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Let r ∈ N. In r-neighbour bootstrap percolation on the vertex set of a
graph G, vertices are initially infected independently with some probabil-
ity p. At each time step, the infected set expands by infecting all uninfected
vertices that have at least r infected neighbours. When p is close to 1, we
study the distribution of the time at which all vertices become infected. Given
t = t (n) = o(logn/ log logn), we prove a sharp threshold result for the prob-
ability that percolation occurs by time t in d-neighbour bootstrap percolation
on the d-dimensional discrete torus T

d
n . Moreover, we show that for certain

ranges of p = p(n), the time at which percolation occurs is concentrated
either on a single value or on two consecutive values. We also prove corre-
sponding results for the modified d-neighbour rule.

1. Introduction. Bootstrap percolation is an example of a cellular automaton,
a concept developed by von Neumann [41] following a suggestion of Ulam [38].
Bootstrap percolation was introduced by Chalupa, Leath, and Reich [20] in the
context of the Blume–Capel model of ferromagnetism. In bootstrap percolation
on the vertex set of a graph G, vertices have two possible states, “infected” and
“uninfected”. Let r ∈ N, let G be a locally finite graph, and let A ⊂ V (G) denote
the set of initially infected vertices. In this paper, as often, elements of A are cho-
sen independently at random with some probability p. In r-neighbour bootstrap
percolation, infected vertices remain infected, and if an uninfected vertex has at
least r infected neighbours, then it becomes infected. Formally, setting A0 = A

and letting N(v) denote the neighbourhood of v, we have

At+1 = At ∪ {
v :

∣∣N(v) ∩ At

∣∣ ≥ r
}

for all t ≥ 0. If, for some t , we have At = V (G), we say that A percolates G, or
simply that A percolates.

Van Enter [39] and Schonmann [36] showed that for G = Z
d and p ∈ (0,1),

under the standard r-neighbour model, if r ≤ d , then percolation almost surely
occurs; while if r ≥ d + 1, then percolation almost surely does not occur.
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In the case of r-neighbour bootstrap percolation on the d-dimensional grid [n]d ,
where d ≥ r ≥ 2, the probability of percolation displays a sharp threshold. That is,
there exists a value pc = pc(n) such that for all ε > 0, if p < (1 − ε)pc, then the
probability of percolation is close to 0, while if p > (1+ ε)pc, then the probability
of percolation is close to 1. Models for which sharp thresholds are now known to
exist include r-neighbour bootstrap percolation on [n]d , for every 2 ≤ r ≤ d (see
[8, 9, 24–26]); various other update rules on Z

2 (see [18, 19, 22, 23, 27, 28]); and
two-neighbour percolation on the hypercube {0,1}n (see [7]).

We note that Balogh and Bollobás [6] studied a different notion of sharp thresh-
old for two-neighbour bootstrap percolation on [n]d . With the threshold r implicit,
set

P(G,α) = inf
{
p : Pp(G percolates in r-neighbour bootstrap percolation) ≥ α

}
.

Balogh and Bollobás showed that for any ε > 0, P([n]d,1 − ε) − P([n]d, ε) =
o(pc(n)).

In the case of Z
d , the probability that the initially infected set A percolates [n]d

turns out to be closely related to the probability that the origin becomes infected
by time n if the process is run on Z

d . Set T0 = min{t : 0 ∈ At }. Andjel, Mountford,
and Schonmann [2, 3, 31, 36] proved sharp results about the limiting behaviour of
the probability that T0 is at least some fixed t .

In bootstrap percolation, extremal results are often important for proving proba-
bilistic results. At first, this may seem surprising, but in fact, it is quite natural. The
reason that extremal results are important is that the only randomness in the pro-
cess occurs in the initial infection process. Consequently, in proving results about
bootstrap percolation, much of the work often involves analysing the deterministic
evolution of an arbitrary initial configuration.

One of the first extremal results in bootstrap percolation was a result of Mor-
ris [30] on the largest size of a minimal set that percolates in [n]2. Later, Riedl
[34] continued this work in the case of standard two-neighbour percolation on the
hypercube. Riedl [35] also gave bounds on the sizes of the largest and smallest
minimal percolating sets for r-neighbour percolation in the case when r ≥ 2 and
G is a tree on n vertices with � vertices of degree less than r . The first extremal
result on the time of percolation was a theorem of Benevides and Przykucki [15]
that answered the extremal question of finding the maximum percolating time on
an a × b rectangular grid. If A percolates an a × b grid, it is not hard to show that
|A| ≥ �(a + b)/2	; see [10] or [16]. When a = b = n, Benevides and Przykucki
proved that if A is a percolating set of size exactly n, then A percolates in time at
most 5

8n2 + O(n), while if A is any percolating set, then A percolates in time at
most 13

18n2 +O(n). They proved that both bounds are tight. Przykucki [33] proved
corresponding results for two-neighbour percolation on the hypercube.

If A percolates V (G), we define the time of percolation or percolation time to
be

T := T (G;A) := min
{
t :At = V (G)

}
.
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In the probabilistic setting, perhaps the most natural question that one could ask
about the time of percolation is the following: given a bootstrap process and an
initial probability such that percolation occurs with high probability, what is the
percolation time T ? In this paper we give a complete answer to this question in
the case of d-neighbour bootstrap percolation on the discrete d-dimensional torus,
when the percolation time T is small (or, equivalently, when the probability p is
close to 1). In order to answer this probabilistic question, we shall need to prove
several extremal results about sets that do not percolate within a given time.

In [29], Janson et al. determined the asymptotic time of percolation for r-
neighbour percolation on an Erdős–Rényi random graph. To the best of our knowl-
edge, this question has not been otherwise studied.

Our main aim is to show that with high probability the percolation time T is in
a certain small interval. To that end, our main task will be to show that for any not-
too-large value of t , the number of uninfected vertices at time t is asymptotically
Poisson distributed. It will follow that the probability that T is at most t is asymp-
totically the probability that a Poisson random variable equals 0. To prove Poisson
convergence, we use the Stein–Chen method [21, 37], a tool often applied to prove
convergence in distribution. The power of the Stein–Chen method is that it only
requires knowledge of the first two moments of the distribution for which we are
trying to prove convergence. Obtaining good bounds on these first two moments
occupies the majority of this paper.

In the literature of percolation theory, it is common to refer to the vertices of
a graph as “sites”. In this paper, we shall use the terms “vertex” and “site” inter-
changeably.

REMARK 1.1. Aizenman and Lebowitz [1] observed that in bootstrap perco-
lation on [n]d , the event that the infected set percolates depends on the formation of
a “critical droplet”, that is, of an infected cube of side length on the order of logn.
They also observed that for n not too large compared to p, the events that different
cubes of this size become fully infected are nearly independent. This adds weight
to the hypothesis that the behaviour of the number of uninfected sites should be
approximately Poisson distributed.

Our main tool in proving the sharp threshold result for the time of percolation is
the solution to an extremal problem that may be of independent interest. Namely,
we wish to determine the maximum size of a set that does not infect a given site
(which we can assume is the origin) by time t . Equivalently, we would like to
determine, for all t ≥ 1 and d ≥ 2, the function

ex(t, d) := min
A⊂Zd

{∣∣Zd \ A
∣∣ : 0 /∈ At

}
,(1.1)

where, as before, A denotes the set of initially infected sites.
Which configurations of uninfected sites guarantee that the origin is uninfected

at time t? It is easy to see that the event that the origin is uninfected at time t
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is independent of the states of sites at �1 distance greater than t from the origin.
One such configuration is an empty �1 ball of radius t about the origin. Another
configuration, with far fewer sites than the whole �1 ball, is a set of the form

Ct := {
x = (ε1, . . . , εd−1, r) :‖x‖1 ≤ t and εi ∈ {0,1} for i ∈ [d − 1]};(1.2)

we may think of this set as a column vertically centred at the origin. In fact, we
prove that the minimum quantity (1.1) is equal to the size of this set; moreover,
we show that these columns are essentially the only sets that both achieve the
minimum and guarantee that 0 /∈ At .

The following quantity, which is the size of the set in (1.2), is the number of
sites with �1 norm at most t in a column centred at the origin. Set

mt := mt,d := |Ct | =
t∑

r=0

(
2

r−1∑
j=0

(
d

j

)
+

(
d

r

))
=

t∑
r=0

r∑
j=0

(
d

j

)
.(1.3)

[We follow the convention that
(d
j

) = 0 whenever j > d .] We shall show that
ex(t, d) = mt,d . In fact, we shall prove a more general result about the minimum
number of uninfected vertices that are distance k from a vertex x that remains
uninfected for a long time.

