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NONCONCAVE PENALIZED COMPOSITE CONDITIONAL
LIKELIHOOD ESTIMATION OF SPARSE ISING MODELS1

BY LINGZHOU XUE, HUI ZOU AND TIANXI CAI

University of Minnesota, University of Minnesota and Harvard University

The Ising model is a useful tool for studying complex interactions within
a system. The estimation of such a model, however, is rather challenging,
especially in the presence of high-dimensional parameters. In this work,
we propose efficient procedures for learning a sparse Ising model based
on a penalized composite conditional likelihood with nonconcave penalties.
Nonconcave penalized likelihood estimation has received a lot of attention
in recent years. However, such an approach is computationally prohibitive
under high-dimensional Ising models. To overcome such difficulties, we ex-
tend the methodology and theory of nonconcave penalized likelihood to pe-
nalized composite conditional likelihood estimation. The proposed method
can be efficiently implemented by taking advantage of coordinate-ascent and
minorization–maximization principles. Asymptotic oracle properties of the
proposed method are established with NP-dimensionality. Optimality of the
computed local solution is discussed. We demonstrate its finite sample per-
formance via simulation studies and further illustrate our proposal by study-
ing the Human Immunodeficiency Virus type 1 protease structure based on
data from the Stanford HIV drug resistance database. Our statistical learn-
ing results match the known biological findings very well, although no prior
biological information is used in the data analysis procedure.

1. Introduction. The Ising model was first introduced in statistical physics
[Ising (1925)] as a mathematical model for describing magnetic interactions and
the structures of ferromagnetic substances. Although rooted in physics, the Ising
model has been successfully exploited to simplify complex interactions for net-
work exploration in various research fields such as social-economics [Stauffer
(2008)], protein modeling [Irback, Peterson and Potthast (1996)] and statistical
genetics [Majewski, Li and Ott (2001)]. Following the terminology in physics,
consider an Ising model with K magnetic dipoles denoted by Xj , 1 ≤ j ≤ K .
Each Xj equals +1 or −1, corresponding to the up or down spin state of the j th

magnetic dipole. The energy function is defined as E = −∑
i �=j βij

XiXj

4 , where
the coupling coefficient βij describes the physical interactions between dipoles i
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and j under the external magnetic field, βii = 0 and βij = βji for any (i, j). Ac-
cording to Boltzmann’s law, the joint distribution of X = (X1, . . . ,XK) should be

Pr(X1 = x1, . . . ,XK = xK) = 1

Z(β)
exp

(∑
(i,j)

βij xjxi

4

)
,(1.1)

where Z(β) is the partition function.
In this paper we focus on learning sparse Ising models; that is, many coupling

coefficients are zero. Our research is motivated by the HIV drug resistance study
where understanding the inter-residue couplings (interactions) could potentially
shed light on the mechanisms of drug resistance. A suitable statistical learning
method is to fit a sparse Ising model to the data, in order to discover the inter-
residue couplings. More details are given in Section 5. In the recent statistical lit-
erature, penalized likelihood estimation has become a standard tool for sparse esti-
mation. See a recent review paper by Fan and Lv (2010). In principle we can follow
the penalized likelihood estimation paradigm to derive a sparse penalized estima-
tor of the Ising model. Unfortunately, the penalized likelihood estimation method
is very difficult to compute under the Ising model because the partition function
Z(β) is computationally intractable when the number of dipoles is relatively large.
On the other hand, the composite likelihood idea [Lindsay (1988), Varin, Reid
and Firth (2011)] offers a nice alternative. To elaborate, suppose we have N inde-
pendent identically distributed (i.i.d.) realizations of X from the Ising model, de-
noted by {(x1n, . . . , xKn), n = 1, . . . ,N}. Let θj = P(Xi = xj |X(−j)), describing
the conditional distribution of the j th dipole given the remaining dipoles, where
X(−j) denotes X with the j th element removed. By (1.1), it is easy see that for the
nth observation,

θjn = exp(
∑

k : k �=j βjkxjnxkn)

exp(
∑

k : k �=j βjkxjnxkn) + 1
.

Note that θjn does not involve the partition function. The conditional log-
likelihood of the j th dipole, given the remaining dipoles, is given by

�(j) = 1

N

N∑
n=1

log(θjn).

As in Lindsay (1988) a composite log-likelihood function can be defined as

�c =
K∑

j=1

�(j).

This kind of composite conditional likelihood was also called pseudo-likelihood in
Besag (1974). Another popular type of composite likelihood is composite marginal
likelihood [Varin (2008)]. Maximum composite likelihood is especially useful
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when the full likelihood is intractable. Such an approach has important applica-
tions in many areas including spatial statistics, clustered and longitudinal data and
time series models. A nice review on the recent developments in composite likeli-
hood can be found in Varin, Reid and Firth (2011).

To estimate a high-dimensional sparse Ising model, we consider the following
penalized composite likelihood estimator:

β̂ = arg max
β

{
�c(β) −

K∑
j=1

K∑
k=j+1

Pλ

(|βjk|)
}
,(1.2)

where Pλ(t) is a positive penalty function defined on [0,∞). In this work we
focus primarily on the LASSO penalty [Tibshirani (1996)] and smoothly clipped
absolute deviation (SCAD) penalty [Fan and Li (2001)]. The LASSO penalty is
Pλ(t) = λt . The SCAD penalty is defined by

P ′
λ(t) = λ

{
I (t ≤ λ) + (aλ − t)+

(a − 1)λ
I (t > λ)

}
, t ≥ 0;a > 2.

Following Fan and Li (2001) we set a = 3.7. We should make it clear that when
Pλ(t) is nonconcave, β̂ should be understood as a good local maximizer of (1.2).
See discussions in Section 2.

The optimization problem in (1.2) is very challenging because of two major
issues: (1) the number of unknown parameters is 1

2K(K − 1), and hence the op-
timization problem is high dimensional in nature; and (2) the penalty function
is concave and nondifferentiable at zero, although �c is a smooth concave func-
tion. We propose to combine the strengths of coordinate-ascent and minorization–
maximization, which results in two new algorithms, CMA and LLA–CMA, for
computing a local solution of the nonconcave penalized composite likelihood. See
Section 2 for details. With the aid of the new algorithms, the SCAD penalized
estimators are able to enjoy computational efficiency comparable to that of the
LASSO penalized estimator.

Fan and Li (2001) advocated the oracle properties of the nonconcave penalized
likelihood estimator in the sense that it performs as well as the oracle estimator
which is the hypothetical maximum likelihood estimator knowing the true sub-
model. Zhang (2010a) and Lv and Fan (2009) were among the first to study the
concave penalized least-squares estimator with NP-dimensionality (p can grow
faster than any polynomial function of n). Fan and Lv (2011) studied the asymp-
totic properties of nonconcave penalized likelihood for generalized linear models
with NP-dimensionality. In this paper we show that the oracle model selection the-
ory remains to hold nicely for nonconcave penalized composite likelihood with
NP-dimensionality. Furthermore, we show that under certain regularity conditions
the oracle estimator can be attained asymptotically via the LLA–CMA algorithm.

There is some related work in the literature. Ravikumar, Wainwright and Laf-
ferty (2010) viewed the Ising model as a binary Markov graph and used a neigh-
borhood LASSO-penalized logistic regression algorithm to select the edges. Their
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idea is an extension of neighborhood selection by LASSO regression proposed
by Meinshausen and Bühlmann (2006) for estimating Gaussian graphical mod-
els. Höfling and Tibshirani (2009) suggested using the LASSO-penalized pseudo-
likelihood to estimate binary Markov graphs. However, they did not provide any
theoretical result nor application. In this paper we compare the LASSO and the
SCAD penalized composite likelihood estimators and show the latter has substan-
tial advantages with respect to both numerical and theoretical properties.

