. Unfortunately, Sn is discrete. The first coordi-
nate of Sn is nearly binomial, and so a multiplicative bound can be obtained by
applying a known saddlepoint formula for lattice variables [see Daniels (1987)].
Equivalently, approximate by an exact binomial and (more directly, but with some
rather tedious computation) expand the logarithm of the Gamma function in Stir-
ling’s formula. Using either approach, one can show the following result:



1722 S. PORTNOY

THEOREM 3. Let W ∼ binomial(n,p), J be any interval of length O(
√

n)

containing EW = np, and let w = O(
√

n log(n)). Then

P {W ∈ J + w} = P {Z ∈ J + w}(1 + O
(
n−1/2

√
log(n)

))
,(4.3)

where Z ∼ N (np,np(1 − p)).

A proof based on multinomial expansions is given for the bivariate generaliza-
tion in Theorem 1. Note that this result includes an extra factor of

√
log(n). This

will allow the bounds to hold except with probability bounded by an arbitrarily
large negative power of n. This is clear for the limiting normal case (by standard
asymptotic expansions of the normal c.d.f.). To obtain such bounds for the distribu-
tion of Sn will require some form of Bernstein’s inequality. Such inequalities date
to Bernstein’s original publication in 1924 [see Bernstein (1964)], but a version
due to Hoeffding (1963) may be easier to apply.

INGREDIENT 3. Using Theorem 3, it can be shown (see Section 4) that the
probability in (4.1) may be approximated as

P {S̃n ∈ Ah}(1 + O
(
Ln/

√
n
))

,

where the first coordinate of S̃n is a sum of n i.i.d. N (0, τ (1 − τ)) random vari-
ables, the last (p − 1) coordinates are those of Sn, and Ln = (logn)3/2. Since
we seek a normal approximation for this probability with multiplicative error, at
this point one might hope that a known (multidimensional) “Cramér” expansion
or saddlepoint approximation would allow S̃n to be replaced by a normal vector
(thus providing the desired result). However, this will require that the summands
be smooth, or (at least) satisfy a form of Cramér’s condition. Let ẋi denote the last
(p − 1) coordinates of xi . One approach would be to assume ẋi has a smooth dis-
tribution satisfying the classical form of Cramér’s condition. However, to maintain
a conditional form of the analysis, it suffices to impose a condition on ẋi , which is
designed to mimic the effect of a smooth distribution and will hold with probabil-
ity tending to one if ẋi has such a smooth distribution. Condition X1 specifies just
such an assumption.

Note that the characteristic functions of the summands of S̃n, say, {φ̇i(t)}, will
also satisfy Condition X1 [equation (3.1)] and so should allow application of
known results on normal approximations. Unfortunately, I have been unable to
find a published result providing this and so Section 5 will present an independent
proof.

Clearly, some additional conditions will be required. Specifically, we will need
conditions that the empirical moments of {xi} converge appropriately, as specified
in Condition X2.
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Finally, the approach using characteristic functions is greatly simplified when
the sums, S̃n, have densities. Again, to avoid using smoothness of the distribution
of {ẋi} (and thus to maintain a conditional approach), introduce a random perturba-
tion Vn which is small and has a bounded smooth density (the bound may depend
on n). Section 4 will then prove the following:

THEOREM 4. Assume Conditions X1 and X2 and the regression quantile
model of Section 1. Let δ be the argument of the density of n−1/2(β̂ − β), and
suppose

‖δ‖ ≤ d
√

n

for some constant d . Then a constant d0 can be chosen so that

P {Sn + Vn ∈ Ah} = P

{
Zn + Vn√

n
∈ Ah√

n

}(
1 + O

(
log3/2(n)√

n

))
+ O

(
n−d0

)
,

where Zn has mean −G−1
n δ and covariance τ(1 − τ)Hn, d0 can be arbitrarily

large, and Vn is a small perturbation [see (5.1)].

Following the proof of this theorem, it will be shown that the effect of Vn can
be ignored, if Vn is bounded by n−d1 , where d1 may depend on d (but not on d0).

INGREDIENT 4. Expanding the densities in (4.1) is trivial if the densities are
sufficiently smooth. The assumption of a bounded first derivative in Condition F
appears to be required to analyze second order terms (beyond the first order normal
approximation).

