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HALF-TREK CRITERION FOR GENERIC IDENTIFIABILITY OF
LINEAR STRUCTURAL EQUATION MODELS

BY RINA FOYGEL, JAN DRAISMA1 AND MATHIAS DRTON2

University of Chicago, Eindhoven University of Technology and Centrum voor
Wiskunde en Informatica, and University of Chicago

A linear structural equation model relates random variables of interest
and corresponding Gaussian noise terms via a linear equation system. Each
such model can be represented by a mixed graph in which directed edges en-
code the linear equations and bidirected edges indicate possible correlations
among noise terms. We study parameter identifiability in these models, that is,
we ask for conditions that ensure that the edge coefficients and correlations
appearing in a linear structural equation model can be uniquely recovered
from the covariance matrix of the associated distribution. We treat the case
of generic identifiability, where unique recovery is possible for almost every
choice of parameters. We give a new graphical condition that is sufficient for
generic identifiability and can be verified in time that is polynomial in the size
of the graph. It improves criteria from prior work and does not require the di-
rected part of the graph to be acyclic. We also develop a related necessary
condition and examine the “gap” between sufficient and necessary conditions
through simulations on graphs with 25 or 50 nodes, as well as exhaustive
algebraic computations for graphs with up to five nodes.

1. Introduction. When modeling the joint distribution of a random vector
X = (X1, . . . ,Xm)T , it is often natural to appeal to noisy functional relationships.
In other words, each variable Xw is assumed to be a function of the remaining
variables and a stochastic noise term εw . The resulting models are known as linear
structural equation models when the relationship is linear, that is, when

Xw = λ0w + ∑
v �=w

λvwXv + εw, w = 1, . . . ,m,(1.1)

or in vectorized form with a matrix � = (λvw) that is tacitly assumed to have zeros
along the diagonal,

X = λ0 + �T X + ε.(1.2)

The classical distributional assumption is that the error vector ε = (ε1, . . . , εm)T

has a multivariate normal distribution with zero mean and some covariance matrix
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FIG. 1. Mixed graph for the instrumental variable model.

� = (ωvw). Writing I for the identity matrix, it follows that X has a multivariate
normal distribution with mean vector (I − �)−T λ0 and covariance matrix

� = (I − �)−T �(I − �)−1.(1.3)

Background on structural equation modeling can be found, for instance, in Bollen
(1989). As emphasized in Spirtes, Glymour and Scheines (2000) and Pearl (2000),
their great popularity in applied sciences is due to the natural causal interpretation
of the involved functional relationships.

Interesting models are obtained by imposing some pattern of zeros among the
coefficients λvw and the covariances ωvw . It is convenient to think of the zero pat-
terns as being associated with a mixed graph that contains directed edges v → w to
indicate possibly nonzero coefficients λvw , and bidirected edges v ↔ w when ωvw

is a possibly nonzero covariance; in figures we draw the bidirected edges dashed
for better distinction. Mixed graph representations have first been advocated in
Wright (1921, 1934) and are also known as path diagrams. We briefly illustrate this
in the next example, which gives the simplest version of what are often referred to
as instrumental variable models; see also Didelez, Meng and Sheehan (2010).

EXAMPLE 1 (IV). Suppose that, as in Evans and Ringel (1999), we record an
infant’s birth weight (X3), the level of maternal smoking during pregnancy (X2)
and the cigarette tax rate that applies (X1). A model of interest, with mixed graph
in Figure 1, assumes

X1 = λ01 + ε1, X2 = λ02 + λ12X1 + ε2, X3 = λ03 + λ23X2 + ε3,

with an error vector ε that has zero mean vector and covariance matrix

� =
⎛
⎝ω11 0 0

0 ω22 ω23

0 ω23 ω33

⎞
⎠ .

The possibly nonzero entry ω23 can absorb the effects that unobserved confounders
(such as age, income, genetics, etc.) may have on both X2 and X3; compare
Richardson and Spirtes (2002) and Wermuth (2011) for background on mixed
graph representations of latent variable problems.

Formally, a mixed graph is a triple G = (V ,D,B), where V is a finite set
of nodes and D,B ⊆ V × V are two sets of edges. In our context, the nodes
correspond to the random variables X1, . . . ,Xm, and we simply let V = [m] :=
{1, . . . ,m}. The pairs (v,w) in the set D represent directed edges and we will al-
ways write v → w; v → w ∈ D does not imply w → v ∈ D. The pairs in B are
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bidirected edges v ↔ w; they have no orientation, that is, v ↔ w ∈ B if and only
if w ↔ v ∈ B . Neither the bidirected part (V ,B) nor the directed part (V ,D) con-
tain self-loops, that is, v → v /∈ D and v ↔ v /∈ B for all v ∈ V . If the directed part
(V ,D) does not contain directed cycles (i.e., no cycle v → ·· · → v can be formed
from the edges in D), then the mixed graph G is said to be acyclic.

Let R
D be the set of real m × m-matrices � = (λvw) with support D, that is,

λvw = 0 if v → w /∈ D. Write R
D
reg for the subset of matrices � ∈ R

D for which
I − � is invertible, where I denotes the identity matrix. [If G is acyclic, then
R

D = R
D
reg; see the remark after equation (2.3).] Similarly, let PDm be the cone of

positive definite symmetric m × m-matrices � = (ωvw) and define PD(B) ⊂ PDm

to be the subcone of matrices with support B , that is, ωvw = 0 if v �= w and v ↔
w /∈ B .

DEFINITION 1. The linear structural equation model given by a mixed graph
G = (V ,D,B) on V = [m] is the family of all m-variate normal distributions with
covariance matrix

� = (I − �)−T �(I − �)−1

for � ∈ R
D
reg and � ∈ PD(B).

The first question that arises when specifying a linear structural equation model
is whether the model is identifiable in the sense that the parameter matrices � ∈
R

D
reg and � ∈ PD(B) can be uniquely recovered from the normal distribution they

define. Clearly, this is equivalent to asking whether they can be recovered from the
distribution’s covariance matrix, and thus we ask whether the fiber

F (�,�) = {(
�′,�′) ∈ � :φG

(
�′,�′) = φG(�,�)

}
(1.4)

is equal to {(�,�)}. Here, we introduced the shorthand � := R
D
reg × PD(B). Put

differently, identifiability holds if the parametrization map

φG : (�,�) 	→ (I − �)−T �(I − �)−1(1.5)

is injective on �, or a suitably large subset.

EXAMPLE 2 (IV, continued). In the instrumental variable model associated
with the graph in Figure 1,

� = (σvw)

=
⎛
⎝ 1 −λ12 0

0 1 −λ23

0 0 1

⎞
⎠

−T ⎛
⎝ω11 0 0

0 ω22 ω23

0 ω23 ω33

⎞
⎠

⎛
⎝ 1 −λ12 0

0 1 −λ23

0 0 1

⎞
⎠

−1

=
⎛
⎜⎝

ω11 ω11λ12 ω11λ12λ23

ω11λ12 ω22 + ω11λ
2
12 ω23 + λ23σ22

ω11λ12λ23 ω23 + λ23σ22 ω33 + 2ω23λ23 + λ2
23σ22

⎞
⎟⎠ .
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Despite the presence of both the edges 2 → 3 and 2 ↔ 3, we can recover � (and
thus also �) from � using that

λ12 = σ12

σ11
, λ23 = σ13

σ12
.

The first denominator σ11 is always positive since � is positive definite. The sec-
ond denominator σ12 is zero if and only if λ12 = 0. In other words, if the cigarette
tax (X1) has no effect on maternal smoking during pregnancy (X2), then there is
no way to distinguish between the causal effect of smoking on birth weight (coeffi-
cient λ23) and the effects of confounding variables (error covariance ω23). Indeed,
the map φG is injective only on the subset of � with λ12 �= 0.

In this paper we study the kind of identifiability encountered in the instru-
mental variables example. The statistical literature often refers to this as almost-
everywhere identifiability to express that the exceptional pairs (�,�) with fiber
cardinality |F (�,�)| > 1 form a set of measure zero. However, since the map φG

is rational, the exceptional sets are well-behaved null sets, namely, they are alge-
braic subsets. An algebraic subset V ⊂ � is a subset that can be defined by poly-
nomial equations, and it is a proper subset of the open set � unless it is defined
by the zero polynomial. A proper algebraic subset has smaller dimension than �

[see Cox, Little and O’Shea (2007)], and thus also measure zero; statistical work
often quotes the lemma in Okamoto (1973) for the latter fact. These observations
motivate the following definition and problem.

DEFINITION 2. The mixed graph G is said to be generically identifiable if
φG is injective on the complement � \ V of a proper (i.e., strict) algebraic subset
V ⊂ �.

PROBLEM 1. Characterize the mixed graphs G that are generically identifi-
able.