The rest of this paper is organized as follows. In Section 2, we introduce the
CMA and LLA–CMA algorithms. The statistical theory is presented in Section 3.
Monte Carlo simulation results are shown in Section 4. In Section 5 we present
a real application of the proposed method to study the network structure of the
amino-acid sequences of retroviral proteases using data from the Stanford HIV
drug resistance database. Technical proofs are relegated to the Appendix.

2. Computing algorithms. In this section we discuss how to efficiently im-
plement the penalized composite likelihood estimators. As mentioned before, the
computational challenges come from (1) penalizing the concave composite likeli-
hood with a nonconcave penalty which is not differentiable at zero; (2) the intrinsi-
cally high dimension of the unknown parameters. Zou and Li (2008) proposed the
local linear approximation (LLA) algorithm to derive an iterative �1-optimization
procedure for computing nonconcave penalized estimators. The basic idea behind
LLA is the minorization–maximization principle [Lange, Hunter and Yang (2000),
Hunter and Lange (2004), Hunter and Li (2005)]. Coordinate-ascent (or descent)
algorithms [Tseng (1988)] have been successfully used for solving penalized es-
timators with LASSO-type penalties; see, for example, Fu (1998), Daubechies,
Defrise and De Mol (2004), Genkin, Lewis and Madigan (2007), Yuan and Lin
(2006), Meier, van de Geer and Bühlmann (2008), Wu and Lange (2008) and
Friedman, Hastie and Tibshirani (2010). In this paper we combine the strengths
of minorization–maximization and coordinatewise optimization to overcome the
computational challenges.

2.1. The CMA algorithm. Let β̃ be the current estimate. The coordinate-ascent
algorithm sequentially updates β̃ij by solving the following univariate optimiza-
tion problem:

β̃jk ⇐ arg max
βjk

{
�c

(
βjk;βj ′k′ = β̃j ′k′,

(
j ′, k′) �= (j, k)

)− Pλ

(|βjk|)}.(2.1)

However, we do not have a closed-form solution for the maximizer of (2.1). The
exact maximization has to be conducted by some numerical optimization rou-
tine, which may not be a good choice in the coordinate-ascent algorithm because
the maximization routine needs to be repeated many times to reach convergence.
On the other hand, one can find an update to increase, rather than maximize,
the objective function in (2.1), maintaining the crucial ascent property of the
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coordinate-ascent algorithm. This idea is in line with the generalized EM algorithm
[Dempster, Laird and Rubin (1977)] in which one seeks to increase the expected
log likelihood in the M-step.

First, we observe that for any βij

∂2�c(β)

∂β2
jk

= − 1

N

N∑
n=1

(
θkn(1 − θkn) + θjn(1 − θjn)

) ≥ −1

2
.(2.2)

Thus, by Taylor’s expansion, we have

�c

(
βjk;βj ′k′ = β̃j ′k′,

(
j ′, k′) �= (j, k)

) ≥ Q(βjk),

where

Q(βjk) ≡ �c

(
βjk = β̃jk;βj ′k′ = β̃j ′k′,

(
j ′, k′) �= (j, k)

)
(2.3)

+ z̃jk(βjk − β̃jk) − 1
4(βjk − β̃jk)

2,

z̃jk = ∂�c(β)

∂βjk

∣∣∣∣
β=β̃

= 1

N

N∑
n=1

xknxjn

(
2 − θkn(β̃) − θjn(β̃)

)
.(2.4)

Next, Zou and Li (2008) showed that

Pλ

(|βjk|) ≤ Pλ

(|β̃jk|)+ P ′
λ

(|β̃jk|) · (|βjk| − |β̃jk|) ≡ L
(|βjk|).(2.5)

Combining (2.3)–(2.5) we see that Q(βjk) − L(|βjk|) is a minorization function
of the objective function in (2.1). We update β̃jk by

β̃new
jk = arg max

βjk

{
Q(βjk) − L

(|βjk|)},(2.6)

whose solution is given by β̃new
jk = S(β̃jk + 2̃zjk,2P ′

λ(|β̃jk|)) where S(r, t) =
sgn(r)(|r| − t)+ denotes the soft-thresholding operator [Tibshirani (1996)]. The
above arguments lead to Algorithm 1 below, which we call the coordinate-
minorization-ascent (CMA) algorithm.

REMARK 1. It is easy to prove that Algorithm 1 has a nice ascent property
which is a direct consequence of the minorization–maximizaton principle. Note
that Algorithm 1 can be directly used to compute the LASSO-penalized composite

Algorithm 1 The CMA algorithm

(1) Initialization of β̃ .
(2) Cyclic coordinate-minorization-ascent: sequentially update β̃ij (1 ≤ j <

k ≤ K) via soft-thresholding β̃jk ⇐ S(β̃jk + 2̃zjk,2P ′
λ(|β̃jk|)).

(3) Repeat the above cycle till convergence.
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likelihood estimator. We simply modify the coordinate-wise updating formula as
β̃jk ⇐ S(β̃jk + 2̃zjk,2λ).

In practice we need to specify the λ value. BIC has been shown to perform
very well for selecting the tuning parameter of the penalized likelihood estimator
[Wang, Li and Tsai (2007)]. The BIC score is defined as

λ̂ = arg max
λ

{
2�c

(
β̂(λ)

)− log(n) · ∑
(j,k)

I
(
β̂jk(λ) �= 0

)}
.(2.7)

BIC is used to tune all methods considered in this work. We use SCAD1 to denote
the SCAD solution computed by Algorithm 1 with the BIC tuned LASSO solution
being the starting value.

For computational efficiency considerations, we implement Algorithm 1 by
using the path-following idea and some other tricks, including warm-starts and
active-set-cycling [Friedman, Hastie and Tibshirani (2010)]. We have implemented
the algorithm in R language functions. The core cyclic coordinate-wise soft-
thresholding operations were carried out in C.

REMARK 2. As suggested by a referee, the coordinate-gradient-ascent (CGA)
algorithm is a natural alternative to Algorithm 1 for solving the LASSO-penalized
composite likelihood estimator. The CGA algorithm has successfully used to solve
other penalized models. See Genkin, Lewis and Madigan (2007), Meier, van de
Geer and Bühlmann (2008), Städler, Bühlmann and van de Geer (2010) and
Schelldorfer, Bühlmann and van de Geer (2011). In the CGA algorithm we need to
find a good step size along the gradient direction to guarantee the ascent property
after each coordinate-wise update. These extra computations are necessary for the
CGA algorithm, but are not needed in the CMA algorithm. We have also imple-
mented the CGA algorithm to solve the LASSO estimator and found that the CMA
algorithm is about five times faster than the CGA algorithm. See Section 4 for the
timing comparison details.

2.2. Issues of local solution and the LLA–CMA algorithm. The objective func-
tion in (1.2) is generally nonconcave if a nonconcave penalty function is used.
Using Algorithm 1 we find a local solution to (1.2), but there is no guarantee
that it is the global solution. A similar case is Schelldorfer, Bühlmann and van de
Geer (2011) where the objective function is the LASSO-penalized maximum like-
lihood of a high-dimensional linear mixed-effects model, and the authors derived
a coordinate-wise gradient descent algorithm to find a local solution.