REMARK 1.2. While studying thresholds for certain anisotropic bootstrap
percolation models, van Enter and Hulshof [40] and Mountford [32] studied the
event that a single or double column is full.

Our extremal results allow us to determine bounds on both the mean and the
variance of the distribution of the number of sites that are uninfected at time t ;
in turn, this enables us to prove Poisson convergence for values of t = t (n) up
to o(log logn). In order to extend this range of t to o(logn/ log logn), we need
much stronger bounds on the mean and variance. The mean is proportional to the
probability p1 that a given site (which we can assume is the origin) is uninfected
at time t . Thus we can express p1 in terms of the number of initially uninfected
sites inside the �1 ball of radius t . The results described above bound the first (and
dominant) term in this expansion, namely, the one corresponding to the minimum
number of uninfected sites such that the origin is still uninfected at time t . In order
to bound the mean and variance of our distribution, we need not just bounds on
the highest-order term in the expansion of p1, but also on all of the other terms.
In other words, we need to understand the number of configurations of uninfected
sites when the number of uninfected sites preventing the origin from becoming
infected by time t is a just a few more than the minimum. Roughly, we prove
that if the number of uninfected sites is not much more than the minimum, then
the configuration is close to an extremal configuration. This stability result gives
stronger bounds on the first two moments of our distribution.
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Before we state our main results, let us formalize our notation. The discrete d-
dimensional torus T

d
n is the graph with vertex set (Z/nZ)d in which vertices are

adjacent if and only if their �1 distance is exactly 1. As usual, let A be a random
subset of T

d
n in which vertices are infected independently with probability p, and

let Pp be the associated product probability measure. Let T = T (Td
n;A). Given

t ∈ N and α ∈ [0,1], we set

pα(t) := inf
{
p : Pp(T ≤ t) ≥ α

}
.(1.4)

In the context of sharp threshold results for the probability of percolation, it is
common to define inf{p : Pp(A percolates) ≥ 1/2} to be the critical probability,
denoted pc, and to show that the probability of percolation displays a sharp thresh-
old at pc. However, in the proofs of these results, the choice of 1/2 is irrelevant: it
turns out that for any constant α ∈ (0,1), pα = (1 + o(1))p1/2. In our case, pα(t)

is different for different values of α ∈ (0,1).
The first main result of this paper is as follows. As usual, given p ∈ [0,1], we

write q = 1 − p.

THEOREM 1.3. Let d ≥ 2, let t = o(logn/ log logn), let (pn)
∞
n=1 be a se-

quence of probabilities, let ω(n) → ∞, and let T = T (Td
n;A). Under the standard

d-neighbour model:

(i) if, for all n, qn ≤ (n−d/ω(n))1/mt , then Ppn(T ≤ t) → 1 as n → ∞;
(ii) if, for all n, qn ≥ (n−dω(n))1/mt , then Ppn(T ≤ t) → 0 as n → ∞.

Moreover, for any α ∈ (0,1),

pα(t) = 1 − (
1 + o(1)

)( log(1/α)

d32d−1nd

)1/mt,d

.

The analogue of Theorem 1.3 holds in the case of the modified d-neighbour
bootstrap percolation model. In this process, an uninfected vertex becomes in-
fected if it has at least one infected neighbour in each direction; that is, for all
t ≥ 0,

At+1 = At ∪ {
v: for all i ∈ [d], ∣∣At ∩ {v − ei, v + ei}

∣∣ ≥ 1
}
,

where ei denotes the ith standard basis vector in R
d . Let p

(m)
α (t) be the quan-

tity in the modified d-neighbour model corresponding to pα(t) in the standard
d-neighbour model, as defined in (1.4).

THEOREM 1.4. Let d ≥ 2, let t = o(logn/ log logn), let (pn)
∞
n=1 be a se-

quence of probabilities, let ω(n) → ∞, and let T = T (Td
n;A). Under the modified

d-neighbour model:

(i) if, for all n, qn ≤ (n−d/ω(n))1/(2t+1), then Ppn(T ≤ t) → 1 as n → ∞;
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(ii) if, for all n, qn ≥ (n−dω(n))1/(2t+1), then Ppn(T ≤ t) → 0 as n → ∞.

Moreover, for any α ∈ (0,1),

p(m)
α (t) = 1 − (

1 + o(1)
)( log(1/α)

dnd

)1/(2t+1)

.

The proof of Theorem 1.4 follows the same structure as the proof of Theo-
rem 1.3 but is vastly simpler. While the deduction of the Poisson convergence re-
sult from the combinatorial results is essentially the same in either case, the proofs
of the combinatorial results, which form the backbone of the proof of Theorem 1.3,
are trivial in the case of the modified d-neighbour model. Therefore, the proof of
Theorem 1.4, which appears in Section 5, is only sketched.

REMARK 1.5. Observe that the discrete torus T
d
n is a vertex-transitive graph,

which means that the �1 balls of radius t around different vertices are identical.
This makes the discrete torus a natural setting in which to consider the problem of
percolation by time t .

REMARK 1.6. It is important to note that fast percolation in the case of a
high infection probability is very different to the last few steps of near-to-critical
percolation, when the probability p is just above the critical probability for per-
colation. In the former case, the initial set A consists of sites which are infected
independently at random with probability p, which is close to 1, while in the latter
case, if percolation occurs at time T , then for small values of t , the set AT −t con-
sists of sites which are far from independently infected: as shown by Aizenman
and Lebowitz [1], with high probability, AT −t will consist of one large rectangle
covering almost the entire domain, and just a few additional sites.

One of the strengths of Theorem 1.3 is that it allows us to deduce that if t =
o(logn/ log logn) and qn is bounded away from both n−d/mt−1 and n−d/mt , then,
with high probability, T = t , and otherwise, there is a two-point concentration
for T . The following theorem is our second main theorem.

THEOREM 1.7. Let d ≥ 2, let t = o(logn/ log logn), and let (pn)
∞
n=1 be a

sequence of probabilities. Consider the standard d-neighbour rule:

(i) Suppose that there exists ω(n) → ∞ such that(
n−dω(n)

)1/mt−1 ≤ qn ≤ (
n−d/ω(n)

)1/mt .(1.5)

Then, with high probability, T = t .
(ii) Suppose instead that(

n−d/ω(n)
)1/mt ≤ qn ≤ (

n−dω(n)
)1/mt(1.6)
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for all functions ω(n) → ∞. Then, with high probability, T ∈ {t, t + 1}. Moreover,
if there exists a constant c such that limn→∞ q

mt
n nd = c, then

Ppn(T = t) ∼ 1 − Ppn(T = t + 1) ∼ exp
(−d32d−1c

)
.

Again, we have a corresponding result for the modified d-neighbour rule.

THEOREM 1.8. Let d ≥ 2, let t = o(logn/ log logn), and let (pn)
∞
n=1 be a

sequence of probabilities. Consider the modified d-neighbour rule:

(i) Suppose that there exists ω(n) → ∞ such that(
n−dω(n)

)1/(2t−1) ≤ qn ≤ (
n−d/ω(n)

)1/(2t+1)
.

Then, with high probability, T = t .
(ii) Suppose instead that(

n−d/ω(n)
)1/(2t+1) ≤ qn ≤ (

n−dω(n)
)1/(2t+1)

for all functions ω(n) → ∞. Then, with high probability, T ∈ {t, t + 1}. Moreover,
if there exists a constant c such that limn→∞ q2t+1

n nd = c, then

Ppn(T = t) ∼ 1 − Ppn(T = t + 1) ∼ exp(−dc).

Once again, the proof of Theorem 1.8 is very similar to that of Theorem 1.7, so
we shall omit it.

The rest of the paper is organized as follows. In Section 2, we recall impor-
tant terminology from probability theory and introduce the Stein–Chen method
for proving convergence in distribution to a Poisson random variable. In Section 3,
we study the extremal questions connected with a vertex being uninfected at time t .
These fall into two categories. First, in Section 3.1, we answer completely the ex-
act questions: what is the minimum number of uninfected sites needed to ensure a
given site is uninfected at time t , and what are the minimal configurations? Second,
in Section 3.2, we look at the inexact questions: what can we say about the number
and type of configurations when the number of uninfected sites is not much more
than minimum number? We show that the set of uninfected sites must still be quite
close to a column. In Section 4, we put together the probabilistic tools from Sec-
tion 2 and the extremal results from Section 3 to prove Theorems 1.3 and 1.7. In
Section 5, we sketch the proof of Theorem 1.4. Finally, in Section 6, we discuss
possible extensions and conjectures.

2. The Stein–Chen method. In this section, we recall the tools and tech-
niques from probability theory that we need in the proof of Theorem 1.3.

