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TEST FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE
MATRICES AND BANDWIDTH ESTIMATION

BY YUMOU QIU AND SONG XI CHEN1

Iowa State University, and Peking University and Iowa State University

Motivated by the latest effort to employ banded matrices to estimate a
high-dimensional covariance �, we propose a test for � being banded with
possible diverging bandwidth. The test is adaptive to the “large p, small n”
situations without assuming a specific parametric distribution for the data.
We also formulate a consistent estimator for the bandwidth of a banded high-
dimensional covariance matrix. The properties of the test and the bandwidth
estimator are investigated by theoretical evaluations and simulation studies,
as well as an empirical analysis on a protein mass spectroscopy data.

1. Introduction. High-dimensional data are increasingly collected in statisti-
cal applications, which include biological experiments, climate and environmental
studies, financial observations and others. The high dimensionality calls for new
statistical methodologies which are adaptive to this new feature of the modern
statistical data. The covariance matrix � = Var(X) for a p-dimensional random
vector X is an important measure on the dependence among components of X.
The sample covariance Sn, constructed based on n independent copies of X, is
a key ingredient in many statistical procedures in the conventional multivariate
analysis [Anderson (2003) and Muirhead (1982)] where the data dimension p is
regarded as fixed. The widespread use of Sn in the conventional multivariate pro-
cedures is largely due to Sn being a consistent estimator of � when p is fixed
or small relative to the sample size n. However, for high-dimensional data such
that p/n → c ∈ (0,∞], it is known that the eigenvalues of the sample covariance
matrix are no longer consistent to their population counterpart, as demonstrated
in Bai and Yin (1993), Bai, Silverstein and Yin (1988), Johnstone (2001) and
El Karoui (2011). These mean that the sample covariance Sn is no longer consis-
tent to �, which hinders applications of many conventional multivariate statistical
procedures for high-dimensional data.

To overcome the problem with the sample covariance, constructing covariance
estimators via banding or tapering the sample covariance matrix has been a focus
in high-dimensional covariance estimation. Wu and Pourahmadi (2003) considered
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banding the Cholesky factor matrix via the kernel smoothing estimation, which
was further developed by Rothman, Levina and Zhu (2010). Bickel and Levina
(2008a) proposed banding the sample covariance matrix directly for estimating �

and banding the Cholesky factor matrix for estimating �−1. They demonstrated
that both estimators are consistent to � and �−1, respectively, for some “band-
able” classes of covariance matrices. Cai, Zhang and Zhou (2010) proposed a ta-
pering estimator, which can be viewed as a soft banding on the sample covari-
ance, which was designed to improve the banding estimator of Bickel and Levina.
They demonstrated that the tapering estimator attains the optimal minimax rates
of convergence for estimating the covariance matrix. Wagaman and Levina (2009)
developed a method for discovering meaningful orderings of variables such that
banding and tapering can be applied. Both the banding and tapering methods for
covariance estimation are well connected to the regularization method considered
in Huang et al. (2006), Bickel and Levina (2008b), Fan, Fan and Lv (2008) and
Rothman, Levina and Zhu (2009).

Motivated by the promising results regarding banding and tapering the sample
covariance, we develop in this paper a test procedure on the hypothesis that � is
banded. The rationale for developing such a test is to check a � in the so-called
“bandable” class outlined in Bickel and Levina (2008a) such that the banding or the
tapering estimators are consistent. There is yet a practical guideline to confirm or
otherwise if a � is within the “bandable” class so that the banding and tapering can
be applied. Hence, a direct testing on � being banded provides a path of advance
to gain knowledge on the structure of the covariance. If the banded hypothesis is
confirmed by the test, the banding and tapering estimators may be employed.

Diagonal matrices are the simplest among banded matrices. Given the impor-
tance commanded by covariance matrices in high-dimensional multivariate anal-
ysis, directly testing for � being diagonal and the so-called sphericity hypothesis
in classical multivariate analysis [John (1972) and Nagao (1973)], have been con-
sidered in a set of studies including Ledoit and Wolf (2002), Jiang (2004), Schott
(2005), Chen, Zhang and Zhong (2010) and Cai and Jiang (2011) under high di-
mensionality. For normally distributed data, Jiang (2004) proposed testing for di-
agonal � by considering a coherence statistic Ln = max1≤i<j≤p |ρ̂ij |, where ρ̂ij

is the sample correlation coefficient between the ith and the j th components of
the random vector X. Jiang established the asymptotic distribution of Ln under the
null diagonal hypothesis, which was used to derive a sphericity test. As Ln is an
extreme value type, its convergence to its limiting distribution can be slow. Liu,
Lin and Shao (2008) proposed a modification which is shown to be able to speed
up the convergence. Cai and Jiang (2011) extended the test of Jiang (2004) for
the bandedness of �, which is shown to be applicable for the “large p, small n”
situations such that log(p) = o(n1/3).

In this paper, we propose a nonparametric test for � being banded without as-
suming a parametric distribution for the high-dimensional data. The test is formu-
lated to allow the dimension to be much larger than the sample size. Based on the
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test statistic for bandedness, we propose a consistent estimator for the bandwidth
of a banded high-dimensional covariance. The properties of the test and bandwidth
estimator are demonstrated by theoretical evaluation, simulation studies and em-
pirical analysis on a protein mass spectroscopy data for prostate cancer.

The paper is organized as follows. Section 2 introduces the hypotheses, the as-
sumptions and the test statistic. In Section 3, we present the properties of the test
statistic and the test, and evaluate its power properties. Estimation of the bandwidth
is considered in Section 4. Section 5 reports simulation results. An empirical anal-
ysis on a prostate cancer spectroscopy data is outlined in Section 6. All technical
details are relegated to the Appendix.

2. Preliminary. Let X1,X2, . . . ,Xn be independent and identically dis-
tributed p-dimensional random vectors with mean μ and covariance matrix
� = (σij )p×p . A matrix A = (aij )p×p is said to be banded if there exists an inte-
ger k ∈ {0, . . . , p − 1} such that aij = 0 for |i − j | > k. The smallest k such that
A is banded is called the bandwidth of A. Banding of A at a bandwidth k refers to
setting aij = 0 for all |i − j | > k.

Let Bk(�) = (σij I{|i−j | ≤ k})p×p be a banded version of � with bandwidth k.
Specifically, B0(�) is the diagonal version of �. We intend to test

Hk,0 :� = Bk(�) vs. Hk,1 :� �= Bk(�)(2.1)

for k = o(p1/4). Hence, the bandwidth k of � to be tested can be either fixed or
diverging to infinite as long as it is slower than p1/4. Allowing divergent bandwidth
in the hypothesis is an improvement over the sphericity test as considered in Ledoit
and Wolf (2002) and Chen, Zhang and Zhong (2010). It also connects to the latest
works on high-dimensional covariance estimation with banded or tapered versions
of the sample covariance as in Bickel and Levina (2008a) and Cai, Zhang and
Zhou (2010). In particular, Cai, Zhang and Zhou (2010) showed that the optimal
minimax rates for the bandwidth of the banded covariance estimator of Bickel and
Levina (2008a) is k = O[{n/ log(p)}1/(2α+1)], and that for the tapering estimator is
k = O(n1/(2α+1)), where α is an index value for a “bandable” class of covariances

U(ε0, α,C) =
{
� : max

j

∑
|i−j |>k

|σij | ≤ Ck−α for all k > 0,

(2.2)

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ ε−1
0

}
.

The range of bandwidths k = o(p1/4) in the hypothesis (2.1) should cover the
above optimal rates when p � n.

We note that Hk,0 is valid if and only if
∑

|i−j |>kp
σ 2

ij = 0, and the latter implies

that tr{�−Bk(�)}2 = 0. A strategy is to construct an unbiased estimator of tr{�−
Bk(�)}2 and use it to develop the test statistic. Let Dq := ∑p−q

l=1 σ 2
ll+q be the sum
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of squares of the qth sub-diagonal of �. Then, tr{� − Bk(�)}2 = 2
∑p−1

q=k+1 Dq .
It can be checked that an unbiased estimator of Dq is

D̂nq =
p−q∑
l=1

{
1

P 2
n

∗∑
i,j

(XilXil+q)(XjlXjl+q) − 2
1

P 3
n

∗∑
i,j,k

XilXkl+q(XjlXjl+q)

+ 1

P 4
n

∗∑
i,j,k,m

XilXjl+qXklXml+q

}
,

where
∑∗ denotes summation over mutually different subscripts shown and P b

n =
n!/(n − b)!. The reason to sum over different indices is for easier manipulations
with the mean and variance of the final test statistic and to establish the asymptotic
normality. The latter leads to a test procedure for the bandedness.

We consider the following statistic:

Wnk := 2
p−1∑

q=k+1

D̂nq.(2.3)

As each D̂nq is invariant under the location shift, Wnk is also location shift invari-
ant. Hence, without loss of generality, we assume μ = E(X) = 0.

To facilitate our analysis, as Bai and Saranadasa (1996) and Chen, Zhang and
Zhong (2010), we assume a multivariate model for the high-dimensional data.