It should not be considered as a special weakness of Algorithm 1 or other
coordinate-wise descent algorithm as in Schelldorfer, Bühlmann and van de Geer
(2011) that the algorithm can only find a local solution, because in the current lit-
erature there is no algorithm that can guarantee to find the global solution of non-
concave maximization (or nonconvex minimization) problems, especially when



PENALIZED ESTIMATION OF SPARSE ISING MODELS 1409

the dimension is huge. Consider, for example, the EM algorithm, which is perhaps
the most famous algorithm in statistical literature. The EM algorithm often offers
an elegant way to fit some statistical models that are formulated as nonconcave
maximization problems. However, the EM algorithm provides a local solution in
general. A recent application of the EM algorithm to high-dimensional model-
ing can be found in Städler, Bühlmann and van de Geer (2010) who considered
a LASSO-penalized maximum likelihood estimator of a high-dimensional linear
regression model with inhomogeneous errors that are modeled by a finite mixture
of Gaussians. To handle the computational challenges in their problem, Städler,
Bühlmann and van de Geer (2010) proposed a generalized EM algorithm in which
a coordinate descent loop is used in the M-step and showed that the obtained solu-
tion is a local solution.

Our numerical results show that in the penalized composite likelihood estima-
tion problem the SCAD performs much better than the LASSO. To offer theoretical
understanding of their differences, it is important to show that the obtained local
solution of the SCAD-penalized likelihood has better theoretical properties than
the LASSO estimator. In Section 3 we establish the asymptotic properties of the
LASSO estimator and a local solution of (1.2) with the SCAD penalty. However, a
general technical difficulty in nonconcave maximization problems is to show that
the computed local solution is the one local solution with proven theoretical prop-
erties. In Städler, Bühlmann and van de Geer (2010) and Schelldorfer, Bühlmann
and van de Geer (2011), nice asymptotic properties are established for their pro-
posed methods but it is not clear whether the computed local solutions could have
those theoretical properties. The same issue exists in Fan and Lv (2011).

To circumvent the technical difficulty, we can consider combining the LLA idea
[Zou and Li (2008)] and Algorithm 1 to solve (1.2) with a nonconcave penalty.
The LLA algorithm turns a nonconcave penalization problem into a sequence of
weighted LASSO penalization problems. Similar ideas of iterative LLA convex
relaxation have been used in Candès, Wakin and Boyd (2008), Zhang (2010b) and
Bradic, Fan and Wang (2011). Applying the LLA algorithm to (1.2), we need to
iteratively solve

β̂(m+1) = arg max
β

{
�c(β) −

K∑
j=1

K∑
k=j+1

wjk · |βjk|
}

(2.8)

for m = 0,1,2, . . . where wjk = P ′
λ(|β̃(m)

jk |). Note that Algorithm 1 can be used to
solve (2.8) by simply modifying the coordinate-wise updating formula as β̃jk ⇐
S(β̃jk + 2̃zjk,2wjk). Therefore, we have the following LLA–CMA algorithm for
computing a local solution of (1.2).

In Section 3 we show that if the LASSO estimator is β̃(0), then under certain
regularity conditions the LLA–CMA algorithm finds the oracle estimator with high
probability. These results suggest that we should take the following steps to com-
pute the SCAD solution by the LLA–CMA algorithm.
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Algorithm 2 The LLA–CMA algorithm

(1) Initialize β̃(0), and compute wjk = P ′
λ(|β̃(0)

jk |).
(2) For m = 0,1,2,3, . . . , repeat the LLA iteration:

(2.a) Use Algorithm 1 to solve β̂(m+1) defined in (2.8);
(2.b) Update the weights wjk by P ′

λ(|β̃(m+1)
jk |).

The proposed LLA–CMA procedure for computing a SCAD estimator:

Step 1. Use Algorithm 1 to compute the LASSO solution path and find the
LASSO estimator by BIC.

Step 2. Use the LASSO estimator as β̃(0) in the LLA–CMA algorithm to com-
pute the solution path of the first iteration and use BIC to tune the first step solution.
Then use the tuned first step solution as β̃(0) in the LLA–CMA algorithm to com-
pute the solution path and use BIC to select λ. The resulting estimator is denoted
by SCAD2.

Step 3. For the chosen λ of SCAD2, use Algorithm 2 to compute the fully con-
verged SCAD solution with SCAD2 being the starting value. Denote this SCAD
solution by SCAD2∗∗.

The construction of SCAD2 follows an idea in Bühlmann and Meier (2008).
Based on our experience, SCAD2∗∗ works slightly better than SCAD2, but the
two are generally very close. Generally we recommend using SCAD2∗∗ in real
applications.

3. Theoretical results. In this section we establish the statistical theory for
the penalized composite conditional likelihood estimator using the SCAD and the
LASSO penalty, respectively. Such results allow us to compare the SCAD and the
LASSO estimators theoretically.

In order to present the theory we need some necessary notation. For a matrix
A = (aij ), we define the following matrix norms: the Frobenius norm ‖A‖F =√∑

i,j a2
ij , the entry-wise �∞ norm ‖A‖max = maxi,j |aij | and the matrix �∞

norm ‖A‖∞ = maxi

∑
j |aij |. Let β∗ = {β∗

jk : j < k} denote the true coefficients,
A = {(j, k) :β∗

jk �= 0, j < k} and s = |A|. Define ρ(s,N) = min(j,k)∈A |β∗
jk|

which represents the weakness of the signal. Let H be the Hessian matrix of �c

such that

H(j1k1),(j2k2) = − ∂2�c(β)

∂βj1k1 ∂βj2k2

,

1 ≤ j1 < k1 ≤ K and 1 ≤ j2 < k2 ≤ K . For simplicity we use H ∗ = H(β∗). We
partition H and β according to A as (

HA A
HAc A

HA Ac

HAc Ac
) and β = (βT

A,βT
Ac )T , respec-

tively. We let

XA = (
Xj : (j, k) or (k, j) ∈ A for some k

)
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and

xAn = (
xjn : (j, k) or (k, j) ∈ A for some k

)
.

Finally, we define

b = λmin
(
E
[
H ∗

AA
])

,

B = λmax
(
E
[
XAXT

A
])

,

φ = ∥∥E[
H ∗

Ac A
](

E
[
H ∗

AA
])−1∥∥∞.

Define the oracle estimator as β̂oracle = (β̃hmle
A ,0) where

β̃hmle
A = arg max

βA
�c

(
(βA,0)

)
.

If we knew the true submodel, then we would use the oracle estimator to estimate
the Ising model.

THEOREM 3.1. Consider the SCAD-penalized composite likelihood defined
in (1.2). We have the following two conclusions:

(1) For any R < b
3B

√
N
s

, we have

Pr

(∥∥β̃hmle
A − β∗

A
∥∥

2 ≤
√

s

N
R

)
≥ 1 − τ1(3.1)

with τ1 = exp(−R2 b2

83 ) + 2s2 exp(−N
s2

b2

2 ) + 2s2 exp(−N
s2

B2

8 ).

(2) Pick a λ satisfying λ < min(
ρ(s,N)

2a
,

(2φ+1)b2

3sB
). With probability at least

1 − τ2, β̂oracle is a local maximizer of the SCAD-penalized composite likelihood
estimator where

τ2 = exp
(
−R2∗

b2

83

)
+ K2 exp

(
− Nλ2

32(2φ + 1)2

)

+ exp
(
− Nλ

3B(2φ + 1)s

b2

83

)
+ K2s exp

(
−Nb2

2s3

)
+ 2s2 exp

(
−b2N

8s3

)
(3.2)

+ 4s2
[
exp

(
−N

s2

b2

2

)
+ exp

(
−N

s2

B2

8

)]
and R∗ = min(1

2

√
N
s
ρ(s,N), b

3B

√
N
s

).