Despite the long history of linear structural equation models, the problem just
stated remains open, even when restricting to acyclic mixed graphs. However, in
the last two decades a number of graphical conditions have been developed that
are sufficient for generic identifiability. We refer the reader, in particular, to Pearl
(2000), Brito and Pearl (2002a, 2006), Tian (2009) and Chan and Kuroki (2010),
which each contain many further references. To our knowledge, the condition that
is of the most general nature and most in the spirit of attempting to solve Prob-
lem 1 is the G-criterion of Brito and Pearl (2006). This criterion, and in fact all
other mentioned work, uses linear algebraic techniques to solve the parametrized
equation systems that define the fibers F (�,�). Therefore, the G-criterion is in
fact sufficient for the following stronger notion of identifiability, which we have
seen to hold for the graph from Figure 1; recall the formulas given in Example 2.
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DEFINITION 3. The mixed graph G is said to be rationally identifiable if
there exists a proper algebraic subset V ⊂ � and a rational map ψ such that
ψ ◦ φG(�,�) = (�,�) for all (�,�) ∈ � \ V .

The main results of our paper give a graphical condition that is sufficient for
rational identifiability and that is strictly stronger than the G-criterion of Brito and
Pearl (2006) when applied to acyclic mixed graphs. Moreover, the new condition,
which we name the half-trek criterion, also applies to cyclic graphs, for which little
prior work exists. The approach we take also yields a necessary condition, or, more
precisely put, a graphical condition that is sufficient for G (or rather the map φG) to
be generically infinite-to-one. That is, the condition implies that the fiber F (�,�)

is infinite for all pairs (�,�) outside a proper algebraic subset of �. Hardly any
previous work on such “negative” graphical conditions seems to exist. Our main
results just described are stated in detail in Section 3 and proven in Section 9 and
in Sections 2 and 3 of the Supplementary Material [Foygel, Draisma and Drton
(2012)]. The comparison to the G-criterion is made in Section 4, with some proofs
deferred to Section 4 of the supplement. Some interesting examples are visited in
Section 5. Those include examples that do not seem to be covered by any known
graphical criterion.

A major motivation for this paper is the complexity of deciding whether a given
graph is rationally identifiable. In Garcia-Puente, Spielvogel and Sullivant (2010)
this question is proved to be decidable using computational algebraic geometry,
and in Section 8 of the supplement we give a variant of that approach in which
the size of the input to Buchberger’s algorithm is significantly reduced. However,
there is no reason to believe that this approach yields an algorithm whose running
time is bounded by some polynomial in the size of the input, namely, the mixed
graph G. Faced with this situation, one naturally wonders whether this decision
problem is at all contained in complexity class NP, which requires that for all ra-
tionally identifiable G there exists a certificate for rational identifiability that can
be checked in polynomial time. This is by no means clear to us. For instance, while
in Example 2 the rational inverse map of the parametrization happens to be rather
small in terms of bit-size, it is unclear why for general rationally identifiable G

there should be a rational map that can in polynomial time be checked to be in-
verse to the parametrization (on the other hand, there is no reason why efficiently
checkable certificates would have to be of this form). By contrast, our half-trek
criteria for rational identifiability and for being generically infinite-to-one turn out
not only to have efficiently checkable certificates for positive instances (which
will be evident from the criteria’s definitions) but even to be in complexity class
P ⊆ NP. Indeed, in Section 6 we develop polynomial-time algorithms for check-
ing our graphical conditions from Section 3, and correctness of those algorithms
is proven in Section 6 of the supplement.

The examples shown in Section 5 were found as part of an exhaustive study
of the identifiability properties of all mixed graphs with up to 5 nodes, in which
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we compare the aforementioned, generally applicable but inefficient techniques
from computational algebraic geometry with our half-trek criteria. The results of
these computations are given in Section 7. That section further contains, as proof
of concept, the result of simulations for graphs on 25 or 50 nodes, based on the
polynomial-time algorithms from Section 6. Finally, in Section 8, we describe how
our half-trek methods behave with respect to a graph decomposition technique for
acyclic mixed graphs that is due to Tian (2005); somewhat surprisingly, this leads
to a strengthening of our sufficient condition. Concluding remarks are given in
Section 10.

2. Preliminaries on treks. A path from node v to node w in a mixed graph
G = (V ,D,B) is a sequence of edges, each from either D or B , that connect the
consecutive nodes in a sequence of nodes beginning at v and ending in w. We do
not require paths to be simple or even to obey directions, that is, a path may include
a particular edge more than once, the nodes that are part of the edges need not all
be distinct, and directed edges may be traversed in the wrong direction. A path π

from v to w is a directed path if all its edges are directed and pointing to w, that
is, π is of the form

v = v0 → v1 → ·· · → vr = w.

In a covariance matrix in a structural equation model, that is, a matrix structured
as in Definition 1, the entry σvw is a sum of terms that correspond to certain paths
from v to w. For instance, in Example 2, the variance

σ33 = ω33 + ω23λ23 + ω23λ23 + λ2
23ω22 + λ2

23λ
2
12ω11(2.1)

is a sum of five terms that are associated, respectively, with the trivial path 3, which
has no edges, and the four additional paths

3 ↔ 2 → 3, 3 ← 2 ↔ 3, 3 ← 2 → 3, 3 ← 2 ← 1 → 2 → 3.

In the literature, the paths that contribute to a covariance are known as treks;
compare, for example, Sullivant, Talaska and Draisma (2010) and the references
therein. A trek from source v to target w is a path from v to w whose consecutive
edges do not have any colliding arrowheads. In other words, a trek from v to w is
a path of one of the two following forms:

vL
l ← vL

l−1 ← ·· · ← vL
1 ← vL

0 ←→ vR
0 → vR

1 → ·· · → vR
r−1 → vR

r

or

vL
l ← vL

l−1 ← ·· · ← vL
1 ← vT → vR

1 → ·· · → vR
r−1 → vR

r ,

where the endpoints are vL
l = v, vR

r = w. In the first case, we say that the left-hand
side of π , written Left(π), is the set of nodes {vL

0 , vL
1 , . . . , vL

l }, and the right-hand
side, written Right(π), is the set of nodes {vR

0 , vR
1 , . . . , vR

r }. In the second case,
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Left(π) = {vT, vL
1 , . . . , vL

l }, and Right(π) = {vT, vR
1 , . . . , vR

r }—note that the top
node vT is part of both sides of the trek. As pointed out before, paths and, in
particular, treks are not required to be simple. A trek π may thus pass through a
node on both its left- and right-hand sides. If the graph contains a cycle, then the
left- or right-hand side of π may contain this cycle. Any directed path is a trek; in
this case |Left(π)| = 1 or |Right(π)| = 1 depending on the direction in which the
path is traversed. A trek from v to v may have no edges, in which case v is the top
node, and Left(π) = Right(π) = {v}, and we call the trek trivial.

A trek is therefore obtained by concatenating two directed paths at a common
top node or by joining them with a bidirected edge, and the connection between
the matrix entries and treks is due to the fact that(

(I − �)−1)
vw = ∑

π∈P(v,w)

∏
x→y∈π

λxy,(2.2)

where P(v,w) is the set of directed paths from v to w in G. The equality in (2.2)
follows by writing (I − �)−1 = I + � + �2 + · · ·. For a precise statement about
the form of the covariance matrix �, let T (v,w) be the set of all treks from v

to w. For a trek π that contains no bidirected edge and has top node v, define a
trek monomial as

π(λ,ω) = ωvv

∏
x→y∈π

λxy.

For a trek π that contains a bidirected edge v ↔ w, define the trek monomial as

π(λ,ω) = ωvw

∏
x→y∈π

λxy.

The following rule [Spirtes, Glymour and Scheines (2000), Wright (1921, 1934)]
expresses the covariance matrix � as a summation over treks; compare the exam-
ple in (2.1).

TREK RULE. The covariance matrix � for a mixed graph G is given by

σvw = ∑
π∈T (v,w)

π(λ,ω);(2.3)

If G is acyclic, then �k = 0 for all k ≥ m, and so the expression in (2.2) is
polynomial. Similarly, (2.3) writes σvw as a polynomial. If G is cyclic, then one
obtains power series that converge if the entries of � are small enough. However,
in the proofs of Section 9 it will also be useful to treat these as formal power series.

Our identifiability results involve conditions that refer to paths that we term
half-treks. A half-trek π is a trek with |Left(π)| = 1, meaning that π is of the
form

vL
0 ↔ vR

0 → vR
1 → ·· · → vR

r−1 → vR
r
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FIG. 2. An acyclic mixed graph.

or

vT → vR
1 → ·· · → vR

r−1 → vR
r .

EXAMPLE 3. In the graph shown in Figure 2,

(a) neither π1 : 2 → 3 → 4 ← 3 nor π2 : 3 → 4 ↔ 1 are treks, due to the collid-
ing arrowheads at node 4.