INGREDIENT 5. Finally, summing terms involving det(Xh) in (4.1) over the(n
p

)
summands will require Vinograd’s theorem and related results from matrix

theory concerning adjoint matrices [see Gantmacher (1960)].

The remaining ingredients provide the desired “Hungarian” construction.

INGREDIENT 6. Extend the density approximation to the joint density for
β̂(τ1) and β̂(τ2) (when standardized). A major complication is that one needs
an ≡ |τ2 − τ1| → 0, making the covariance matrix tend to singularity. Thus, we fo-
cus on the joint density for standardized versions of β̂(τ1) and Dn ≡ β̂(τ2)− β̂(τ1).
Clearly, this requires modification of the proof for the univariate case to treat the
fact that Dn converges at a rate depending on an. The result is given in Theorem 1.

INGREDIENT 7. Extend the density result to obtain an approximation for the
quantile transform for the conditional distribution of differences Dn (between suc-
cessive dyadic rationals). This will provide (independent) normal approximations
to the differences whose sums will have the same covariance structure as the re-
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gression quantile process (at least along a sufficiently sparse grid of dyadic ratio-
nals).

INGREDIENT 8. Finally, the Hungarian construction is applied inductively
along the sparse grid of dyadic rationals. This inductive step requires some inno-
vative development, mainly because the regression quantile process is not directly
expressible in terms of sums of random variables (as are the empiric one-sample
distribution function and quantile function).

5. Proof of Theorem 4. Let Ṡn be the last p − 1 coordinates of Sn and
A(1)(Ṡn, h) be the interval {a : (a, Ṡn) ∈ Ah}. Then,

P {Sn ∈ Ah} = P

{∑
i /∈h

(
I
(
Yi ≤ x′

iβ + δ/
√

n
) − τ

) ∈ A(1)(Ṡn, h)

}

= P

{∑
i /∈h

(
I
(
Yi ≤ x′

iβ
) − τ

) ∈ A(1)(Ṡn, h)

− ∑
i /∈h

(
I
(
Yi ≤ x′

iβ + δ/
√

n
) − I

(
Yi ≤ x′

iβ
))}

= ∑
k∈A∗

fbinomial(k; τ),

where A∗ is the set A(1) shifted as indicated above. Note that by Hoeffding’s in-
equality [Hoeffding (1963)], for any fixed d , the shift satisfies

∣∣∣∣
∑
i /∈h

(
I
(
Yi ≤ x′

iβ + δ/
√

n
) − I

(
Yi ≤ x′

iβ
))∣∣∣∣ ≤ d

√
n
√

log(n)

except with probability bounded by 2n−2d2
. Thus, we may apply Theorem 3 [equa-

tion (4.3)] with w equal to the shift above to obtain the following bound (to within
an additional additive error of 2n−2d2

):

P {Sn ∈ Ah} = P
{
nZ

√
τ(1 − τ) ∈ A(1)(Ṡn, h)

}(
1 + O

(
an/

√
n
))

,

where Z ∼ N (0,1) and an is a bound on Ṡn, which may be taken to be of the form
B

√
logn (by Hoeffding’s inequality). Finally, we obtain

P {Sn ∈ Ah} = P {S̃n ∈ Ah}(1 + O
(
an/

√
n
)) + 2n−2d2

,

where the first coordinate of S̃n is a sum of n i.i.d. N (0, τ (1−τ)) random variables
and the last p − 1 coordinates are those of Sn.
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To treat the probability involving S̃n, standard approaches using characteristic
functions can be employed. In theory, exponential tilting (or saddlepoint methods)
should provide better approximations, but since we require only the order of the
leading error term, we can proceed more directly. As in Einmahl (1989), the first
step is to add an independent perturbation so that the sum has an integrable den-
sity: specifically, for fixed h ∈ H let Vn be a random variable (independent of all
observations) with a smooth bounded density and for which (for each h ∈ H)

‖Vn‖ ≤ n−d1,(5.1)

where d1 will be chosen later. Define

S∗
n = S̃n + Vn.