We also analyzed the theoretical properties of the LASSO estimator. If the
LASSO can consistently select the true model, it must equal to the hypothetical
LASSO estimator (β̃A,0) where

β̃A = arg max
βA

{
�c

(
(βA,0)

)− λ
∑

(j,k)∈A
|βjk|

}
.
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THEOREM 3.2. Consider the LASSO-penalized composite likelihood estima-
tor.

(1) Choose λ such that λs < 8b2

3B
. Pr(‖β̃A − β∗

A‖2 ≤ 16λ
√

s
b

) ≥ 1 − τ ′
1 with

τ ′
1 = e−Nλ2/2 + 2s2

[
exp

(−Nb2

2s2

)
+ exp

(−NB2

8s2

)]
.

(2) Assume the ir-representable condition φ ≤ 1 − η < 1. Choose λ such that

λs < min( b2

162B

η/3
4−η

, 8b2

3B
). Then (β̃A,0) is the LASSO-penalized composite likeli-

hood estimator with probability at least 1 − τ ′
2, where

τ ′
2 = e−Nλ2/2 + K2s exp

(
−Nb2η2

8s3

)
+ K2 exp

(
− Nλ2η2

32(4 − η)2

)

+ 2s2
[
exp

(
− Nb2η2

2s3(2 − η)2

)
+ exp

(−Nb2

2s2

)
+ exp

(−NB2

8s2

)]
.

In Theorems 3.1 and 3.2 the three quantities b, B and φ do not need to be con-
stants. We can obtain a more straightforward understanding of the properties of
the penalized composite likelihood estimators by considering the asymptotic con-
sequences of these probability bounds. To highlight the main point, we consider b,
B and φ are fixed constants and derive the following asymptotic results.

COROLLARY 3.1. Suppose that b, B and φ are fixed constants and further

assume N  s3 log(K) and ρ(s,N) 
√

log(K)
N

.

(1) Pick the SCAD penalty parameter λscad satisfying

λscad < min
(

ρ(s,N)

2a
,
(2φ + 1)b2

3sB

)
, λscad 

√
log(K)

N
.

With probability tending to 1, the oracle estimator is a local maximizer of the

SCAD-penalized estimator and ‖β̂oracle
A − β∗

A‖2 = OP (
√

s
N

).
(2) Assume the ir-representable condition in Theorem 3.2. Pick the LASSO

penalty parameter λlasso satisfying

min
(

1√
s
ρ(s,N),

1

s

)
 λlasso  1√

N
;

then the LASSO estimator consistently selects the true model and ‖β̂ lasso
A −β∗

A‖2 =
OP (λlasso√s).

REMARK 3. For the LASSO-penalized least squares, it is now known that the
model selection consistency critically depends on the ir-representable condition
[Zhao and Yu (2006), Meinshausen and Bühlmann (2006), Zou (2006)]. A similar
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condition is again needed in the LASSO-penalized composite likelihood. Further-
more, Corollary 3.1 shows that even when it is possible for the LASSO to achieve

consistent selection, λlasso should be much greater than
√

1
N

, which means that

λlasso√s 
√

s
N

. So the LASSO yields larger bias than the SCAD.

REMARK 4. We have shown that asymptotically speaking the oracle esti-
mator is in fact a local solution of the SCAD-penalized composite likelihood
model. This property is stronger than the oracle properties defined in Fan and
Li (2001). Our result is the first to show that the oracle model selection theory
holds nicely for nonconcave penalized composite conditional likelihood models
with NP-dimensionality. The usual composite likelihood theory in the literature is
only applied to the fixed-dimension setting. Our result fills a long-standing gap in
the composite likelihood literature.

What we have shown so far is the existence of a SCAD-penalized estimator that
is superior to the LASSO-penalized estimator. Moreover, we would like to show
that the computed SCAD estimator is equal to the oracle estimator. As discussed
earlier in Section 2.2, such a result is very difficult to prove due to the noncon-
cavity of the penalized likelihood function. See also Fan and Lv (2011), Städler,
Bühlmann and van de Geer (2010) and Schelldorfer, Bühlmann and van de Geer
(2011).

If one can prove that the objective function has only one maximizer, then the
computed solution and the theoretically proven solution must be the same. This
idea has been used in Fan and Lv (2011) to study the nonconcave penalized gen-
eralized linear models and Bradic, Fan and Jiang (2011) to study the nonconcave
penalized Cox proportional hazards models. Their arguments are based on the ob-
servation that the SCAD penalty function has a finite maximum concavity [Zhang
(2010a), Lv and Fan (2009)]. Hence, if the smallest eigenvalue of the Hessian ma-
trix of the negative log-likelihood is sufficiently large, the overall penalized likeli-
hood function is concave and hence has a unique global maximizer. This argument
requires that the sample size is greater than the dimension; otherwise, the Hessian
matrix does not have full rank. To deal with the high-dimensional case, Fan and Lv
(2011) further refined their arguments by considering a subspace denoted by Ss ,
which is the union of all s-dimensional coordinate subspaces. Under some regu-
larity conditions, Fan and Lv (2011) showed that the oracle estimator is the unique
global maximizer in Ss , which was referred to as restricted global optimality. Then
by assuming that the computed solution has exactly s nonzero elements, it can be
concluded that the computed solution is in Ss and hence equals the oracle estima-
tor; see Proposition 3.b of Fan and Lv (2011). However, a fundamental problem
with these arguments is that we have no idea whether the computed solution selects
s nonzero coefficients, because s is unknown.

Here we take a different route to tackle the local solution issue. Instead of trying
to prove the uniqueness of maximizer, we directly analyze the local solution by the
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LLA–CMA algorithm and discuss under which regularity conditions the LLA–
CMA algorithm can actually find the oracle estimator.

THEOREM 3.3. Consider the SCAD-penalized composite likelihood estima-
tor in (1.2). Let β̂scad be the local solution computed by Algorithm 2 (the
LLA–CMA algorithm) with β̃(0) being the initial value. Pick a λ satisfying λ <

min(
ρ(s,N)

2a
,

(2φ+1)b2

3sB
). Write τ0 = Pr(‖β̃(0) − β∗‖∞ > λ).

(1) The LLA–CMA algorithm finds the oracle estimator after one LLA iteration
with probability at least 1 − τ0 − τ3 where

τ3 = K2 exp
( −Nλ2

32(2φ + 1)2

)
+ exp

( −Nλ

3B(2φ + 1)s

b2

83

)
+ K2s exp

(−Nb2

2s3

)

+ 2s2
[
exp

(
−Nb2

8s3

)
+ exp

(
−N

s2

b2

2

)
+ exp

(
−N

s2

B2

8

)]
.

(2) The LLA–CMA algorithm converges after two LLA iterations and β̂scad

equals the oracle estimator with probability at least 1−τ0 −τ2, where τ2 is defined
in (3.2).

Theorem 3.3 can be used to drive the following asymptotic result.