(b) π : 2 ← 1 ↔ 4 → 5 is a trek, but not a half-trek. Left(π) = {1,2} and
Right(π) = {4,5}.

(c) π : 1 → 2 → 3 is a half-trek with Left(π) = {1} and Right(π) = {1,2,3}.

It will also be important to consider sets of treks. For a set of n treks,  =
{π1, . . . , πn}, let xi and yi be the source and the target of πi , respectively. If the
sources are all distinct, and the targets are all distinct, then we say that  is a system
of treks from X = {x1, . . . , xn} to Y = {y1, . . . , yn}, which we write as  :X ⇒ Y .
Note that there may be overlap between the sources in X and the targets in Y ,
that is, we might have X ∩ Y �= ∅. The system  is a system of half-treks if
every trek πi is a half-trek. Finally, a set of treks  = {π1, . . . , πn} has no sided
intersection if

Left(πi) ∩ Left(πj ) = ∅ = Right(πi) ∩ Right(πj ) ∀i �= j.

EXAMPLE 4. Consider again the graph from Figure 2.

(a) The pair of treks

π1 : 3 → 4 → 5, π2 : 4 ↔ 1

forms a system of treks  = {π1, π2} between X = {3,4} and Y = {1,5}. The
node 4 appears in both treks, but is in only the right-hand side of π1 and only the
left-hand side of π2. Therefore,  has no sided intersection.

(b) The set  = {π1, π2} comprising the two treks

π1 : 1 ↔ 4, π2 : 3 → 4 → 5

is a system of treks between X = {1,3} and Y = {4,5}. Since node 4 is in
Right(π1) ∩ Right(π2), the system  has a sided intersection.
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3. Main identifiability and nonidentifiability results. Define the set of par-
ents of a node v ∈ V as pa(v) = {w :w → v ∈ D} and the set of siblings as
sib(v) = {w :w ↔ v ∈ B}. Let htr(v) be the set of nodes in V \ ({v} ∪ sib(v))

that can be reached from v via a half-trek. These half-treks contain at least one
directed edge. Put differently, a node w �= v that is not a sibling of v is in htr(v)

if w is a proper descendant of v or one of its siblings. Here, the term descendant
refers to a node that can be reached by a directed path.

DEFINITION 4. A set of nodes Y ⊂ V satisfies the half-trek criterion with
respect to node v ∈ V if

(i) |Y | = |pa(v)|,
(ii) Y ∩ ({v} ∪ sib(v)) = ∅, and

(iii) there is a system of half-treks with no sided intersection from Y to pa(v).

We remark that if pa(v) = ∅, then Y = ∅ satisfies the half-trek criterion with
respect to v. We are now ready to state the main results of this paper.

THEOREM 1 (HTC-identifiability). Let (Yv :v ∈ V ) be a family of subsets of
the vertex set V of a mixed graph G. If, for each node v, the set Yv satisfies the
half-trek criterion with respect to v, and there is a total ordering ≺ on the vertex
set V such that w ≺ v whenever w ∈ Yv ∩ htr(v), then G is rationally identifiable.

The existence of such a total ordering is equivalent to the relation w ∈ Yv ∩
htr(v) not admitting cycles; given the family (Yv :v ∈ V ), this can clearly be tested
in polynomial time in the size of the graph. More importantly, as we show in
Section 6, HTC-identifiability itself can be checked in polynomial time. In that
section we will also show that the same is true for the following nonidentifiability
criterion.

THEOREM 2 (HTC-nonidentifiability). Suppose G is a mixed graph in which
every family (Yv :v ∈ V ) of subsets of the vertex set V either contains a set Yv

that fails to satisfy the half-trek criterion with respect to v or contains a pair of
sets (Yv, Yw) with v ∈ Yw and w ∈ Yv . Then the parametrization φG is generically
infinite-to-one.

The main ideas underlying the two results are as follows. Under the conditions
given in Theorem 1, it is possible to recover the entries in the matrix �, column-
by-column, following the given ordering of the nodes. Each column is found by
solving a linear equation system that can be proven to have a unique solution. The
details of these computations are given in Section 9, where we prove Theorem 1.
The proof of Theorem 2 is also in Section 9 and rests on the fact that under the
given conditions the Jacobian of φG cannot have full rank.

In light of the two theorems, we refer to a mixed graph G as follows:
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(i) HTC-identifiable, if it satisfies the conditions of Theorem 1,
(ii) HTC-infinite-to-one, if it satisfies the conditions of Theorem 2,

(iii) HTC-classifiable, if it is either HTC-identifiable or HTC-infinite-to-one,
(iv) HTC-inconclusive, if it is not HTC-classifiable.

We now give a first example of an HTC-identifiable graph. Additional examples
will be given in Section 5, where we will see graphs that are generically h-to-
one with 2 ≤ h < ∞, but also that HTC-inconclusive graphs may be rationally
identifiable or generically infinite-to-one.

EXAMPLE 5. The graph in Figure 2 is HTC-identifiable, which can be shown
as follows. Let

Y1 = ∅, Y2 = {5}, Y3 = {2}, Y4 = {2}, Y5 = {3}.
Then each Yv satisfies the half-trek criterion with respect to v because,

(a) trivially, pa(v) = ∅ for v = 1;
(b) for v = 2, we have 5 ↔ 1 → 2;
(c) for v = 3, we have 2 → 3;
(d) for v = 4, we have 2 → 3 → 4; and
(e) for v = 5, we have 3 → 4 → 5.

Considering the descendant sets htr(v), we find that

Y1 ∩ htr (1) = ∅, Y2 ∩ htr (2) = {5}, Y3 ∩ htr (3) = ∅,

Y4 ∩ htr (4) = {2}, Y5 ∩ htr (5) = {3}.
Hence, any ordering ≺ respecting 3 ≺ 5 ≺ 2 ≺ 4 will satisfy the conditions of
Theorem 1.

A mixed graph G = (V ,D,B) is simple if there is at most one edge between
any pair of nodes, that is, if D ∩ B = ∅ and v → w ∈ D implies w → v /∈ D. As
observed in Brito and Pearl (2002a), simple acyclic mixed graphs are rationally
identifiable; compare also Corollary 3 in Drton, Foygel and Sullivant (2011). It is
not difficult to see that Theorem 1 includes this observation as a special case.

PROPOSITION 1. If G is a simple acyclic mixed graph, then G is HTC-
identifiable.

PROOF. Since G is simple, it holds for every node v ∈ V that pa(v)∩ sib(v) =
∅ and, thus, pa(v) satisfies the half-trek criterion with respect to v. An acyclic
graph has at least one topological ordering ≺, that is, an ordering such that v →
w ∈ D only if v ≺ w. In other words, w ∈ pa(v) implies w ≺ v. Hence, the family
(pa(v) :v ∈ V ) together with a topological ordering ≺ satisfies the conditions of
Theorem 1. �
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Another straightforward observation is that the map φG cannot be generically
finite-to-one if the dimension of the domain of definition R

D
reg × PD(B) is larger

than the space of m × m symmetric matrices that contains the image of φG. This
occurs if |D| + |B| is larger than

(m
2

)
. Theorem 2 covers this observation.

PROPOSITION 2. If a mixed graph G = (V ,D,B) with V = [m] has |D| +
|B| > (m

2

)
edges, then G is HTC-infinite-to-one.

PROOF. Suppose G is not HTC-infinite-to-one. Then there exists subsets
(Yv :v ∈ V ), where each Yv satisfies the half-trek criterion with respect to v and
for any pair of sets (Yv, Yw) it holds that v ∈ Yw implies w /∈ Yv .

Fix a node v ∈ V . For every directed edge u → v ∈ D, there is a corresponding
node y ∈ Yv for which it holds, by Definition 4, that y ↔ v /∈ B . Therefore, if there
are dv directed edges pointing to v, then there are dv nodes, namely, the ones in Yv ,
that are not adjacent to v in the bidirected part (V ,B). If we consider another node
w ∈ V , with dw parents, then there are again dw nonadjacencies {u,w}, u ∈ Yw ,
in the bidirected part. Moreover, {v,w} cannot appear as a nonadjacency for both
node v and node w because of the requirement that v ∈ Yw imply w /∈ Yv . We
conclude that there are at least |D| nonedges in the bidirected part. In other words,
|D| + |B| ≤ (m

2

)
. �

We conclude the discussion of Theorems 1 and 2 by pointing out that HTC-
identifiability is equivalent to a seemingly weaker criterion.

DEFINITION 5. A set of nodes Y ⊂ V satisfies the weak half-trek criterion
with respect to node v ∈ V if

(i) |Y | = |pa(v)|,
(ii) Y ∩ ({v} ∪ sib(v)) = ∅, and

(iii) there is a system of treks with no sided intersection from Y to pa(v) such
that for any w ∈ Y ∩ htr(v), the trek originating at w is a half-trek.