We now allow Ah to be any (arbitrary) set, say, A. Thus, S∗
n has a density and

we can write [with cπ = (2π)−p]

P
{
S∗

n/
√

n ∈ A
} = cπ

∫
Vol(A)φUnif(A)(t)φS̃n

(
t/

√
n
)
φVn

(
t/

√
n
)
dt,

where φU denotes the characteristic function of the random variable U .
Break domain of integration into 3 sets: ‖t‖ ≤ d2

√
log(n), d2

√
log(n) ≤ ‖t‖ ≤

ε
√

n, and ‖t‖ ≥ ε
√

n.
On ‖t‖ ≤ d

√
log(n), expand logφ

S̃n/
√

n
(t). For this, compute

μi ≡ Exi

(
τ − I

(
yi ≤ x′

iβ + x′
iδ/

√
n
))

= −fi

(
F−1

i (τ )
)
xix

′
iδ/

√
n + O

(‖xi‖3‖δ‖2/n
)
,

�i ≡ Cov
[
xi

(
τ − I

(
yi ≤ x′

iβ + x′
iδ/

√
n
))]

= xix
′
iτ (1 − τ) + O

(‖xi‖3‖δ‖2/n
)
.

Hence, using the boundedness of ‖xi‖, ‖δ‖ and ‖t‖ (on this first interval),

φ
S̃n

(
t/

√
n
) = exp

{
−ι

∑
i /∈h

μi/
√

nt ′δ − 1

2

∑
i /∈h

t ′�it/n + O
(‖δ‖2 + ‖t‖3

√
n

)}

= exp
{
−ιGnt

′δ − 1

2
t ′Hnt + O

(
(logn)3/2/

√
n
)}

,

where Gn and Hn are defined in Condition X2 [see (3.2) and (3.3)].
For the other two intervals on the t-axis, the integrands will be bounded by an

additive error times ∫
φVn

(
t/

√
n
)
dt = O

(
n−p(d1+1/2))

since ‖Vn‖ ≤ n−d1 .
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On ‖t‖ ≤ ε
√

n, the summands are bounded and so their characteristic functions
satisfy φi(s) ≤ (1−b‖t‖2) for some constant c. Thus, on d2

√
log(n) ≤ ‖t‖ ≤ ε

√
n,

∣∣φ
S̃n

(
t/

√
n
)∣∣ ≤ (

1 − bd2
2 log(n)/n

)n−p ≤ c1n
−bd2

2

for some constant c1. Therefore, integrating times φVn(t/
√

n) provides an additive
bound of order n−d∗

, where d∗ = bd2
2 − p(d1 + 1/2) and (for any d0) d2 can be

chosen sufficiently large so that d∗ > d0.
Finally, on ‖t‖ ≥ ε

√
n, Condition X1 [see (3.1)] gives an additive bound of ηn

directly and, again (as on the previous interval), an additive error bounded by n−d0

can be obtained.
Therefore, it now follows that we can choose d0 (depending on d , d1, d2 and d∗)

so that

P

{
Sn + Vn√

n
∈ A

}
= cπ

∫
Vol(A)φUnif(A)(t)φN (−Gδ,τ(1−τ)H)(t)φVn

(
t√
n

)
dt

× (
1 + O

((
log3(n)/n

)1/2)) + O
(
n−d0

)
,

from which Theorem 4 follows.
Finally, we show that the contribution of Vn can be ignored:

∣∣P {S̃n ∈ Ah} − P
{
S∗

n ∈ Ah

}∣∣ = ∣∣P {S̃n ∈ Ah} − P {S̃n + Vn ∈ Ah + Vn}
∣∣

≤ P
{
S̃n + Vn ∈ Ah(Ah + Vn)

}
,

where  denotes the symmetric difference of the sets. Since Vn is bounded and
Ah = XhR, this symmetric difference is contained in a set, D, which is the union
of 2p (boundary) parallelepipeds each of the form XhRj , where Rj is a rectangle
one of whose coordinates has width 2n−d1 and all other coordinates have length 1.
Thus, applying Theorem 4 (as proved for the set A = D),

∣∣P {S̃n ∈ Ah} − P
{
S∗

n ∈ Ah

}∣∣ ≤ P {S̃n + Vn ∈ D}
≤ c Vol(D) + O

(
n−d0

)
≤ c′n−d1,

where c and c′ are constants, and d1 may be chosen arbitrarily large.

