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STATIONARY DISTRIBUTIONS FOR A CLASS OF
GENERALIZED FLEMING–VIOT PROCESSES

BY KENJI HANDA

Saga University

We identify stationary distributions of generalized Fleming–Viot pro-
cesses with jump mechanisms specified by certain beta laws together with
a parameter measure. Each of these distributions is obtained from normal-
ized stable random measures after a suitable biased transformation followed
by mixing by the law of a Dirichlet random measure with the same parameter
measure. The calculations are based primarily on the well-known relationship
to measure-valued branching processes with immigration.

1. Introduction. In the study of population genetics models, it is of great im-
portance to identify their stationary distributions. Such identifications provide us
with basic information of possible equilibria of the models and are needed prior
to quantitative discussions on statistical inference. Since [5, 14] and [1], theory
of generalized Fleming–Viot processes has served as a new area to be cultivated
and has been developed considerably. (See [2] for an exposition.) In view of such
progress, it seems that we are in a position to explore the aforementioned prob-
lems for some appropriate subclass of those models. In this respect, it would be
natural to think of the one-dimensional Wright–Fisher diffusion with mutation as
a prototype. This celebrated process is prescribed by its generator

A := 1

2
x(1 − x)

d2

dx2 + 1

2

[
c1(1 − x) − c2x

] d

dx
, x ∈ [0,1],(1.1)

where c1 and c2 are positive constants interpreted as mutation rates. The stationary
distribution is a beta distribution

Bc1,c2(dx) := �(c1 + c2)

�(c1)�(c2)
xc1−1(1 − x)c2−1 dx,(1.2)

where �(·) is the gamma function. In addition, the process associated with (1.1)
admits an infinite-dimensional generalization known as the Fleming–Viot process
with parent-independent mutation, whose stationary distribution is identified with
the law of a Dirichlet random measure.

In the present paper, we consider a problem of finding a class of generalized
Fleming–Viot processes whose stationary distributions can be identified. As far as
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the first term on the right-hand side of (1.1) is concerned, its jump-type version has
been discussed in population genetics as the generator of a model with “occasional
extreme reproduction”. (See Section 1.2 of [2] for a comprehensive account.) We
additionally need to look for an appropriate modification of the second term, which
should correspond to a generalization of the mutation mechanism. With these sit-
uations in mind, our problems can be described as follows.

(I) By modifying both mechanisms of reproduction and mutation, find a jump
process on [0,1] whose generator extends (1.1) and whose stationary distribution
can be identified.

(II) Establish an analogous generalization for the Fleming–Viot process with
parent-independent mutation.

Since these problems are rather vague, it may be worth showing now the gen-
erator we will believe to give an “answer” to (I). For each α ∈ (0,1), define an
operator Aα by

AαG(x) =
∫ 1

0

B1−α,1+α(du)

u2

[
xG

(
(1 − u)x + u

)
+ (1 − x)G

(
(1 − u)x

) − G(x)
]

(1.3)

+
∫ 1

0

B1−α,α(du)

(α + 1)u

[
c1G

(
(1 − u)x + u

)
+ c2G

(
(1 − u)x

) − (c1 + c2)G(x)
]
,

where G are smooth functions on [0,1]. Observe that AαG(x) → AG(x) as α ↑ 1.
It should be noted that Aα is a one-dimensional version of the generator of the
process studied in [3] if c1 = c2 = 0. See also [12] and [13]. The reader, however,
is cautioned that our notation α is in conflict with that of these papers, in which
α plays the same role as α + 1 in our notation. (We adopt such notation in order
for the formulae below to be simpler.) The constant c1 (resp., c2) in (1.3) can be
interpreted as the rate of “simultaneous mutation” from one type to the other type
and a proportion u of the individuals with that type, which are supposed to have
the frequency 1 − x (resp., x) in the population, are involved in this “mutation”
event with intensity B1−α,α(du)/((α + 1)u). [Note that (1 − u)x + u = x + u(1 −
x).] As will be seen in Proposition 3.1 below for more general case, the closure
of (1.3) with a suitable domain generates a Feller semigroup on C([0,1]), and our
main concern is the equilibrium state of the associated Markov process. It will
be shown in the forthcoming section that a unique stationary distribution of the
process governed by (1.3) is identified with

Pα,(c1,c2)(dx)

(1.4)
:= �(α + 1)

∫ 1

0
Bc1,c2(dy)Eα,y

[
(Y1 + Y2)

−α; Y1

Y1 + Y2
∈ dx

]
,
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where Eα,y denotes the expectation with respect to (Y1, Y2) with law deter-
mined by logEα,y[e−λ1Y1−λ2Y2] = −yλα

1 − (1 − y)λα
2 (λ1, λ2 ≥ 0). Again we see

that (1.4) with α = 1 reduces to (1.2).
One might think that (1.3) is one of many possible generalizations of (1.1).

In fact it arises naturally in the following manner. It is well-known [20] that the
Fleming–Viot process with parent-independent mutation can be obtained by way
of a normalization and a random time change from a measure-valued branching
diffusion with immigration. (See also [6] and [18].) An extension of this significant
result was shown in [3] for a class of generalized Fleming–Viot processes, which in
the one-dimensional setting corresponds to (1.3) with c1 = c2 = 0. Moreover, [3]
proved that such a jump mechanism is necessary for a generalized Fleming–Viot
process to have the above mentioned link to a measure-valued branching process
with immigration (henceforth MBI-process). Recently, [13] showed essentially
that the second term of (1.3) is required when we additionally take a generalization
of the mutation mechanism into account. Our argument will be crucially based on
this kind of relationship between the generalized Fleming–Viot process associated
with a natural generalization of (1.3) and a certain ergodic MBI-process. That re-
lationship can be reformulated as a factorization result on the level of generators
and hence is expected to yield also an explicit connection between stationary dis-
tributions. In principle, the problems (I) and (II) can be considered in a unified
way. Nevertheless, we shall discuss (I) and (II) separately. This is mainly because
the factorization identity will turn out to yield a correct answer only for certain
restricted cases and in one dimension one can avoid its use by taking an analytic
approach instead (although this does not reveal clearly the mathematical structure
underlying).

The organization of this paper is as follows. Section 2 is devoted to derivation
of (1.4) by purely analytic argument. Exploiting the relationship to MBI-processes,
we show in Section 3 that the above mentioned answer to (I) has a natural gen-
eralization which settles (II). The irreversibility of the processes we consider is
discussed in Section 4.

2. The one-dimensional model. Let 0 < α < 1, c1 > 0 and c2 > 0 be given.
The purpose of this section is to show that (1.4) is a unique stationary distribution
of the process with generator (1.3). Analytically, we shall prove that a probability
measure P on [0,1] satisfying∫ 1

0
AαG(x)P (dx) = 0

(2.1)
for all G(x) = ϕn(x) := xn with n = 1,2, . . .

is uniquely identified with (1.4). Actual starting point of the calculations below is∫ 1

0
AαG(x)P (dx) = 0

(2.2)
for all G(x) = Gt(x) := (1 + tx)−1 with t > 0.
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The equivalence of (2.1) and (2.2) is a consequence of uniform estimates∣∣Aαϕn(x)
∣∣ ≤

(
1 + c1 + c2

α + 1

)
2n, n = 1,2, . . . ,

which can be shown by observing that

c1
(
(1 − u)x + u

)n + c2
(
(1 − u)x

)n − (c1 + c2)x
n

= c1
[(

(1 − u)x + u
)n − (

(1 − u)x + ux
)n]

+ c2x
n[

(1 − u)n − (
(1 − u) + u

)n]
= c1

n∑
k=1

(
n

k

)
(1 − u)n−kxn−kuk(1 − xk)

(2.3)
− c2x

n
n∑

k=1

(
n

k

)
(1 − u)n−kuk

=
n∑

k=1

(
n

k

)
(1 − u)n−kuk[c1x

n−k − (c1 + c2)x
n]

= u

n∑
k=1

(
n

k

)
(1 − u)n−kuk−1[

c1x
n−k − (c1 + c2)x

n]
and in particular

x
(
(1 − u)x + u

)n + (1 − x)
(
(1 − u)x

)n − xn

=
n∑

k=2

(
n

k

)
(1 − u)n−kuk(xn−k+1 − xn)

= u2
n∑

k=2

(
n

k

)
(1 − u)n−kuk−2(

xn−k+1 − xn)
.