LEMMA 1. Suppose the set W ⊂ V satisfies the weak half-trek criterion with
respect to some node v. Then there exists a set Y satisfying the half-trek criterion
with respect to v, such that Y ∩ htr(v) = W ∩ htr(v).

Lemma 1 yields the following result; both the lemma and the theorem are proved
in Section 7 of the supplement [Foygel, Draisma and Drton (2012)].

THEOREM 3 (Weak HTC). Theorems 1 and 2 hold when using the weak half-
trek criterion instead of the half-trek criterion. Moreover, a graph G can be proved
to be rationally identifiable (or generically infinite-to-one) using the weak half-trek
criterion if and only if G is HTC-identifiable (or HTC-infinite-to-one).
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4. G-criterion. The G-criterion, proposed in Brito and Pearl (2006), is a suf-
ficient criterion for rational identifiability in acyclic mixed graphs. The criterion
attempts to prove the fiber F (�,�) to be equal to {(�,�)} by solving the equa-
tion system

� = (I − �)−T �(I − �)−1

in a stepwise manner. The steps yield the entries in � column-by-column and, si-
multaneously, more and more rows and columns for principal submatrices of �. As
explained in Section 9, the half-trek method from Section 3 starts from an equation
system that has � eliminated and then only proves � to be uniquely identified. In
this section, we show that, due to this key simplification, the sufficient condition
in the half-trek method improves the G-criterion for acyclic mixed graphs.

To prepare for a comparison of the two criteria, we first restate the identifiability
theorem underlying the G-criterion in our own notation. Enumerate the vertex set
of an acyclic mixed graph G according to any topological ordering as V = [m] =
{1, . . . ,m}. (Then v → w only if v < w.) Use the ordering to uniquely associate
bidirected edges to individual nodes by defining, for each v ∈ V , the sets of siblings
S<(v) = {w ∈ sib(v) :w < v} and S>(v) = {w ∈ sib(v) :w > v}. For a trek π , we
write t (π) to denote the target node, that is, π is a trek from some node to t (π).

DEFINITION 6 [Brito and Pearl (2006)]. A set of nodes A ⊂ V satisfies the G-
criterion with respect to a node v ∈ V if A ⊂ V \ {v} and A can be partitioned into
two (disjoint) sets Y,Z with |Y | = |pa(v)| and |Z| = |S<(v)|, with two systems of
treks  :Y ⇒ pa(v) and � :Z ⇒ S<(v), such that the following condition holds:

If each trek π ∈  is extended to a path π ′ by adding the edge t (π) → v to
the right-hand side, and each trek ψ ∈ � is similarly extended using t (ψ) ↔ v,
then the set of paths {π ′ :π ∈ } ∪ {ψ ′ :ψ ∈ �} is a set of treks that has no sided
intersection except at the common target node v.

Note that the paths π ′ for π ∈  are always treks. For ψ ∈ � , the requirement
that ψ ′ is a trek means that ψ cannot have an arrowhead at its target node.

For the statement of the main theorem about identifiability using the G-criterion,
define the depth of a node v to be the length of the longest directed path terminating
at v. This number is denoted by Depth(v).

THEOREM 4 [Brito and Pearl (2006)]. Suppose (Av :v ∈ V ) is a family of
subsets of the vertex set V of an acyclic mixed graph G and, for each v, the set Av

satisfies the G-criterion with respect to v. Then G is rationally identifiable if at
least one of the following two conditions is satisfied:

(C1) For all v and all w ∈ Av , it holds that Depth(w) < Depth(v).
(C2) For all v and all w ∈ Av ∩ (htr(v)∪S>(v)), the trek associated to node w

in the definition of the G-criterion is a half-trek. Furthermore, there is a total
ordering ≺ on V , such that if w ∈ Av ∩ (htr(v) ∪ S>(v)), then w ≺ v.
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We remark that the ordering ≺ in condition (C2) need not agree with any topo-
logical ordering of the graph. When using only condition (C1) the theorem was
given in Brito and Pearl (2002b), and the literature is not always clear on which
version of the G-criterion is concerned. For instance, all examples in Chan and
Kuroki (2010) can be proven to be rationally identifiable by means of Theorem 4
as stated here.

We now compare the G-criterion to the half-trek criterion. We say that a graph G

is GC-identifiable if it satisfies the conditions of Theorem 4. The next theorem and
proposition are proved in Section 4 of the supplement [Foygel, Draisma and Drton
(2012)]. They demonstrate that the half-trek method provides an improvement over
the G-criterion even for acylic mixed graphs.

THEOREM 5. A GC-identifiable acyclic mixed graph is also HTC-identifiable.

The graph in Figure 2 is HTC-identifiable, as was shown in Example 5.

PROPOSITION 3. The acyclic mixed graph in Figure 2 is not GC-identifiable.

5. Examples. In the previous section the acyclic mixed graph from Figure 2
was shown to be HTC-identifiable but not GC-identifiable. In this section we give
several other examples that illustrate the conditions of our theorems and the ground
that lies beyond them. The examples are selected from the computational experi-
ments that we report on in Section 7. We begin with the identifiable class.

EXAMPLE 6. Figure 3 shows 5 rationally identifiable mixed graphs:

FIG. 3. Rationally identifiable mixed graphs.
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FIG. 4. Generically infinite-to-one graphs.

(a) This graph is simple and acyclic and, thus HTC- and GC-identifiable; recall
Proposition 1. There are pairs (�,�) for which the fiber F (�,�) has positive di-
mension. By Theorem 2 in Drton, Foygel and Sullivant (2011), removing the edge
1 ↔ 3 would give a new graph with all fibers of the form F (�,�) = {(�,�)}.

(b) The next graph is acyclic but not simple. It is HTC- and GC-identifiable.
(c) This acyclic graph is HTC-inconclusive. The bidirected part being con-

nected, the example is not covered by the graph decomposition technique dis-
cussed in Section 8.

(d) This is an example of a cyclic graph that is HTC-identifiable.
(e) This cyclic graph is HTC-inconclusive.

On m = 5 nodes, graphs with more than
(5
2

) = 10 edges are trivially generically
infinite-to-one. The next example gives nontrivial nonidentifiable graphs.

EXAMPLE 7. All 4 graphs in Figure 4 are generically infinite-to-one. The
acyclic graph in (a) and the cyclic graph in (c) are HTC-infinite-to-one. The acyclic
graph in (b) and the cyclic graph in (d) are HTC-inconclusive.

Many HTC-inconclusive graphs have fibers that are of cardinality 2 ≤ h < ∞.
An example of an acyclic 4-node graph that is generically 2-to-one was given in
Brito (2004). Our next example lists more graphs of this generically finite-to-one
type.

EXAMPLE 8. Figure 5 shows four mixed graphs that are HTC-inconclusive
and not generically identifiable. All the graphs have fibers that are generically fi-
nite:
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FIG. 5. Generically finite-to-one graphs.

(a) This graph is generically 2-to-1. We note that the coefficients λv5, v ∈ [4],
can be identified; that is, any two matrices �,�′ appearing in the same fiber have
an identical fifth column.

(b) Generically, the fibers of this graph have cardinality of either one or three.
For instance, let

ω11 = · · · = ω55 = 1, ω12 = ω13 = ω15 = 1
5 , λ23 = 1.

Define

f (λ12) = 529λ4
12 − 460λ3

12 − 3642λ2
12 − 2380λ12 − 4271.

Then, not considering the nongeneric situation with f (λ12) = 0, we have

∣∣F (�,�)
∣∣ =

{
3, if f (λ12) > 0,

1, if f (λ12) < 0.

The polynomial f has two roots which are approximately −2.16 and 3.44.
(c) As shown in Drton, Foygel and Sullivant (2011), a cycle of length 3 or more

is generically 2-to-1.
(d) The next graph is not generically identifiable. Generically, its fibers have at

least two elements but not more than 10. Using the terminology from Definition 7
below, the graph has degree of identifiability 10. We do not know of an example
of a fiber with more than two elements.

6. Efficient algorithms for HTC-classification. While purely combinatorial,
the identifiability conditions from Theorems 1 and 2 are not in a form that is di-
rectly amenable to efficient computation. However, as we show in this section,



IDENTIFIABILITY OF LINEAR STRUCTURAL EQUATION MODELS 1697

there exist polynomial-time algorithms for deciding whether a mixed graph G is
HTC-identifiable and whether G is HTC-infinite-to-one. In the related context of
the G-criterion, Chapter 4 in Brito (2004) describes how the problem of deter-
mining the existence of a set of nodes Y satisfying the G-criterion with respect
to a given node v can be solved by computation of maximum flow in a derived
directed graph. Our work for HTC-identifiability extends this construction, which
enables us to use maximum flow computations to completely determine HTC-
identifiability of a mixed graph G. Furthermore, we show that whether G is HTC-
infinite-to-one can be decided via a single max-flow computation.