For a random variable X, we write X ∼ Po(λ) to indicate that X has Poisson
distribution with mean λ.
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Let P and Q be probability distributions with support on Z. The total variation
distance of P and Q is

dTV(P,Q) = sup
A⊂Z

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣.

If X and Y are random variables with distributions P and Q, respectively,
then with a slight abuse of notation we write dTV(X,Y ) for dTV(P,Q). Let
(Xn)

∞
n=1, (Yn)

∞
n=1 be sequences of integer-valued random variables. We say that

the sequences (Xn)
∞
n=1 and (Yn)

∞
n=1 converge in distribution if limn→∞ dTV(Xn,

Yn) = 0.
In order to prove Theorem 1.3 we need to show that a certain sequence of ran-

dom variables converges to the Poisson distribution. Classically, to prove conver-
gence in distribution one had to use the method of moments, which relied on know-
ing all of the moments of the distributions for which one was trying to prove con-
vergence. In practice, however, finding higher order moments is often extremely
difficult to do. The solution is the Stein–Chen method for proving convergence
in distribution, introduced by Stein [37] for use with the normal distribution, and
later modified by Chen [21] for use with the Poisson distribution. The power of the
Stein–Chen method is that it only relies on knowing the first two moments of the
distributions.

The version of the Stein–Chen method that we shall use is the following the-
orem of Barbour and Eagleson [12], which concerns a sum of Bernoulli random
variables, each of which is dependent on only a small number of the other random
variables.

THEOREM 2.1. Let X1, . . . ,Xn be Bernoulli random variables with P(Xi =
1) = pi . Let Yn = ∑n

i=1 Xi , and let λn = EYn = ∑n
i=1 pi . For each i ∈ [n], let

Ni ⊂ [n] be such that Xi is independent of {Xj : j /∈ Ni}. For each i, j ∈ [n], let
pij = EXiXj . Let Zn ∼ Po(λn). Then

dTV(Yn,Zn) ≤ min
{
1, λ−1

n

}( n∑
i=1

∑
j∈Ni

pipj +
n∑

i=1

∑
j∈Ni\{i}

pij

)
.

For further developments and applications of the Stein–Chen method, see, for
example, [4, 5, 11, 13], as well as [14] and the references therein.

3. Extremal results. The aim of this section is to prove the combinatorial
results needed in the proof of Theorem 1.3. These results are all related to the
event that a given site is uninfected at time t .

We shall need a notion of distance between vertices. The appropriate distance
for us is the �1 distance, or graph distance, but, unfortunately, the �1 norm is not a
norm on Z

d , nor (still less) is it a norm on T
d
n . However, abusing notation slightly,
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we shall still write ‖x‖ for the length of the shortest path from the origin to x, in
Z

d or T
d
n as appropriate.

We define the (d − 1)-dimensional sphere or layer of radius t about a vertex
x to be Sd−1

t (x) := {y ∈ Z
d :‖y − x‖ = t} and the d-dimensional ball of radius t

about x to be Bd
t (x) := {y ∈ Z

d :‖y − x‖ ≤ t}. For short, we write Bt := Bd
t (0)

and St := Sd−1
t (0). Recall that for each i ∈ [d], ei denotes the ith standard basis

vector of R
d . Given a vertex x, we write xi for the ith coordinate of x relative to

the standard basis vectors. Thus, we have x = ∑d
i=1 xiei .

We shall define a partial order ≤ on Bt by saying that y ≥ x if and only if for
all i ∈ [d] such that xi �= 0, yi has the same sign as xi and |yi | ≥ |xi |. This gives
us natural definitions of in- and out-neighbours: we say that y is an in-neighbour
of x if xy ∈ E(Td

n) and y ≤ x, and similarly that z is an out-neighbour of x if
xz ∈ E(Td

n) and z ≥ x. If y ≥ x, we shall sometimes say that y is above x.
Often, we shall need to talk about vertices that are uninfected at the last time

that it could be important that they are uninfected. For a vertex x ∈ Bt , this time
is t − ‖x‖; after this, the state of x cannot affect the state of the origin at time t .
So, we say that a vertex x is protected if it is uninfected at time t − ‖x‖. We write
P(X) for the set of protected sites in a subset X of Bt , and P +

k (x) for the set of
protected sites y such that y ≥ x and ‖y − x‖ = k (it follows that we also have
‖y‖ = ‖x‖ + k). Note that an element of St is protected if and only if it is initially
uninfected. Our original extremal question asked what one can say about the initial
set A if the origin is protected.

3.1. Minimal configurations. Now we shall prove our main extremal result,
the bound on the number of protected sites at a given distance from another pro-
tected site, which we may take to be the origin. Given that the origin is protected,
how might we go about proving that there are many protected sites? In two dimen-
sions, it is relatively easy to check that the spheres Sk act independently, meaning
that if some sphere Sk (with k ≤ t) has too few uninfected sites, then the sites on
that sphere alone will infect the origin by time t (in fact at time exactly k). (In
two dimensions, this minimum number is 4 for all k ≥ 2.) The spheres are like-
wise independent in d ≥ 2 dimensions, and the proof of the result in d dimensions
makes key use of this independence of spheres. We show that the number of pro-
tected sites in Bt is at least mt by showing the stronger result that the number of
protected sites in Sk is at least a certain quantity for every k ≤ t .

How can we show that there must be many protected sites in Sk? Certainly,
there must be at least d + 1 protected sites at distance 1 from the origin; otherwise
the origin would not be protected. We would then like to say that because these
d + 1 sites are protected, there must be at least a certain number of protected sites
at distance 2 from the origin. However, the sets of sites at distance 2 that protect
these d + 1 sites at distance 1 could overlap. Thus, we would like an inductive
argument which says that if a site x is protected, then there must be many protected
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sites y at any given distance from x, all satisfying y ≥ x. In other words, we would
like a statement of the form, “if x is protected, then |P +

k (x)| ≥ fk(x)”, for some
function fk(x). What should fk(x) be? Clearly, its value should depend on the
support of x (i.e., the number of nonzero coordinates of x): we are looking for
protected vertices y such that y ≥ x, and if x has large support, then there are few
such vertices, while if x has small support, then there are many such vertices.

We take our cue from the column example, (1.2), which we hope to prove is
essentially the only minimal configuration. Define

�t := �t,d :=
t∑

i=0

(
d

i

)
.(3.1)

Note that, by (1.3), we may write

mt,d =
t∑

r=0

�r,d .

With this definition, (1.2) gives

fk(x) =
k∑

i=0

(
a

i

)
= �k,a,

where a is the number of zero coordinates of x. With that in mind, the following
is our main lemma. (We shall prove this result after further discussion.)

LEMMA 3.1. Let t ∈ N and d ≥ 2. Suppose that x ∈ Bt is protected, let k ≤
t − ‖x‖, and let a be the cardinality of {j ∈ [d] :xj = 0}. Then

∣∣P +
k (x)

∣∣ ≥
k∑

i=0

(
a

i

)
.

In particular, this means that if the origin is protected, then

∣∣P +
t (0)

∣∣ ≥
t∑

i=0

(
d

i

)
= �t .

Before proving Lemma 3.1, let us look at an example. Suppose that x = (t −
k,0, . . . ,0) is protected. Suppose also that we are in the fortunate position that
(t − i,0, . . . ,0) is protected for each i = 0,1, . . . , k − 1. For a fixed i, we could
then ask, given that (t − i,0, . . . ,0) is protected, how many protected sites y must
there be in St such that y1 = t − i? If we could get a good bound on this number,
then we would be in good shape: the condition y1 = t − i ensures that these sets of
protected sites are disjoint for different values of i, so we could bound from below
the number of protected sites in St by summing the sizes of these sets. However,
it is not clear that the minimum number is greater than zero. In fact, if i ≥ d ,
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then the minimum number is zero. What about smaller values of i? When i = 0,
the minimum is 1 (the site itself), and when i = 1, the minimum is d − 1. Given
the form of �t in (3.1), it is tempting to view these numbers as

(d−1
0

)
and

(d−1
1

)
,

respectively, and to conjecture that the minimum for i is
(d−1

i

)
.

Let us pause to see what this means. We are saying that if a site is protected un-
der d-neighbour bootstrap percolation in the (d −1)-dimensional space Z

d−1, then
there must be at least

(d−1
i

)
protected sites at distance i, for each i ≤ d − 1. This

assertion is strange, because we would not normally consider r-neighbour boot-
strap percolation in a d-dimensional space for values of r greater than d . However,
it turns out that the assertion is true, and that it can be proved by a double counting
argument. Thus, in the very special case in which (t − i,0, . . . ,0) is protected for
each 0 ≤ i ≤ k, Lemma 3.1 holds.