ASSUMPTION 1. (i) X1,X2, . . . ,Xn are independent and identically dis-
tributed (i.i.d.) p-dimensional random vectors such that

Xi = �Zi for i = 1,2, . . . , n,(2.4)

where � is a p × m constant matrix with m ≥ p, ��′ = �, and Z1, . . . ,Zn are
i.i.d. m-dimensional random vectors such that E(Z1) = 0 and Var(Z1) = Im.

(ii) Write Z1 = (z11, . . . , z1m)T . Each z1l has uniformly bounded 8th moment,
and there exist finite constants 	 and ω such that for l = 1, . . . ,m, E(z4

1l) = 3+	,
E(z3

1l) = ω and for any integers �ν ≥ 0 with
∑q

ν=1 �ν = 8

E(z
�1
i1

z
�2
i2

· · · z�q

iq
) = E(z

�1
1i1

)E(z
�2
1i2

) · · ·E(z
�q

1iq
)(2.5)

whenever i1, i2, . . . , iq are distinct subscripts.

The requirement of common third and fourth moments of z1l is not essential
and is purely for the sake of simpler notation. Our theory allows different third and
fourth moments as long as they are uniformly bounded, which are actually assured
by z1l having uniformly bounded 8th moment.

The asymptotic framework that regulates the sample size n, the dimensionality
p and the covariance � is the following.
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ASSUMPTION 2. As n → ∞, p = p(n) → ∞, n = O(p) and tr(�4)/

tr2(�2) = O(p−1).

We note that n = O(p) includes p � n, the “large p, small n” paradigm,
but may not imply p = O(n). Different from the usual approach of specifying
an explicit growth rate of p with respect to n, Assumption 2 requires ratio of
tr(�4) to tr2(�2) shrinks at the rate of p−1 or smaller. The latter is stronger than
tr(�4)/tr2(�2) = o(1). It is needed due to possible diverging bandwidths.

Let

Up =
{
� :

tr(�4)

tr2(�2)
= O(p−1)

}

be the class of covariances satisfying the last part of Assumption 2. The class
includes the “bandable” class U(ε0, α,C) of Bickel and Levina (2008a) given in
(2.2) for the banding estimation. To appreciate this, let λ1 ≤ λ2 ≤ · · · ≤ λp be the
eigenvalues of �. If the smallest and largest eigenvalues are bounded away from 0
and ∞ respectively, then

tr(�4)

tr2(�2)
=

∑p
i=1 λ4

i

(
∑p

i=1 λ2
i )

2
≤ λ4

p

pλ4
1

= O(p−1).

Therefore, the “bandable” covariances are contained in Up . Now suppose that �

has exactly mp zero eigenvalues and λmp+1 being the smallest nonzero eigenvalue.
Then

tr(�4)

tr2(�2)
≤ λ4

p

(p − mp)λ4
mp+1

.

Thus, � is in Up as long as λp/λmp+1 is bounded and mp ≤ cp for some c ∈ (0,1)

as p → ∞. The latter means that the class Up is likely to contain the class con-
sidered in Cai, Zhang and Zhou (2010), which allows the smallest eigenvalue to
diminish to zero. It can be also checked that the following two covariances,

� = (
σiσjρ

|j−i|)
p×p or � = (

σiσjρ
|j−i|I(|j − i| ≤ d)

)
p×p,

are members of Up if {σ 2
l }pl=1 are uniformly bounded from infinity and zero re-

spectively.

3. Main results. We first describe the basic properties of the statistic Wnk

defined in (2.3). Let

ν2
nk = 4

n2 tr2(�2) + 8

n
tr

{
�

(
� − Bk(�)

)}2

(3.1)

+ 4

n
	 tr

{
�′(� − Bk(�)

)
� ◦ �′(� − Bk(�)

)
�

}
,

where  ◦ � = (ωijλij ) for two matrices  = (ωij ) and � = (λij ).
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PROPOSITION 1. Under Assumptions 1 and 2,

E(Wnk) = tr[{� − Bk(�)}2] and Var(Wnk) = ν2
nk + o(ν2

nk).

The proposition indicates that under Hk,0,

E(Wnk) = 0 and νnk = 2 tr[{Bk(�)}2]/n,

and ν2
nk is the leading order variance of Wnk . It can be shown that tr{�(� −

Bk(�))}2 ≤ 4(k + 1)2tr(�4). Since

tr
{
�′(� − Bk(�)

)
� ◦ �′(� − Bk(�)

)
�

} ≤ tr
{
�

(
� − Bk(�)

)}2
,

	 ≥ −2 and tr(�4)/tr2(�2) = O(p−1), we have

4n−2 tr2(�2) ≤ ν2
nk ≤ C0anptr2(�2)(3.2)

for a constant C0 ≥ 4 and anp = n−2 +k2(np)−1. We note that anp → 0 as n → ∞
since k = o(p1/4). In particular, if k is fixed, anp = O(n−2).

The following theorem establishes the asymptotic normality of Wnk .

THEOREM 1. Under Assumptions 1 and 2, and if k = o(p1/4),

Wnk − tr[{� − Bk(�)}2]
νnk

D→ N(0,1).

In order to formulate a test procedure based on the asymptotic normality, we
need to estimate tr[{Bk(�)}2] since νnk = 2 tr[{Bk(�)}2]/n under Hk,0. Let Vnk :=
D̂n0 + 2

∑k
q=1 D̂nq be the estimator, whose consistency to tr[{Bk(�)}2] is implied

in the following proposition.

PROPOSITION 2. Under Assumptions 1 and 2, Var{Vnk/tr(�2)} = O(anp),
where anp = n−2 + k2(np)−1.

Since E(Vnk) = tr[{Bk(�)}2] and anp → 0, Proposition 2 means that, under

Hk,0, Vnk/tr[{Bk(�)}2] p→ 1 as n → ∞. This together with Theorem 1 indicates
that under Hk,0

Tnk =: nWnk

Vnk

D→ N(0,4).

This leads to our choice of Tnk as the test statistic and the proposed test of size α

that rejects Hk,0 if Tnk ≥ 2zα where zα is the upper α quantile of N(0,1).
As Theorem 1 prescribes the asymptotic normality under both Hk,0 and Hk,1, it

permits a power evaluation of the test. Let

δnk = tr(�2) − tr[{Bk(�)}2]
νnk

,(3.3)
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which may be viewed as a signal to noise ratio for the testing problem. This is be-
cause tr[{� − Bk(�)}2] is the square of Frobenius norm of the difference between
� and its k-banded version, and νnk measures the level of noise in the statistic Wnk .
Then, the power of the test under Hk,1 :� �= Bk(�) is

βnk = P {nWnk/Vnk ≥ 2zα|� �= Bk(�)}

= P

(
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ 2zαVnk

nνnk

− δnk

)
.

Since νnk ≥ 2n−1 tr(�2), then 2Vnk/(nνnk) ≤ Vnk/ tr(�2) for n large. Hence
asymptotically,

βnk ≥ P

(
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ zα

Vnk

tr(�2)
− δnk

)
.(3.4)

To gain more insight on the power, let rk = tr[{Bk(�)}2]/ tr(�2). Clearly, rk ≤ 1
and is monotone nondecreasing with respect to k. If � is banded with band-
width k0, then

rk < 1 for k < k0 and rk = 1 for k ≥ k0.(3.5)

From the bounds for νnk in (3.2), it follows that

(C0anp)−1/2(1 − rk) ≤ δnk ≤ 1
2n(1 − rk),(3.6)

which indicates that a
−1/2
np (1 − rk) = O(δnk). When k is fixed, anp = O(n−2) and

δnk ∼ n(1 − rk), indicating that δnk is at the exact order of n(1 − rk).

THEOREM 2. Under Assumptions 1 and 2, Hk,1 and if k = o(p1/4), then:

(i) lim infn βnk ≥ 1 − �(zα − lim infn δnk);
(ii) if a

−1/2
np (1 − rk) → ∞, then βnk → 1 as n → ∞.

Theorem 2 indicates that the proposed test is consistent as long as the speed
of 1 − rk → 0 under Hk,1 is not faster than a

1/2
np . The test will have nontrivial

power as long as lim infn δnk > 0. If n(1 − rk) → 0, the test will have no power
beyond the significant level α. We note that this happens when Hk,0 and Hk,1

are extremely close to each other, so that 1 − rk decays to zero faster than n−1.
We are actually a little amazed by the fact that the test is powerful as long as
lim infn a

−1/2
np (1 − rk) > 0 or equivalently (1 − rk) does not shrink to zero faster

than a
1/2
np , despite the high dimensionality and a possible diverging bandwidth k.

Theorem 2 and (3.6) together imply that if rk does not vary much as p increases,
the power of the test will be largely determined by n, as confirmed by our simula-
tion study in Section 5.

Our proposed test is targeted on the covariance matrix �. A test for the correla-
tion matrix can be developed by modifying the test statistic by first standardizing
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each data dimension via its sample standard deviation. The theoretical justification
would be quite involved, and would require extra effort. In addition to be invari-
ant under the location shift, the test statistic is invariant if all the variables among
the high-dimensional data vector are transformed by a common scale. However,
the proposed test statistic is not invariant under variable-specific scale transforma-
tion. The above mentioned test for the correlation matrix would be invariant under
variable-specific scale transformation.