We first give some background on the max-flow problem; see Ford and Fulk-
erson (1962) and Cormen et al. (2001). Let G = (V ,D) be a directed graph (or
“network”) with designated source and sink nodes s, t ∈ V . Let cV :V → R≥0
be a node-capacity function, and let cD :D → R≥0 be an edge-capacity function.
Then a flow f on G is a function f :D → R≥0 that satisfies∑

u

f (u, v) = ∑
w

f (v,w) ≤ cV (v)

for all nodes v �= s, t , and

f (u, v) ≤ cD(u, v)

for all edges u → v ∈ D. The size |f | of a flow f on G is the total amount of flow
passing from the source s to the sink t , that is,

|f | := ∑
w

f (s,w) = ∑
u

f (u, t).

The max-flow problem on (G, s, t, cV , cD) is the problem of finding a flow f

whose size |f | is maximum.
The computational complexity of the max-flow problem is known to be of order

O(|V |3) if G has no reciprocal edge pairs. A reciprocal edge pair consists of the
two edges v → w and w → v for distinct nodes v �= w. (“Antiparallel” is another
term used for such edge pairs.) In general, the complexity is O((|V | + r)3), where
r ≤ |D|/2 is the number of reciprocal edge pairs. It is also known that if cV and cD

are both integer-valued, then there exists a maximal flow f that is integer-valued,
and can be interpreted as a sum of directed paths from s to t with a flow of size 1
along each path [Ford and Fulkerson (1962), Cormen et al. (2001)]. (We note that
the max-flow problem is usually defined without bounded node capacities and on
graphs with no reciprocal edge pairs, but the more general problem stated here
can be converted to the standard form; see Section 6 of the supplement [Foygel,
Draisma and Drton (2012)] for details.)

6.1. Deciding HTC-identifiability. To determine whether a mixed graph G =
(V ,D,B) is HTC-identifiable, we first need to address the following subproblem.
Given a node v ∈ V , and a subset of “allowed” nodes A ⊆ V \ ({v} ∪ sib(v)), how
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FIG. 6. Using max-flow to find a set satisfying the half-trek criterion, for node v = 6 and allowed
nodes A = {1,2,3}. (a) The concerned mixed graph G. (b) The network Gflow(v,A).

can we efficiently determine whether there exists a subset Y ⊆ A satisfying the
half-trek criterion with respect to v? We now show that answering this question is
equivalent to solving a max-flow problem on a network Gflow(v,A) with at most
2|V | + 2 nodes and at most 3|V | + |D| + |B| edges.

We construct the network as follows; an example is shown in Figure 6. The
vertex set of Gflow(v,A) comprises three types of nodes, namely,

(a) a source s and a sink t ,
(b) a “left-hand copy” L(a) for each a ∈ A, and
(c) a “right-hand copy” R(w) for each w ∈ V .

The edges of Gflow(v,A) are given by the following:

(a) s → L(a) and L(a) → R(a) for each a ∈ A (thick solid edges, in Figure 6),
(b) L(a) → R(w) for each a ↔ w ∈ B (dashed edges),
(c) R(w) → R(u) for each w → u ∈ D (solid edges), and
(d) R(w) → t for each w ∈ pa(v) (thick solid edges).

Finally, we define the capacity functions. All edges have capacity ∞. The source s

and sink t have capacity ∞, and all other nodes have capacity 1.
The intuition for our construction is that a half-trek of the form y → x1 →

·· · → xn = p, with y ∈ A and p ∈ pa(v), will appear in the flow network as

s → L(y) → R(y) → R(x1) → ·· · → R(xn) → t,
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and a half-trek of the form y ↔ x1 → ·· · → xn = p will appear as

s → L(y) → R(x1) → ·· · → R(xn) → t.

By construction, no flow can exceed |pa(v)| in size. Therefore, for practical pur-
poses, all infinite capacities can equivalently be replaced with capacity |pa(v)|.

The following theorem is proved in Section 6 of the supplement.

THEOREM 6. Given a mixed graph G = (V ,D,B), a node v ∈ V and a subset
of “allowed” nodes A ⊆ V \ ({v} ∪ sib(v)), there exists a set Y ⊆ A satisfying the
half-trek criterion with respect to v if and only if the flow network Gflow(v,A) has
maximum flow equal to |pa(v)|.

Using Theorem 6, we are able to give an algorithm to determine whether G

is HTC-identifiable. If G is HTC-identifiable, then, by Definition 4, we have an
ordering ≺ on V , and for each v, a set Yv satisfying the half-trek criterion with
respect to v, such that any w ∈ Yv ∩ htr(v) must be ≺ v. Therefore, by Theorem 6,
the network Gflow(v,A) must have maximum flow size |pa(v)|, where A is the set
of nodes that are “allowed” to be in Yv according to the ordering ≺, that is,

A = [{w :w ≺ v} ∪ (
V \ htr(v)

)] \ [{v} ∪ sib(v)
]
.

This intuition is formalized in Algorithm 1. In Section 6 of the supplement, we
prove the following theorem, which states that Algorithm 1 correctly determines
HTC-identifiability.

THEOREM 7. A mixed graph G = (V ,D,B) is HTC-identifiable if and only
if Algorithm 1 returns “yes.” Furthermore, the algorithm has complexity at most
O(|V |2(|V | + r)3), where r ≤ |D|/2 is the number of reciprocal edge pairs in D.

Algorithm 1 Testing HTC-identifiability of a mixed graph
Input: G = (V ,D,B), a mixed graph on m nodes
Initialize: SolvedNodes← {v : pa(v) = ∅}.
repeat

for v = 1,2, . . . ,m do
if v /∈ SolvedNodes then

A ← (SolvedNodes∪ (V \ htr(v))) \ ({v} ∪ sib(v)).
if MaxFlow(Gflow(v,A)) = |pa(v)| then
SolvedNodes← SolvedNodes∪ {v}.

end if
end if

end for
until SolvedNodes= V or no change has occurred in the last iteration.
Output: “yes” if SolvedNodes= V , “no” otherwise.
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FIG. 7. Using max-flow to test whether a mixed graph is HTC-infinite-to-one. (a) A mixed graph G

on 3 nodes. (b) The associated flow network Gflow.

6.2. Deciding if a graph is HTC-infinite-to-one. To determine whether a
mixed graph G = (V ,D,B) is HTC-infinite-to-one, we may again appeal to max-
flow computation. It now suffices to solve a single larger max-flow problem, with
at most 3

2 |V |2 + 2 nodes and at most |V | · (3
2 |V | + 2|D| + |B|) edges, and |V | · r

reciprocal edge pairs, where r is the number of reciprocal edge pairs in G.
The relevant flow network Gflow is constructed as follows; an example is shown

in Figure 7. The nodes of Gflow are as follows:

(a) a source s and a sink t ,
(b) a “left-hand copy” L{v,w} for each unordered pair {v,w} ⊂ V with v ↔

w /∈ B , and
(c) a “right-hand copy” Rv(w) for each v,w ∈ V .

The edges of Gflow are as follows:

(a) s → L{v,w} and L{v,w} → Rv(w) for each unordered pair {v,w} ⊂ V

with v ↔ w /∈ B (thick solid edges, in Figure 7),
(b) L{v,w} → Rv(u) for each v,w,u with v �= w such that v ↔ w /∈ B but

w ↔ u ∈ B (dashed edges),
(c) Rv(w) → Rv(u) for each v,w,u ∈ V with w → u ∈ D (solid edges), and
(d) Rv(w) → t for each v,w ∈ V with w ∈ pa(v) (thick solid edges).

Finally, the edge capacity function assigns capacity ∞ to all edges, and the node
capacity function gives capacity ∞ to the source s and sink t and capacity 1 to all
other nodes. If useful in practice, the infinite capacities can be set to |V |2, as no
flow can have size larger than |V |2.

The intuition for the construction just given is as follows. If the mixed graph G is
not HTC-infinite-to-one, then simultaneously for all nodes v ∈ V , we can find sys-
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tems of half-treks with no sided intersection Yv ⇒ pa(v), such that Yv does not con-
tain v or any siblings of v, and w ∈ Yv implies v /∈ Yw . Writing y(v,k) ◦—◦ z(v,k),1
to represent either y(v,k) = z(v,k),1 or y(v,k) ↔ z(v,k),1, a half-trek

π(v,k) :y(v,k) ◦—◦ z(v,k),1 → z(v,k),2 → ·· · → k

with k ∈ pa(v) and y(v,k) ∈ Yv corresponds to a path in the network Gflow given by

π̃(v,k) : s → L{v, y(v,k)} → Rv(z(v,k),1) → Rv(z(v,k),2) → ·· · → Rv(k) → t.