What happens if, for some i, the site (t − i,0, . . . ,0) is not protected? In that
case, we must have two protected sites of the form (t − i − 1,1,0, . . . ,0) and
(t − i − 1,−1,0, . . . ,0) (without loss of generality). If so, the sets of protected
sites on St that each of these sites generate (we presume by induction) will be
disjoint: those generated by (t − i − 1,1,0, . . . ,0) will have second coordinate
at least 1, while those generated by (t − i − 1,−1,0, . . . ,0) will have second
coordinate at most −1. So we obtain two large, disjoint sets of protected sites on St .
Unfortunately, the sum of the sizes of these two sets is not quite large enough to
give the bound in the lemma. However, we have not yet looked for any protected
sites y with y2 = 0. But this situation is now very similar to the previous case:
we are asking how many sites y ∈ St with y2 = 0 are needed to protect (t − i −
1,0, . . . ,0). In other words, we are back to d-neighbour bootstrap percolation in
a (d − 1)-dimensional space, and the same double counting argument applies. We
shall see that this gives us exactly the right number of additional protected sites to
prove the lemma.

In general, the site x in question is not of the form (t − k,0, . . . ,0), but the
two-case argument above still applies. Either x has a protected neighbour y such
that y ≥ x, and y has the same number of zero coordinates as x, or x has a pair
of protected neighbours x + ej , and x − ej for some j such that xj = 0. In both
cases we obtain large sets of protected sites on St by induction on a + k, where
once again a denotes the number of zero coordinates of x and k ≤ t − ‖x‖.

This concludes the sketch of the proof of Lemma 3.1. Using Lemma 3.1, we
can determine the minimum number of uninfected vertices that are needed to pro-
tect the origin (Corollary 3.3), as well as classify the extremal sets (Theorem 3.4).
However, when, in Section 3.2, we come to prove Theorem 3.6 (the stability re-
sult), it will turn out that we require a slightly stronger statement than Lemma 3.1.
The proof of this result follows along the same lines as the argument described
above. So, rather than write out both proofs, we shall simply prove the stronger
result.

Roughly speaking, in the proof of Theorem 3.6, we shall need to be able to be
more specific about where we are looking for protected vertices. Given a protected
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site x, we shall want not just to be able to say how many protected sites y there are
above x, but also how many protected sites y there are above x with certain other
restrictions on their coordinates. More specifically, we partition [d] into three sets:
P , the set of “positive directions”; N , the set of “negative directions”; and F , the
set of “free directions”. We then ask, given that x is protected, how many protected
vertices y must there be such that ‖y − x‖ = k and:

(i) yi ≥ xi for i ∈ P ;
(ii) yi ≤ xi for i ∈ N ?

(For i ∈ F there is no restriction on yi .) Lemma 3.1 is the special case P = {i :xi >

0}, N = {i :xi < 0} and F = [d] \ (P ∪ N ).
Once again, the proof of the stronger version of Lemma 3.1 requires no new

ideas: one should think of it as being what is really proved when one proves
Lemma 3.1.

In preparation for the statement of the stronger result, let us formalize the def-
initions from the discussion above. We define a configuration to be a function
C : [d] → {−1,0,1}. If C(i) = 0, we say that i is free for C, and if C(i) = 1, we
say that i is positively constrained for C. If C(i) = −1, we say that i is negatively
constrained for C. We define F (C), P(C), and N (C) to be, respectively, the set
of free, positively constrained, and negatively constrained directions for C. Thus,
the sets F (C), P(C), and N (C) partition the set [d].

The configuration C determines where we can look for protected vertices on St .
We say that y is C-compatible with x if (yi − xi)C(i) ≥ 0 for all i ∈ [d]. Let

P C
k (x) := {

y ∈ P(Bt) : y is C-compatible with x and ‖y − x‖ = k
}
.

For example, the set P +
k (x) defined at the beginning of this section corresponds to

P C
k (x), where C is the configuration defined by

C(i) =
⎧⎨
⎩

1, xi > 0,
−1, xi < 0,
0, xi = 0.

For an arbitrary confiuration C, we define the C-degree of x to be the number of
C-compatible neighbours of x. That is, dC(x) = |P C

1 (x)|.
We need a few more definitions relating to configurations. Let Cd denote the set

of configurations. We define a partial order ≤ on Cd such that C ≤ C ′ if for all
i ∈ [d], either C(i) = C ′(i); or C(i) ∈ {−1,1} and C ′(i) = 0. The unique maximal
element of Cd with respect to ≤ is (0, . . . ,0). Note that if C ≤ C′, then

P C
k (x) ⊂ P C′

k (x).

We say that two configurations C, C′ are polar if there exists j ∈ [d] such
that C(j)C′(j) = −1, and C(k) = C′(k) for all k �= j . If C and C′ are polar and
j ∈ [d] is the coordinate in which they differ, we say that C is the j -polar opposite
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of C′, and conversely. We define the common parent of polar configurations C

and C′ to be the minimal configuration C′′ (with respect to ≤) such that C′′ ≥ C

and C′′ ≥ C′. Because C and C′ differ only in one coordinate, there is a unique
configuration C′′ with the desired property. Note that if C is the j -polar opposite
of C ′ and C′′ is their common parent, then C′′(j) = 0.

If C ∈ Cd is such that C(j) = 0 for some j ∈ [d], then we also define the con-
verse relationship. The positive j -child of C is the (unique) maximal C′ ≤ C such
that C′(j) = 1 and the negative j -child is the j -polar opposite of C′.

We define a related notion for neighbours of a vertex x. The vertex x has an
opposing pair of protected neighbours if both x + ej and x − ej are protected for
some free coordinate j . Note that if C and C′ are polar configurations and C′′ is
their common parent, then

P C
k (x + ej ) ∩ P C′

k (x − ej ) = ∅

for all k ≤ t − ‖x‖. Moreover,

P C
k (x + ej ), P C′

k (x − ej ) ⊂ P C′′
k+1(x).

Now we are ready to state and to prove Lemma 3.2. In the applications that
follow, we shall often set k = t − ‖x‖, P(C) = {i :xi > 0}, N (C) = {i :xi < 0},
and F (C) = {i :xi = 0}, and it may be helpful to think of them in this way in the
proof of Lemma 3.2.

LEMMA 3.2. Let t ∈ N and d ≥ 2. Suppose that x ∈ Bt is protected. Let C ∈
Cd , let a := |F (C)| denote the number of free coordinates of C, and let k ≤ t −‖x‖
be a nonnegative integer. Then

∣∣P C
k (x)

∣∣ ≥
k∑

i=0

(
a

i

)
.(3.2)

PROOF. Without loss of generality, let P(C) = [d] \ F (C) and let N (C) = ∅.
Let s = d − a. We may assume that P(C) = [s] and that F (C) = {s + 1, . . . , d}.
Let x = (x1, . . . , xd) and suppose that xi ≥ 0 for all i ∈ [d].

We shall prove the result by induction on a + k. If a = k = 0, then x ∈ St and
P C

0 (x) = {x}, so we have (3.2). (In fact, we do not use a = 0 here.)
Now suppose that the result holds for all values up to a + k − 1. We shall show

that if x has an opposing pair of C-compatible protected neighbours x + ei and
x − ei , then by induction there exist large, disjoint protected sets P C′

k−1(x + ei)

and P C′′
k−1(x − ei) inside P C

k (x), where C′ and C′′ denote the positive and nega-
tive i-child of C, respectively. Then we shall show that there exists an additional
set of sites in P C

k (x), disjoint from both P C′
k−1(x + ei) and P C′′

k−1(x − ei). If x

does not have an opposing pair of C-compatible protected neighbours, and x′ is
a C-compatible protected neighbour of x, then we shall show by induction that
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P C
k−1(x

′) has almost as many sites as we have claimed. We shall find the remain-
ing protected vertices in P C

k (x) separately, disjoint from P C
k−1(x

′).
Thus, the remainder of the proof is split into two cases according to whether or

not x has an opposing pair of C-compatible protected neighbours. Once we have
proved the result in both of these cases, the proof will be complete.