COROLLARY 3.2. Suppose that b, B and φ are fixed constants, and further

assume N  s3 log(K) and ρ(s,N)  max(
√

log(K),16
√

s/b)√
N

. Consider the SCAD-

penalized composite likelihood estimator with the SCAD penalty parameter λscad

satisfying

λscad < min
(

ρ(s,N)

2a
,
(2φ + 1)b2

3sB

)
, λscad 

√
log(K)

N
.

(1) If τ0 → 0, then with probability tending to one, the LLA–CMA algorithm
converges after two LLA iterations and the LLA–CMA solution (or its one-step
version) is equal to the oracle estimator.

(2) Consider using the LASSO estimator as β̃(0). Assume the ir-representable
condition in Theorem 3.2, and pick the LASSO penalty parameter λlasso satisfying

1√
N

� λlasso � min
(

1√
s
ρ(s,N),

1

s

)
,

λlasso <
λscad
√

s

b

16
.

Then τ0 → 0, and the conclusion in (1) holds.
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REMARK 5. Part (1) of Corollary 3.2 basically says that any estimator that
converges to β∗ in probability at a rate faster than λscad can be used as the starting
value in the LLA–CMA algorithm to find the oracle estimator with high probabil-
ity. Note that such a condition is not very restrictive. Part (2) of Corollary 3.2 shows
that the LASSO estimator satisfies that condition. We could also consider using
other estimators as the starting value in the LLA–CMA algorithm. For example,
we can use the neighborhood selection estimator as β̃(0). Following Ravikumar,
Wainwright and Lafferty (2010) we assume an ir-representable condition for each
of the K neighborhood LASSO-penalized logistic regression and some other reg-
ularity conditions. Then it is not hard to show that the neighborhood selection
estimator is also a qualified starting value. In this work, we would like to faithfully
follow the composite likelihood idea and hence prefer to use the LASSO-penalized
composite likelihood estimator as the starting value in the LLA–CMA algorithm.

4. Simulation. In this section we use simulation to study the finite sample
performance of the SCAD-penalized composite likelihood estimator. For com-
parison, we also include other two methods: neighborhood selection by LASSO-
penalized logistic regression [Ravikumar, Wainwright and Lafferty (2010)] and the
LASSO-penalized composite likelihood estimator.

For each coupling coefficient βjk , the LASSO-penalized logistic method pro-
vides two estimates: β̂j �→k based on the model for the j th dipole and β̂k �→j based
on the model for the kth dipole. Then we carry out two types of neighborhood
selections: (i) aggregation by intersection (NSAI) based on β̂NSAI

jk , and (ii) aggre-

gation by union (NSAU) based on β̂NSAU
jk , where

β̂NSAI
jk =

⎧⎪⎨⎪⎩
0, if β̂j �→kβ̂k �→j = 0,

β̂j �→k + β̂k �→j

2
, otherwise,

and

β̂NSAU
jk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if β̂j �→k = 0 and β̂k �→j = 0,
β̂j �→k, if β̂j �→k �= 0 and β̂k �→j = 0,
β̂k �→j , if β̂j �→k = 0 and β̂k �→j �= 0,

β̂j �→k + β̂k �→j

2
, if β̂j �→kβ̂k �→j �= 0.

As suggested by a referee, the relaxed LASSO [Meinshausen (2007)] was used
in neighborhood selection to try to improve its estimation accuracy. In each neigh-
borhood logistic regression model, we first found a subset model by using the
LASSO-penalized logistic regression. We re-estimated the nonzero coefficients via
the unpenalized logistic regression on the subset model.

BIC has been shown to perform very well for selecting the tuning parameter of
the penalized likelihood estimator [Wang, Li and Tsai (2007), Städler, Bühlmann
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FIG. 1. Plots of two simulated Ising models.

and van de Geer (2010), Schelldorfer, Bühlmann and van de Geer (2011)]. We
used BIC to tune all competitors.

Two sparse Ising models were considered in our simulation. Their graphical
structure is displayed in Figure 1 where solid dots represent the dipoles, and two
dipoles are connected if and only if their coupling coefficient is nonzero. We gener-
ated the nonzero coupling coefficients as follows. If dipoles i and j are connected,
we let βij be tij sij where tij is a random variable following the uniform distribu-
tion on [1,2] and sij is a Bernoulli variable with Pr(sij = 1) = Pr(sij = −1) = 0.5.
For each model, we used Gibbs sampling to generate 100 independent datasets
consisting 300 observations. For comparison, we use three measurements: the to-
tal number of discovered edges (NDE), the false discovery rate (FDR) and mean
square errors (MSE).

Based on Table 1, we make the following interesting observations:

• NSAU, while selecting larger models than NSAI, provides more accurate esti-
mation. Neighborhood selection outperforms the LASSO-penalized composite
likelihood estimator.

• Note that SCAD2∗∗ has the smallest MSE in both models. SCAD2∗∗ and
SCAD2 gave almost identical results, and their improvement over SCAD1 is
statistically significant. All three SCAD solutions perform much better than the
LASSO for fitting penalized composite likelihood in terms of estimation and
selection.

• The SCAD solutions and NSAI have similar model selection performance, but
the SCAD is substantial better in estimation. Using the relaxed LASSO can im-
prove the estimation accuracy of neighborhood selection methods, but their im-
proved MSEs are still significantly higher than those of SCAD2 and SCAD2∗∗.

In Table 2 we compare the run times of the three methods. LASSO-CGA de-
notes the coordinate gradient ascent algorithm for computing the LASSO estima-
tor. The computing time is about five times longer than that used by the CMA
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TABLE 1
Comparing different estimators using simulation models 1 and 2 with standard errors in the
bracket. NSAI-relax and NSAU-relax mean that we use the relaxed LASSO to re-estimate the

nonzero coefficients chosen by neighborhood selection method

Model 1 Model 2

MSE NDE FDR MSE NDE FDR

NSAI 22.96 138.9 0.09 8.16 26.8 0.16
(0.18) (0.4) (0.01) (0.12) (0.2) (0.01)

NSAU 17.34 197.3 0.36 6.38 39.7 0.39
(0.14) (1.0) (0.01) (0.16) (0.5) (0.01)

LASSO 21.33 332.5 0.62 12.19 117.1 0.79
(0.13) (3.8) (0.04) (0.12) (3.0) (0.05)

SCAD1 2.86 145.0 0.12 5.64 30.0 0.22
(0.10) (2.4) (0.01) (0.17) (1.8) (0.02)

SCAD2 2.43 129.2 0.07 4.41 26.1 0.17
(0.05) (0.5) (0.01) (0.13) (0.7) (0.02)

SCAD2∗∗ 2.42 128.6 0.06 4.39 25.7 0.16
(0.05) (0.5) (0.01) (0.13) (0.6) (0.02)

NSAI-relax 8.23 138.9 0.09 6.34 26.8 0.16
(0.13) (0.4) (0.01) (0.09) (0.2) (0.01)

NSAU-relax 4.44 197.3 0.36 5.67 39.7 0.39
(0.10) (0.4) (0.01) (0.10) (0.5) (0.01)

algorithm. Compared to the LASSO case, the run time for fitting the SCAD model
is doubled or tripled, but it is still very manageable for the high-dimensional data.