Therefore, in the maximum flow on Gflow, if {v,w} is used by one of the paths
passing through the Rv(·) copy of the graph, then it will not get used by any of the
flows passing through the Rw(·) copy of the graph.

The following theorem is proved in Section 6 of the supplement.

THEOREM 8. A mixed graph G = (V ,D,B) is HTC-infinite-to-one if and
only if Gflow has maximum flow size strictly less than |D| = ∑

v∈V |pa(v)|. The
computational complexity of solving this max-flow problem is O(|V |3(|V | + r)3),
where r ≤ |D|/2 is the number of reciprocal edge pairs in G.

7. Computational experiments. This section reports on the results of an ex-
haustive study of all mixed graphs with m ≤ 5 nodes, for which the identifica-
tion problem can be fully solved by means of algebraic techniques. Moreover, we
show simulations in which we apply our new combinatorial criteria to graphs with
m = 25 and 50 nodes.

7.1. Exhaustive computations on small graphs. We applied the half-trek and
the G-criterion as well as algebraic techniques to all mixed graphs on m ≤ 5 nodes.
All algebraic computations were done with the software SINGULAR [Decker et al.
(2011)]; see Section 1 of the supplement [Foygel, Draisma and Drton (2012)] for
details. The G-criterion and the max-flow algorithms from Section 6 were imple-
mented in R [R Development Core Team (2011)] and MATLAB [MathWorks Inc.
(2010)], respectively.

The results are given in Table 1, where we treat graphs as unlabeled, that is,
we count isomorphism classes of graphs with respect to permutation of the ver-
tex set V = [m]. The table distinguishes between acyclic and cyclic (i.e., nona-
cyclic) graphs. In each case, we single out the graphs with more than

(m
2

)
edges.

These are trivially generically infinite-to-one and also HTC-infinite-to-one accord-
ing to Proposition 2. The remaining graphs are classified into three disjoint groups,
namely, rationally identifiable graphs, generically infinite-to-one graphs and gener-
ically finite-to-one graphs. The following notion makes the distinctions and ter-
minology precise. Here, C

D
reg is defined as R

D
reg but allowing for complex matrix

entries. We write C
m×m
sym for the space of symmetric m × m complex matrices.
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TABLE 1
Classification of unlabeled mixed graphs with 3 ≤ m ≤ 5 nodes; column “HTC” gives counts of

HTC-classifiable graphs

m = 3 m = 4 m = 5

Unlabeled mixed graphs Total HTC Total HTC Total HTC

Acyclic, ≤ (m
2
)

edges 22 715 103,670
rationally identifiable 17 17 343 343 32,378 32,257
generically finite-to-one 0 – 4 – 1166 –
generically ∞-to-one 5 5 368 368 70,126 70,099

Acyclic, >
(m

2
)

edges 18 852 152,520

Cyclic, ≤ (m
2
)

edges 6 718 348,175
rationally identifiable 2 2 239 230 91,040 78,586
generically finite-to-one 1 – 75 — 44,703 –
generically ∞-to-one 3 3 404 383 212,432 202,697

Cyclic, >
(m

2
)

edges 58 9307 8,439,859

DEFINITION 7. Let G = (V ,D,B) be a mixed graph. Then the complex ratio-
nal map φG,C, obtained by extending the map φG to C

D
reg × C

m×m
sym , is generically

h-to-one with h ∈ N ∪ {∞}, and we call h = ID(G) the degree of identifiability
of G.

A mixed graph G is rationally identifiable if and only if its degree of identifia-
bility ID(G) = 1. Similarly, G is generically infinite-to-one if and only if ID(G) =
∞; in that case the fiber F (�,�) ⊂ R

D
reg × PD(B) defined in (1.4) is generi-

cally of positive dimension. In Table 1, a graph G is generically finite-to-one if
2 ≤ ID(G) < ∞ and, thus, F (�,�) is generically finite with |F (�,�)| ≤ ID(G).
If ID(G) is finite and even, G cannot be generically identifiable because polyno-
mial equations have complex solutions appearing in conjugate pairs and F (�,�)

always contains at least one (real) point, that is, (�,�). If ID(G) is odd, we can-
not exclude the possibility that the equation defining F (�,�) generically only has
one real point, leading to generic identifiability. However, we did not observe this
in any examples we checked.

Table 1 shows that our half-trek method yields a perfect classification of acyclic
graphs with m ≤ 4 nodes and cyclic graphs with m ≤ 3 nodes. Among the acyclic
graphs with m = 5 nodes, our method misses 121 rationally identifiable graphs
and 27 generically infinite-to-one graphs. The gaps are larger for cyclic graphs, but
the method still classifies 86% of the rationally identifiable graphs correctly and
misses less than 5% of the generically infinite-to-one graphs. In the supplementary
article [Foygel, Draisma and Drton (2012)], we list some rationally identifiable
graphs and some generically infinite-to-one graphs that are not classifiable using
our method (i.e., that are HTC-inconclusive). The degree of identifiability ID(G)
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of a graph G with 5 nodes can be any number in [8] ∪ {10}, and any number
in [4] when G is acyclic. For example, the graphs in Figure 5(a), (b) and (d) have
ID(G) = 2, 3 and 10, respectively.

We also tracked which acyclic graphs are rationally identifiable according to
the G-criterion from Theorem 4. Since this method depends on the choice of a
topological ordering of the nodes, we tested each possible topological ordering.
Our computation shows that the G-criterion finds all rationally identifiable acyclic
graphs with m ≤ 4 nodes. For m = 5, the G-criterion proves 31,830 acyclic graphs
to be rationally identifiable but misses 427 of the HTC-identifiable acyclic graphs.

7.2. Simulations for large graphs. Exhaustive computations become pro-
hibitive for more than 5 nodes. Furthermore, algebraic computations are not feasi-
ble for larger graphs. Instead, we test the HTC-status of randomly generated mixed
graphs with m = 25 or m = 50 nodes.

For each value n = k ·m for k ∈ [10], we randomly sampled 5000 labeled mixed
graphs on m nodes with n edges, by selecting a subset of size n from the set
of all possible edges, which consists of 2 · (m

2

)
directed edges and

(m
2

)
bidirected

edges. We repeated this process with acyclic graphs only; the choice is then from(m
2

)
directed edges and

(m
2

)
bidirected edges. The results of these simulations are

shown in Figure 8. When the graphs are restricted to be acyclic, most are HTC-
identifiable and only extremely few are HTC-inconclusive. When we do not restrict
to acyclic graphs, on the other hand, we see that as the number of edges increases,
the proportion of HTC-inconclusive graphs grows rapidly.

8. Decomposition of acyclic graphs. In this section we discuss how, for
acyclic graphs, the scope of applicability of our half-trek method can be ex-
tended via a graph decomposition due to Tian (2005). Let G = (V ,D,B) be an
acyclic mixed graph, and let C1, . . . ,Ck ⊂ V be the (pairwise disjoint) vertex
sets of the connected components of the bidirected part (V ,B). For j ∈ [k], let
Bj = B ∩ (Cj × Cj) be the bidirected edges in the j th connected component. Let
Vj be the union of Cj and any parents of nodes in Cj , that is,

Vj = Cj ∪ {
pa(v) :v ∈ Cj

}
, j = 1, . . . , k.

Clearly, the sets V1, . . . , Vk need not be pairwise disjoint. Let Dj be the set of
edges v → w in the directed part (V ,D) that have v ∈ Vj and w ∈ Cj . The de-
composition of Tian (2005) involves the graphs Gj = (Vj ,Dj ,Bj ), for j ∈ [k].
We refer to these as the mixed components G1, . . . ,Gk of G. Figure 9 gives an
example.

The mixed components G1, . . . ,Gk create a partition of the edges of G. There is
an associated partition of the entries of � ∈ R

D that yields submatrices �1, . . . ,�k

with each �j ∈ R
Dj ; recall that for an acyclic graph R

D
reg = R

D . Similarly,
from � ∈ PD(B), we create matrices �1, . . . ,�k with each �j ∈ PD(Bj ), where
PD(Bj ) is defined with respect to the graph Gj , that is, the set contains matrices
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FIG. 8. Classification of labeled mixed graphs with m = 25 and m = 50 nodes. Each bar represents
5000 randomly drawn graphs with fixed number of edges, ranging from m to m · 10.

indexed by Vj × Vj . We define �j by taking the submatrix �Cj ,Cj
from � and

extending it by setting (�j )vv = 1 for all v ∈ Vj \ Cj . The work leading up to
Theorems 1 and 2 in Tian (2005) shows that, for all j ∈ [k], there is a rational map
fj defined on the entire cone of m × m positive definite matrices such that

fj ◦ φG(�,�) = φGj
(�j ,�j )

FIG. 9. An acyclic mixed graph shown in (a) and its two mixed components shown in (b) and (c).
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for all � ∈ R
D and � ∈ PD(B). In turn, there is a rational map g defined every-

where on the product of the relevant cones of positive definite matrices such that

g
(
φG1(�1,�1), . . . , φGk

(�k,�k)
) = φG(�,�)

for all � ∈ R
D and � ∈ PD(B). We thus obtain the following theorem.