4. Bandwidth estimation. We propose in this section an estimator to the
bandwidth of banded covariance �. Estimating the bandwidth of a banded co-
variance matrix is an important and practical issue, given the latest advances on
covariance estimation by banding [Bickel and Levina (2008a)] or tapering [Cai,
Zhang and Zhou (2010)] sample covariance matrices. Indeed, finding an adequate
bandwidth is a pre-requisite for applying either the banding or tapering estimators.

The proposed estimator is motivated by the test procedure developed in the pre-
vious section. Let k0 be the true bandwidth. As the proposed test is consistent as
long as rk → 1 not too fast, and the sample size is large enough (can still be much
less than p), the proposed test would reject (not reject) Hk,0 for k less (larger)
than k0. An immediate but rather naive strategy would be to use the smallest inte-
ger k such that Hk,0 is not rejected as the bandwidth estimator. However, this strat-
egy may be insufficient to counter “abnormal” samples which can produce larger
(smaller) values of the statistic T̃nk := Wnk/Vnk consistently for a wide range of k

values, when in fact Hk,0 (Hk,1) is true. And yet these “abnormal” samples are ex-
pected within the normal range of variations. To make the estimator robust against
these “abnormal” samples and not so much dependent on the significant level α,
we consider an estimator based on the difference between successive statistics,
dnk = T̃nk − T̃nk+1.

We assume the true bandwidth k0 be either fixed or diverging as long as

k0(n
−1/2 + p−1/4) → 0 as n → ∞,(4.1)

which covers a quite wide range for the bandwidth. Note that

T̃nk = Wnk − E(Wnk)

νnk

νnk

Vnk

+ E(Wnk)

Vnk

.

For k ≤ M , where M = o(p1/4) is a pre-chosen sufficiently large integer,
{Wnk − E(Wnk)}/νnk is stochastically bounded (Theorem 1) and from (3.2), we
have

T̃nk = Op

(
a

1/2
np r−1

k tr[{Bk(�)}2]
Vnk

)
+ (r−1

k − 1)
tr[{Bk(�)}2]

Vnk

.

Let bnk = Vnk/ tr[{Bk(�)}2] − 1. From Propositions 1 and 2,

E(bnk) = 0 and Var(bnk) = O(anpr−2
k ).(4.2)
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Since � = Bk0(�) is nonnegative definite, tr(�2) ≤ (2k0 + 1) tr[{B0(�)}2].
Hence, for any k, rk ≥ (2k0 + 1)−1. These imply that

T̃nk = Op(a1/2
np k0) + (r−1

k − 1){1 + op(1)}.(4.3)

It can be checked that a
1/2
np k0 → 0 under (4.1), which makes the first term on the

right of the above equation negligible relative to the second term. And the second
term is quite indicative between k < k0 and k ≥ k0, since rk = 1 for k ≥ k0.

To amplify the second term when k < k0 while not inflicting the first term on
the right of (4.3) too much, we consider multiplying nδ on T̃nk for a small positive
δ and let d

(δ)
nk = nδ(T̃nk − T̃nk+1). The proposed bandwidth estimator is

k̂δ,θ = min
{
k :

∣∣d(δ)
nk

∣∣ < θ
}

(4.4)

for a pair of tuning parameters δ > 0 and θ > 0. The following theorem gives the
consistency of the bandwidth estimator for both fixed or diverging k0.

THEOREM 3. Under Assumptions 1 and 2, if lim infn{infk<k0(rk+1 − rk)} > 0,

then for any θ > 0, k̂δ,θ − k0
p→ 0 under either of the two settings: (i) for any

δ ∈ (0,1) if k0 is bounded; (ii) for any δ ∈ (0,1/2] if k0 is diverging but satisfies
(4.1), and {σll}pl=1 are uniformly bounded away from 0 and ∞.

We would like to remark that the multiplier nδ in d
(δ)
nk ’s formation leads to θ

being “free ranged” as long as θ > 0. If such multiplication is not administrated,
namely by setting δ = 0, the range of θ needs to be restricted properly to en-
sure convergence. The requirement of lim infn{infk<k0(rk+1 − rk)} > 0 is to avoid
situations where � has segments of zero sub-diagonals followed by nonzero sub-
diagonals when one moves away from the main diagonal. Our estimator can be
modified to suit such situations. However, we would not elaborate here for the sake
of simplicity in the presentation. Attaining the consistency of k̂δ,θ with diverging
k0 requires a smaller δ value.

To better understand the theorem and the bandwidth estimator, we conducted
a simulation study for k0 = 5, n = 60 and p = 600 with Xi generated from
Model (5.1) with a multivariate normal distribution. The detailed simulation setting
will be provided in Section 5. Figure 1 presents box-plots of the modified statistics
nδT̃nk (left panel) and its first-order difference d

(δ)
nk (right panel), with δ = 0.5. We

see from the right panel that the first five boxes are relatively large, and d
(δ)
nk is close

to 0 while for k ≥ 5. This indicates that five would be the bandwidth estimate.
In practical implementations with finite samples, the bandwidth estimator may

be sensitive to the tuning parameters δ and θ . Note that, as revealed a few para-
graphs earlier, dnk should be significantly larger than 0 for k < k0 and close to 0
for k ≥ k0. Such a pattern, as displayed in Figure 1, indicates that k0 is a change
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FIG. 1. Box-plots of the modified statistics nδT̃nk and their first order differences of the simulated
data. The dashed line in the right panel is θ = 0.06. The true bandwidth is 5.

point for {dnk}Mk=0. This motivates us to consider a regression change-point de-
tection algorithm for bandwidth estimation. Consider dnj , the difference between
successive statistics Tnj , for j = 1, . . . ,M , for a sufficiently large M that covers
the true bandwidth k0. The idea is to fit, at each candidate k, a regression function
gk(j) to {dnj }Mj=0 such that g(j) ≡ g(k) for all j > k. We may fit a nonparametric,
locally weighted linear regression [Cleveland and Devlin (1988); Fan and Gijbels
(1996)] on j ∈ Lk = {l : 0 ≤ l ≤ k} to the left of k with the smoothing window-
width hk, where h is a smoothing parameter, and fit a flat line at the level dnk for
j ∈ Rk = {l :k + 1 ≤ l ≤ M} to the right of k. If k is too small for the above non-
parametric regression, a parametric polynomial regression may be conducted. Let
ĝk(j) be the regression estimate, nonparametric or parametric, obtained over the
set Lk , and let

err(k) = ∑
j∈Lk

|ĝk(j) − dnj | +
∑
j∈Rk

|dnk − dnj |

be the absolute deviation of the fitted errors. Then a bandwidth estimator, as we
call the change-point estimator, is

k̂ = arg min
k

{err(k) : 1 ≤ k ≤ M}.(4.5)

Our empirical studies reported in Section 5 show this estimator worked quite well.
Bickel and Levina (2008a, 2008b) proposed a method to select the bandwidth

based on a repeated random splitting of the original sample to two sub-samples
of sizes n1 and n2 = n − n1. Let �̂v

1 and �̂v
2 be the sample covariances based

the sub-samples of sizes n1 and n2 respectively, where v denotes the vth split,
for v = 1, . . . ,N , where N is the total numbers of sample splitting. The risk for
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each candidate k is defined to be R(k) = E‖Bk(�̂) − �‖(1,1), where for a p1 × p2
matrix A = (aij ), ‖A‖(1,1) = max1≤j≤p2

∑p1
i=1 |aij |. An empirical version of the

risk is

R̂(k) = 1

N

N∑
v=1

‖Bk(�̂
v
1 ) − �̂v

2‖(1,1),(4.6)

and the bandwidth estimator is

k̂BL = arg min
0≤k≤p−1

R̂(k).

Bickel and Levina (2008a) recommended n1 to be n/3, and the number of random
splits, N = 50, while Bickel and Levina (2008b) suggested n1 = n(1 − 1/ logn)

and using the Frobenius norm instead of the ‖ · ‖(1,1) norm. Rothman, Levina and
Zhu (2010) considered a similar method to select the bandwidth in their estimator.
We note that these approaches can be adversely impacted by high dimensionality,
due to the fact that �̂2 may be a poor estimator of � if p is much larger than n, as
found in early works [Johnstone (2001); Bai and Silverstein (2005)].

5. Simulation results. In this section, we report results from simulation stud-
ies to verify the proposed test for the bandedness and the bandwidth estimator.
We evaluate the performance of the proposed test under several different struc-
tures of covariance matrix for normal and gamma random vectors. We gener-
ate p-dimensional independent and identical multivariate random vectors Xi =
(Xi1, . . . ,Xip)′ according to a model

Xij =
k0∑

l=0

γlZij+l ,(5.1)

where k0 is the bandwidth of the covariance, γ0 = 1 in all settings and the other
coefficients γl will be specified shortly. Two distributions are assigned to the i.i.d.
Zij : (i) the normal distribution N(0,1); (ii) the standardized Gamma(1,0.5) distri-
bution so that it has zero mean and unit variance. To mimic the “large p, small n”
paradigm, we choose n = 20,40,60 and p = 50,100,300,600, respectively.