6. Normal approximation with nearly root-n multiplicative error.

THEOREM 5. Assume Conditions X1, X2, F and the regression quantile
model of Section 1. Let δ be the argument of the density of δ̂n ≡ n−1/2(β̂(τ )−β(τ))

and suppose

‖δ‖ ≤ d
√

log(n)
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for some constant d . Then, uniformly in ε ≤ τ ≤ 1 − ε (for ε > 0),

f
δ̂n

(δ) = ϕ�(δ)
(
1 + O

((
log3(n)/n

)1/2))
,

where ϕ� denotes the normal density with covariance �n = τ(1 − τ)G−1
n HnG

−1
n

with Gn and Hn given by (3.2) and (3.3).

PROOF. Recall the basic formula for the density (4.1):

f
δ̂
(δ) = n−p/2

∑
h∈H

det(Xh)P {Sn ∈ Ah}
∏
i∈h

fi

(
x′
iβ + n−1/2δ

)
.

By Theorem 4, ignoring the multiplicative and additive error terms given in this
result and setting c′

π = (2π)−p/2,

P {Sn ∈ Ah} = P
{
Zn ∈ Ah/

√
n
}

= c′
π |Hn|−1/2

∫
Ah/

√
n

exp
{
−1

2

(
z − G−1

n δ
)′ H−1

n

τ (1 − τ)

(
z − G−1

n δ
)}

dz

= c′
π |Hn|−1/2 exp

{
−1

2
δ′�−1

n δ

}∫
Ah/

√
n

dz
(
1 + O

(
n−1/2))

= c′
πn−p/2|Xh||Hn|−1/2 exp

{
−1

2
δ′�−1

n δ

}(
1 + O

(
n−1/2))

since z is bounded by a constant times n−1/2 on Ah/
√

n and the last integral equals
Vol(Ah) = n−p/2|Xh|.

By Ingredient 4, the product is
∏
i∈h

fi

(
x′
iβ

)(
1 + O

(‖δ‖n−1/2))
.

This gives the main term of the approximation as

∑
h∈H

n−p|Xh|2
∏
i∈h

fi

(
x′
iβ

)|Hn|−1/2 exp
{
−1

2
δ′�−1

n δ

}
.

The penultimate step is to apply results from matrix theory on adjoint matri-
ces [specifically, the Cauchy–Binet theorem and the “trace” theorem; see, e.g.,
Gantmacher (1960), pages 9 and 87]: the sum above is just the trace of the pth
adjoint of (X′Df X), which equals det(X′Df X).

The various determinants combine (with the factor n−p) to give det(�n)
−1/2,

which provides the asymptotic normal density we want.
Finally, we need to combine the multiplicative and additive errors into a single

multiplicative error. So consider ‖δ‖ ≤ d
√

log(n) (for some constant d). Then, the
asymptotic normal density is bounded below by n−cd for some constant c.
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Thus, since the constant d0 (which depends on d1, d2, d∗ and η) can be cho-
sen so that the additive errors are smaller than O(n−cd−1/2), the error is entirely
subsumed in the multiplicative factor: (1 + O((log3(n)/n)1/2)). �

7. The Hungarian construction. We first prove Theorem 1, which provides
the bivariate normal approximation.

PROOF OF THEOREM 1. The proof follows the development in Theorem 5.
The first step treats the first (intercept) coordinate. Since the binomial expansions
were omitted in the proof of Theorem 3, details for the trinomial expansion needed
for the bivariate case here will be presented.

The binomial sum in the first coordinate of (4.2) will be split into the sum
of observations in the intervals [x′

i β̂(0), x′
i β̂(τ1)), [x′

i β̂(τ1), x
′
i β̂(τ1 + an)) and

[x′
i β̂(τ1 + an), x

′
i β̂(1)). The expected number of observations in each interval

is within p of n times the length of the corresponding interval. Thus, ignoring
an error of order 1/n, we expand a trinomial with n observations and p1 = τ1
and p2 = an. Let (N1,N2,N3) be the (trinomially distributed) number of obser-
vation in the respective intervals and consider P ∗ ≡ P {N1 = k1,N2 = k2,N3 =
n − k1 − k2}. We may take

k1 = O
(
(n logn)1/2)

,
(7.1)

k2 = O
(
an(logn)1/2)

,

since these bounds are exceeded with probability bounded by n−d for any (suffi-
ciently large) d . So P ∗ ≡ A × B , where

A = n!
(np1 + k1)!(np2 + k2)!(n(1 − p1 − p2) − k1 − k2)! ,

B = p
np1+k+1
1 p

np2+k2
2 (1 − p1 − p2)

n(1−p1−p2)−k1−k2 .