THEOREM 9. For an acyclic mixed graph G with mixed components G1, . . . ,

Gk , the following holds:

(i) G is rationally (or generically) identifiable if and only if all components
G1, . . . ,Gk are rationally (or generically) identifiable;

(ii) G is generically infinite-to-one if and only if there exists a component Gj

that is generically infinite-to-one;
(iii) if each Gj is generically hj -to-one with hj < ∞, then G is generically

h-to-one with h = ∏k
j=1 hj .

We remark that this theorem could also be stated as ID(G) = ∏k
j=1 ID(Gj ), in

terms of the degree of identifiability from Definition 7.
The next theorem makes the observation that when applying our half-trek

method to an acyclic graph, we may always first decompose the graph into its
mixed components, which may result into computational savings.

THEOREM 10. If an acyclic mixed graph G is HTC-identifiable, then all its
mixed components G1, . . . ,Gk are HTC-identifiable. Furthermore, G is HTC-
infinite-to-one if and only if there exists a mixed component Gj that is HTC-
infinite-to-one.

PROOF. The claim about HTC-identifiability follows from Lemma 4 in Sec-
tion 5 of the supplement [Foygel, Draisma and Drton (2012)]. The second state-
ment is a consequence of Lemmas 5 and 6 from the same section. �

The benefit of graph decomposition goes beyond computation in that some iden-
tification methods apply to all mixed components but not to the original graph. In
Tian (2005), this is exemplified for the G-criterion. More precisely, the 4-node
example given there concerns the early version of the G-criterion from Brito and
Pearl (2002b) that includes only condition (C1) from Theorem 4 but not condi-
tion (C2), which is due to Brito and Pearl (2006). However, graph decomposition
allows one to also extend the scope of our more general half-trek method, where
passing to mixed components can avoid problems with finding a suitable total or-
dering of the vertex set. Surprisingly, however, the extension is possible only for
the sufficient condition, that is, HTC-identifiability; Theorem 10 gives an equiva-
lence result for HTC-infinite-to-one graphs.
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PROPOSITION 4. The acyclic mixed graph in Figure 9(a) is not HTC-
identifiable but both its mixed components are HTC-identifiable.

PROOF. Suppose for a contradiction that the original graph G is HTC-
identifiable and that the sets Y3, Y4 and Y5 are part of the family of sets appearing
in Theorem 1. In particular, each set has two elements and satisfies the half-trek
criterion with respect to its subscript. Now, the presence of the edge 2 ↔ 3 implies
that Y3 ⊂ {1,4,5}. Moreover, Y3 �= {1,4} because the sole half-trek from 4 to 3
has 1 in its right-hand side and all half-treks from 1 to 3 are directed paths and
thus have the source 1 on their right-hand side as well. It follows that 5 ∈ Y3 and,
thus, 3 /∈ Y5. Since 2 ↔ 5 is in G, it must hold that Y5 = {1,4}. Examining the de-
scendant sets htr(v), we see that the total ordering ≺ in Theorem 1 ought to satisfy
4 ≺ 5 ≺ 3. Since 1 ∈ sib(4) and 3,5 ∈ htr(4), we conclude that Y4 ⊂ {2}, which is
a contradiction because Y4 must have two elements.

Turning to the mixed components of G, it is clear that the component shown in
Figure 9(c) is HTC-identifiable because it is a simple graph; recall Proposition 1.
The component in Figure 9(b) is HTC-identifiable because Theorem 1 applies with
the choice of

Y1 = Y4 = ∅, Y2 = {1}, Y5 = {1,4}, Y3 = {1,5},
and any ordering that respects 5 ≺ 3. �

As seen in Table 1, the half-trek method misses 121 rationally identifiable
acyclic graphs with 5 nodes, among them is the example from Proposition 4. Af-
ter graph decomposition, the half-trek method proves 9 of the 121 examples to be
rationally identifiable. The remaining 112 graphs all have a connected bidirected
part; see Figure 3(c) for an example. On 5 nodes, there are 27 generically infinite-
to-one graphs that are HTC-inconclusive. All of these have a connected bidirected
part.

9. Proofs for the half-trek criterion. In this section we prove the two main
theorems stated in Section 3. We begin with the identifiability theorem.

THEOREM 1 (HTC-identifiability). Let (Yv :v ∈ V ) be a family of subsets of
the vertex set V of a mixed graph G. If, for each node v, the set Yv satisfies the
half-trek criterion with respect to v, and there is a total ordering ≺ on the vertex
set V such that w ≺ v whenever w ∈ Yv ∩ htr(v), then G is rationally identifiable.

PROOF. Let � = φG(�0,�0) be a matrix in the image of φG, given by a
generically chosen pair (�0,�0) ∈ � = R

D
reg × PD(B). For generic identifiability,

we need to show that the equation

� = (I − �)−T �(I − �)−1(9.1)



IDENTIFIABILITY OF LINEAR STRUCTURAL EQUATION MODELS 1707

has a unique solution in �, namely, (�,�) = (�0,�0). However, a pair (�,�)

solves (9.1) if and only if[
(I − �)T �(I − �)

]
vw = 0 ∀(v,w) /∈ B and v �= w(9.2)

and [
(I − �)T �(I − �)

]
vw = �vw ∀(v,w) ∈ B or v = w.(9.3)

The nonzero entries of � appearing in (9.3) are freely varying real numbers that
are subject only to the requirement that � be positive definite. For cyclic graphs,
(9.1) contains rational equations. Hence, the focus is on (9.2), which defines a
polynomial equation system even when the graph is cyclic.

We prove the theorem by solving the equations (9.2) in a stepwise manner ac-
cording to the ordering ≺. When visiting node v, the goal is to recover the vth
column of � as a function of �. Based on solving linear equation systems, the
functions of � that give the entries of � will always be rational functions, proving
our stronger claim of rational (as opposed to mere generic) identifiability.

For our proof we proceed by induction and assume that, for all w ≺ v, we have
recovered the entries of the vector �pa(w),w as (rational) expressions in �. To solve
for �pa(v),v , let Yv = {y1, . . . , yn} and pa(v) = {p1, . . . , pn}. Define A ∈ R

n×n as

Aij =
{[

(I − �)T �
]
yipj

, if yi ∈ htr(v),

�yipj
, if yi /∈ htr(v).

Define b ∈ R
n as

bi =
{[

(I − �)T �
]
yiv

, if yi ∈ htr(v),

�yiv, if yi /∈ htr(v).

Note that both A and b depend only on � and the columns �pa(w),w with w ∈
Yv ∩ htr(v), which are assumed already to be known as a function of � because
w ∈ Yv ∩ htr(v) implies w ≺ v. We now claim that the vector �pa(v),v solves the
equation system A · �pa(v),v = b.

First, consider an index i with yi ∈ Yv ∩ htr(v). Since Yv satisfies the half-trek
criterion with respect to v, the node yi �= v is not a sibling of v. Therefore, by (9.2),[

(I − �)T �(I − �)
]
yiv

= 0 �⇒ [
(I − �)T ��

]
yiv

= [
(I − �)T �

]
yiv

.

It follows that

(A · �pa(v),v)i =
n∑

j=1

[
(I − �)T �)

]
yipj

�pjv

= [
(I − �)T ��

]
yiv

= [
(I − �)T �

]
yiv

= bi .

Second, let i be an index with yi ∈ Yv \ htr(v). Then

(A · �pa(v),v)i =
n∑

j=1

�yipj
�pjv = [��]yiv = [

(I − �)−T �(I − �)−1�
]
yiv

.
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By definition of htr(v), we know that [(I − �)−T �]yiv = 0. Adding this zero and
using that (I − �)−1 = I + (I − �)−1�, we obtain that

(A · �pa(v),v)i = [
(I − �)−T �(I − �)−1�

]
yiv

+ [
(I − �)−T �

]
yiv

= [
(I − �)−T �(I − �)−1]

yiv
= �yiv = bi .

Therefore, A · �pa(v),v = b, as claimed.
By Lemma 2 below, the matrix A is invertible in the generic situation. There-

fore, we have shown that �pa(v),v = A−1b is a rational function of �. Proceeding
inductively according to the vertex ordering ≺, we recover �pa(v),v for all v and,
thus, the entire matrix �, as desired. �

LEMMA 2. Let v ∈ V be any node. Let Y ⊂ V \ ({v} ∪ sib(v)), with |Y | =
|pa(v)| = n. Write Y = {y1, . . . , yn} and pa(v) = {p1, . . . , pn}, and define the ma-
trix A as

Aij =
{[

(I − �)T �
]
yipj

, yi ∈ htr(v),

�yipj
, yi /∈ htr(v).