We first evaluate the size of the proposed test under the null hypothesis
Hk,0 :� = Bk(�) for k = 0 (diagonal), 1,2 and 5. The coefficients γl for l > 0
are: γ1 = 1 and 0.5, respectively, for k = 1; γ1 = γ2 = 1, and γ1 = 0.5 and
γ2 = 0.25, respectively, for k = 2; and γ1 = · · · = γ5 = 0.4 for k = 5. To assess
the power, we generate data according to (5.1) so that � = Bk(�) and test for
Hk−1,0 :� = Bk−1(�) for k = 2 and 5, respectively, with the γl values being the
same with those in the corresponding k in the simulation for the size reported
above. We note that this design, having the bandwidth of the null hypothesis adja-
cent to the true bandwidth, is the hardest for the test, as the null and the alternative
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is the closest, given the setting of the parameters {γl}. All the simulation results
are based on 1000 simulations.

We also evaluate the test proposed in Cai and Jiang (2011), based on the asymp-
totic distribution of the coherence statistic Ln under the same simulation settings
used for the proposed test. The test encountered a very severe size distortion in that
the real sizes are much less than the nominal level of 5%, which also caused the
power of the test to be unfavorably low. For these reasons, we will not report the
simulation results of the test. The coherence statistic is the largest Pearson corre-
lation coefficients among all pairs of different components in X, and is an extreme
value-type statistic. Extreme value statistics are known to be slowly converging,
and a computing intensive method is needed to speed up its convergence. The
asymptotic distribution established in Cai and Jiang (2011) may be the foundation
to justify such a method.

Table 1 reports the empirical sizes of the proposed test at the 5% nominal sig-
nificance for Hk,0 with k = 0,1,2 and 5, respectively, under both the normal and
gamma distributions. Table 2 summarizes the empirical power of the tests whose
sizes are reported in Table 1. To understand the power results, Table 2 also con-
tains the values of 1 − rk for each simulation setting. We observe from Table 1 that
the test has reasonably empirical sizes, around 5%, and that the test is not sensi-
tive to the dimensionality indicated by its robust performance. There is some size
inflation, which is due to a number of factors, mainly to the dimensionality p, the
sample size n and the approximation error of the finite sample distribution of the
test statistic by the limiting normal distribution. We recall that the test statistic is a
linear combination of U -statistics, whose convergence to the limiting normal dis-
tribution can be slow. In the simulations for power evaluation (reported in Table 2),
we designed the simulation so that a constant rk was maintained for a set of dif-
ferent ps, while n was held fixed. The empirical powers reported in Table 2 show
that the power is quite reflective to the sample size n and 1 − rk , namely larger n

or large 1 − rk leads to higher power. This is because as rk decreases, the signal of
the test increases. So it becomes easier to distinguish the null hypothesis from the
alternative. And after we controlled n and 1 − rk , the power was not sensitive to p

at all, confirming a remark made at the end of Section 3.
For bandwidth estimation, we generate {Xi}ni=1 according to (5.1). While we

keep γ0 = 1, the other coefficients γl for l > 0 are:

Bandwidth 3: γi = 1, for i = 1,2,3;
Bandwidth 5: γi = 0.4 for 1 ≤ i ≤ 5;

Bandwidth 10: γi = 0.2 for 1 ≤ i ≤ 5 and γi = 0.4 for 6 ≤ i ≤ 10;
Bandwidth 15: γi = 0.2 for 1 ≤ i ≤ 10 and γi = 0.4 for 11 ≤ i ≤ 15.

The covariances have bandwidth 3, 5, 10 and 15 respectively. We evaluate two
bandwidth estimators. One is k̂δ,θ given in (4.4) with δ = 0.5 and θ = 0.06, namely
k̂0.5,0.06, and the other is the change-point estimator given in (4.5), applied on



BANDEDNESS TEST FOR COVARIANCE MATRICES 1297

TABLE 1
Empirical sizes of the proposed test at 5% significance for the normal and gamma random vectors

generated according to model (5.1)

Normal Gamma

p p

n 50 100 300 600 50 100 300 600

(a) H0 :� = B0(�)

20 0.069 0.065 0.061 0.066 0.055 0.056 0.065 0.075
40 0.067 0.049 0.047 0.060 0.056 0.054 0.055 0.059
60 0.066 0.064 0.045 0.051 0.068 0.039 0.065 0.049

H0 : � = B1(�)

γ1 = 1
20 0.069 0.061 0.056 0.060 0.062 0.058 0.069 0.069
40 0.061 0.048 0.048 0.069 0.059 0.049 0.069 0.075
60 0.045 0.053 0.056 0.067 0.048 0.061 0.068 0.059

γ1 = 0.5
20 0.065 0.069 0.058 0.067 0.063 0.061 0.057 0.061
40 0.063 0.052 0.047 0.068 0.059 0.055 0.066 0.071
60 0.050 0.056 0.057 0.061 0.050 0.070 0.068 0.060

(c) H0 : � = B2(�)

γ1 = γ2 = 1
20 0.058 0.050 0.055 0.058 0.056 0.046 0.062 0.062
40 0.049 0.042 0.051 0.058 0.059 0.048 0.076 0.071
60 0.050 0.043 0.065 0.064 0.040 0.063 0.065 0.052

γ1 = 0.5, γ2 = 0.25
20 0.060 0.055 0.056 0.061 0.059 0.054 0.062 0.062
40 0.055 0.047 0.055 0.059 0.058 0.046 0.071 0.064
60 0.044 0.043 0.058 0.060 0.042 0.060 0.067 0.061

(d) H0 : � = B5(�) with γ1 = · · · = γ5 = 0.4
20 0.045 0.058 0.067 0.059 0.050 0.061 0.054 0.064
40 0.043 0.054 0.049 0.061 0.041 0.052 0.065 0.064
60 0.031 0.046 0.065 0.069 0.034 0.040 0.053 0.048

candidate ks whose p-values for H0k are larger than 10−10. We employ the LOESS
algorithm in R to carry our the nonparametric regression estimation to the left of
a k, with a default smoothing parameter h = 0.75.

For each �, we compare the proposed bandwidth estimators with the estimators
advocated in Bickel and Levina (2008a, 2008b) and Rothman, Levina and Zhu
(2010). We choose n to be 20, 40 and 60. For each n, p is chosen 2 times, 5 times
and 10 times of n, respectively. Following the settings of Bickel and Levina (2008a,
2008b), n1 is chosen to be n/3 and n(1 − 1/ logn), respectively, and the number
of random splits in (4.6) is N = 50.
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TABLE 2
Empirical power of the proposed test at α = 5% for the normal and gamma random vectors

generated according to model (5.1)

Normal Gamma

p p

n 50 100 300 600 50 100 300 600

(a) H0 :� = B1(�) when � = B2(�)

γ1 = γ2 = 1, 1 − r1 = 1/14
20 0.300 0.313 0.330 0.336 0.315 0.312 0.340 0.312
40 0.683 0.722 0.711 0.702 0.710 0.721 0.752 0.741
60 0.962 0.964 0.952 0.954 0.958 0.955 0.950 0.949

γ1 = 0.5, γ2 = 0.25, 1 − r1 = 1/35
20 0.146 0.144 0.139 0.152 0.148 0.140 0.147 0.143
40 0.269 0.253 0.258 0.279 0.256 0.281 0.311 0.311
60 0.406 0.443 0.455 0.451 0.438 0.449 0.458 0.441

(b) H0 :� = B4(�) when � = B5(�) with
γ1 = · · · = γ5 = 0.4, 1 − r4 = 1/38.05

20 0.090 0.112 0.119 0.123 0.096 0.112 0.108 0.118
40 0.149 0.181 0.178 0.200 0.161 0.169 0.218 0.196
60 0.261 0.284 0.328 0.314 0.246 0.297 0.290 0.284

Table 3 reports the average empirical bias and standard deviation of the five
bandwidth estimators based on 100 replications. We observe from Table 3 that
the overall performance of the proposed estimators is better than those of Bickel
and Levina (2008a, 2008b) and Rothman, Levina and Zhu (2010), with smaller
standard deviation and bias. Moreover, as n is increased, both the bias and stan-
dard deviation of the proposed estimators decreased, and are quite robust to p,
which is a nice property to have. For the estimators of Bickel and Levina (2008a,
2008b) and Rothman, Levina and Zhu (2010), the bias and the standard deviation
could increase along with the increase of p, and are much larger than those of the
proposed estimators. These are likely caused by the problems associated with the
sample covariance matrix when the data dimension is high.