Expanding (using Sterling’s formula and some computation),

A = 1

2π
exp

{
2 +

(
n + 1

2

)
log

(
n + 1

n

)

−
(
np1 + k1 + 1

2

)
log

(
np1 + k1 + 1

np1

)

−
(
np2 + k2 + 1

2

)
log

(
np2 + k2 + 1

np2

)

−
(
n(1 − p1 − p2) − k1 − k2 + 1

2

)

× log
(
n(1 − p1 − p2) − k1 + k2 − 1

n(1 − p1 − p2)

)
+ O

(
1

np2

)}
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= 1

2π
exp

{
1

2
logn − np1 logp1 −

(
k1 + 1

2

)
log(np1)

− np2 logp2 −
(
k2 + 1

2

)
log(np2)

− n(1 − p1 − p2) log(1 − p1 − p2) −
(
k1 + k2 + 1

2

)

× log
(
n(1 − p1 − p2)

) − k2
1

np1
− k2

2

np2

− (k1 + k2)
2

n(1 − p1 − p2)
+ O

(
k3

2

(np2)2

)}

= 1

2π
exp

{
− logn −

(
np1 + k1 + 1

2

)
logp1 −

(
np2 + k2 + 1

2

)
logp2

−
(
n(1 − p1 − p2) − k1 − k2 + 1

2

)
log(1 − p1 − p2)

− k2
1

np1
− k2

2

np2
− (k1 + k2)

2

n(1 − p1 − p2)
+ O

(
(logn)3/2

na2
n

)}
,

B = exp
{
(np1 + k1) logp1 + (np2 + k2) logp2

+ (
n(1 − p1 − p2) − k1 − k2

)
log(1 − p1 − p2)

}
.

Therefore,

A × B = exp
{
−1

2
p1 − 1

2
p2 − 1

2
(1 − p1 − p2)

− k2
1

np1
− k2

2

np2
− (k1 + k2)

2

n(1 − p1 − p2)
+ O

(
(logn)3/2

na2
n

)}
.

Some further simplification shows that A × B gives the usual normal approxi-
mation to the trinomial with a multiplicative error of (1 + o(n−1/2)) [when k1 and
k2 satisfy (7.1)].

The next step of the proof follows that of Theorem 4 (see Ingredient 3). Since
the proof is based on expanding characteristic functions (which do not involve the
inverse of the covariance matrices), all uniform error bounds continue to hold. This
extends the result of Theorem 4 to the bivariate case:

P
{
Sn(τ1) ∈ Ah1, Sn(τ2) ∈ Ah2

}
= P

{
Z1 ∈ Ah1/

√
n,Z2 ∈ Ah2/

√
n
}

(7.2)

= P
{
Z1 ∈ Ah1/

√
n
} × P

{
(Z2 − Z1)/

√
n ∈ (Ah2 − Z2)/

√
n|Z1

}
for appropriate normally distributed (Z1,Z2) (depending on n). This last equation
is needed to extend the argument of Theorem 5, which involves integrating normal
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densities. The joint covariance matrix for (Sn(τ1), Sn(τ2)) is nearly singular (for
τ2 −τ1 small) and complicates the bounds for the integral of the densities. The first
factor above can be treated exactly as in the proof of Theorem 5, while the condi-
tional densities involved in the second factor can be handled by simple rescaling.
This provides the desired generalization of Theorem 5.

Thus, the next step is to develop the parameters of the normal distribution
for (Bn(τ1),Rn) [see (3.4), (3.5)] in a usable form. The covariance matrix for
(Bn(τ1),Bn(τ2)) has blocks of the form

Cov
(
Bn(τ1),Bn(τ2)

) =
(

τ1(1 − τ1)�11 τ1(1 − τ2)�12
τ1(1 − τ2)�21 τ2(1 − τ2)�22

)
,

where �ij = G−1
n (τi)HnG

−1
n (τj ) with Gn and Hn given in Condition X2 [see

(3.2) and (3.3)].
Expanding Gn(τ) about τ = τ1 (using the differentiability of the densities from

Condition F),

�ij = �11 + (τ2 − τ1)�ij + o
(|τ2 − τ1|),

where �ij are derivatives of Gn at τ1 (note that �11 = 0). Straightforward matrix
computation now yields the joint covariance for (Bn(τ1),Rn):

Cov
(
Bn(τ1),Rn

) =
(

τ1(1 − τ1)�11 (τ2 − τ1)�
∗
12

(τ2 − τ1)�
∗
21 (τ2 − τ1)�

∗
22

)
+ o

(|τ2 − τ1|),(7.3)

where �∗
ij are uniformly bounded matrices.