If Y satisfies the half-trek criterion with respect to v, then A is generically invert-
ible.

PROOF. Recall the trek-rule from (2.3). Let H(v,w) ⊂ T (v,w) be the set of
all half-treks from v to w. Then, for each i, j ∈ {1, . . . , n},

Aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
π∈H(yi ,pj )

π(λ,ω), yi ∈ htr(v),

∑
π∈T (yi ,pj )

π(λ,ω), yi /∈ htr(v).

For a system of treks , define the monomial

(λ,ω) = ∏
π∈

π(λ,ω).

Then

det(A) = ∑
� : Y⇒P

(−1)|�|�(λ,ω),

where the sum is over systems of treks � for which all treks ψ ∈ � with sources
in htr(v) are half-treks. (The sign |�| is the sign of the permutation that writes
p1, . . . , pn in the order of their appearance as targets of the treks in � .)

By assumption, there exists some system of half-treks with no sided intersection
from Y to P . Let  be such a system, with minimal total length among all such sys-
tems. Now take any system of treks � from Y to P , such that (λ,ω) = �(λ,ω).
(We do not assume that � has no sided intersection, or has any half-treks.) In
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Lemma 1 in the supplement [Foygel, Draisma and Drton (2012)], we prove that
� =  for any such �—that is,  is the unique system of half-treks with no
sided intersection of minimal total length. Therefore, the coefficient of the mono-
mial (λ,ω) in det(A) is given by (−1)||, and det(A) is not the zero polyno-
mial/power series. For generic choices of (�,�) it thus holds that det(A) �= 0.

�

We now turn to the proof of the nonidentifiability theorem.

THEOREM 2 (HTC-nonidentifiability). Suppose G is a mixed graph in which
every family (Yv :v ∈ V ) of subsets of the vertex set V either contains a set Yv

that fails to satisfy the half-trek criterion with respect to v or contains a pair of
sets (Yv, Yw) with v ∈ Yw and w ∈ Yv . Then the parametrization φG is generically
infinite-to-one.

PROOF. Let

N = {{v,w} :v �= w, (v,w) /∈ B
}

be the set of (unordered) nonsibling pairs in the graph. Treating � as fixed, let
J ∈ R

|N |×|D| be the Jacobian of the equations in (9.2), taking partial derivatives
with respect to the nonzero entries of �. The entries of J are given by

J{v,w},(u,v) = −[
(I − �)T �

]
wu, {v,w} ∈ N,u ∈ pa(v),(9.4)

and all other entries zero. By Lemma 2 in the supplement, it is sufficient to show
that, under the conditions of the theorem, J does not have generically full column
rank.

In the remainder of this proof, we always let � = φG(�,�) when consider-
ing J. If J has generically full column rank, then we can choose a set M ⊂ N with
|M| = |D| = ∑

v∈V |pa(v)|, such that det(JM,D) is not the zero polynomial, where
JM,D is the square submatrix formed by taking all rows of J that are indexed by
M . By the definition of the determinant, there must be a partition of M = ⋃

v Mv

such that for all v, we have

det(JMv,(pa(v),v)) �= 0.

By (9.4), each entry {w1,w2} ∈ Mv must have either w1 = v or w2 = v. Writing
Yv = {w : {v,w} ∈ Mv}, it holds that

det
([

(I − �)T �
]
Yv,pa(v)

) = ±det(J{Yv,v},(pa(v),v)) = ±det(JMv,(pa(v),v))

is nonzero. By Lemma 3 below, this implies that each set Yv satisfies the half-trek
criterion with respect to its indexing node v. Forming a partition of M ⊂ N , the
sets Mv are pairwise disjoint. Hence, no two nodes v,w can satisfy both v ∈ Yw

and w ∈ Yv because otherwise {v,w} ∈ Mv ∩ Mw . �
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LEMMA 3. Let v ∈ V be any node. Let Y ⊂ V \ ({v} ∪ sib(v)), with |Y | =
|pa(v)| = n. If the matrix J = [(I − �)T �]Y,pa(v) is generically invertible, then Y

satisfies the half-trek criterion with respect to v.

PROOF. Abbreviate P = pa(v). We have J = [(I − �)T �]Y,P = [�(I −
�)−1]Y,P . Hence,

det(J) = ∑
W⊂V,|W |=n

det(�Y,W )det
(
(I − �)−1

W,P

)
.

By assumption, det(J) is not the zero polynomial/power series. Therefore, for
some W ⊂ V with |W | = n, we have det(�Y,W ) �≡ 0 and det((I − �)−1

W,P ) �≡ 0.
By Menger’s theorem [see, e.g., Theorem 9.1 of Schrijver (2004)], the nonva-

nishing of det((I − �)−1
W,P ) implies that there is a system � of pairwise vertex-

disjoint directed paths ψi :wi → ·· · → pi , i ∈ [n], whose sources and targets give
W = {w1, . . . ,wn} and P = {p1, . . . , pn}, respectively. Indeed, if no such system
exists, then by Menger’s theorem there is a set C of strictly less than n vertices
such that all directed paths from W to P pass through C. But this implies that the
matrix (I − �)−1

W,P factors as (I − �)−1
W,C · (I − �)−1

C,P , and |C| < n implies that

det((I − �)−1
W,P ) = 0, a contradiction. Note that by erasing loops, we can further

arrange that the ψi do not have self-intersections.
Since det(�Y,W ) �= 0, we can index Y = {y1, . . . , yn} such that �yiwi

�= 0 for
all i. This implies that either yi = wi or yi ↔ wi ∈ B . Now define a system of
half-treks  :Y ⇒ P by setting πi = ψi if wi = yi , and extending ψi at the left-
hand side to

πi = yi ↔ wi → ·· · → pi

if yi �= wi . Since � has no sided intersection,  also has no sided intersection. It
follows that Y satisfies the half-trek criterion with respect to v. �

10. Conclusion. We have proposed graphical criteria for determining iden-
tifiability as well as nonidentifiability of linear structural equation models. The
criteria can be checked in time that is polynomial in the size of the mixed graph
representing the model. To our knowledge, they are the best known. In particular,
they apply to cyclic graphs. For acyclic graphs, the graph decomposition method
discussed in Section 8 further extends their scope. We expect the decomposition
method to also extend the scope of the criteria for cyclic graphs, when a cyclic
model is suitably embedded into an acyclic one, but we leave a thorough study of
this problem for future work.

Our algebraic computations revealed that there remains a “gap” between the
necessary and the sufficient condition for rational identifiability that we have de-
veloped. To better understand this gap, it would be helpful to find an interesting
class of graphs, defined on an arbitrary number of nodes m, which is rationally
identifiable but not HTC-identifiable.
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In models that are not HTC-identifiable, the half-trek method can still prove
certain parameters to be rationally identifiable; recall, for instance, the example
from Figure 5(a). Referring to Theorem 1, if a set Yv satisfies the half-trek cri-
terion with respect to the indexing node v, and Yv ∩ htr(v) = ∅, then the proof
of Theorem 1 shows how to obtain rational expressions in the covariance ma-
trix � that equal the coefficients λwv , where w ∈ pa(v). In the next step of the
recursive procedure that proves Theorem 1, we can solve for any node u with
Yu ∩ htr(u) ⊆ {v}. Continuing in this way, individual parameters can be identified
even though ultimately the procedure will stop before all nodes are visited, as we
are discussing an HTC-inconclusive graph. In particular, the maximum flow con-
struction given in Algorithm 1 will reveal all nodes whose set of incoming directed
edge parameters can be identified via the half-trek criterion. It would be interest-
ing to compare this partial application of the half-trek method to other graphical
criteria for identification of individual edge coefficients; see, in particular, Garcia-
Puente, Spielvogel and Sullivant (2010) for a review and examples of such meth-
ods.
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SUPPLEMENTARY MATERIAL

Inconclusive graphs, proofs and algorithms (DOI: 10.1214/12-
AOS1012SUPP; .pdf). The supplement starts with lists of some mixed graphs on
m = 5 nodes that are not classifiable using our methods, to illustrate the existing
“gap” between our two criteria. After that we prove lemmas used in the main pa-
per for establishing the HTC-identifiability and HTC-infinite-to-one criteria, and
we provide details for the results relating HTC-identifiability to GC-identifiability
and to graph decomposition. We then give correctness proofs for our algorithms for
checking the HTC-criteria, and we discuss the weak HTC-criteria. The supplemen-
tary article concludes with a computational-algebraic discussion of the polynomial
equations that led to the HTC-criteria.
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