Indeed, these bounds ensure that the function

t �→
∫ 1

0
AαGt(x)P (dx) =

∞∑
n=1

(−t)n
∫ 1

0
Aαϕn(x)P (dx)

is real analytic at least for −1/2 < t < 1/2. We prepare a simple lemma in order
to calculate AαGt .

LEMMA 2.1. Assume that b > 0 and a + b > 0.

(i) It holds that for any θ1 > 0 and θ2 > 0∫ 1

0

Bθ1,θ2(du)

(au + b)θ1+θ2
= (a + b)−θ1b−θ2 .(2.4)
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(ii) In addition, suppose that a′ 
= a and a′ + b > 0. Then∫ 1

0

B1−α,1+α(du)

(au + b)(a′u + b)
= 1

α(a − a′)b1+α

[
(a + b)α − (

a′ + b
)α]

.(2.5)

Equation (2.4) is a one-dimensional version of the formula due to [4], which
is sometimes referred to as the Markov–Krein identity. (See, e.g., [22] or (3.6)
below.) We will give a self-contained proof based essentially on the well-known
relationship between beta and gamma laws.

PROOF OF LEMMA 2.1. The proof of (2.4) is simply done by noting that

(a + b)−θ1b−θ2 =
∫ ∞

0

dz1

�(θ1)
z
θ1−1
1 e−(a+b)z1

∫ ∞
0

dz2

�(θ2)
z
θ2−1
2 e−bz2

and then by change of variables to u := z1/(z1 + z2), v := z1 + z2. The
proof of (2.5) can be deduced from (2.4) with θ1 = 1 − α and θ2 = α since
B1−α,1+α(du) = B1−α,α(du)(1 − u)/α and

1 − u

(au + b)(a′u + b)
= 1

(a − a′)b

(
a + b

au + b
− a′ + b

a′u + b

)
. �

We proceed to calculate AαGt .

LEMMA 2.2. For any t > 0 and x ∈ [0,1],

AαGt(x) = t · (1 + t)α − 1

α
· x(1 − x)

(1 + tx)2+α

(2.6)

− t

α + 1
· c1(1 − x)(1 + t)α−1 − c2x

(1 + tx)1+α
.

PROOF. By straightforward calculations

c1Gt

(
(1 − u)x + u

) + c2Gt

(
(1 − u)x

) − (c1 + c2)Gt(x)

= − tu

1 + tx

[
c1(1 − x)

1 + t (1 − u)x + tu
− c2x

1 + t (1 − u)x

]
.

Replacing c1 and c2 by x and 1 − x, respectively, we get

xGt

(
(1 − u)x + u

) + (1 − x)Gt

(
(1 − u)x

) − Gt(x)

= t2u2x(1 − x)

1 + tx
· 1

(1 + t (1 − u)x + tu)(1 + t (1 − u)x)
.
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Plugging these equalities into (1.3) with G = Gt and then applying Lemma 2.1
yield

AαGt(x) = t2x(1 − x)

1 + tx

∫ 1

0

B1−α,1+α(du)

(1 + t (1 − u)x + tu)(1 + t (1 − u)x)

− t

(α + 1)(1 + tx)
· c1(1 − x)

∫ 1

0

B1−α,α(du)

1 + t (1 − u)x + tu

+ t

(α + 1)(1 + tx)
· c2x

∫ 1

0

B1−α,α(du)

1 + t (1 − u)x

= t2x(1 − x)

1 + tx
· 1

αt(1 + tx)1+α
· [

(1 + t)α − 1
]

− t

(α + 1)(1 + tx)

[
c1(1 − x)

(1 + t)1−α(1 + tx)α
− c2x

(1 + tx)α

]
,

which equals the right-hand side of (2.6). �

Next, we are going to characterize stationary distributions P in terms of

Sα(t) :=
∫ 1

0

P(dx)

(1 + tx)α
, t ≥ 0,(2.7)

which is a variant of the generalized Stieltjes transform of order α.

PROPOSITION 2.3. A probability measure P on [0,1] is a stationary distribu-
tion of the process associated with (1.3) if and only if Sα defined by (2.7) satisfies
for all t > 0

(1 + t)α − 1

α
(1 + t)S′′

α(t)

+
[(

c1 + 1 + 1

α

)(
(1 + t)α − 1

) + c1 + c2

]
S′

α(t)(2.8)

+ αc1(1 + t)α−1Sα(t) = 0.

PROOF. By virtue of Theorem 9.17 in Chapter 4 of [9], P is a stationary dis-
tribution of the process associated with Aα if and only if (2.1) [or (2.2)] holds. By
Lemma 2.2, (2.2) now reads for all t > 0

−(1 + t)α − 1

α

∫ 1

0

x(1 − x)

(1 + tx)2+α
P (dx)

+ c1

α + 1
(1 + t)α−1

∫ 1

0

1 − x

(1 + tx)1+α
P (dx)

− c2

α + 1

∫ 1

0

x

(1 + tx)1+α
P (dx) = 0.
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This equation becomes (2.8) by substituting the equalities

−
∫ 1

0

x(1 − x)

(1 + tx)2+α
P (dx) = 1 + t

α(α + 1)
S′′

α(t) + 1

α
S′

α(t),

∫ 1

0

1 − x

(1 + tx)1+α
P (dx) = 1 + t

α
S′

α(t) + Sα(t)

and ∫ 1

0

x

(1 + tx)1+α
P (dx) = − 1

α
S′

α(t),

all of which are verified easily. �

We now derive (1.4) as the unique stationary distribution we are looking for.
Recall that for each y ∈ (0,1) we denote by Eα,y the expectation with respect to
the two-dimensional random variable (Y1, Y2) with joint law determined by

Eα,y

[
e−λ1Y1−λ2Y2

] = e−yλα
1 −(1−y)λα

2 , λ1, λ2 ≥ 0.

By using t−α = �(α)−1 ∫ ∞
0 dvvα−1e−vt (t > 0) and Fubini’s theorem, observe

that

Eα,y

[
(tY1 + Y2)

−α]
= �(α)−1

∫ ∞
0

dvvα−1 exp
[−y(vt)α − (1 − y)vα]

(2.9)

= 1

�(α + 1)
· 1

1 + (tα − 1)y

for t ≥ 0. In particular, Eα,y[(Y1 + Y2)
−α] = 1/�(α + 1) and hence

Pα,(c1,c2)(dx)
(2.10)

= �(α + 1)

∫ 1

0
Bc1,c2(dy)Eα,y

[
(Y1 + Y2)

−α; Y1

Y1 + Y2
∈ dx

]
defines a probability measure on [0,1]. Although for each y ∈ (0,1) an expression
of the distribution function

[0,1] � x �→ �(α + 1)Eα,y

[
(Y1 + Y2)

−α; Y1

Y1 + Y2
≤ x

]
is given as the formula (3.2) in [23], that is,

sinαπ

π

∫ x

0

(1 − y)(x − u)α−1uα du

(1 − y)2u2α + y2(1 − u)2α + 2y(1 − y)uα(1 − u)α cosαπ
,

we do not have any explicit form concerning Pα,(c1,c2) except the case c1 + c2 = 1.
[See Remark (ii) at the end of this section.]

The main result of this section is the following.
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THEOREM 2.4. The process associated with (1.3) has a unique stationary
distribution, which coincides with Pα,(c1,c2).

PROOF. Notice that the existence of a stationary distribution follows from
compactness of the state space [0,1]. (See, e.g., Remark 9.4 in Chapter 4 of [9].)
Let P be an arbitrary stationary distribution of the process associated with (1.3)
and Sα be defined by (2.7). Put

Tα(u) = Sα

(
(1 + u)1/α − 1

)
for u ≥ 0. Setting t = (1 + u)1/α − 1 or u = (1 + t)α − 1, observe that for u > 0

T ′
α(u) = 1

α
(1 + u)(1/α)−1S′

α(t)

and

T ′′
α (u) = 1

α

(
1

α
− 1

)
(1 + u)(1/α)−2S′

α(t) +
[

1

α
(1 + u)(1/α)−1

]2

S′′
α(t)

=
(

1

α
− 1

)
(1 + u)−1T ′

α(u) + 1

α2 (1 + u)(2/α)−2S′′
α(t).