6. Empirical study. In this section, we report an empirical study on a prostate
cancer data set [Adam et al. (2003)] from protein mass spectroscopy, which was
aimed to distinguish the healthy people from the ones with the cancer by analyz-
ing the constituents of the proteins in the blood. Adam et al. (2003) recorded for
each blood serum sample i, the intensity Xij for a large number of time-of-flight
values tj . The time of flight is related to the mass over charge ratio m/z of the
constituent proteins. They collected the intensity in the total of 48,538 m/z-sites
and the full data set consisted of 157 healthy patients and 167 with cancer.
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TABLE 3
Averaged empirical bias (standard deviation) of the five bandwidth estimators: estimator (4.4) with
δ = 0.5 and θ = 0.06 (fixed), the change-point estimator (4.5) (change-point) with h = 0.75 and
the estimators proposed in Bickel and Levina (2008a) (BLa), Bickel and Levina (2008b) (BLb)

and Rothman, Levina and Zhu (RLZ)

Bandwidth

n p Method 3 5 10 15

20 40 Fixed 0.58 (1.465) 0.07 (0.946) −0.5 (1.114) −1.63 (1.931)

Change-point 0.60 (0.569) −0.21 (0.518) −1.48 (2.134) 0.06 (1.734)

BLa −0.66 (0.855) −0.86 (1.287) −4.72 (2.202) −9.19 (2.246)

BLb 0.59 (1.036) −0.53 (1.460) −3.97 (2.932) −6.63 (4.403)

RLZ 0.11 (1.363) −0.18 (1.855) −2.55 (2.732) −8.02 (2.760)

100 Fixed 0.14 (0.636) 0.1 (0.659) −0.22 (0.440) −0.96 (0.875)

Change-point 0.56 (0.499) −0.07 (0.293) −0.52 (0.882) 0.18 (0.968)

BLa −0.09 (1.272) 0.45 (1.617) −2.33 (2.010) −6.14 (2.686)

BLb 0.7 (1.219) −0.26 (1.561) −3.88 (2.772) −7.29 (3.506)

RLZ 0.45 (1.861) −0.59 (1.799) −3.79 (2.203) −8.8 (2.103)

200 Fixed 0.01 (0.1) 0 (0) −0.12 (0.327) −0.66 (0.728)

Change-point 0.67 (0.473) 0 (0) −0.18 (0.435) 0.09 (0.379)

BLa 0.78 (2.077) 1.14 (2.327) −0.58 (2.637) −2.55 (3.560)

BLb 1.18 (1.935) −0.1 (2.302) −2.91 (2.878) −6.14 (3.579)

RLZ 0.55 (1.641) −0.29 (1.719) −4.6 (1.928) −9.51 (1.823)

40 80 Fixed 0.14 (0.551) 0.08 (0.464) −0.01 (0.1) −0.10 (0.302)

Change-point 0.47 (0.502) −0.01 (0.100) −0.12 (0.383) 0.08 (0.273)

BLa −0.24 (0.780) 0.23 (1.014) −1.32 (1.663) −3.55 (2.907)

BLb 1.5 (1.514) 0.94 (1.427) 0.06 (2.210) −0.17 (3.260)

RLZ 1.05 (1.629) 0.71 (2.222) 0.72 (2.374) 1.28 (3.229)

200 Fixed 0 (0) 0 (0) 0 (0) −0.04 (0.197)

Change-point 0.55 (0.500) 0 (0) −0.04 (0.281) 0.02 (0.141)

BLa 0.29 (1.200) 1.03 (1.322) 0.28 (1.633) −1.30 (2.285)

BLb 1.64 (1.605) 1.24 (1.837) 0.58 (2.833) −0.1 (2.976)

RLZ 1.36 (2.435) 1.16 (2.465) 2.07 (3.647) 1.07 (2.861)

400 Fixed 0 (0) 0 (0) 0 (0) 0 (0)
Change-point 0.56 (0.499) 0 (0) 0 (0) 0 (0)
BLa 0.88 (1.754) 1.5 (1.962) 1.25 (2.240) 0.22 (2.642)

BLb 2.61 (2.457) 1.74 (2.493) 0.68 (3.396) 0.09 (3.715)

RLZ 2.19 (2.943) 1.98 (3.369) 1.17 (3.420) −0.39 (2.821)

Tibshirani et al. (2005) analyzed the data by the fused Lasso. They ignored m/z-
ratios below 2000 to avoid chemical artifacts, and averaged the intensity record-
ings in consecutive blocks of 20. These gave rise to a total of 2181 dimensions
per observation. Levina, Rothman and Zhu (2008) estimated the inverse of the co-
variance matrix of the intensities by an adaptive banding approach with a nested
Lasso penalty. They carried out additional averaging of the data of Tibshirani et



1300 Y. QIU AND S. X. CHEN

TABLE 3
(Continued)

Bandwidth

n p Method 3 5 10 15

60 120 Fixed 0.02 (0.141) 0.08 (0.706) 0.02 (0.2) −0.01 (0.1)

Change-point 0.52 (0.502) 0 (0) 0 (0) −0.01 (0.1)

BLa 0.22 (0.938) 0.85 (0.989) 0.14 (1.363) −0.88 (1.659)

BLb 1.71 (1.458) 1.52 (1.541) 1.67 (2.108) 1.49 (2.615)

RLZ 1.24 (1.753) 0.71 (1.431) 2.03 (2.683) 2.13 (2.845)

300 Fixed 0 (0) 0 (0) 0 (0) 0 (0)
Change-point 0.58 (0.496) 0 (0) 0 (0) 0 (0)
BLa 0.47 (1.439) 1.56 (1.683) 1.06 (2.136) 0.70 (2.452)

BLb 2.15 (2.017) 2.04 (2.474) 1.73 (2.877) 1.74 (2.922)

RLZ 1.68 (2.188) 1.02 (2.383) 2.45 (3.686) 2.75 (3.331)

600 Fixed 0 (0) 0 (0) 0 (0) 0 (0)
Change-point 0.54 (0.501) 0 (0) 0 (0) 0 (0)
BLa 1.05 (1.702) 1.92 (2.102) 2.01 (2.393) 1.06 (2.490)

BLb 3.16 (2.631) 2.87 (2.699) 2.97 (3.532) 1.33 (3.254)

RLZ 3.3 (3.721) 3.23 (3.787) 3.82 (4.029) 2.7 (3.506)

al. (2005) in consecutive blocks of 10, resulting in a total of 218 dimensions. We
considered the standardized data of Levina, Rothman and Zhu (2008), and tested
for the banded structure of the covariance matrix of the intensities.

The test statistics, p-values and the first order differences dnk for the healthy and
cancer groups are displayed in Figure 2 for bandwidths k ≥ 50. We do not display
in the figure for bandwidths less than 50 since the values of the test statistics are
too large, and the associated p-values for H0k are too small for k < 50. These
bandwidth estimates together with the shapes of the curves for the test statistics
and the p-values in Figure 2 suggest that the covariance matrix of the healthy
group is likely to be banded, while the covariance of the cancer group may not
be banded at all, given the very large bandwidth and the shape of the curve. For
the cancer group, as shown in Figure 2, the test statistics are relatively flat for
120 ≤ k ≤ 140, and then fall sharply afterward, which indicates relatively small
values in the covariance matrix from sub-diagonal 120 to 140. However, there is a
substantial contribution from sub-diagonals for k > 140. These are echoed in the
p-values displayed in panel (b) with almost stationary p-values within the above
mentioned range, followed by a sharp increase. Panel (d) of Figure 2 displays a
rather unsettled curve for dnk , the difference between successive statistics T̃nk .
These are all in sharp contrasts to those of the healthy group, indicating rather
different covariance structures between the two groups.

At α = 5%, we reject a Hk,0 when the statistic is larger than 3.29. For the healthy
group, the smallest k such that Hk,0 is not rejected is k = 116, while for the cancer
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FIG. 2. Test statistics, p-values and the first order differences dnk for the healthy and the cancer
groups for bandwidths larger than 50. The p-values of the test for H0k for k < 50 are too small to
be considered for bandwidth estimation.

group is 191. We apply the bandwidth estimator (4.4) with δ = 0.5 and θ = 0.005.
The estimated bandwidth for the health group is 121 and for the cancer group
is 212. At the same time, the bandwidth estimates, by employing Bickel and Lev-
ina’s (2008a) approach, are 144 for the healthy group and 193 for the cancer group.
The one for the healthy group is much larger than the 121 we obtained earlier, using
the estimator (4.4). We then apply the proposed regression change-point bandwidth
estimator over a range of bandwidths whose associated p-values for testing H0k

are larger than 10−10. For the healthy group, the bandwidth range is k ≥ 85; for
the cancer group the range is k ≥ 150. We set the smoothing parameter h = 0.75
in the LOESS procedure in R. The regression bandwidth estimator is k̂h = 127 for
the healthy group, which is slightly larger than the 121 obtained from the estima-
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tor (4.4). For the cancer group, the estimated bandwidth is 215. This rather large
estimated bandwidth suggests that, compared to the healthy group, there is sub-
stantially more dependence among the protein mass spectroscopy measurements
among the cancer patients, and, in particular, the covariance may not be banded at
all for this group of patients.

APPENDIX

We first introduce some notation. For q = 0, . . . , p, define

B1,q = 1

P 2
n

p−q∑
l=1

∗∑
i,j

(XilXil+q)(XjlXjl+q),

B2,q = 1

P 3
n

p−q∑
l=1

∗∑
i,j,k

XilXkl+q(XjlXjl+q)

and

B3,q = 1

P 4
n

p−q∑
l=1

∗∑
i,j,k,m

XilXjl+qXklXml+q.