5. Stanford HIV drug resistance data. We also illustrate our methods in a
real example using a HIV antiretroviral therapy (ART) susceptibility dataset ob-

TABLE 2
Total time (in seconds) for computing solutions at 100 penalization parameters, averaged over 3

replications. Timing was carried out on a laptop with an Intel Core 1.60 GHz processor.
LASSO-CGA denotes a coordinate gradient ascent algorithm for computing the LASSO-penalized
composite likelihood estimator. The timing of SCAD1, SCAD2 and SCAD2∗∗ includes the timing

for computing the starting value

Neighborhood
(N,p) selection LASSO SCAD1 SCAD2 SCAD2∗∗ LASSO-CGA

Model 1 51.1 32.7 67.9 84.7 95.1 179.8
(300,7875)

Model 2 29.8 16.0 34.8 42.6 51.2 89.6
(300,5356)
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tained from the Stanford HIV drug resistance database. Details of the database and
related data sets can be found in Rhee et al. (2006). The data for analysis consists
of virus mutation information at 99 protease residues (sites) for N = 702 isolates
from the plasma of HIV-1-infected patients. This dataset has been previously used
in Rhee et al. (2006) and Wu, Cai and Lin (2010) to study the association between
protease mutations and susceptibility to ART drugs.

A well recognized problem with current ART treatment such as PIs for treating
HIV is that individuals who initially respond to therapy may develop resistance
to it due to viral mutations. HIV-1 protease plays a key role in the late stage of
viral replication and its ability to rapidly acquire a variety of mutations in re-
sponse to various PIs confers the enzyme with high resistance to ARTs. A high
cooperativity has been observed among drug-resistant mutations in HIV-1 pro-
tease [Ohtaka, Schön and Freire (2003)]. The sequence data retrieved from treated
patients is likely to include mutations that reflect cooperative effects originating
from late functional constraints, rather than stochastic evolutionary noise [Atchley
et al. (2000)]. However, the molecular mechanisms of drug resistance is yet to be
elucidated. It is thus of great interest to study inter-residue couplings which might
be relevant to protein structure or function and thus could potentially shed light
on the mechanisms of drug resistance. We apply the proposed method to the pro-
tease sequence data to investigate such inter-residue contacts. Our analysis only
included K = 79 of the 99 residues that contain mutations.

We split the data into a training set with 500 data and a test set with 202 data.
Model fitting and selection were done on the training set and the test data were used
to compare the model errors. For a given estimate β̂ obtained from the training set,
its model error is gauged by the value of composite likelihood evaluated on the test
set, that is,

ME(β̂) = −�test
c (β̂) = − 1

202

202∑
n=1

79∑
j=1

log
(
θjn(β̂)

)
.

We report the analysis results in Table 3. There are total 3081 coupling coeffi-
cients to be estimated. Graphical presentations of the selected models are shown
in Figure 2. Note that SCAD2 and SCAD2∗∗ again gave almost identical results
and performed better SCAD1. We also performed stability selection [Meinshausen
and Bühlmann (2010)] on each method to find “stable edges.” A remarkable prop-
erty of stability selection is that under some suitable conditions stability selection
achieves finite sample control over the expected number of false discoveries in the
set of “stable edges.” We use the SCAD selector to explain the stability selection
procedure. We took a random subsample of size 250 and fitted the SCAD model.
The process was repeated 100 times. On average, SCAD1 selected 103.1 edges,
SCAD2 selected 140.7 edges and SCAD2∗∗ chose 133.4 edges. For each coeffi-
cient βjk we computed its frequency of being selected, denoted by �̂jk . The set
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TABLE 3
Application to HIVRT data. NSE is the number of “stable edges.” E[V ] is the expected number of

falsely selected edges. Its upper bounds were computed by Theorem 1 in
Meinshausen and Bühlmann (2010)

NSAI NSAU LASSO SCAD1 SCAD2 SCAD2∗∗

NDE 57 305 631 101 141 132
ME 26.38 36.34 18.35 18.30 16.76 16.74

Stability selection

NSE (πthr = 0.9) 15 63 160 17 20 20
E[V ] ≤ 3.2 ≤ 48 ≤147.5 ≤4.3 ≤8.0 ≤7.2

of “stable edges” is defined as {(k, j) : �̂kj > πthr}. In Table 3, we report the re-
sults using the threshold πthr = 0.9, as suggested by Meinshausen and Bühlmann
(2010). Stability selection found 17 edges in the SCAD1. SCAD2 and SCAD2∗∗
selected the same 20 stable edges. By Theorem 1 in Meinshausen and Bühlmann
(2010), among these 17 stable edges selected by SCAD1, the expected number of
false discoveries is no greater than 4.3, and among the 20 stable edges selected
by SCAD2 or SCAD2∗∗, the expected number of false discoveries is at most 7.2.
Likewise, we did stability selection with the LASSO selector and neighborhood
selection, and the results are reported in Table 3 as well. Figure 2 shows the “sta-
ble edges” by stability selection. We see that the computed upper bounds are very
useful for the SCAD selector and NSAI and not so informative for the LASSO
selector and NSAU. Interestingly, both NSAI and SCAD suggest there are about
12 true discoveries by stability selection. In fact, we found that NSAI and SCAD1
have 11 “stable edges” in common, and NSAI and SCAD2 (or SCAD2∗∗) have 12
“stable edges” in common.

These results are consistent with some of the previous findings. For example,
it has long been known that co-substitutions at residues 30 and 88 are most ef-
fective in reducing the susceptibility of nelfinavir [Liu, Eyal and Bahar (2008)].
Among the top 30 most common drug resistance mutations [Rhee et al. (2004)],
7 of those had a joint mutation at residues 54 and 82, the joint mutation at residues
88 and 30 was the second most common mutation among all. A co-mutation at
residues 54, 82 and 90 was associated with high resistance to multiple drugs and
an additional co-mutation at 46 was associated with an even higher level of resis-
tance. It is interesting to note that using a larger set of isolates from treated HIV
patients, Wu et al. (2003) reported (54, 82), (32, 47), (73, 90) as the three most
highly correlated pairs. All these three pairs showed up as the stable edges in our
analysis. Mutation at residue 71, often described as a compensatory or accessory
mutation, has been reported as a critical mutation which appears to improve virus
growth and contribute to resistance phenotype [Markowitz et al. (1995), Tisdale
et al. (1995), Muzammil, Ross and Freire (2003)]. Accessory mutations contribute
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FIG. 2. Shown in the left three panels (A1), (B1), (C1) are the selected models by BIC. The right
three panels (A2), (B2), (C2) show the stability selection results using πthr = 0.9.

to resistance only when present with a mutation in the substrate cleft or flap or at
residue 90 [Wu et al. (2003)]. The stable edges connect this accessory mutation
with residues 90 and 54 (a flap residue), as well as with another flap residue at 46
through residue 10.
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APPENDIX: TECHNICAL PROOFS

Before presenting the proof, we first define some useful quantities. The score
functions of the negative composite likelihood (−�(j)) and the Hessian matrices
are defined as follows:

ψ
(j)
k = −∂�(j)(β(j))

∂βjk

= 1

N

N∑
n=1

xjnxkn(θjn − 1), k �= j,

H
(j)
k1,k2

= −∂2�(j)(β(j))

∂βjk1 ∂βjk2

= 1

N

N∑
n=1

xk1nxk2n(1 − θjn)θjn, k1, k2 �= j.

Similarly, let ψ be the score function of −�c such that ψ(jk) = ∂−�c(β)
∂βjk

for 1 ≤
j < k ≤ K . By definition we have the following identities: ψ(jk) = ψ

(j)
k +ψ

(k)
j . In

what follows we write ψ∗ = ψ(β∗).