Hence, S′
α(t) = α(1 + u)1−(1/α)T ′

α(u) and

S′′
α(t) = α2(1 + u)2−(2/α)

[
T ′′

α (u) −
(

1

α
− 1

)
(1 + u)−1T ′

α(u)

]
.

Also, (2.8) can be rewritten as

u

α
(1 + u)1/αS′′

α(t) +
[(

c1 + 1 + 1

α

)
u + c1 + c2

]
S′

α(t)

+ αc1(1 + u)1−(1/α)Sα(t) = 0.

From these preliminary observations, it is direct to see that the equation (2.8) is
transformed into a hypergeometric equation of the form

u(1 + u)T ′′
α (u) + [

(c1 + c2) + (c1 + 2)u
]
T ′

α(u) + c1Tα(u) = 0,
(2.11)

u > 0.

Clearly, Tα(0) = Sα(0) = 1. In addition,

T ′
α(0) = S′

α(0)/α = −
∫ 1

0
P(dx)x = −c1/(c1 + c2),

where the last equality follows from (2.1) with n = 1. These facts together imply
that

Tα(u) =
∫ 1

0

Bc1,c2(dy)

1 + uy
, u ≥ 0
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or

Sα(t) =
∫ 1

0

Bc1,c2(dy)

1 + {(1 + t)α − 1}y , t ≥ 0.

(See, e.g., Sections 7.2 and 9.1 in [16].) Combining this with

1

1 + {(1 + t)α − 1}y
= �(α + 1)

∫ 1

0

1

(1 + tx)α
Eα,y

[
(Y1 + Y2)

−α; Y1

Y1 + Y2
∈ dx

]
,

which is immediate from (2.9), we arrive at

Sα(t) =
∫ 1

0

Pα,(c1,c2)(dx)

(1 + tx)α
, t ≥ 0(2.12)

in view of (2.10). Therefore, we conclude that P = Pα,(c1,c2) and the proof of
Theorem 2.4 is complete. �

REMARKS. (i) In the case where c1 + c2 > 1, an alternative expression for
Pα,(c1,c2) exists:

Pα,(c1,c2)(dx)

= �(α + 1)(c1 + c2 − 1)E

[
(Z1 + Z2)

−α; Z1

Z1 + Z2
∈ dx

]
(2.13)

=: P̃α,(c1,c2)(dx),

where Z1 and Z2 are independent random variables with Laplace transforms

E
[
e−λZi

] = exp
[−ci log

(
1 + λα)]

, λ ≥ 0.(2.14)

This reflects the fact that the solution to (2.11) with the same initial conditions
Tα(0) = 1 and T ′

α(0) = −c1/(c1 + c2) admits another integral expression of the
form

Tα(u) =
∫ 1

0

B1,c1+c2−1(dy)

(1 + uy)c1
, u ≥ 0

and accordingly by (2.12)∫ 1

0

Pα,(c1,c2)(dx)

(1 + tx)α
=

∫ 1

0

B1,c1+c2−1(dy)

[1 + {(1 + t)α − 1}y]c1
, t ≥ 0.(2.15)

On the other hand, it is not difficult to show that (2.15) with P̃α,(c1,c2) in place of
Pα,(c1,c2) holds, too. In fact, we prove in Lemma 3.5 below a generalization of the
coincidence (2.13) in the setting of random measures. Also, the role of Z1 and Z2
will be made clear in connection with branching processes with immigration re-
lated closely to the process generated by (1.3). [Compare (2.14) with (3.9) below.]
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(ii) It will be shown in the Remark after Lemma 3.5 below that Pα,(c1,c2) =
Bαc1,αc2 holds whenever c1 + c2 = 1. At least at a formal level, this would be seen
by letting c1 + c2 ↓ 1 in (2.15) and then by making use of (2.4).

(iii) In contrast with the case of the Wright–Fisher diffusion mentioned in the
Introduction, Pα,(c1,c2) with 0 < α < 1 is not a reversible distribution for the gen-
erator (1.3) at least in case c1 
= c2. This will be seen in Section 4.

3. The measure-valued process case. The main subject of this section is an
extension of Theorem 2.4 to a class of generalized Fleming–Viot processes. But
the strategy will be different from that in the previous section, and so an alternative
proof of Theorem 2.4 will be given as a by-product. To discuss in the setting of
measure-valued processes, we need new notation. Let E be a compact metric space
having at least two distinct points and C(E) [resp., B+(E)] the set of continuous
(resp., nonnegative, bounded Borel) functions on E. Define M(E) to be the total-
ity of finite Borel measures on E, and we equip M(E) with the weak topology.
Denote by M(E)◦ the set of nonnull elements of M(E). The set M1(E) of Borel
probability measures on E is regarded as a subspace of M(E). We also use the no-
tation 〈η,f 〉 to stand for the integral of a function f with respect a measure η. For
each r ∈ E, let δr denote the delta distribution at r . Given a probability measure Q,
we write also EQ[·] for the expectation with respect to Q.

Let 0 < α < 1 and m ∈ M(E) be given. We shall discuss in this section an
M1(E)-valued Markov process associated with

Aα,m
(μ)

:=
∫ 1

0

B1−α,1+α(du)

u2

∫
E

μ(dr)
[



(
(1 − u)μ + uδr

) − 
(μ)
]

(3.1)

+
∫ 1

0

B1−α,α(du)

(α + 1)u

∫
E

m(dr)
[



(
(1 − u)μ + uδr

) − 
(μ)
]
,

μ ∈ M1(E),

where 
 belongs to the class F1 of functions of the form 
f (μ) := 〈μ⊗n, f 〉 for
some positive integer n and f ∈ C(En). Equation (3.1) shows clearly that Aα,m

satisfies the positive maximum principle and hence is dissipative. (See Lemma 2.1
in Chapter 4 of [9].) We begin by seeing that Aα,m defines a Markov process
on M1(E) in an appropriate sense. For this purpose, we need an expression for
Aα,m
f with f ∈ C(En). Set (a)b = �(a + b)/�(a) for a > 0 and b ≥ 0, and let
| · | stand for the cardinality. It holds that for any θ ≥ 0 and ν ∈M1(E)

Aα,θν
f (μ)

=
n∑

k=2

(1 − α)k−2(α + 1)n−k

�(n)

∑
I : |I |=k

(〈
μ⊗n,�

(n)
I f

〉 − 
f (μ)
)

(3.2)

+ θ

n∑
k=1

(1 − α)k−1(α)n−k

(α + 1)�(n)

∑
I : |I |=k

(〈
μ⊗n,

(n)
I,νf

〉 − 
f (μ)
)
,
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where I are nonempty subsets of {1, . . . , n}, �
(n)
I :C(En) → C(En) is defined by

letting �
(n)
I f be the function obtained from f by replacing all the variables ri with

i ∈ I by rmin I and 
(n)
I,ν :C(En) → C(En) is defined by letting 

(n)
I,νf be the func-

tion obtained from f by replacing all the variables ri with i ∈ I by r and then by
integrating with respect to ν(dr). (For a degenerate ν, (3.2) is a special case of the
corresponding expression found in the proof of Lemma 11 in [12].) Equation (3.2)
can be deduced from the following identities [cf. (2.3)] among signed measures
on En:

n⊗
i=1

(
(1 − u)μ(dri) + uδr(dri)

) −
n⊗

i=1

μ(dri)

=
n⊗

i=1

(
(1 − u)μ(dri) + uδr(dri)

) −
n⊗

i=1

(
(1 − u)μ(dri) + uμ(dri)

)
= ∑

I 
=∅

⊗
j /∈I

(
(1 − u)μ(drj )

)[⊗
i∈I

(
uδr(dri)

) − ⊗
i∈I

(
uμ(dri)

)]

= ∑
I 
=∅

u|I |(1 − u)n−|I | ⊗
j /∈I

μ(drj )

[⊗
i∈I

δr (dri) − ⊗
i∈I

μ(dri)

]
.

As for the Fleming–Viot process with parent-independent mutation, the result cor-
responding to the next proposition is a special case of Theorem 3.4 in [10].

PROPOSITION 3.1. For each m ∈ M(E) the closure of Aα,m defined on F1
generates a Feller semigroup on C(M1(E)).