Thus, the conditional distribution of Rn = √
(τ2 − τ1)(Bn(τ2) − Bn(τ1)) given

Bn(τ1) has moments

E
[
Rn|Bn(τ1)

] = (τ2 − τ1)�
−1
11 �12/

(
τ1(1 − τ1)

)
,(7.4)

Cov
[
Rn|Bn(τ1)

] = (τ2 − τ1)

[
�∗

22 − τ2 − τ1

τ1(1 − τ1)
�∗

21�
−1
11 �∗

12

]
(7.5)

and analogous equations also hold for {Z2 − Z1|Z1}.
Finally, recalling that τ2 − τ1 = an, the second term in (7.2) can be written

P

{
Z2 − Z1√

n
∈ Ah2 − Z1√

n

∣∣∣Z1

}
= P

{
Z2 − Z1√
n(τ2 − τ1)

∈ Ah2 − Z1√
nan

∣∣∣Z1

}
.

Thus, since the conditional covariance matrix is uniformly bounded except for
the an = (τ2 − τ1) factor, the argument of Theorem 5 also applies directly to this
conditional probability. �

Finally, the above results are used to apply the quantile transform for increments
between dyadic rationals inductively in order to obtain the desired “Hungarian”
construction. The proof of Theorem 2 is as follows:
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PROOF OF THEOREM 2. (i) Following the approach in Einmahl (1989), the
first step is to provide the result of Theorem 1 for conditional densities one coordi-
nate at a time. Using the notation of Theorem 1, let τ1 = k/2� and τ2 = (k + 1)/2�

be successive dyadic rationals (between ε and 1 − ε) with denominator 2�. So
an = 2−�. Let Rm be the mth coordinate of Rn(τ1, τ2) [see (3.5)], let Ṙm be the
vector of coordinates before the mth one, and let S = Bn(τ1). Then the conditional
density of Rm|(Ṙm,S) satisfies

fRm|(Ṙm,S)(r1|r2, s) = ϕμ,�(r1|r2, s)

(
1 + O

(
(logn)3/2

√
n

))
(7.6)

for ‖r1‖ < D
√

logn, ‖r2‖ < D
√

logn, and ‖s‖ < D
√

logn, and where μ and σ

are easily derived from (7.4) and (7.5). Note that μ has the form

μ = √
anα

′S,(7.7)

where ‖α‖ can be bounded (independent of n) and � can be bounded away from
zero and infinity (independent of n).

This follows since the conditional densities are ratios of marginal densities of
the form fY (y) = ∫

fX,Y dx (with fX,Y satisfying Theorem 1). The integral over
‖x‖ ≤ D

√
logn has the multiplicative error bound directly. The remainder of the

integral is bounded by n−d , which is smaller than the normal integral over ‖x‖ ≤
D

√
logn (see the end of the proof of Theorem 5).

(ii) The second step is to develop a bound on the (conditional) quantile trans-
form in order to approximate an asymptotic normal random variable by a normal
one. The basic idea appears in Einmahl (1989). Clearly, from (7.6),

∫ r

0
fRm|(Ṙm,S)(u|r2, s) du =

∫ r

0
ϕμ,σ (u|r2, s) du

(
1 + O

(
(logn)3/2

√
n

))

for ‖u‖ < D
√

logn, ‖r2‖ < D
√

logn, and ‖s‖ < D
√

logn. By Condition F, the
conditional densities (of the response given x) are bounded above zero on ε ≤
τ ≤ 1 − ε. Hence, the inverse of the above versions of the c.d.f.’s also satisfy
this multiplicative error bound, at least for the variables bounded by D

√
logn.