Case 1: Suppose that x has an opposing pair of C-compatible protected neigh-
bours. Without loss of generality, suppose that x+ := x + es+1 and x− := x − es+1
are both protected. Let C′ and C′′ denote the positive and negative (s + 1)-child
of C, respectively. Observe that

min
y∈Sk(x)

∥∥x+ − y
∥∥ = min

y∈Sk(x)

∥∥x− − y
∥∥ = k − 1,

and that C′ and C′′ each have a − 1 free coordinates. Hence, by induction,
P C′

k−1(x
+) and P C′′

k−1(x
−) each contain at least

∑k−1
i=0

(a−1
i

)
vertices. By construc-

tion, we have

P C′′
k−1

(
x+) ∪ P C′

k−1
(
x−) ⊂ P C

k (x)

and P C′′
k−1(x

+) ∩ P C′
k−1(x

−) = ∅. Thus,

∣∣P C′
k−1

(
x+) ∪ P C′′

k−1
(
x−)∣∣ ≥ 2

((
a − 1

0

)
+ · · · +

(
a − 1
k − 1

))

=
(

a

0

)
+ · · · +

(
a

k − 1

)
+

(
a − 1
k − 1

)
.

In order to prove (3.2), we must show that P C
k (x) contains at least

(a
k

)− (a−1
k−1

) =(a−1
k

)
additional sites. For each j ≥ 0, let P 0

j (x) = {y ∈ P C
j (x) :ys+1 = xs+1}. By

definition, P 0
j (x) is disjoint from both P C′

k−1(x
+) and P C′′

k−1(x
−). We shall show

that P 0
k (x) contains the required number of sites.

For each j ≥ 1, let Gj be the bipartite graph with classes P 0
j−1(x) and P 0

j (x),
with two vertices adjacent if and only if they are adjacent in Bt . We shall obtain a
lower bound on |P 0

j (x)|/|P 0
j−1(x)| by double counting the edges in Gj .

Let z ∈ P 0
j (x). We would like an upper bound on the degree of z in Gj . We

obtained z from x by adding a total of j to some of the d − 1 coordinates of
x other than the (s + 1)th. To obtain a neighbour of z in P 0

j−1(x), we have to
subtract 1 from one of the coordinates to which we have added at least 1. There
are at most j such coordinates, so z has at most j neighbours in P 0

j−1(x).

Now let y ∈ P 0
j−1(x). This time, we want a lower bound on the degree of y

in Gj . We do this by bounding dC(y). We obtained y from x by adding a total of
j − 1 to some of the d − 1 coordinates of x other than the (s + 1)th. For every i

such that yi = xi , y has two C-compatible neighbours in direction i, obtained by
changing yi to xi + 1 or to xi − 1. If yi �= xi and w is a C-compatible neighbour
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of y in direction i, then wi − xi must have the same sign as yi − xi , so there is
only one such neighbour. This holds for each of the first s coordinates, as well as
for any coordinate i among the last d − s − 1 coordinates whose value we have
already changed from xi . It follows that dC(y) is minimized when we have already
changed j − 1 of the last d − s − 1 coordinates. Hence

dC(y) ≥ 2(d − s − 1) + s − (j − 1) = 2d − s − j − 1.

Since y is protected, at most d − 1 of its C-compatible neighbours are not pro-
tected. Hence, y has at least

2d − s − j − 1 − (d − 1) = d − s − j = a − j

neighbours in P 0
j (x).

By double counting the edges in Gj , first from P 0
j (x) to P 0

j−1(x), and then from

P 0
j−1(x) to P 0

j (x), and using our bounds on the maximum and minimum degrees
of vertices in these two classes, we obtain the inequalities

j
∣∣P 0

j (x)
∣∣ ≥ ∣∣E(Gj)

∣∣ ≥ (a − j)
∣∣P 0

j−1(x)
∣∣.

Thus,
∣∣P 0

j (x)
∣∣ ≥ a − j

j

∣∣P 0
j−1(x)

∣∣.
Noting that |P 0

0 (x)| = 1, it follows by induction on j that |P 0
j (x)| ≥ (a−1

j

)
. Taking

j = k proves (3.2) in the case where x has an opposing pair of C-compatible
protected neighbours.

Case 2: Suppose that x has no opposing pair of C-compatible protected neigh-
bours. Observe that the total number of C-compatible neighbours of x is d + a.
Since x is protected, at most d − 1 of its neighbours are not protected, so at least
a + 1 of its C-compatible neighbours are protected. Since x has no opposing pair
of C-compatible protected neighbours, at most a = d − s of these are of the form
x ± ei with s + 1 ≤ i ≤ d , so x must have at least one protected neighbour of the
form x +ei with 1 ≤ i ≤ s. Without loss of generality, let x′ := (x1 +1, x2, . . . , xd)

be protected. We have

min
y∈Sk(x)

∥∥x′ − y
∥∥ = k − 1,

and x′ still has a free coordinates. Hence by induction, P C
k−1(x

′) ⊂ P C
k (x) is such

that

∣∣P C
k−1

(
x′)∣∣ ≥

k−1∑
i=0

(
a

i

)
.

In order to prove (3.2), we need to find an additional
(a
k

)
sites in P C

k (x) disjoint
from the sites in P C

k−1(x
′).
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All of the elements of P C
k−1(x

′) have first coordinate at least x1 + 1. For each
j ≥ 0, let Qj(x) = {y ∈ P C

j (x) :y1 = x1}. By definition, Qj(x) ∩ P C
j−1(x

′) = ∅

for all j ≥ 1. We shall show that Qk(x) contains the required number of sites.
For each j ≥ 1, let Hj be the bipartite graph with classes Qj−1(x) and Qj(x) in

which two vertices are adjacent if and only if they are adjacent in Bt . As in case 1,
we bound |Qj(x)|/|Qj−1(x)| by double counting edges in Hj .

As before, any element of Qj(x) has at most j neighbours in Qj−1(x). Let
y ∈ Qj−1(x). Then y has two C-compatible neighbours in each of the at most
a coordinates i for which yi = xi , but only one C-compatible neighbour in each
coordinate i for which yi �= xi . Again, the degree dC(y) is minimized when we
have obtained y from x by changing the value of j − 1 of the last a coordinates.
Hence

dC(y) ≥ 2(d − s) + (s − 1) − (j − 1) = 2d − s − j.

At most d − 1 of the C-compatible neighbours of y are not protected, so y has at
least

2d − s − j − (d − 1) = d − s − j + 1 = a − j + 1

neighbours in Qj(x). Therefore,

j
∣∣Qj(x)

∣∣ ≥ ∣∣E(Hj)
∣∣ ≥ (a − j + 1)

∣∣Qj−1(x)
∣∣

and thus

∣∣Qj(x)
∣∣ ≥ a − j + 1

j

∣∣Qj−1(x)
∣∣.

Because |Q0(x)| = 1, it follows by induction on j that |Qj | ≥ (a
j

)
for all j ≥ 0,

as required. This completes the case where x does not have an opposing pair of
C-compatible neighbours, and hence also the proof of the lemma. �

It follows immediately from Lemma 3.2 that the minimum size of a subset of
St that protects the origin is �t , and hence that the minimum size of a subset of Bt

that protects the origin is mt .

COROLLARY 3.3. Let t ∈ N and d ≥ 2. Suppose that the origin is protected.
Then ∣∣P(St )

∣∣ ≥ �t .

In particular, if t ≥ d , then St contains at least 2d protected vertices. Moreover,∣∣P(Bt)
∣∣ ≥ mt.
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FIG. 1. On the left, a canonical set of protected sites, and on the right, a semi-canonical set of
protected sites.

PROOF. Apply Lemma 3.2 to the origin with C = (0, . . . ,0) and k = 1,
2, . . . , t . �

Now we classify the extremal sets of protected vertices in Bt . Recall from the
introduction that the motivation for Lemma 3.2 came from the conjecture that the
extremal configurations should all be (what we have so far called) columns, as in
(1.2). In the next theorem, we prove that this is essentially correct. More specifi-
cally, we prove that the only extremal sets are either columns or sets that are almost
columns except for the top and bottom sites.

Formally, we call P(Bt) canonical if there exists j ∈ [d], and an orientation
εi ∈ {−1,1} for each i ∈ [d] \ {j} such that

P(Bt) = {
x ∈ Bt :xi ∈ {0, εi} for all i �= j

}
(3.3)

(see Figure 1). Given j and the εi , let

V +
j (t) = {tej } ∪ {

(t − 1)ej − εiei : i ∈ [d] \ {j}}
and let

V −
j (t) = {−tej } ∪ {

(−t + 1)ej − εiei : i ∈ [d] \ {j}}.
We call P(Bt) semi-canonical if there exist v+ ∈ V +

j (t) and v− ∈ V −
j (t) such that

P(Bt) = ({
x ∈ Bt :xi ∈ {0, εi} for all i �= j

} \ {tej ,−tej }) ∪ {
v+, v−}

.(3.4)

Note that canonical sets are semi-canonical. We call the vertices v+ and v− the
extreme points of P(Bt). The direction j is the direction of alignment of P(Bt),
and P(Bt) is said to be j -aligned.