PROOF OF THEOREM 3.1. We first prove part (1).
Consider V (αA) = −�c(β

∗
A + dNαA) + �c(β

∗
A) and its minimizer is α̃hmle

A =
1

dN
(β̃hmle

A −β∗
A). By definition, V (α̃hmle

A ) ≤ V (0) = 0. Fix any R > 0 and consider
any αA satisfying ‖αA‖2 = R. Using Taylor’s expansion, we know that, for some
t ∈ [0,1] and β(t) = β∗

A + tdNαA,

V (αA) = dNαT
Aψ∗

A + 1
2d2

NαT
AH ∗

AAαA

+ 1
2d2

NαT
A
[
HAA

(
β(t)

)− H ∗
AA

]
αA(A.1)

≡ T1 + T2 + T3.

Note that E[ψ∗
A] = 0 and ‖ψ∗

A‖∞ ≤ 2. By the Cauchy–Schwarz inequality,
|αT

Aψ∗
A| ≤ 2

√
sR. Using Hoeffding’s inequality, we have

Pr(T1 ≥ −dNε) ≤ exp
(
− Nε2

8sR2

)
.(A.2)

For the second term, we first have T2 ≥ d2
N

2 λmin(H
∗

AA)R2. Each entry of H ∗ is
between −1

2 and 1
2 . Thus Hoeffding’s inequality and the union bound yield

Pr
(∥∥H(N)

j − Hj

∥∥2
F ≥ b2

4

)
≤ 2s2 exp

(
−N

b2

2s2

)
.

So by the inequality λmin(H
∗

AA) ≥ b − ‖H ∗
AA − E[H ∗

AA]‖F , we have

Pr
(
T2 ≥ d2

NbR2/4
) ≥ 1 − 2s2 exp

(
−Nb2

2s2

)
.(A.3)
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For |T3|, let λmax(
1
N

∑N
n=1 xAnxT

An) = BN . Define η̄jn(β) = θjn(1 − θjn)(2θjn −
1). Using the mean value theorem, we have that, for some t ′ ∈ [0, t] and β(t ′) =
β∗

A + t ′dNαA,

|T3| = d3
N

2

∣∣∣∣∣ 1

N

∑
n

K∑
j=1

∑
k1 �=j

k2 �=j

αjk1αjk2xk1nxk2nt
′η̄jn

(
β
(
t ′
))(∑

k′ �=j

αjk′xjnxk′n

)∣∣∣∣∣
(A.4)

≤ d3
N

2

(√
sR2

4

)
·
(

2BN

∑
(j,k)∈A

α2
jk

)
= d3

NBN

4

√
sR3.

In the last step we have used |η̄jn(β(t ′))| ≤ 1
4 for any j and αAc = 0. Moreover,

BN ≤ B + ‖ 1
N

∑N
n=1 xAnxT

An − E[xAxT
A]‖F . Since xjn = ±1, we apply Hoeffd-

ing’s inequality and the union bound to obtain the following probability bound:

Pr

(∥∥∥∥∥ 1

N

N∑
n=1

xAnxT
An − E

[
xAxT

A
]∥∥∥∥∥

F

≥ B/2

)
≤ 2s2 exp

(
−NB2

8s2

)
,

which leads to

Pr
(
|T3| ≤ 3d3

NB

8

√
sR3

)
≥ 1 − 2s2 exp

(
−NB2

8s2

)
.(A.5)

Taking R < b
3B

√
N
s

and combining (A.2) (A.3) and (A.5), we have

T1 + T2 + T3 ≥ bR2

8
d2
N − 3B

8
R3d3

N

√
s > 0

with probability at least 1 − τ1. Thus, the convexity of V implies that

Pr
(∥∥β̃hmle

A − β∗
A
∥∥

2 ≤
√

s

N
R

)
≥ 1 − τ1.

We now prove part (2). First, we show that if min(j,k)∈A |β̃hmle
jk | > aλ and

‖ψAc (β̂oracle)‖∞ ≤ λ, then β̂oracle is a local maximizer of �c(β)−∑
(j,k) Pλ(|βjk|).

To see that, consider a small ball of radius t with β̂oracle being the center. Let β be
any point in the ball. So ‖β − β̂oracle‖2 ≤ t . Clearly, for a sufficiently small t we
have min(j,k)∈A |βjk| > aλ and max(j,k)∈Ac |βjk| < λ. By Taylor’s expansion we
have{

−�c(β) + ∑
(j,k)

Pλ

(|βjk|)}−
{
−�c

(
β̂oracle)+ ∑

(j,k)

Pλ

(∣∣β̂oracle
jk

∣∣)}

= (
βA − β̃hmle)T ψAc

(
β̂oracle)+ 1

2

(
β − β̂oracle)T H

(
β ′)(β − β̂oracle)
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+ ∑
(j,k)∈Ac

λ|βjk|

≥ ∑
(j,k)∈Ac

(
λ − ∣∣ψ(jk)

(
β̂oracle)∣∣)|βjk| ≥ 0.

A probability bound for the event of min(j,k)∈A |β̃hmle
jk | > aλ is given by

Pr
(

min
(j,k)∈A

∣∣β̃hmle
jk

∣∣ > aλ
)

≥ Pr

(∥∥β̃hmle
A − β∗

A
∥∥

2 ≤
√

s

N
R∗

)
(A.6)

≥ 1 − exp
(
−R2∗

b2

83

)
− 2s2 exp

(
−N

s2

b2

2

)
− 2s2 exp

(
−N

s2

B2

8

)
.

Now consider Pr(‖ψAc (β̂oracle)‖∞ < λ). There exists some t ∈ [0,1] such that

ψ
(
β̂oracle) = ψ

(
β∗)+ H ∗(β̂oracle − β∗)+ r,(A.7)

where r = (H(β∗ + t (β̂oracle − β∗)) − H ∗)(β̂oracle − β∗). Note ψA(β̂oracle) = 0,
so

β̃A − β∗
A = (

H ∗
AA

)−1
(−ψA − rA).

Then ‖ψAc (β̂oracle)‖∞ ≤ λ becomes∥∥H ∗
AcA

(
H ∗

AA

)−1
(−ψA − rA) + ψAc + rAc

∥∥∞ ≤ λ,

which is guaranteed if(∥∥H ∗
AcA

(
H ∗

AA

)−1∥∥∞ + 1
)(‖ψ‖∞ + ‖r‖∞

) ≤ λ.

Therefore we have a simple lower bound for Pr(‖ψAc (β̂oracle)‖∞ ≤ λ).

Pr
(∥∥ψAc

(
β̂oracle)∥∥∞ ≤ λ

)
> 1 − Pr

(∥∥H ∗
AcA

(
H ∗

AA

)−1∥∥∞ > 2φ
)− Pr

(
‖ψ‖∞ >

λ

4φ + 2

)

− Pr
(
‖r‖∞ >

λ

4φ + 2

)
.

Using Hoeffding’s inequality and the union bound, we have

Pr
(
‖ψ‖∞ ≤ λ

4φ + 2

)
≥ 1 − K2 exp

(
− Nλ2

128(φ + 1/2)2

)
.(A.8)
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Write α = β̃hmle − β∗, and thus αAc = 0. By the mean value theorem, we have a
bound for r(jk):

|r(jk)| =
∣∣∣∣∣ 1

N

N∑
n=1

∑
k2 �=j

∑
k′ �=j

xknxjnxk2nxk′nαjk2αjk′ t ′η̄jn

(
β
(
t ′
))

+ 1

N

N∑
n=1

∑
j2 �=k

∑
j ′ �=k

xjnxknxj2nxj ′nαkj2αkj ′ t ′η̄kn

(
β
(
t ′
))∣∣∣∣∣

≤ BN · ∥∥β̃A − β∗
A
∥∥2

2.