Thus, the quantile transform can be applied to show that there is a normal random
variable, Z∗, such that (Rm − Z∗) = O((logn)3/2/

√
n) so long as Rm and the

quantile transform of Rm are bounded by D
√

logn. Using the conditional mean
and variance [see (7.7)], and the fact that the random variables exceed D

√
logn

with probability bounded by n−d (where d can be made large by choosing D large
enough), there is a random variable Zm that can be chosen independently so that

Rm = anα
′S + Zm + O

(
(logn)3/2

√
n

)
(7.8)

except with probability bounded by n−d .
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(iii) Finally, the “Hungarian” construction will be developed inductively. Let
τ(k, �) = k/2� and consider induction on �. First consider the case where τ ≥ 1

2 ;
the argument for τ < 1

2 is entirely analogous.
Define ε∗

n = c(logn)3/2/
√

n, where c bounds the big-O term in any equation of
the form (7.8). Let A be a bound [uniform over τ ∈ (ε,1 − ε)] on α in (7.8). The
induction hypothesis is as follows: there are normal random vectors Zn(k, �) such
that

∥∥∥∥Bn

(
k

2�

)
− Zn(k, �)

∥∥∥∥ ≤ ε(�)(7.9)

except with probability 2�n−d , where for each �, Zn(·, �) has the same covariance
structure as Bn(·/2�), and where

ε(�) = �ε∗
n

�∏
j=1

(
1 + A2−j/2)

.(7.10)

Note: since the earlier bounds apply only for intervals whose lengths exceed
n−a (for some positive a), � must be taken to be smaller than a log2(n) = O(logn).
Thus, the bound in (7.10) becomes O((logn)5/2/

√
n), as stated in Theorem 1.

To prove the induction result, note first that Theorem 1 (or Theorem 5) provides
the normal approximation for Bn(

1
2) for � = 1. The induction step is proved as

follows: following Einmahl (1989), take two consecutive dyadic rationals τ(k, �)

and τ(k − 1, �) with k odd. So

τ(k − 1, �) = [k/2]/2�−1 = τ
([k/2], � − 1

)
.

Condition each coordinate of Bn(τ(k, �)) on previous coordinates and on Bn(τ([k/

2], � − 1)). Let bn(τ (k, �)) = bn(k/2�) be one such coordinate.
Now, as above, define R(k, �) by

bn

(
τ(k, �)

) = bn

(
τ
([k/2], � − 1

)) + R(k, �).

From (7.8), there is a normal random variable Zn(k, �) such that

∣∣R(k, �) −
√

2−�α′Bn

(
τ
([k/2], � − 1

)) − Zn(k, �)
∣∣ ≤ ε∗

n.

By the induction hypothesis for (� − 1), Bn(τ([k/2], � − 1) is approximable by
normal random variables to within ε(� − 1) (except with probability n−d ). Thus,
a coordinate bn(τ ([k/2], � − 1) is also approximable with this error, and the error
in approximating anα

′Bn(τ([k/2], � − 1) is bounded by ε(� − 1) times A
√

an =
A2−�/2. Finally, since Zn(k, �) is independent of these normal variables, the errors
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can be added to obtain
(
1 + A2−�/2)

ε(� − 1) + ε∗
n.

Therefore, except with probability less than 2(� − 1)n−d + 2n−d = 2�n−d , the
induction hypothesis (7.9) holds with error

(� − 1)ε∗
n

�−1∏
j=1

(
1 + 2−j/2) × (

1 + 2−�/2) + ε∗
n

≤ �

�∏
j=1

(
1 + 2−j/2)

ε∗
n = ε(�),

and the induction is proven.
The theorem now follows since the piecewise linear interpolants satisfy the

same error bound [see Neocleous and Portnoy (2008)]. �

APPENDIX

RESULT 1. Under the conditions for the theorems here, the coverage probabil-
ity for the confidence interval (2.3) is 1− 2α + O((logn)n−2/3), which is achieved
at hn = c

√
lognn−1/3 (where c is a constant).

SKETCH OF PROOF. Recall the notation of Remark 2 in Section 2. Using The-
orem 1 and the quantile transform as described in the first steps of Theorem 2 (and
not needing the dyadic expansion argument), it can be shown that there is a bivari-
ate normal pair (W,Z) such that

√
n
(
β̂(τ ) − β(τ)

) = W + Rn, Rn = Op

(
n−1/2(logn)3/2)

,
(A.1) √

n
(
�̂(hn) − �(hn)

) = Z + R∗
n, R∗

n = Op

(
n−1/2(logn)3/2)

.