PROOF. Let θ ≥ 0 and ν ∈ M1(E) be such that m = θν. We simply mimic
the proof of Theorem 3.4 in [10]. In particular, the Hille–Yosida theorem (Theo-
rem 2.2 in Chapter 4 of [9]) will be applied. Let n be an arbitrary positive integer.
Rewrite (3.2) as

Aα,θν
f (μ) = 〈
μ⊗n,�(n)f

〉 + θ
〈
μ⊗n,(n)

ν f
〉 − cn(α, θ)
f (μ),

where �(n), 
(n)
ν :C(En) → C(En) and cn(α, θ) are, respectively, the nonnega-

tive operators and the positive constant-defined implicitly by the above equation
combined with (3.2). Let λ > 0 be arbitrary. Given g ∈ C(En), define

h = (
λ + cn(α, θ)

)−1
∞∑

k=0

[(
λ + cn(α, θ)

)−1(
�(n) + θ(n)

ν

)]k
g.

Then h ∈ C(En) since the operator norm of �(n) + θ
(n)
ν equals cn(α, θ). More-

over, (
λ + cn(α, θ)

)
h − (

�(n) + θ(n)
ν

)
h = g,
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so (λ − Aα,θν)
h = 
g . This implies that the range of λ − Aα,θν contains F1,
which is dense in C(M1(E)). The rest of the proof is the same as that of Theo-
rem 3.4 in [10]. �

For simplicity, we call the Aα,m-process the Markov process governed by Aα,m

in the sense of Proposition 3.1. This process is a natural generalization of the pro-
cess generated by (1.3) in the following sense. Suppose that E consists of two
points, say r1 and r2, set m = c1δr1 + c2δr2 , and let {X(t) : t ≥ 0} be the pro-
cess generated by (1.3). Then, verifying the identity Aα,m
(μ) = AαG(x) for
μ = xδr1 + (1 − x)δr2 and 
(μ) = G(x), we see that the process {X(t)δr1 + (1 −
X(t))δr2 : t ≥ 0} defines an Aα,m-process. We note that [13] discusses the case
where E = [0,1] and m = cδ0 for some c > 0.

We could also establish the well-posedness of the martingale problem for Aα,m

by modifying some existing arguments. More precisely, the existence could be
shown through a limit theorem for suitably generalized Moran particle systems by
modifying those considered in the proof of Theorem 2.1 [especially (2.2)] of [14],
which took account of the jump mechanism describing simultaneous reproduction
(sampling) only, so that simultaneous movement (mutation) of particles to a ran-
dom location (type) distributed according to m(dr)/m(E) is allowed. The unique-
ness would follow by the duality argument employing a function-valued process
as in the proof of Theorem 2.1 of [14]. Its possible transitions and the associated
transition rates are found in (3.2). The duality would be useful in discussing (weak)
ergodicity of the Aα,m-process. (See, e.g., Theorem 5.2 in [10] for such a result in
the Fleming–Viot process case.)

The following argument is based primarily on the relationship between the
Aα,m-process and a suitable MBI-process, which takes values in M(E). More
precisely, the generator, say Lα,m, of the latter will be chosen so that for some
constant C > 0

Lα,m�(η) = Cη(E)−αAα,m

(
η(E)−1η

)
, η ∈ M(E)◦,(3.3)

where �(η) = 
(η(E)−1η) and 
 is in the linear span F0 of functions of the
form μ �→ 〈μ,f1〉 · · · 〈μ,fn〉 with fi ∈ C(E), i = 1, . . . , n and n being a positive
integer. In the case of the Fleming–Viot process (which corresponds to α = 1 for-
mally), such a relation is well known. For instance, it played a key role in [20].
As for the generalized Fleming–Viot process, factorizations of the form (3.3) have
been shown in [3] for m = 0 (the null measure) and in [13] for degenerate mea-
sures m. From now on, suppose that m ∈ M(E)◦. To exploit (3.3) in the study of
stationary distributions, we further require the MBI-process associated with Lα,m

to be ergodic, that is, to have a unique stationary distribution, say Q̃α,m, supported
on M(E)◦. Once these requirements are fulfilled, (3.3) suggests that

P̃α,m(·) := EQ̃α,m
[
η(E)−α;η(E)−1η ∈ ·]/EQ̃α,m

[
η(E)−α]

(3.4)
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would give a stationary distribution of the Aα,m-process provided that η(E)−α is
integrable with respect to Q̃α,m. This conditional answer may be modified to be a
general one, which must be consistent with the one-dimensional result (1.4).

To describe the answer, we need both the α-stable random measure with pa-
rameter measure m and the Dirichlet random measure with parameter measure m,
whose laws on M(E)◦ and M1(E) are denoted by Qα,m and Dm, respectively.
These infinite-dimensional laws are determined uniquely by the identities∫

M(E)◦
Qα,m(dη)e−〈η,f 〉 = e−〈m,f α〉(3.5)

and ∫
M1(E)

Dm(dμ)〈μ,1 + f 〉−m(E) = e−〈m,log(1+f )〉,(3.6)

where f ∈ B+(E) is arbitrary. A random measure with law Qα,m is constructed
from a Poisson random measure on (0,∞) × E. (See also Definition 6 in [22].)
Observe from (3.5) that EQα,m[η(E)−α] = 1/(m(E)�(α + 1)). As in [11], Dm is
defined originally to be the law of a random measure whose arbitrary finite-
dimensional distributions are Dirichlet distributions with parameters specified
by m. The useful identity (3.6) is due to [4] and reduces to (2.4) in one-dimension.
We now state the main result of this paper.

THEOREM 3.2. For any m ∈ M(E)◦, the Aα,m-process has a unique station-
ary distribution, which is identified with

Pα,m(·) := �(α + 1)

∫
M1(E)

Dm(dμ)EQα,μ
[
η(E)−α;η(E)−1η ∈ ·].(3.7)

To illustrate, consider the trivial case where m = θδr for some θ > 0 and r ∈ E.
Then it is verified easily that Pα,m concentrates at δr ∈M1(E), and this is consis-
tent with the equality Aα,m
(δr) = 0 in that case. Also, for every m ∈ M(E)◦, we
note that Pα,m → Dm as α ↑ 1 since by (3.5) Qα,μ converges weakly to the delta
distribution at μ for each μ ∈ M1(E).

The proof of Theorem 3.2 will be divided into three steps. As mentioned ear-
lier, we first find an ergodic MBI-process whose generator satisfies (3.3) and
show, under necessary integrability condition, that P̃α,m in (3.4) gives a station-
ary distribution of the Aα,m-process. [In fact, the condition will turn out to be that
m(E) > 1. This motivates us to make a reparametrization m =: θν with θ > 0
and ν ∈ M1(E).] Second, for each ν ∈ M1(E), we prove that P̃α,θν = Pα,θν for
any θ > 1. As the last step, we extend stationarity of Pα,θν with respect to Aα,θν to
all θ > 0 by interpreting the condition of stationarity as certain recursion equations
among moment measures which are seen to be real analytic in θ > 0. Also, the re-
cursion equations will be shown to yield uniqueness of the stationary distribution.
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For the first step, we prove in the next proposition that the MBI-process with
the following generator is the desired one:

Lα,m�(η)

:= α + 1

�(1 − α)

∫ ∞
0

dz

z2+α

∫
E

η(dr)

[
�(η + zδr) − �(η) − z

δ�

δη
(r)

]
(3.8)

− 1

α

〈
η,

δ�

δη

〉

+ α

�(1 − α)

∫ ∞
0

dz

z1+α

∫
E

m(dr)
[
�(η + zδr) − �(η)

]
,

where � is in the class F of functions of the form η �→ F(〈η,f1〉, . . . , 〈η,fn〉)
for some F ∈ C2

b(Rn), fi ∈ C(E) and a positive integer n, and δ�
δη

(r) = d
dε

�(η +
εδr)|ε=0. Up to this first order differential term, the operator (3.8) for E = [0,1]
and m = cδ0 with c > 0 is the same as the one discussed in Lemma 5.5 of [13],
in which the factorization (3.3) has been proved. Thus, our main observation in
the next proposition is that, keeping the validity of (3.3), such an extra term yields
the ergodicity. Note that the generator (3.8) is a special case of the one discussed
in Chapter 9 of [17]. [See (9.25) combined with (7.12) there for an expression
of the generator.] In particular, a unique solution to the martingale problem for
Lα,m defines an M(E)-valued Markov process, which henceforth we call the
Lα,m-process. Intuitively, because of absence of the “motion process”, the law
of this process is considered as continuum convolution of the continuous-state
branching process with immigration (CBI-process) studied in [15]. [See (3.11)
below.] In addition, Example 1.1 and Theorem 2.3 in [15] concern the one-
dimensional version of the Lα,m-process without the drift. The latter proved that
the offspring distribution and the distribution associated with immigration of the
approximating branching processes may have probability generating functions of
the form s + c(1 − s)α+1 and 1 − d(1 − s)α , respectively.