Then, Vnk = B1,0 − 2B2,0 + B3,0 + 2
∑k

q=1(B1,q − 2B2,q + B3,q), and Wnk =
2

∑p−1
q=k+1(B1,q − 2B2,q + B3,q). Let Cnk = 2

∑p−1
q=k+1 B1,q and Ui = Bi,0 +

2
∑p−1

q=1 Bi,q for i = 1,2,3. We first establish some lemmas for later use.

LEMMA 1. Under Assumptions 1 and 2, Var(Cnk) = ν2
nk + o{n−2tr2(�2)}.

PROOF. Since Cnk = (P 2
n )−1 ∑∗

i,j

∑
|l1−l2|>k Xil1Xil2Xjl1Xjl2 , by the inde-

pendence between different observations, we have

E(Cnk) = (P 2
n )−1

∗∑
i,j

∑
|l1−l2|>k

E(Xil1Xil2)E(Xjl1Xjl2) = ∑
|l1−l2|>k

σ 2
l1l2

.

Note that

C2
nk = (P 2

n )−2
∗∑

i1,j1

∗∑
i2,j2

∑
|l1−l2|>k

∑
|l3−l4|>k

Xi1l1Xi1l2Xi2l3Xi2l4Xj1l1Xj1l2Xj2l3Xj2l4 .

Let fl1l2l3l4 = ∑
m �l1m�l2m�l3m�l4m and σl1l2σl3l4[3] = σl1l2σl3l4 + σl1l3σl2l4 +

σl1l4σl2l3 . Then, E(C2
nk) = (P 2

n )−2(Ln1 + Ln2 + Ln3), where

Ln1 = P 4
n

∑
|l1−l2|>k

∑
|l3−l4|>k

σ 2
l1l2

σ 2
l3l4

,

Ln2 = 4P 3
n

∑
|l1−l2|>k

∑
|l3−l4|>k

(	fl1l2l3l4 + σl1l2σl3l4[3])σl1l2σl3l4
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and

Ln3 = 2P 2
n

∑
|l1−l2|>k

∑
|l3−l4|>k

(	fl1l2l3l4 + σl1l2σl3l4[3])2.

We compute Ln2 and Ln3 part by part. First, note that∑
|l1−l2|>k

∑
|l3−l4|>k

fl1l2l3l4σl1l3σl2l4 = tr(A2 ◦ A2) − 2
∑

|l1−l2|≤k

∑
l3,l4

fl1l2l3l4σl1l3σl2l4

+ ∑
|l1−l2|≤k

∑
|l3−l4|≤k

fl1l2l3l4σl1l3σl2l4 .

By the Cauchy–Schwarz inequality,∣∣∣∣ ∑
|l1−l2|≤k

∑
l3,l4

fl1l2l3l4σl1l3σl2l4

∣∣∣∣ ≤ tr1/2(T 2)tr1/2[(�� ◦ ��){(��)′ ◦ (��)′}]

and∣∣∣∣ ∑
|l1−l2|≤k

∑
|l3−l4|≤k

fl1l2l3l4σl1l3σl2l4

∣∣∣∣ ≤ (2k + 1)2 tr{(� ◦ �)(�′ ◦ �′)(� ◦ �)},

where T = (� ◦ �)(�′ ◦ �′). Note that

tr(T ) ≤ tr(�2), tr{(� ◦ �)(�′ ◦ �′)(� ◦ �)} ≤ tr(�4)

and

tr[(�� ◦ ��){(��)′ ◦ (��)′}] ≤ tr(�6).

Since tr(�6) ≤ tr(�2) tr(�4), k = o(p1/4) and from Assumption 2, it follows that∑
|l1−l2|≤k

∑
l3,l4

fl1l2l3l4σl1l3σl2l4 = o{tr2(�2)}

and ∑
|l1−l2|>k

∑
|l3−l4|>k

fl1l2l3l4σl1l3σl2l4 = o{tr2(�2)}.

Similarly, it can be shown that∑
|l1−l2|≤k

(�2)2
l1l2

= o{tr2(�2)},
∑

|l1−l2|≤k

∑
|l3−l4|≤k

σ 2
l2l4

σ 2
l1l3

= o{tr2(�2)},
∑

|l1−l2|≤k

(�2)l1l1(�
2)l2l2 = o{tr2(�2)},

∑
|l1−l2|>k

∑
|l3−l4|>k

f 2
l1l2l3l4

= o{tr2(�2)}
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and ∑
|l1−l2|≤k

∑
|l3−l4|≤k

σl1l3σl2l4σl1l4σl2l3 = o{tr2(�2)}.

By combining these together,

Var(Cnk) = 4n−2 tr2(�2) + 8n−1
∑

|l1−l2|>k

∑
|l3−l4|>k

σl1l3σl2l4σl1l2σl3l4

+ 4	n−1
∑

|l1−l2|>k

∑
|l3−l4|>k

fl1l2l3l4σl1l2σl3l4 + o(n−2 tr2(�2)).

It can be checked that∑
|l1−l2|>k

∑
|l3−l4|>k

σl1l3σl2l4σl1l2σl3l4 = tr
{
�

(
� − Bk(�)

)}2

and ∑
|l1−l2|>k

∑
|l3−l4|>k

fl1l2l3l4σl1l2σl3l4 = tr
(
�′(� − Bk(�)

)
� ◦ �′(� − Bk(�)

)
�

)
.

Therefore, Var(Cnk) = ν2
nk + o{n−2 tr2(�2)}. �

LEMMA 2. Under Assumptions 1 and 2, for q = 0, . . . , k,

Var(B2,q) = O{n−2 tr1/2(�4) tr(�2)} and Var(B3,q) = O{n−4 tr(�4)}.
PROOF. First consider B2,q . Since EB2,q = 0 for any q = 0, . . . , k, we only

need to calculate EB2
2,q . Note that we can decompose B2

2,q as

B2
2,q = (P 3

n )−2

( 2∑
i=1

B2,q,ai
+

3∑
i=1

B2,q,bi
+

2∑
i=1

B2,q,ci

)
,

where

B2,q,a1 =
p−q∑

l1,l2=1

∗∑
i,k,j1,j2

(Xil1Xil2)(Xkl1+qXkl2+q)(Xj1l1Xj1l1+q)(Xj2l2Xj2l2+q),

B2,q,a2 =
p−q∑

l1,l2=1

∗∑
i,k,j1,j2

(Xil1Xil2+q)(Xkl1+qXkl2)(Xj1l1Xj1l1+q)(Xj2l2Xj2l2+q),

B2,q,b1 =
p−q∑

l1,l2=1

∗∑
i,j,k

(Xil1Xil2Xil2+q)(Xjl1Xjl1+qXjl2)Xkl1+qXkl2+q,

B2,q,b2 = 2
p−q∑

l1,l2=1

∗∑
i,j,k

(Xil1Xil2Xil2+q)(Xjl1Xjl1+qXjl2+q)Xkl1+qXkl2,
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B2,q,b3 =
p−q∑

l1,l2=1

∗∑
i,j,k

(Xil1+qXil2Xil2+q)(Xjl1Xjl1+qXjl2+q)Xkl1Xkl2,

B2,q,c1 =
p−q∑

l1,l2=1

∗∑
i,j,k

(Xil1Xil2)(Xkl1+qXkl2+q)(Xjl1Xjl1+qXjl2Xjl2+q)

and

B2,q,c2 =
p−q∑

l1,l2=1

∗∑
i,j,k

(Xil1Xil2+q)(Xkl1+qXkl2)(Xjl1Xjl1+qXjl2Xjl2+q).

We need to show that the expectations of all the terms above are controlled by the
order n4 tr1/2(�4) tr(�2). First, note that E(B2,q,a1) = P 4

n

∑p−q
l1,l2=1 σl1l2σl1+ql2+q ×

σl1l1+qσl2l2+q . By the Cauchy–Schwarz inequality, it can be shown that

|E(B2,q,a1)| = P 4
n O(tr1/2(�4) tr(�2)).

Employing a similar derivation, we can show that the same result holds for all
the other terms, which lead to the first part of Lemma 2. The second part can be
proved following the same track. �

LEMMA 3. Under Assumptions 1 and 2, Var(Ui) = o{n−2 tr2(�2)} for
i = 2,3.

PROOF. The proof is similar to Lemma 2. �

LEMMA 4. Under Assumptions 1 and 2, Var(
∑p−1

q=k+1 Bi,q) = o{n−2 tr2(�2)}
for i = 2,3.

PROOF. Noting that
∑p

q=k+1 Bi,q = Ui − ∑k
q=1 Bi,q , the lemma follows by

applying Lemmas 2, 3, k = o(p1/4) and Assumption 2. �

In the following, we provide the proof of Propositions 1 and 2.

PROOF OF PROPOSITION 1. Rewrite Wnk as

Wnk = Cnk − 2
p∑

q=k+1

B2,q +
p∑

q=k+1

B3,q .