We are ready to state the main theorem of this section. We say that the set of
uninfected sites in St is minimal and that St is a minimal layer if |P(St )| = �t .
Similarly, we say that Bt is minimal if |P(Bt)| = mt .
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THEOREM 3.4. Let t , d ≥ 2. Suppose that the origin is protected and that Bt

is minimal. Then P(Bt) is semi-canonical.

We write dX(x) for the degree of x in the set X, so

dX(x) = ∣∣{y ∈ X :‖x − y‖ = 1
}∣∣.

We also set Pr = P(Sr).

PROOF OF THEOREM 3.4. We shall show that if P(Bk) is semi-canonical and
Sk+1 is minimal, then the only sets of sites in Sk+1 with enough neighbours in Pk

are the sets which make Pk+1 semi-canonical, and moreover that if P(Bk) is not
canonical, then there are no sets of sites in Sk+1 with enough neighbours in P(Bk).
We shall repeatedly use the following equation for double counting edges:∑

v∈Pk

dPk+1(v) = ∑
w∈Pk+1

dPk
(w).(3.5)

The sphere S1 is minimal, so by Corollary 3.3 P1 consists of d+1 sites. Suppose
that P(B1) is not canonical. Then there must exist i, j ∈ [d] such that ei , −ei , ej ,
and −ej all belong to P1. A site in S2 has degree 2 in P1 if and only if it is of
the form x + y for some x, y ∈ P1 such that x + y �= 0; otherwise, it has degree 1.
Thus if m is the number of sites in S2 with degree 2 in P1, then m ≤ (d+1

2

) − 2. Let
Q be any set of �2 sites in S2. Then∑

v∈Q

dP1(v) ≤ �2 + m ≤ d2 + d − 1.(3.6)

From below, note that protected sites in S1 have at least d protected out-
neighbours. Therefore ∑

w∈P1

dQ(w) ≥ d(d + 1),(3.7)

which by (3.5) and (3.6) is a contradiction. Therefore P(B1) is canonical.
The choice of P(B1) determines the values of j and the εi . Throughout the

rest of the proof, without loss of generality, let j = 1 and ε2 = · · · = εd = 1. Then
P1 = {e1,−e1, e2, e3, . . . , ed}.

We use induction on k. First, suppose that P(Bk) is canonical. We shall show
that P(Bk+1) is semi-canonical by double counting edges between consecutive
spheres. Later we show that if P(Bk) is semi-canonical but not canonical, then it is
not possible to increase the number of minimal layers, and there is a contradiction.

Let Rk+1 denote the set of sites in Sk+1 with at least two neighbours in Pk . As
with k = 1, our aim is to show that Rk+1 ⊂ Pk+1. First, we show that for all k,

|Rk+1| = �k+1 − 2.
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There are two cases to consider. First, suppose that k ≥ d − 1. In this case, no
vertex y ∈ Rk+1 is such that y1 = 0. If y ∈ Rk+1 has j nonzero coordinates among
its last d − 1 coordinates, then dPk

(y) = j + 1. Since all sites in Rk+1 have degree
at least 2 in Pk , we must have j ≥ 1. For each j , there are 2

(d−1
j

)
such sites in

Rk+1 (the factor of 2 comes from the two choices for the first coordinate). Hence

|Rk+1| = 2
d−1∑
j=1

(
d − 1

j

)
= 2d − 2

as required.
Second, suppose that k ≤ d − 2. In this case, there do exist vertices y ∈ Rk+1

with y1 = 0. As in the previous case, every vertex in Rk+1 must have at least one
of its last d − 1 coordinates not equal to 0. Once again, for each j ∈ [k], there are
2
(d−1

j

)
sites in Rk+1 with j nonzero coordinates among their last d −1 coordinates.

If k + 1 of the last d − 1 coordinates of y ∈ Pk do not equal 0, then we must have
y1 = 0. Thus, we have

|Rk+1| =
(

d − 1
k + 1

)
+ 2

k∑
j=1

(
d − 1

j

)
= �k+1 − 2

as claimed.
It follows from the definition of Rk+1 that∑

x∈Pk+1

dPk
(x) ≤ ∑

x∈Rk+1

dPk
(x) + 2.(3.8)

Because Sk+1 is minimal, equality holds in (3.8) only if Rk+1 ⊂ Pk+1. Observe that
by induction, Rk+1 is precisely the canonical set for Sk+1, except for the extreme
points. Hence ∑

x∈Rk+1

dPk
(x) = ∑

y∈Pk

dPk+1(y) − 2.

This means that equality holds in (3.8), which implies that Rk+1 ⊂ Pk+1.
Every vertex x ∈ Pk has enough neighbours in Rk+1 except for kej and −kej ,

which each have one neighbour in Pk−1, but only d −1 neighbours in Rk+1. There-
fore we must have v+ ∈ V +(k + 1) and v− ∈ V −(k + 1) in Pk+1, too. So

Pk+1 = Rk+1 ∪ {
v+, v−}

is semi-canonical. This completes the proof of the theorem in the case where Pk is
canonical.

Now we show that P(Bk) being noncanonical leads to a contradiction. With-
out loss of generality, suppose that x = (t − 1,−1,0, . . . ,0) belongs to Pk . Then
dPk−1(x) = 1, which means that x needs d protected neighbours in Sk+1. However,
no element of Rk+1 is adjacent to x. This means that in order for Pk+1 to satisfy
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(3.5) we need to add d ≥ 2 sites to Rk+1 to protect x, as well as at least one site to
protect the other extreme point of P(Bk), contradicting the assumption that Bk+1
is minimal. This completes the proof. �

COROLLARY 3.5. Let t , d ≥ 2. Then there are exactly d32d−1 minimal con-
figurations of protected sites in Bt . �

3.2. Near-minimal configurations. Suppose that the number of protected sites
in Bt is not mt , but mt + k, where k is small. What can we say about the positions
of these sites? We would like to be able to show that they are not too far from being
a canonical set together with an additional k arbitrarily placed sites. Such a result
would be interesting in its own right, but it also turns out that it is needed in the
proof of the main theorem, Theorem 1.3, to establish tighter bounds on the mean
and variance of the number of uninfected sites at time t . In particular, it will be
important in the proof of Theorem 1.3 that the number of near-minimal configura-
tions just described is O(tck), where c only depends on d , and not O(tctk), which
is the trivial bound.

The stability result that we shall prove is the following.

THEOREM 3.6. Let t ≥ 4d +1. Let r1, r2 be such that r1 ≥ d , r2 −r1 ≥ 3d +1,
and r2 ≤ t . Suppose that the origin is protected and that Sr is minimal for all r such
that r1 ≤ r ≤ r2. Then P(Br2) is semi-canonical.

At the beginning of the proof of Theorem 3.6, we make crucial use of the fol-
lowing lemma, which says that a wide band of minimal layers can only have two
connected components that meet the middle layer of the band. The rather strong
condition r2 −r1 ≥ 3d +1 in the statement of Theorem 3.6 comes from this lemma.

LEMMA 3.7. Let d ≥ 2, r ≥ d , s ≥ d/2, and t ≥ r +2d +2s. Suppose that the
origin is protected and that layers Sr, . . . , Sr+2d+2s are all minimal. Then the set
of uninfected sites in Br+2d+2s \Br−1 contains at most two connected components
that meet Sr+d+s .

PROOF. Let x ∈ Sr+d+s be an uninfected site. Then x is protected because
Sr+d+s is minimal. Since t − (r + d + s) ≥ d + s, we can apply Lemma 3.2 to x

with C = (0, . . . ,0) and values of k up to d + s. This gives that the component of
uninfected sites containing x inside Br+2d+2s \Br−1 has size at least md+s . Using
the identity

d−1∑
r=0

r∑
j=0

(
d

j

)
= d2d−1
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and the definition of mt from (1.3), it follows that the size of the component con-
taining x is at least

md+s = (s + 1)2d + d2d−1.

Do the same for every component of the set of uninfected sites that meets Sr+d+s .
Let K denote the number of components of uninfected sites in Br+2d+2s \ Br−1
that meet Sr+d+s . Let N denote the total number of uninfected sites in these com-
ponents. Then

K
(
(s + 1)2d + d2d−1) ≤ N.(3.9)

Because these layers are minimal and the origin is protected, it follows from Corol-
lary 3.3 that

N ≤ (2d + 2s + 1)2d .(3.10)

Combining bounds (3.9) and (3.10) we have

K ≤ 2d + 2s + 1

s + 1 + d/2
< 3.