PROPOSITION 3.3. Let m ∈ M(E)◦. Then Lα,m in (3.8) and Aα,m in (3.1)
together satisfy (3.3) with C = �(α + 2) and �(η) = 
(η(E)−1η) for any

 ∈ F0. Moreover, the Lα,m-process has a unique stationary distribution Q̃α,m

with Laplace functional∫
M(E)◦

Q̃α,m(dη)e−〈η,f 〉 = e−〈m,log(1+f α)〉, f ∈ B+(E).(3.9)

A random measure with law Q̃α,m may be called a Linnik random measure
since it is an infinite-dimensional analogue of the random variable with law some-
times referred to as a (nonsymmetric) Linnik distribution, whose Laplace trans-
form appeared already in (2.14). It is obtained by subordinating to an α-stable
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subordinator by a gamma process. (See, e.g., Example 30.8 in [19].) Namely, let-
ting {Yα(t) : t ≥ 0} and {γ (t) : t ≥ 0} be independent Lévy processes such that

E
[
e−λYα(t)] = e−tλα

and E
[
e−λγ (t)] = e−t log(1+λ), t, λ ≥ 0,

we have for each c > 0

E
[
e−λYα(γ (c))] = E

[
e−γ (c)λα ] = e−c log(1+λα), λ ≥ 0.

The first equality implies that

P
(
Yα

(
γ (c)

) ∈ ·) =
∫ ∞

0
P

(
γ (c) ∈ dt

)
P

(
Yα(t) ∈ ·).

Equation (3.9) clearly shows an analogous structure underlying, that is,

Q̃α,m(·) =
∫
M(E)◦

Gm(dη)Qα,η(·),
where Gm is the law of the standard gamma process on (E,m). (See Definition 5
in [22]). It is also obvious from (3.9) that, as α ↑ 1, Q̃α,m converges to Gm. In
addition, one can see that

lim
α↑1

Lα,m�(η) =
〈
η,

δ2�

δη2

〉
−

〈
η,

δ�

δη

〉
+

〈
m,

δ�

δη

〉
=: Lm�(η)

for “nice” functions � , where δ2�
δη2 (r) = d2

dε2 �(η + εδr)|ε=0. This is a special case
of the generator of MBI-processes discussed in Section 3 of [21]. It has been
proved there that Gm is a reversible stationary distribution of the process associated
with Lm.

PROOF OF PROPOSITION 3.3. As already remarked, if the term −α−1〈η, δ�
δη

〉
in (3.8) would vanish, (3.3) can be shown by essentially the same calculations as in
the proof of Lemma 17 in [13]. [In fact, the change of variable z =: η(E)u/(1−u)

in the integrals with respect to dz in (3.8) almost suffices for our purpose.] So,
for the proof of (3.3), we only need to observe that 〈η, δ�

δη
〉 = 0 for � of the form

�(η) = 
(η(E)−1η) with 
 ∈ F0. But this is readily done by giving a specific
form of 
. Indeed, for 
(μ) = 〈μ,f1〉 · · · 〈μ,fn〉 the function � takes the form
�(η) = 〈η,f1〉 · · · 〈η,fn〉〈η,1〉−n, from which it follows that

δ�

δη
(r) =

n∑
i=1

fi(r)〈η,1〉 − 〈η,fi〉
〈η,1〉n+1

∏
j 
=i

〈η,fj 〉.

After integrating with respect to η(dr), the numerator on the right-hand side van-
ishes.

The argument regarding ergodicity is based on a well-known formula for
Laplace functionals of transition functions. (See (9.18) in [17] for a much more
general case than ours.) To write it down, we need only auxiliary functions called
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�-semigroup [15] because there is no “motion process”. These functions form
a one-parameter family {ψ(t, ·)}t≥0 of nonnegative functions on [0,∞) and are
determined by the equation

∂ψ

∂t
(t, λ) = − 1

α
ψ(t, λ)1+α − 1

α
ψ(t, λ), ψ(0, λ) = λ(3.10)

with λ ≥ 0 being arbitrary. An explicit expression is found in Example 3.1 of [17]:

ψ(t, λ) = e−t/αλ

[1 + (1 − e−t )λα]1/α
.

Let {ηt : t ≥ 0} be an Lα,m-process, and for each η ∈ M(E) denote by Eη the
expectation with respect to {ηt : t ≥ 0} starting at η. Then for any f ∈ B+(E) and
t ≥ 0

Eη

[
e−〈ηt ,f 〉] = exp

[
−〈η,Vtf 〉 −

∫ t

0

〈
m, (Vsf )α

〉
ds

]
,(3.11)

where Vtf (r) = ψ(t, f (r)). As t → ∞ the right-hand side converges to

exp
[
−

∫ ∞
0

〈
m, (Vtf )α

〉
dt

]
= exp

[−〈
m, log

(
1 + f α)〉]

since by (3.10)

d

dt
log

(
1 + (

Vtf (r)
)α) = −(

Vtf (r)
)α

.

This shows the ergodicity required and completes the proof. �

PROPOSITION 3.4. Suppose that m(E) > 1 and let Q̃α,m be as in Proposi-
tion 3.3. Then

EQ̃α,m
[
η(E)−α] = (

�(α + 1)
(
m(E) − 1

))−1
.

Moreover,

P̃α,m(·) = �(α + 1)
(
m(E) − 1

)
EQ̃α,m

[
η(E)−α;η(E)−1η ∈ ·](3.12)

is a stationary distribution of the Aα,m-process.

PROOF. The first assertion is shown by using t−α = �(α)−1 ∫ ∞
0 dvvα−1e−vt

(t > 0) and (3.9) with f ≡ v. Indeed, these equalities together with Fubini’s theo-
rem yield

EQ̃α,m
[
η(E)−α] = �(α)−1

∫ ∞
0

dvvα−1 exp
[−m(E) log

(
1 + vα)]

= �(α + 1)−1
∫ ∞

0
dz exp

[−m(E) log(1 + z)
]

= �(α + 1)−1(
m(E) − 1

)−1
.
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As in the one-dimensional case, Theorem 9.17 in Chapter 4 of [9] reduces the
proof of stationarity of (3.12) with respect to Aα,m to showing that∫

M1(E)
P̃α,m(dμ)Aα,m
(μ) = 0(3.13)

for any 
 of the form 
(μ) = 〈μ,f1〉 · · · 〈μ,fn〉 with fi ∈ C(E) and n being a
positive integer. Without any loss of generality, we can assume that 0 ≤ fi(x) ≤ 1
for any x ∈ E and i = 1, . . . , n. Furthermore, we only have to consider the case
where f1 = · · · = fn =: f because the coefficients of the monomial t1 · · · tn in
〈μ, t1f1 + · · · + tnfn〉n equals n!〈μ,f1〉 · · · 〈μ,fn〉. Thus, we let 
(μ) = 〈μ,f 〉n
with 0 ≤ f (x) ≤ 1 for any x ∈ E. Because of the basic relation (3.3) and (3.12)
together, (3.13) can be rewritten as∫

M(E)◦
Q̃α,m(dη)Lα,m�(η) = 0,(3.14)

where �(η) = 〈η,f 〉n〈η,1〉−n. The main difficulty comes from the fact that �

does not belong to F . For each ε > 0, introduce �ε(η) := 〈η,f 〉n(〈η,1〉 + ε)−n

and observe that �ε ∈ F . Thanks to Proposition 3.3, we then have (3.14) with �ε

in place of � provided that Lα,m�ε is bounded. Thus, the proof of (3.14) reduces
to showing the following two assertions:

(i) For every ε > 0, L(1)
α,m�ε , L(2)

α,m�ε and L(3)
α,m�ε are bounded functions

on M(E).
(ii) It holds that for each k ∈ {1,2,3}

lim
ε↓0

∫
M(E)◦

Q̃α,m(dη)L(k)
α,m�ε(η) =

∫
M(E)◦

Q̃α,m(dη)L(k)
α,m�(η).(3.15)

Here, Lα,m = L(1)
α,m +L(2)

α,m +L(3)
α,m, and the operators L(1)

α,m, L(2)
α,m and L(3)

α,m corre-
spond, respectively, to the first, second and last term on the right-hand side of (3.8).