Since E(Cnk) = ∑
|i−j |>k σ 2

ij = tr[{� − Bk(�)}2] and E(Bi,q) = 0 for i = 2,3
and any q = 0,1, . . . , p − 1, the first statement is readily obtained. The second
statement follows by applying Lemmas 1, 4 and the fact that ν2

nk ≥ 4n−2 tr2(�2).
�
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PROOF OF PROPOSITION 2. It can be carried out following the same routes
as those in Lemmas 1 and 2. Specifically, it can be shown that Var(Vnk) =
O{anptr2(�2)}. Hence, Var{Vnk/ tr(�2)} = O(anp) → 0. �

It is clear from the proof of Proposition 1 that Wnk = Cnk + op(νnk). There-
fore, in order to derive the asymptotical distribution of the statistic, we only
need to consider the asymptotical normality of Cnk . Let F0 = {∅,}, and
Ft = σ {X1, . . . ,Xt } for t = 1,2, . . . , n, be a sequence of σ -field generated by
the data sequence. Let Et (·) denote the conditional expectation with respect to Ft .
Write Cnk − E(Cnk) = ∑n

t=1 Dtk , where Dtk = (Et − Et−1)Cnk . Then for every n,
Dtk,1 ≤ t ≤ n, is a martingale difference sequence with respect to the σ -fields
{Ft }∞t=0.

LEMMA 5. Let σ 2
tk = Et−1(D

2
tk). Under Assumptions 1 and 2, as n → ∞,∑n

t=1 σ 2
tk

Var(Cnk)

p→ 1 and

∑n
t=1 E(D4

tk)

Var2(Cnk)
→ 0.(A.1)

PROOF. We first establish the first part of (A.1). Noting that E(
∑n

t=1 σ 2
tk) =

Var(Cnk), we need only to show Var(
∑n

t=1 σ 2
tk) = o(Var2(Cnk)). Note that

Dtk = 2

n(n − 1)

[ ∑
|l1−l2|>k

(Xtl1Xtl2 − σl1l2)

{
t−1∑
i=1

(Xil1Xil2 − σl1l2)

}]

+ 2

n

( ∑
|l1−l2|>k

Xtl1Xtl2σl1l2 − ∑
|l1−l2|>k

σ 2
l1l2

)
.

Denote Q
l1l2
t−1 = ∑t−1

i=1(Xil1Xil2 − σl1l2). Let Qt−1 be the matrix with the (l1, l2)th

entry being Q
l1l2
t−1 and Mt−1 = �′Qt−1�; then

n∑
t=1

σ 2
tk =

3∑
i=1

R1i + 	

3∑
i=1

R2i +
4∑

i=1

R3i + 	

4∑
i=1

R4i + nγ,

where γ is a constant and

R11 = 4

n2(n − 1)2

n∑
t=1

tr(M2
t−1),

R12 = − 8

n2(n − 1)2

n∑
t=1

∑
|l1−l2|≤k

Q
l1l2
t−1(�Qt−1�)l1l2,

R13 = 4

n2(n − 1)2

n∑
t=1

∑
|l1−l2|≤k

∑
|l3−l4|≤k

Q
l1l2
t−1Q

l3l4
t−1σl1l3σl2l4,
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R21 = 4

n2(n − 1)2

n∑
t=1

tr(Mt−1 ◦ Mt−1),

R22 = − 8

n2(n − 1)2

n∑
t=1

∑
m

∑
|l1−l2|≤k

Q
l1l2
t−1M

mm
t−1�l1m�l2m,

R23 = 4

n2(n − 1)2

n∑
t=1

∑
m

∑
|l1−l2|≤k

∑
|l3−l4|≤k

Q
l1l2
t−1Q

l3l4
t−1�l1m�l2m�l3m�l4m,

R31 = 8

n2(n − 1)

n∑
t=1

tr(�Qt−1�
2),

R32 = − 8

n2(n − 1)

n∑
t=1

∑
|l1−l2|≤k

Q
l1l2
t−1(�

3)l1l2,

R33 = − 8

n2(n − 1)

n∑
t=1

∑
|l1−l2|≤k

(�Qt−1�)l1l2σl1l2,

R34 = 8

n2(n − 1)

n∑
t=1

∑
|l1−l2|≤k

∑
|l3−l4|≤k

Q
l1l2
t−1σl3l4σl1l3σl2l4,

R41 = 8

n2(n − 1)

n∑
t=1

tr(Mt−1 ◦ A2),

R42 = − 8

n2(n − 1)

n∑
t=1

∑
m

∑
|l1−l2|≤k

Q
l1l2
t−1�l1m�l2m(A2)mm,

R43 = − 8

n2(n − 1)

n∑
t=1

∑
m

∑
|l1−l2|≤k

σl1l2�l1m�l2mMmm
t−1

and

R44 = 8

n2(n − 1)

n∑
t=1

∑
m

∑
|l1−l2|≤k

∑
|l3−l4|≤k

Q
l1l2
t−1σl3l4�l1m�l2m�l3m�l4m.

To prove Var(
∑n

t=1 σ 2
tk) = o(Var2(Cnk)), we intend to prove the variance of

each Rij is of small order of n−4tr4(�2).
For R12, denote for any 1 ≤ i, j ≤ n,

Y 12
ij = ∑

|l1−l2|≤k

(Xil1Xil2 − σl1l2){(�XjX
′
j�)l1l2 − (�3)l1l2}.

Then
∑

|l1−l2|≤k Q
l1l2
t−1(�Qt−1�)l1l2 = ∑t−1

i=1 Y 12
ii + ∑t−1

i �=j Y 12
ij . Note that EY 12

ij = 0

for any i �= j and E(Y 12
i1j1

Y 12
i2j2

) = 0 for any (i1, i2, j1, j2), except {i1 = i2, j1 = j2}
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and {i1 = j1, i2 = j2}. Thus for any t < l,

Cov
( ∑

|l1−l2|≤k

Q
l1l2
t−1(�Qt−1�)l1l2,

∑
|l1−l2|≤k

Q
l1l2
l−1(�Ql−1�)l1l2

)

= (t − 1)Var(Y 12
11 ) + (t − 1)(t − 2)Var(Y 12

12 ).

We only need to verify that Var(y12
11) and Var(y12

12) are of small orders of tr4(�2).
Note that

E(Y 12
11 )2 = E

∑
|l1−l2|≤k

∑
|l3−l4|≤k

(X1l1X1l2 − σl1l2)(X1l3X1l4 − σl3l4)

× {(�X1X
′
1�)l1l2 − (�3)l1l2}

× {(�X1X
′
1�)l3l4 − (�3)l3l4}

≤ γ12
∑

|l1−l2|≤k

∑
|l3−l4|≤k

(σ 2
l1l2

+ σl1l1σl2l2)
1/2(σ 2

l3l4
+ σl3l3σl4l4)

1/2

× {(�3)2
l1l2

+ (�3)l1l1(�
3)l2l2}1/2

× {(�3)2
l3l4

+ (�3)l3l3(�
3)l4l4}1/2

≤ γ12
∑

|l1−l2|≤k

(σ 2
l1l2

+ σl1l1σl2l2)
∑

|l1−l2|≤k

{(�3)2
l1l2

+ (�3)l1l1(�
3)l2l2}

≤ γ12(2k + 1)2 tr(�2) tr(�6),

where γ12 is a constant. Since tr(�6) ≤ tr3/2(�4),

(2k + 1)2 tr(�2) tr(�6) = O{k2 tr(�2) tr3/2(�4)}
= O{k2p−3/2 tr4(�2)}
= o{tr4(�2)},

which indicates that Var(Y 12
11 ) = o{tr4(�2)}. Similarly, we can also show that

Var(Y 12
12 ) = o{tr4(�2)}. Thus

Var(R12) = 64

n4(n − 1)4 Var

{
n∑

t=1

∑
|l1−l2|≤k

Q
l1l2
t−1(�Qt−1�)l1l2

}

= o{n−4 tr4(�2)}.
Following the same procedure, we can prove that for all the other Rij ,

Var(Rij ) = o{n−4tr4(�2)}. Since Var2(Cnk) ≥ n−4 tr4(�2), we have Var(Rij ) =
o{Var2(Cnk)}. Thus we have Var(

∑n
t=1 σ 2

tk) = o(Var2(Cnk)), and hence the first
part of (A.1).
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For the second part of (A.1), by simple algebra, we can rewrite Dtk as Dtk =
St1 − St2 + St3 − St4, where

St1 = 2

n(n − 1)
{X′

tQt−1Xt − tr(Qt−1�)},

St2 = 2

n(n − 1)
[X′

tBk(Qt−1)Xt − tr{Bk(Qt−1)�}],

St3 = 2

n
{X′

t�Xt − tr(�2)}
and

St4 = 2

n
[X′

tBk(�)Xt − tr{Bk(�)�}].
Since D4

tk ≤ γ̃ (S4
t1 + S4

t2 + S4
t3 + S4

t4), we have for a positive constant γ̃ ,

n∑
t=1

E(D4
tk) ≤ γ̃

{
n∑

t=1

E(S4
t1) +

n∑
t=1

E(S4
t2) +

n∑
t=1

E(S4
t3) +

n∑
t=1

E(S4
t4)

}
.