But K is an integer, so we must have K ≤ 2, as claimed. �

We need one more technical lemma before we prove Theorem 3.6. Given a
configuration C, we say that a protected vertex x is C-supported if for all I ⊂ [d],
the vertex x − ∑

i∈I C(i)ei is protected.

REMARK 3.8. The property of being C-supported is “monotone” in the fol-
lowing sense. Let C ∈ Cd and let x be a C-supported vertex. By definition, for all i,
x − C(i)ei is protected. Let C0 be the configuration obtained from C by changing
C(i) to 0; observe that C ≤ C0, where ≤ is the partial order defined on Cd . Then
x − C(i)ei is C0-supported.

LEMMA 3.9. Let r ≥ d ≥ 2, and suppose that Sr is minimal. Let C ∈ Cd and
let i = |P(C)|+|N (C)|. Let x be a C-supported vertex satisfying r −‖x‖ ≥ d − i.
Then ∣∣P C

r−‖x‖(x)
∣∣ = 2d−i .

PROOF. For i = 0, the argument is very similar to the proof of Corollary 3.3:
simply apply Lemma 3.2 to x for k = 0, 1, . . . ,‖x‖. Proceeding by induction on i,
let C be a configuration with |P(C)| + |N (C)| = i. Without loss of generality,
suppose that P(C) �= ∅ and that j ∈ P(C). Observe that, by hypothesis, the ver-
tex x − ej is protected. Let C′ be the j -polar opposite of C, and let C′′ be their
common parent. Observe that |P(C′′)| + |N (C′′)| = i − 1. We now consider the
sets of protected vertices in Sr generated by the vertices x and x −ej . Observe that

P C
r−‖x‖(x), P C′

r−‖x‖+1(x − ej ) ⊂ P C′′
r−‖x‖+1(x − ej )
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as well as that

P C
r−‖x‖(x) ∩ P C′

r−‖x‖+1(x − ej ) = ∅.

By Lemma 3.2 and the fact that r − ‖x‖ ≥ d − i, we have |P C
r−‖x‖(x)|,

|P C′
r−‖x‖+1(x − ej )| ≥ 2d−i . Also, by Remark 3.8, x − ej is C′′-supported. So,

by the induction hypothesis, we have∣∣P C
r−‖x‖(x)

∣∣ + ∣∣P C′
r−‖x‖+1(x − ej )

∣∣ = ∣∣P C′′
r−‖x‖+1(x − ej )

∣∣ = 2d−i+1,

and the result follows. �

Recall that a vertex x has an opposing pair of protected neighbours if, for
some j , both x + ej and x − ej are protected. We say that x is j -oriented if j

is the unique coordinate for which both x + ej and x − ej are protected.
Here is a sketch of the proof of Theorem 3.6. As usual, we first consider the

origin, which must have at least d + 1 protected neighbours. Hence it has two
opposing protected neighbours, which without loss of generality are e1 and −e1.
Next we show that se1 and −se1 are protected for all s ≤ r2 − d . We do this
inductively: for each s and any i > 1, we show that if se1 is protected, then it can
never be the case that both se1 + ei and se1 − ei are protected. It then follows,
because se1 has at least d protected out-neighbours, that (s + 1)e1 is protected.
How do we show that it is not the case that both se1 +ei and se1 −ei are protected?
Well, if they are, then for r1 ≤ r ≤ r2, Lemma 3.2 gives 2d−2 protected sites y in
Sr with y1 ≥ 1 and yi ≥ 1, and a further 2d−2 protected sites z in Sr with z1 ≥ 1
and zi ≤ −1. The same lemma applied to −e1 also gives 2d−1 protected sites w

in Sr with w1 ≤ −1. These sets are disjoint, and Sr is minimal, so we have found
all of the protected sites in Sr . This holds for all r in the range r1 ≤ r ≤ r2. Note
that this means that there are at least three components of protected sites that meet
Sr1+3d/2 in this band of minimal layers, which contradicts the components lemma,
Lemma 3.7. This is the only point in the proof where we use this lemma.

Knowing that se1 is protected for all s ≤ r2 − d allows to us to show that we
cannot have both e2 and −e2 protected. Let r1 ≤ r ≤ r2 and suppose that e2 and
−e2 are both protected. Applying Lemma 3.2 to each of them in turn gives a total
of 2d protected sites in Sr , all with second coordinate nonzero. But re1 is also in
that layer, and it is also protected, which is a contradiction. This idea of finding all
(or as we shall see in a moment, a subset of) the protected sites in Sr and showing
that this leads to a contradiction by finding another protected site somewhere else
in Sr is one that we shall use repeatedly throughout the proof.

At this stage we know without loss of generality that

P(S1) = {e1,−e1, e2, . . . , ed},
and also that se1 and −se1 are protected for all s ≤ r2 − d . As one would expect,
from here we build the column inductively, in this case by induction on the number
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k of nonzero coordinates of the site. At each stage of the induction we show three
things. First, that all sites with first coordinate zero and other coordinates consist-
ing of k ones and d − k − 1 zeros are protected. Second, that all sites above and
below these sites are protected. By this we mean that sites obtained by adding or
subtracting se1 from one of these sites are also protected. Third, that all of these
sites are 1-oriented (recall that this means that they do not have opposing protected
neighbours, except in the first coordinate). All three of these assertions are proved
using variations of the same argument. In each case, if the assertion fails then there
are always two protected sites, x and y, that differ in one of their coordinates (other
than the first) by exactly 2. For example, suppose that x2 = 2 and y2 = 0. A combi-
nation of Lemmas 3.2 and 3.9 tells us exactly how many protected sites there are in
Sr which are C-compatible with a certain C-supported site z, where z is such that
z ≤ x and z ≤ y and C is a suitable configuration, and it also tells us that none of
them have (in this example) second coordinate equal to 1. The contradiction comes
from knowing that in fact there is a protected site in Sr which is C-compatible with
the origin and has second coordinate equal to 1. Once we have finished building
the column, the final step, showing that P(Br2) is semi-canonical, follows easily.

PROOF OF THEOREM 3.6. Once again, we write Pk for P(Sk). The ori-
gin must have at least d + 1 protected neighbours, so it must have an oppos-
ing pair of protected neighbours. Without loss of generality, suppose that both
e1 = (1,0, . . . ,0) and −e1 = (−1,0, . . . ,0) are protected. We shall show that se1
and −se1 are protected for all s ≤ r2 − d . To do this, first we show that neither e1
nor −e1 has an opposing pair of protected neighbours in any direction except 1.
Suppose for some i �= 1 that e1 +ei and e1 −ei are both protected. Define a config-
uration C ∈ Cd by C(1) = C(i) = 1 and C(k) = 0 otherwise. Let C ′ be the i-polar
opposite of C, so that C′(1) = 1, C′(i) = −1, and C′(k) = 0 otherwise. Fix r ,
r1 ≤ r ≤ r2. By applying Lemma 3.2 to e1 + ei with C, we find a set Q+

r of 2d−2

protected sites y in Sr with y1 ≥ 1 and yi ≥ 1. Similarly, applying Lemma 3.2 to
e1 − ei with C′, we find a set Q−

r of 2d−2 protected sites z in Sr with z1 ≥ 1 and
zi ≤ −1. In addition, applying Lemma 3.2 to −e1 with configuration C′′ defined
by C′′(1) = −1 and C′′(k) = 0 otherwise, we find another set Tr of 2d−1 protected
sites w in Sr with w1 ≤ −1, for a total of 2d protected sites in Sr . Let

Q+ =
r2⋃

r=r1

Q+
r , Q− =

r2⋃
r=r1

Q−
r and T =

r2⋃
r=r1

Tr .

The situation is shown in Figure 2.
By construction, the three sets of protected sites Q+, Q−, and T are mutually

disconnected, so there are at least three components of protected sites that inter-
sect P(Sr1+3d/2), contradicting Lemma 3.7. This proves that e1 does not have an
opposing pair of protected neighbours in any direction except the first. A similar
argument applies to −e1. Now, because each of e1 and −e1 must have at least
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FIG. 2. The inner circle is Sr1 and the outer circle is Sr2 . The horizontal dashed line is the hy-
perplane x1 = 0 and the vertical dashed line is the half-hyperplane xi = 0, x1 ≥ 0. The protected
sets Q+, Q−, and T are subsets of the grey regions shown. They must form at least three connected
components of protected sites because they are separated by the sites on the dashed lines.

d + 1 protected neighbours in total, it follows that each must have a protected
out-neighbour in the first coordinate; that is, both 2e1 and −2e1 are protected. Ap-
plying the same reasoning iteratively, we conclude that for all s with s ≤ r2 − d ,
both se1 and −se1 are protected.