Note that from the proofs of Theorems 1 and 2, the Op terms above are actually
O terms except with probability n−d where d is an arbitrary fixed constant. The
“almost sure” results above take d > 1, but d = 1 will suffice for the bounds on
the coverage probability here.

Incorporating the approximation error in (A.1),
√

n(δ̂ − δ) = Z/hn + R∗
n/hn + O

(
n1/2h2

n

)
.

Now consider expanding sa(δ). First, note that under the design conditions here,
sa will be of exact order n−1/2; specifically, if X is replaced by

√
nX̃, all terms

involving X̃′X̃ will remain bounded, and we may focus on
√

nsa(δ). Note also that
for hn = O(n−1/3), the terms in the expansion of (δ̂ − δ) tend to zero [specifically,
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1/(
√

nhn) = O(n−1/6)]. So the sparsity, sa(δ), may be expanded in a Taylor series
as follows:

√
nsa(δ̂) = √

nsa(δ) + b′
1(δ̂ − δ) + b2(δ̂ − δ) + b3(δ̂ − δ) + O

(
n−2/3)

≡ √
nsa(δ) + K,

where b1 is a (gradient) vector that can be defined in terms of X̃ and β(τ) (and its
derivatives), b2 is a quadratic function (of its vector argument) and b3 is a cubic
function. Note that under the design conditions, all the coefficients in b1, b2 and
b3 are bounded, and so it is not hard to show that all the terms in K tend to zero
as long as hn

√
n → ∞. Specifically, if hn is of order n−1/3, then all the terms

in K tend to zero. Also, R∗
n is within a logn factor of O(n−1/2) and h2

n is even
smaller. Finally, Z is a difference of two quantiles separated by 2h, and so b′

1Z

has variance proportional to h. Thus, E(b′
1Z/(

√
nhn))

2 = O(1/(nhn)). Thus, not
only does b′

1Z/(
√

nhn) →p 0, but powers of this term greater than 2 will also be
Op(n−1).

It follows that the coverage probability may be computed using only two terms
of the Taylor series expansion for the normal c.d.f.:

P
{√

na′(β̂(τ ) − β(τ)
) ≤ zα

√
nsa(δ̂)

}
= P

{
a′(W + Rn) ≤ zα

√
nsa(δ̂) + K

}
= E�a′W |Z

(
zα

√
nsa(δ) + K − a′Rn

)
= E

{
�a′W |Z

(√
nsa(δ)

) + φa′W |Z
(√

nsa(δ)
)(

K − a′Rn

)

+ 1
2φ′

a′W |Z
(√

nsa(δ)
)(

K − a′Rn

)2 + O
(
(logn)3/n

)}

≡ 1 − α + T1 + T2 + O
(
(logn)3/n

)
.

Note that the (normal) conditional distribution of W given Z is straightforward to
compute (using the usual asymptotic covariance matrix for quantiles): the condi-
tional mean is a small constant (of the order of hn) times Z, and the conditional
variance is bounded.

Expanding the lower probability in the same way and subtracting provides some
cancelation. The contribution of Rn will cancel in the T1 differences, and is negligi-
ble in subsequent terms since R2

n = O((logn)3/n). Similarly, the R∗
n/(

√
nhn) term

will appear only in the T1 difference where it contributes a term that is (logn)3/2

times a term of order 1/(nhn), and will also be negligible in subsequent terms.
Also, the h2

n term will only appear in T1, as higher powers will be negligible. The
only remaining terms involve Z/(

√
nhn)). For the first power (appearing in T1),

EZ = 0. For the squared Z-terms in T2, since Var(b′
1Z) is proportional to hn,

E(b′
1Z)2/(nh2

n) = c1/(nhn), and all other terms involving Z have smaller order.
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Therefore, one can obtain the following error for the coverage probability: for
some constants c1 and c2, the error is

b′
1R

∗
n√

nhn

+ c1

nhn

+ c2h
2
n

(plus terms of smaller order). Since R∗
n is of order nearly n−1/2, the first terms

have nearly the same order. Using b′
1R

∗
n = c(logn)/(

√
nhn), it is straightforward

to find the optimal hn to be a constant times
√

lognn−1/3, which bounds the error
in the coverage probability by O(lognn−2/3). �
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