In the following, we will prove the four terms on the right are of small orders of
Var2(Cnk), respectively. To this end, note that

E{X′
tQt−1Xt − tr(Qt−1�)}4 ≤ γ̃1E{tr2(M2

t−1)},
where γ̃1 is a positive constant. Since E{tr(M2

t−1)} = (t − 1)O{tr2(�2)}, and
Var{tr(M2

t−1)} = t2O(tr2(�2)tr(�4)), then we have E{tr2(M2
t−1)} = t2 ×

O{tr4(�2)}. Thus,
n∑

t=1

E(S4
t1) = 16

n4(n − 1)4

n∑
t=1

E{X′
tQt−1Xt − tr(Qt−1�)}4

≤ 16

n4(n − 1)4

n∑
t=1

t2O{tr4(�2)} = 1

n5 O{tr4(�2)} = o{Var2(Cn)}.

Similarly, we can show that for i = 2,3 and 4,
∑n

t=1 E(S4
t i ) = o{Var2(Cn)}.

Combining all the four parts together, we have
∑n

t=1 E(D4
k,t ) = o{Var2(C)}, which

leads to the second part of (A.1). �

Denote Ink = {Wnk − E(Wnk)}/Vnk and Jnk = E(Wnk)/Vnk . Then T̃nk = Ink +
Jnk . For k0 diverging, but satisfying (4.1), we intend to prove nδ(Jnk − Jnk+1)

diverging to ∞ uniformly on k < k0 for any δ > 0. And nδInk uniformly converges
to 0 in probability for any δ ≤ 1/2 and k ≤ M , where M > k0 and M = o(p1/4).

LEMMA 6. Under Assumptions 1, 2 and (4.1), if lim infn{infk<k0(rk+1 −
rk)} > 0 and {σll}pl=1 are uniformly bounded away from 0 and ∞, for any δ ≤ 0.5,
as n → ∞:
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(a) P(nδ(Jnk − Jnk+1) > ξ , for any k < k0) → 1 for any ξ > 0;
(b) P(nδ|Ink| ≤ ε, for any k ≤ k0) → 1 for any 0 < ε < 1;
(c) P(nδ|Ink| ≤ ε, for any k0 < k ≤ M) → 1 for any 0 < ε < 1, where k0 < M

and M = o(p1/4).

PROOF. (a) If {σll}pl=1 is bounded away from ∞, similarly to the proof of
Lemmas 1 and 2, it can be checked that Var(Vnk) = O(k2tr(�2)/n). Therefore, by
Chebyshev’s inequality, for any ε > 0,

P

(∣∣∣∣Vnk − E(Vnk)

tr(�2)

∣∣∣∣ > εr2
k

)
≤ Var(Vnk)

ε2 tr2(�2)r4
k

≤ Ck2

ε2npr3
k

≤ Ck2k3
0

ε2np
,

where the last inequality comes from the fact that r−1
k ≤ 2k0 + 1. Hence,

P

(
max

0≤k≤k0

∣∣∣∣Vnk − E(Vnk)

tr(�2)r2
k

∣∣∣∣ ≤ ε

)
≥ 1 −

k0∑
k=0

Ck2k3
0

ε2np
≥ 1 − Ck6

0

ε2np
,

which converge to 1 since k0 satisfies (4.1). Consider ε < 1/2, and denote

 = {ω : |Vnk − E(Vnk)| ≤ εr2
k tr(�2), for any k ≤ k0}.

By the above argument, P() → 1 as n → ∞. For any ω ∈ , we have

1 − εrk ≤ 1/(1 + εrk) ≤ tr[{Bk(�)}2]/Vnk ≤ 1/(1 − εrk) ≤ 1 + 2εrk

for any k < k0. Hence, for any ω ∈ ,

nδ(Jnk − Jnk+1) ≥ nδ(rk+1 − rk) + nδ(εrk + 2εrk+1 − 3ε)

≥ nδ(rk+1 − rk) − 3nδε,

which implies that nδ(Jnk − Jnk+1) diverge uniformly on k < k0, by choosing ε

small enough. Therefore, for any ξ > 0, by choosing ε small enough, there exists
a N > 0 such that for any n > N ,

P
(
nδ(Jnk − Jnk+1) > ξ for any k < k0

) ≥ P().

The conclusion follows by noting that P() → 1 as n → ∞. The other two parts
of the conclusion can be obtained similarly. For simplicity in the presentation, we
omit them here. �

PROOF OF THEOREM 1. By Lemmas 1, 5 and the martingale central limit
theorem [Billingsley (1995)], it is readily shown that as n → ∞,

Cnk − E(Cnk)

νnk

D→ N(0,1).

Substituting Cnk for Wnk , Theorem 1 follows by noting Wnk = Cnk +op(νnk). �
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PROOF OF THEOREM 2. Note that Var{Vnk/ tr(�2)} → 0, E{Vnk/ tr(�2)} =
rk and lim supn rk ≤ 1. It can be shown that for any η > 0, limn→∞ P(Bn,η) = 1
where Bn,η = {Vnk < (1 + η) tr(�2)}. This means that for any ε > 0, there exists a
positive integer N , such that for all n > N , P(Bn,η) > 1 − ε. Then from (3.4),

βnk ≥ P

(
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ zα

Vnk

tr(�2)
− δnk,Bn,η

)

≥ P

(
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ zα(1 + η) − δnk,Bn,η

)

≥ P

(
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ zα(1 + η) − δnk

)
− P(Bc

n,η).

Therefore, from Theorem 1,

lim inf
n→∞ βnk ≥ lim inf

n→∞ P

{
Wnk − tr(�2) + tr[{Bk(�)}2]

νnk

≥ zα(1 + η) − δnk

}

− lim sup
n→∞

P(Bc
n,η)

≥ 1 − �
{
zα(1 + η) − lim inf

n→∞ δnk

}
− ε.

The first part of the theorem follows by taking ε → 0 and η → 0.
(ii) The condition a

−1/2
np (1− rk) → ∞ implies that δnk → ∞ as n → ∞. Hence,

βnk → 1. �

PROOF OF THEOREM 3. First consider the case where k0 is bounded. Con-
sider M to be a fixed sufficiently large integer. Recall that T̃nk = Ink + Jnk , where

Ink = {Wnk − E(Wnk)}/Vnk and Jnk = E(Wnk)/Vnk.

By (4.3), since a
1/2
np = O(n−1), we have nδInk = Op(nδa

1/2
np ) → 0, for any k ≤ M .

Note that

nδ(r−1
k − r−1

k+1) = nδ rk+1 − rk

rk+1rk
≥ nδ(rk+1 − rk).

Thus, from (4.3), for k < k0, the condition lim infn(rk+1 − rk) > 0 implies that
nδ(Jnk − Jnk+1) ∼ nδ → ∞ in probability, where δ ∈ (0,1). Therefore, d

(δ)
nk → ∞

for k < k0 and d
(δ)
nk = op(1) for k ≥ k0. Hence, for any θ > 0, as n → ∞,

P
(∣∣d(δ)

nk

∣∣ > θ
) → 1 for k < k0 and P

(∣∣d(δ)
nk

∣∣ > θ
) → 0 for k ≥ k0.

Therefore, for any θ > 0 and any ε > 0, for each k, there exists a positive integer
Nk such that for all n ≥ Nk ,

P
(∣∣d(δ)

nk

∣∣ < θ
)
< ε/(M + 1) for any k < k0
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and

P
(∣∣d(δ)

nk

∣∣ ≥ θ
)
< ε/(M + 1) for any k0 ≤ k ≤ M.

Note that both k0 and M are finite, we can set an N , which is larger than all
Nk such that the above are satisfied. Define, for k ≤ M , Bnk := {|d(δ)

nk | < θ} and

Bn := (
⋂k0−1

i=0 Bc
ni) ∪ (

⋂M
i=k0

Bni) for n > N . Then, for any ω ∈ Bn, k̂δ,θ (ω) = k0.

P(Bc
n) ≤

k0−1∑
i=0

P(Bni) +
M∑
k0

P(Bc
ni) ≤ ε.

Hence, for any 0 < δ < 1 and θ > 0, k̂δ,θ
p→ k0.

For the case of diverging k0, consider k0 < M and M = o(p1/4). For any θ > 0
and δ ≤ 1/2, let ε < θ/2 and ξ > 2θ . Denote

U1 = {ω :nδ|Ink| ≤ ε, for any k ≤ k0},
U2 = {ω :nδ|Ink| ≤ ε, for any k0 < k ≤ M}

and

U3 = {ω :nδ(Jnk − Jnk+1) > ξ, for any k < k0}.
Then for any ω ∈ ⋂3

i=1 Ui , we have nδ(Jnk − Jnk+1) > ξ > 2θ for any k < k0
and nδ|Ink| ≤ ε < θ/2 for any k ≤ M , which lead to nδ|Ink − Ink+1| < θ for any
k ≤ M . Therefore,

d
(δ)
nk = nδ(Ink − Ink+1) + nδ(Jnk − Jnk+1) > θ for any k < k0

and ∣∣d(δ)
nk

∣∣ ≤ nδ|Ink − Ink+1| < θ for any k0 ≤ k < M.

From (4.4), we have k̂δ,θ − k0 = 0. It follows that
⋂3

i=1 Ui ⊂ {ω : k̂δ,θ − k0 = 0}.
Since P(

⋂3
i=1 Ui) → 1 as n → ∞ by Lemma 6, we have k̂δ,θ − k0

p→ 0. �
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