First, we consider L(2)
α,m. Observe that

δ�ε

δη
(r) = nf (r)〈η,f 〉n−1

(〈η,1〉 + ε)n
− n〈η,f 〉n

(〈η,1〉 + ε)n+1

(3.16)

= n(f (r)〈η,1〉 − 〈η,f 〉 + εf (r))〈η,f 〉n−1

(〈η,1〉 + ε)n+1 ,

from which it follows that

αL(2)
α,m�ε(η) = −

〈
η,

δ�ε

δη

〉

= −n(〈η,f 〉〈η,1〉 − 〈η,f 〉〈η,1〉 + ε〈η,f 〉)〈η,f 〉n−1

(〈η,1〉 + ε)n+1

= −nε
�ε(η)

〈η,1〉 + ε
.
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Hence, L(2)
α,m�ε is a bounded function on M(E) and L(2)

α,m�ε(η) → 0 = L(2)
α,m�(η)

boundedly as ε ↓ 0. This proves that (i) and (ii) hold true for L(2)
α,m.

In calculating L(3)
α,m�ε , (3.16) is useful since d

dz
�ε(η + zδr) = δ�ε

δ(η+zδr )
(r). In-

deed, by Fubini’s theorem∫ ∞
0

dz

z1+α

[
�ε(η + zδr) − �ε(η)

]
=

∫ ∞
0

dz

z1+α

∫ z

0
dw

δ�ε

δ(η + wδr)
(r)(3.17)

= 1

α

∫ ∞
0

w−α dw
δ�ε

δ(η + wδr)
(r)

and combining with (3.16) yields∣∣∣∣∫ ∞
0

dz

z1+α

[
�ε(η + zδr) − �ε(η)

]∣∣∣∣
≤ 1

α

∫ ∞
0

w−α dw
n|f (r)〈η + wδr,1〉 − 〈η + wδr, f 〉 + εf (r)|〈η + wδr, f 〉n−1

(〈η + wδr,1〉 + ε)n+1

≤ n

α

∫ ∞
0

w−α dw
1

〈η,1〉 + w + ε
(3.18)

= n

α

∫ ∞
0

w−α dw

∫ ∞
0

dve−v(〈η,1〉+w+ε)

= n
�(α)�(1 − α)

α

(〈η,1〉 + ε
)−α

.

This shows not only that L(3)
α,m�ε is bounded but also

∣∣L(3)
α,m�ε(η)

∣∣ ≤ n�(α) · 〈m,1〉
〈η,1〉α ,

which is integrable with respect to Q̃α,m as proved already. It can be seen also
from (3.16) and (3.17) that L(3)

α,m�ε converges pointwise to L(3)
α,m� as ε ↓ 0. By

Lebesgue’s dominated convergence theorem we have proved (3.15) for L(3)
α,m.

The final task is to deal with L(1)
α,m�ε . Similar to (3.17)

Iε(η, r) :=
∫ ∞

0

dz

z2+α

[
�ε(η + zδr) − �ε(η) − z

δ�ε

δη
(r)

]

=
∫ ∞

0

dz

z2+α

∫ z

0
dw

[
δ�ε

δ(η + wδr)
(r) − δ�ε

δη
(r)

]

= 1

1 + α

∫ ∞
0

dw

w1+α

[
δ�ε

δ(η + wδr)
(r) − δ�ε

δη
(r)

]
.
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By (3.16) δ�ε

δ(η+wδr)
(r) − δ�ε

δη
(r) equals

(〈η,1〉 + ε)n+1n(f (r)〈η,1〉 − 〈η,f 〉 + εf (r))[〈η + wδr, f 〉n−1 − 〈η,f 〉n−1]
(〈η,1〉 + w + ε)n+1(〈η,1〉 + ε)n+1

+ [(〈η,1〉 + ε)n+1 − (〈η,1〉 + w + ε)n+1]n(f (r)〈η,1〉 − 〈η,f 〉 + εf (r))〈η,f 〉n−1

(〈η,1〉 + w + ε)n+1(〈η,1〉 + ε)n+1 .

Moreover, we have bounds∣∣〈η + wδr, f 〉n−1 − 〈η,f 〉n−1∣∣ =
∣∣∣∣∫ w

0
dv(n − 1)f (r)〈η + vδr , f 〉n−2

∣∣∣∣
≤ w(n − 1)

(〈η,1〉 + w
)n−2

and∣∣(〈η,1〉 + ε
)n+1 − (〈η,1〉 + w + ε

)n+1∣∣ = (n + 1)

∫ w

0
dv

(〈η,1〉 + v + ε
)n

≤ w(n + 1)
(〈η,1〉 + w + ε

)n
.

Consequently,∣∣∣∣ δ�ε

δ(η + wδr)
(r) − δ�ε

δη
(r)

∣∣∣∣
≤ w

n(〈η,1〉 + ε)n+2(n − 1)(〈η,1〉 + w)n−2

(〈η,1〉 + w + ε)n+1(〈η,1〉 + ε)n+1

+ w
(n + 1)(〈η,1〉 + w + ε)nn(〈η,1〉 + ε)〈η,1〉n−1

(〈η,1〉 + w + ε)n+1(〈η,1〉 + ε)n+1

≤ w
2n2

(〈η,1〉 + w + ε)(〈η,1〉 + ε)
.

Therefore, analogous calculations to those in (3.18) lead to∣∣L(1)
α,m�ε(η)

∣∣ =
∣∣∣∣ α + 1

�(1 − α)

∫
E

Iε(η, r)η(dr)

∣∣∣∣
≤ 2n2�(α)

(〈η,1〉 + ε
)−α · 〈η,1〉

〈η,1〉 + ε
.

This makes it possible to argue as in the case of L(3)
α,m�ε to verify (i) and (ii)

for L(1)
α,m. We complete the proof of Proposition 3.4. �

Next, we show the coincidence of two distributions (3.4) [or (3.12)] and (3.7).
Before going to the proof, it is worth noting that

Pα,m(·) =
∫
M1(E)

Dm(dμ)D(α,α)
μ (·),(3.19)
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where in general, for θ > −α and m ∈ M(E), D(α,θ)
m is the law of the two-

parameter generalization of the Dirichlet random measure with parameter (α, θ)

and parameter measure m defined by

D(α,θ)
m (·) = �(θ + 1)

�((θ/α) + 1)
EQα,m

[
η(E)−θ ;η(E)−1η ∈ ·].

(See, e.g., Section 5 of [22].) We will make use of the identity∫
M1(E)

D(α,α)
m (dμ)〈μ,1 +f 〉−α = 〈

m, (1 +f )α
〉−1

, f ∈ B+(E).(3.20)

This is a special case of Theorem 4 in [22] and can be shown as follows:∫
M1(E)

D(α,α)
m (dμ)〈μ,1 + f 〉−α

= �(α + 1)EQα,m
[〈η,1〉−α(

1 + 〈η,1〉−1〈η,f 〉)−α]
= �(α + 1)EQα,m

[〈η,1 + f 〉−α]
= α

∫ ∞
0

dvvα−1 exp
[−vα 〈

m, (1 + f )α
〉]

= 〈
m, (1 + f )α

〉−1
.

LEMMA 3.5. If m(E) > 1, then P̃α,m in (3.12) coincides with Pα,m in (3.7).

PROOF. It suffices to show that for any f ∈ B+(E)

Ĩ (f ) :=
∫
M1(E)

P̃α,m(dμ)〈μ,1 + f 〉−α

=
∫
M1(E)

Pα,m(dμ)〈μ,1 + f 〉−α =: I (f ).