In the last step we have used |η̄jn(β(t ′))| ≤ 1
4 for any j and αAc = 0. Moreover,

recall that

BN ≤ B +
∥∥∥∥∥ 1

N

N∑
n=1

xAnxT
An − E

[
xAxT

A
]∥∥∥∥∥

F

.

Thus

Pr
(
‖r‖∞ <

λ

4φ + 2

)
≥ 1 − exp

( −Nλ

3B(2φ + 1)s

b2

83

)
− 2s2 exp

(−Nb2

2s2

)
(A.9)

− 2s2 exp
(−NB2

8s2

)
.

For notation convenience define c = ‖(E[H ∗
AA])−1‖∞ ≤ √

s‖(E[H ∗
AA])−1‖2

and

δ = ∥∥H ∗
AcA

(
H ∗

AA

)−1 − E
[
H ∗

AcA

](
E
[
H ∗

AA

])−1∥∥∞,

δ1 = ∥∥(H ∗
AA

)−1 − (
E
[
H ∗

AA

])−1∥∥∞,

δ2 = ∥∥H ∗
AA − E

[
H ∗

AA

]∥∥∞,

δ3 = ∥∥H ∗
AcA − E

[
H ∗

AcA

]∥∥∞.

Then by definition

δ = ∥∥(H ∗
AcA − E

[
H ∗

AcA

])((
H ∗

AA

)−1 − (
E
[
H ∗

AA

])−1)
+ E

[
H ∗

AcA

](
E
[
H ∗

AA

])−1(−H ∗
AA + E

[
H ∗

AA

])(
H ∗

AA

)−1

+ (
H ∗

AcA − E
[
H ∗

AcA

])(
E
[
H ∗

AA

])−1∥∥∞
≤ δ3δ1 + φδ2

∥∥(H ∗
AA

)−1∥∥∞ + δ3c

≤ δ3δ1 + φ(c + δ1)δ2 + δ3c.
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Note that

δ1 = ∥∥(H ∗
AA

)−1(
E
[
H ∗

AA

]− H ∗
AA

)(
E
[
H ∗

AA

])−1∥∥∞
≤ ∥∥(H ∗

AA

)−1∥∥∞ · ∥∥E[
H ∗

AA

]− H ∗
AA

∥∥∞ · ∥∥(E[
H ∗

AA

])−1∥∥∞
≤ (δ1 + c)δ2c.

Hence as long as δ2c < 1 we have δ1 ≤ δ2c
2

1−δ2c
and δ ≤ (δ3 + φδ2)

c
1−δ2c

.

Pr
(
δ2 <

1

4c

)
≥ 1 − Pr

(∥∥H ∗
AcA − E

[
H ∗

AcA

]∥∥
max >

1

4cs

)
(A.10)

≥ 1 − 2s2 exp
(
− N

8c2s2

)
,

Pr
(
δ3 <

φ

2c

)
≥ 1 − Pr

(∥∥H ∗
AcA − E

[
H ∗

AcA

]∥∥
max >

φ

4cs

)
(A.11)

≥ 1 − K2s exp
(
− Nφ2

2c2s2

)
.

Finally we have c ≤ √
s/b. Therefore, part (2) is proven by combining (A.6), (A.8)

(A.9) and (A.10), (A.11). This completes the proof. �

PROOF OF THEOREM 3.2. The proof is relegated to a supplementary file
[Xue, Zou and Cai (2010)] for the sake of space. �

PROOF OF COROLLARY 3.1. It follows directly from Theorems 3.1 and 3.2;
thus we omit its proof here. �

PROOF OF THEOREM 3.3. Under the event ‖β̃(0) − β∗‖∞ ≤ λ, we have
|β̃(0)

jk | ≤ λ for (j, k) ∈ Ac and |β̃(0)
jk | ≥ aλ for (j, k) ∈ A. Therefore, β̃(1) is the

solution of the following penalized composite likelihood:

β̂(1) = arg max
β

{
�c(β) − λ

∑
(j,k)∈Ac

|βjk|
}
.(A.12)

It turns out that β̂oracle is the global solution of (A.12) under the additional proba-
bility event that {‖ψAc (β̂oracle)‖∞ ≤ λ}. To see this, we observe that for any β ,(

−�c(β) + λ
∑

(j,k)∈Ac

|βjk|
)

−
(
−�c

(
β̂oracle)+ λ

∑
(j,k)∈Ac

∣∣β̂oracle
jk

∣∣)

≥ ∑
(j,k)∈Ac

(
λ − ∣∣ψ(jk)

(
β̂oracle)∣∣) · |βjk|

≥ 0,
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where we used the convexity of −�c. In the proof of Theorem 3.1 we have shown
that

Pr
(∥∥ψAc

(
β̂oracle)∥∥∞ > λ

)
< K2 exp

(
− Nλ2

32(2φ + 1)2

)
+ exp

(
− Nλ

3B(2φ + 1)s

b2

83

)

+ K2s exp
(
−Nb2

2s3

)

+ 2s2
[
exp

(
−b2N

8s3

)
+ exp

(
−N

s2

b2

2

)
+ exp

(
−N

s2

B2

8

)]
≡ τ3.

Therefore, the LLA–CMA algorithm finds the oracle estimator with probability at
least 1 − τ3 − Pr(‖β̃(0) − β∗‖∞ > λ). This proves part (1).

If we further consider the event {min(j,k)∈A |β̂oracle
jk | > aλ}. Then β̃(2) is

the solution of the following penalized composite likelihood maxβ{�c(β) −
λ
∑

(j,k)∈Ac |βjk|}, which implies that β̃(2) = β̃(1), and hence the LLA loop
will stop. From (A.6) we have obtained a probability bound for the event of
{min(j,k)∈A |β̂oracle

jk | ≤ aλ} as follows:

Pr
(

min
(j,k)∈A

∣∣β̃hmle
jk

∣∣ ≤ aλ
)

≤ exp
(
−R2∗

b2

83

)
+ 2s2 exp

(
−N

s2

b2

2

)
+ 2s2 exp

(
−N

s2

B2

8

)
≡ τ4.

Then we have β̃(m) = β̃(1) = β̂oracle for m = 2,3, . . . which means the LLA–CMA
algorithm converges after two LLA iteration and finds the oracle estimator with
probability at least 1 − τ3 − Pr(‖β̃(0) − β∗‖∞ > λ) − τ4. Note that τ3 + τ4 = τ2.
This proves part (2). �

PROOF OF COROLLARY 3.2. Part (1) follows directly from Theorem 3.3.
We only prove part (2). With the chosen λlasso, Theorem 3.2 shows that with
probability tending to one, β̂ lasso

A = β̃A, β̂ lasso
Ac = 0 and Pr(‖β̃A − β∗

A‖2 ≤
16λlasso√s/b) → 0. Note that 16λlasso√s/b < λscad and ‖β̃A − β∗

A‖∞ ≤ ‖β̃A −
β∗

A‖2, we then conclude τ0 = Pr(‖β̂ lasso − β∗‖∞ ≤ λscad) → 0. �
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SUPPLEMENTARY MATERIAL

Supplementary materials for “Non-concave penalized composite likelihood
estimation of sparse Ising models” (DOI: 10.1214/12-AOS1017SUPP; .pdf). In
this supplementary file, we provide a complete theoretical analysis of the LASSO-
penalized composite likelihood estimator for sparse Ising models.
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