In view of (3.12), calculations similar to the proof of (3.20) show that(
�(α + 1)

(
m(E) − 1

))−1
Ĩ (f )

= EQ̃α,m
[〈η,1 + f 〉−α]

= �(α)−1
∫ ∞

0
dvvα−1 exp

[−〈
m, log

(
1 + vα(1 + f )α

)〉]
= �(α + 1)−1

∫ ∞
0

dz exp
[−〈

m, log
(
1 + z(1 + f )α

)〉]
= 1

�(α + 1)

∫ 1

0
du(1 − u)−2 exp

[
−

〈
m, log

(
1 + u

1 − u
(1 + f )α

)〉]

= 1

�(α + 1)

∫ 1

0
du(1 − u)m(E)−2 exp

[−〈
m, log

(
1 + u

(
(1 + f )α − 1

))〉]
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= 1

�(α + 1)

∫ 1

0
du(1 − u)m(E)−2

×
∫
M1(E)

Dm(dμ)
〈
μ,1 + u

(
(1 + f )α − 1

)〉−m(E)
,

where the last equality follows from (3.6). Hence, by applying Fubini’s theorem
and (2.4)

Ĩ (f ) =
∫
M1(E)

Dm(dμ)

∫ 1

0

B1,m(E)−1(du)

〈μ,1 + u((1 + f )α − 1)〉m(E)

=
∫
M1(E)

Dm(dμ)
〈
μ, (1 + f )α

〉−1
.

On the other hand, combining (3.19) with (3.20), we get

I (f ) =
∫
M1(E)

Dm(dμ)
〈
μ, (1 + f )α

〉−1(3.21)

and therefore I (f ) = Ĩ (f ) as desired. �

REMARK. The “semi-explicit” form (3.19) can be explicit if m is a probabil-
ity measure. More precisely, we have Pα,ν = Dαν for any ν ∈ M1(E). Indeed,
observe that by (3.21) with m = ν∫

M1(E)
Pα,ν(dμ)〈μ,1 + f 〉−α =

∫
M1(E)

Dν(dμ)
〈
μ, (1 + f )α

〉−1

= exp
[−〈

ν, log
{
(1 + f )α

}〉]
= exp

[−〈
αν, log(1 + f )

〉]
=

∫
M1(E)

Dαν(dμ)〈μ,1 + f 〉−α,

where (3.6) has been applied twice. [A one-dimensional version of the identity
Pα,ν = Dαν is mentioned in Remark (ii) at the end of Section 2.] By (3.19) what
we have just seen is rewritten as∫

M1(E)
Dν(dμ)D(α,α)

μ (·) = Dαν(·),

which is a special case of∫
M1(E)

D(β,θ/α)
ν (dμ)D(α,θ)

μ (·) = D(αβ,θ)
ν (·), β ∈ [0,1), θ > −αβ.

Here notice that, in case β = 0, D(0,θ)
ν = Dθν by definition. This generalization

can be proved analogously by virtue of the two-parameter generalization of (3.6)
and (3.20). (See, e.g., Theorem 4 in [22].)
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We can now prove our main result, Theorem 3.2. In the proof, we write θν

[θ > 0, ν ∈ M1(E)] for the parameter measure m.

PROOF OF THEOREM 3.2. Let ν ∈ M1(E) be given. We first show that, for
arbitrary θ > 0, Pα,θν is a stationary distribution of the Aα,θν -process. For the
same reason as in the proof of Proposition 3.4 [cf. (3.13)], it is sufficient to prove
that ∫

M1(E)
Pα,θν(dμ)Aα,θν
(μ) = 0(3.22)

for 
 of the form 
(μ) = 〈μ,f 〉n with f ∈ C(E) and n being a positive integer.
Since Proposition 3.4 and Lemma 3.5 together imply that (3.22) holds true for any
θ > 1, it is enough to show that the left-hand side of (3.22) defines a real analytic
function of θ > 0. We claim that

Aα,θν
(μ)

= 1

�(n)

n∑
k=2

(
n

k

)
(1 − α)k−2(α + 1)n−k

(〈
μ,f k 〉〈μ,f 〉n−k − 〈μ,f 〉n)

+ θ

(α + 1)�(n)

×
n∑

k=1

(
n

k

)
(1 − α)k−1(α)n−k

(〈
ν,f k 〉〈μ,f 〉n−k − 〈μ,f 〉n)

(3.23)

= 1

�(n)

n∑
k=2

(
n

k

)
(1 − α)k−2(α + 1)n−k

〈
μ,f k 〉〈μ,f 〉n−k

+ θ

(α + 1)�(n)

n∑
k=1

(
n

k

)
(1 − α)k−1(α)n−k

〈
ν,f k 〉〈μ,f 〉n−k

− (α + 1)n−1

(α + 1)�(n)
(θ + n − 1)〈μ,f 〉n.

The first equality is a special case of (3.2), and the second one can be shown with
the help of Leibniz’s formula

(φ1φ2)
(n)(0) =

n∑
k=0

(
n

k

)
φ

(n−k)
1 (0)φ

(k)
2 (0)

for φ1(t) = (1 − t)−a and φ2(t) = (1 − t)−b with (a, b) = (α + 1,−α − 1) or
(a, b) = (α,−α). In view of (3.23), it is clear that the proof reduces to verifying
real analyticity of

∫
Pα,θν(dμ)〈μ,f1〉 · · · 〈μ,fn〉 in θ for arbitrary f1, . . . , fn ∈

C(E).
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To this end, we shall exploit the following identity which is equivalent to (3.21):∫
M1(E)

Pα,θν(dμ)〈μ,1 + f 〉−α =
∫
M1(E)

Dθν(dμ)
〈
μ, (1 + f )α

〉−1
,(3.24)

where f ∈ B+(E) is arbitrary. Clearly, this remains true for all bounded Borel
functions f on E such that infr∈E f (r) > −1. Therefore, for any t1, . . . , tn ∈ R
with |t1| + · · · + |tn| being sufficiently small, (3.24) for f = −∑n

i=1 tifi is valid,
that is, I (t1, . . . , tn) = J (t1, . . . , tn), where

I (t1, . . . , tn) =
∫
M1(E)

Pα,θν(dμ)

(
1 −

〈
μ,

n∑
i=1

tifi

〉)−α

(3.25)

and

J (t1, . . . , tn) =
∫
M1(E)

Dθν(dμ)

〈
μ,

(
1 −

n∑
i=1

tifi

)α〉−1

.(3.26)

Noting that (1 − t)−α = 1 + ∑∞
k=1(α)kt

k/k! as long as |t | is small enough, we
see from (3.25) that the coefficient of the monomial t1 · · · tn in the expansion of
I (t1, . . . , tn) is given by

(α)n

∫
M1(E)

Pα,θν(dμ)〈μ,f1〉 · · · 〈μ,fn〉.(3.27)

To find the corresponding coefficient for J (t1, . . . , tn), define

hα(t) = 1 − (1 − t)α = α

∞∑
l=1

(1 − α)l−1t
l/ l!

and observe from (3.26) that J (t1, . . . , tn) equals∫
M1(E)

Dθν(dμ)

〈
μ,1 − hα

(
n∑

i=1

tifi

)〉−1

= 1 +
∞∑

k=1

∫
M1(E)

Dθν(dμ)

〈
μ,hα

(
n∑

i=1

tifi

)〉k

= 1 +
∞∑

k=1

αk
∫
M1(E)

Dθν(dμ)

∞∑
l1,...,lk=1

k∏
j=1

{
(1 − α)lj−1

lj !
〈
μ,

(
n∑

i=1

tifi

)lj 〉}
.

One can see that the coefficient of the monomial t1 · · · tn in the expansion of
J (t1, . . . , tn) can be expressed as

n∑
k=1

αkk! ∑
γ∈π(n,k)

∫
M1(E)

Dθν(dμ)

k∏
j=1

{
(1 − α)|γj |−1

|γj |!
〈
μ,

∏
i∈γj

fi

〉}
,(3.28)
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where π(n, k) is the set of partitions γ of {1, . . . , n} into k unordered nonempty
subsets γ1, . . . , γk . By Lemma 2.2 of [7] (or equivalently by Lemma 2.4 of [8]),
each integral in the above sum is a real analytic function of θ > 0. Hence, so is the
integral in (3.27) and the stationarity of Pα,θν with respect to Aα,θν follows.

It remains to prove the uniqueness of stationary distribution P of the Aα,θν -pro-
cess for each θ > 0. But this is an immediate consequence of (3.22) with P in place
of Pα,θν and (3.23), which together determine uniquely

∫
P(dμ)〈μ,f 〉n and hence

the nth moment measure

Mn(dr1 · · ·drn) :=
∫
M1(E)

P (dμ)μ(dr1) · · ·μ(drn)

for any n = 1,2, . . . . This completes the proof of Theorem 3.2. �

It is not clear whether we can derive from (3.28) an extension of the Ewens sam-
pling formula in some explicit and informative form. (See Remarks after the proof
of Lemma 2.2 in [7].) In view of (3.19), one might think that Pitman’s sampling
formula would be applicable. But it is not the case since Dm(μ is discrete) = 1.
The expression (3.12) might be rather useful for such a purpose.

4. Irreversibility. In this section, we discuss reversibility of our processes. In
contrast with the Fleming–Viot diffusion case, we guess that for any 0 < α < 1
and nondegenerate m the Aα,m-process would be irreversible. Unfortunately, the
following result does not give an affirmative answer in all cases. However, this
does not suggest any possibility of the reversibility in the exceptional case, which
is believed to be dealt with a different choice of test functions.

THEOREM 4.1. Let m ∈ M(E)◦ be given. Assume that either of the following
two conditions holds.

(i) The support of m has at least three distinct points.
(ii) The support of m has exactly two points, say r1 and r2 and m({r1}) 
=

m({r2}).
Then the stationary distribution Pα,m of the Aα,m-process is not a reversible dis-
tribution of it.

PROOF. As in the proof of Theorem 3.2, we write θν instead of m. Thus, θ > 0
and ν ∈ M1(E). Recall that an equivalent condition to the reversibility of Pα,θν

with respect to Aα,θν is the symmetry

E
[

Aα,θν


′] = E
[

′Aα,θν


]
, 
,
′ ∈ F0,

in which E[·] stands for the expectation with respect to Pα,θν . (See the proof of
Theorem 2.3 in [7].) In the rest of the proof, we suppress the suffix “α, θν” for
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simplicity. Let f ∈ C(E) be given and define 
n(μ) = 〈μ,f 〉n for each positive
integer n. We are going to calculate

� := E[
2A
1] − E[
1A
2].(4.1)

For this purpose, observe from (3.23) that

A
1(μ) = θ

α + 1

(〈ν,f 〉 − 〈μ,f 〉),(4.2)

A
2(μ) = 〈
μ,f 2〉 + 2αθ

α + 1
〈ν,f 〉〈μ,f 〉

(4.3)

+ (1 − α)θ

α + 1

〈
ν,f 2〉 − (θ + 1)〈μ,f 〉2

and

�(3)A
3(μ)

= 3(α + 1)
〈
μ,f 2〉〈μ,f 〉 + (1 − α)

〈
μ,f 3〉

+ θ

α + 1
· 3α(α + 1)〈ν,f 〉〈μ,f 〉2

(4.4)

+ θ

α + 1
· 3(1 − α)α

〈
ν,f 2〉〈μ,f 〉

+ θ

α + 1
· (1 − α)(2 − α)

〈
ν,f 3〉 − (α + 2)(θ + 2)〈μ,f 〉3.

Combining (4.2) with the stationarity E[A
1] = 0, we get E[〈μ,f 〉] = 〈ν,f 〉.
Therefore, it is possible to deduce from (4.3) and E[A
2] = 0

(θ + 1)E
[〈μ,f 〉2] = 2αθ

α + 1
〈ν,f 〉2 +

(
1 + (1 − α)

α + 1
θ

)〈
ν,f 2〉

.

Moreover, this equality between quadratic forms is enough to imply the one be-
tween symmetric bilinear forms:

(θ + 1)E
[〈μ,f 〉〈μ,g〉]

(4.5)

= 2αθ

α + 1
〈ν,f 〉〈ν, g〉 +

(
1 + (1 − α)

α + 1
θ

)
〈ν,fg〉,

where g ∈ C(E) is also arbitrary. In the rest of the proof, we assume that
〈ν,f 〉 = 0. This makes the calculations below considerably simple. By (4.5)

M1,2 := E
[〈μ,f 〉〈μ,f 2〉] = (α + 1) + (1 − α)θ

(α + 1)(θ + 1)

〈
ν,f 3〉

.(4.6)
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The equality E[A
3] = 0 together with (4.4) implies that

(α + 2)(θ + 2)E
[〈μ,f 〉3]

(4.7)
= 3(α + 1)M1,2 + (1 − α)

(
1 + 2 − α

α + 1
θ

)〈
ν,f 3〉

.

These preliminaries help us calculate � in (4.1) as follows. By (4.3) and (4.4)

� = E

[
〈μ,f 〉2

(
− θ

α + 1
〈μ,f 〉

)]
− E

[〈μ,f 〉(〈μ,f 2〉 − (θ + 1)〈μ,f 〉2)]
= (α + 1) + αθ

α + 1
E

[〈μ,f 〉3] − M1,2

and hence (4.7) yields

(α + 1)(α + 2)(θ + 2)�

= [
(α + 1) + αθ

][
3(α + 1)M1,2 + (1 − α)

(
1 + 2 − α

α + 1
θ

)〈
ν,f 3〉]

− (α + 1)(α + 2)(θ + 2)M1,2

= (α + 1)(α − 1)(2θ + 1)M1,2

+ [
(α + 1) + αθ

]
(1 − α)

(
1 + 2 − α

α + 1
θ

)〈
ν,f 3〉

.

Plugging (4.6) into this expression, we obtain

(α + 1)(α + 2)(θ + 2)� = 1 − α

(α + 1)(θ + 1)
U(α, θ)

〈
ν,f 3〉

,

where

U(α, θ) = −(α + 1)(2θ + 1)
[
(α + 1) + (1 − α)θ

]
+ [

(α + 1) + αθ
]
(θ + 1)

[
(α + 1) + (2 − α)θ

]
= αθ2[

(α + 4) + (2 − α)θ
] =: V (α, θ).

[The second equality between quadratic functions of α is verified by checking
that U(−1, θ) = −3θ2(θ + 1) = V (−1, θ), U(0, θ) = 0 = V (0, θ) and U(1, θ) =
θ2(θ + 5) = V (1, θ).] Consequently, whenever 〈ν,f 〉 = 0, we have

� = α(1 − α)θ2[(α + 4) + (2 − α)θ ]
(α + 1)2(α + 2)(θ + 1)(θ + 2)

〈
ν,f 3〉

.

Thus, all that remains is to construct an f ∈ C(E) such that 〈ν,f 〉 = 0 and
〈ν,f 3〉 > 0. Because of the assumption, we can choose a closed subset E0 of
E such that 0 < ν(E0) < 1/2. Indeed, in the case (ii) this is trivial while in
the case (i) there exist disjoint closed subsets E1,E2 and E3 of E such that
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ν(E1)ν(E2)ν(E3) > 0 and so 0 < ν(Ei) < 1/2 for some i ∈ {1,2,3}. Letting g

denote the indicator function of E0, we observe that〈
ν,

(
g − 〈ν, g〉)3〉 = 〈

ν, g3〉 − 3
〈
ν, g2〉〈ν, g〉 + 3〈ν, g〉〈ν, g〉2 − 〈ν, g〉3

= ν(E0) − 3ν(E0)
2 + 2ν(E0)

3

= ν(E0)
(
1 − ν(E0)

)(
1 − 2ν(E0)

)
> 0.

Finally, the required f exists since g can be approximated boundedly and point-
wise by a sequence of functions in C(E). The proof of the theorem is complete.

�

It is worth noting that the exceptional case of Theorem 4.1 corresponds to a
subclass of the one-dimensional case discussed in Section 1, more specifically, the
process generated by (1.3) with c1 = c2. There is no reason why this class should
be so special with respect to the reversibility, and it seems that such a “spatial
symmetry” makes it more subtle to see the asymmetry in time. The actual difficulty
in showing the irreversibility for these processes along similar lines to the above
proof is that expressions of E[
n1A
n2] with n1 +n2 ≥ 4 as functions of α and θ

are too complicated to handle.
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