Next, we show that the origin is 1-oriented. Assume for the sake of contradic-
tion that there exists i �= 1 such that both ei and −ei are protected. Let C, C′ ∈ Cd

denote the positive and negative i-child of the configuration (0, . . . ,0), respec-
tively. Then, applying Lemma 3.2 to ei with C and to −ei with C′, we find that Sr

contains at least 2d−1 protected vertices y with yi ≥ 1 and at least 2d−1 protected
vertices y with yi ≤ −1, for all r1 + 1 ≤ r ≤ r2. However, the minimality of Sr

means that these are the only protected vertices in Sr , and hence Sr contains no
protected vertices y with yi = 0. This contradicts the fact that re1 is protected. So
without loss of generality, let P1 = {e1,−e1, e2, . . . , ed}.

We continue to build the column inductively by showing that every vertex in
the column with k ones and d − k − 1 zeros among its last d − 1 coordinates is
protected. This is proved in Claim 3.10, which takes up most of the remainder of
the proof. Once we have the claim, we observe that it follows immediately that Pr

is canonical for all r1 ≤ r ≤ r2 − d , and we note that one can follow the proof of
Theorem 3.4 to show that Pr2−d+1, . . . ,Pr2−1 are canonical and that Pr2 is semi-
canonical.

We say that x ∈ Sk is k-canonical if x1 = 0 and xi is either 0 or 1 for all i > 1.
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CLAIM 3.10. Let k ≥ 1 and let x ∈ Sk be a k-canonical site. Then x is pro-
tected and 1-oriented, and se1 + x and −se1 + x are protected for all s ≤ r2 − d .

REMARK 3.11. As noted above, we prove Claim 3.10 by induction on k. Fix
k ≥ 1 and suppose that for all � ≤ k, all �-canonical vertices are protected. This
means that if x is k-canonical and C ∈ Cd is such that N (C) = ∅ and P(C) ⊂
{j ∈ [d] :xj = 1}, then x is C-supported. This observation will allow us to apply
Lemma 3.9 at several points in the proof of Claim 3.10.

PROOF OF CLAIM 3.10. Throughout this proof we take r to be an appropriate
radius. To ensure that Sr is minimal and that the hypotheses of Lemma 3.9 are
satisfied, we set r = max{M + d, r1}, where M is the maximum modulus of any
site that we are currently considering.

We have already shown that all 1-canonical vertices are protected. Let us show
that se1 + ei and −se1 + ei are protected for all s ≤ r2 − d and i > 1. We know
that se1 does not have any opposing protected out-neighbours, so the claim is that
for different values of s the out-neighbours have the same orientation. Suppose
that this is false, and without loss of generality suppose that se1 − e2 is protected.
By applying Lemma 3.2 to se1 − e2 with C = (1,−1,0, . . . ,0), it follows that Sr

contains at least 2d−2 protected sites y with y1 ≥ r and y2 ≤ −1. Next, by applying
Lemma 3.2 to e2 with C′ = (1,1,0, . . . ,0), it follows that Sr contains at least 2d−2

protected sites z with z1 ≥ 0 and z2 ≥ 1. Let C′′ denote the common parent of C

and C′. We have assumed without loss of generality that −e1 ∈ P1, which means
that the origin is C′′-supported. Hence, by the minimality of Sr , Lemma 3.9 applied
to the origin says that there are exactly 2d−1 protected sites w in Sr with w1 ≥ 0.
Therefore there are no protected sites w in Sr with w2 = 0, contradicting the fact
that re1 is protected.

Next, we must show that the 1-canonical vertices are 1-oriented. First, we show
that 2ei is not protected for any i > 1. Suppose without loss of generality that
2e2 is protected. Apply Lemma 3.2 to 2e2 with C = (0,1,0, . . . ,0) to obtain 2d−1

protected vertices y in Sr with y2 ≥ 2. Then apply Lemma 3.2 again, this time to
the origin with C′ = (0,−1,0, . . . ,0), to obtain 2d−1 vertices z in Sr with z2 < 0.
By minimality, together these sites form all of the protected sites in Sr , contradict-
ing the fact that (r − 1)e1 + e2 is protected. Second, we show that we never have
ei + ej and ei − ej both protected for distinct i, j > 1. Suppose that this is false,
and without loss of generality suppose that e2 + e3 and e2 − e3 are both protected.
We apply Lemma 3.2 to e2 + e3 with C = (0,1,1,0, . . . ,0) and then to e2 − e3
with C′ = (0,1,−1,0, . . . ,0) to obtain two disjoint sets of 2d−2 protected sites y

in Sr , all with y2 ≥ 1 and y3 �= 0. Define C′′ to be the common parent of C and C′,
and note that e2 is C′′-supported. By applying Lemma 3.9 to e2, there are a total
of exactly 2d−1 protected sites y in Sr with y2 ≥ 0. But (r − 1)e1 + e2 is also
protected, and this is a contradiction.
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We have now proved the claim for k = 1. Proceeding by induction on k, let x be
a k-canonical site. First, we show that x is protected. Then we show that se1 + x

and −se1 +x are protected for all s ≤ r2 −d . Finally, we show that x is 1-oriented.
We begin by showing that x is protected. Suppose not and choose any i such

that xi = 1. Then x − ei is (k − 1)-canonical, and hence 1-oriented. It has at least
d + 1 protected neighbours, of which only (x − ei) + e1 and (x − ei) − e1 are
opposing. Therefore, it has exactly one protected neighbour in each of the last
d −1 coordinates, and exactly k −1 of those are in-neighbours. Therefore, x −2ei

is protected. Since k ≥ 2, we can also choose j �= i such that xj = 1. Notice that
x − ej is also (k − 1)-canonical. Now, define a configuration C by

C(�) =
{

x�, � �= j ,
0, � = j .

Let C ′ be the i-polar opposite of C, and let C′′ be their common parent. Apply
Lemma 3.2 to x − ej with C to obtain 2d−k+1 protected sites in Sr which are
C-compatible with x − ej . Next, apply Lemma 3.2 to x − 2ei with C′ to obtain
2d−k+1 protected sites in Sr which are C′-compatible with x − 2ei . These two
sets of sites are disjoint and all have ith coordinate equal to zero, and furthermore,
since C′′ is the common parent of C and C′, they are all C′′-compatible with
x −ei −ej . Moreover, by the induction hypothesis and Remark 3.11, x −ei −ej is
C′′-supported. Hence, by Lemma 3.9 there are a total of exactly 2d−k+2 protected
sites in Sr which are C′′-compatible with x −ei −ej , so we have found all of them.
But re1 is in Sr , is protected, and is C′′-compatible with the origin, and it is not
among our sites, which is a contradiction.

Next, we must show that se1 + x and −se1 + x are protected for all s ≤ r2 − d .
The argument is almost identical to the one in the previous paragraph. Suppose
that se1 + x is not protected, and let i > 1 be such that xi = 1. Then because
se1 + x − ei is protected and 1-oriented, the site se1 + x − 2ei is protected. Define
a configuration C by C(j) = xj for all j , let C′ be the i-polar opposite of C,
and let C′′ be their common parent. Applying Lemma 3.2 to x with C and to
se1 + x − 2ei with C′ gives two disjoint sets of 2d−k protected vertices in Sr

which are C′′-compatible with x − ei , the first with ith coordinate at least 1, and
the second with ith coordinate at most −1. Lemma 3.9 says that there are exactly
2d−k+1 protected vertices in Sr which are C′′-compatible with x − ei . However,
the protected site re1 is in Sr and is C′′-compatible with x − ei , and it has ith
coordinate zero, a contradiction.

Finally, we show that x is 1-oriented. Again, the argument is almost identical
to before. Suppose for some i �= 1 that both x + ei and x − ei are protected. First,
suppose further that xi = 1. Define a configuration C by C(j) = xj for all j , let
C′ be the i-polar opposite of C, and let C′′ be their common parent. Applying
Lemma 3.2 to x + ei with C and to x − ei with C′, we obtain two disjoint sets
of 2d−k protected vertices in Sr which are C′′-compatible with x, in the first case
with ith coordinate at least 2 and in the second with ith coordinate at most 0. By
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minimality, Lemma 3.9 says that there are exactly 2d−k+1 protected sites in Sr

which are C′′-compatible with x. But (r − 1)e1 + ei is also protected, which is a
contradiction.

Second, we suppose instead that xi = 0. This time, we define the configuration
C by C(i) = 1 and C(k) = xk otherwise, and, as usual, C′ is the i-polar opposite
of C and C′′ is their common parent. Then apply Lemma 3.2 to x + ei with C

and to x − ei with C′ to obtain two disjoint sets of 2d−k−1 protected vertices in Sr

which are all C′′-compatible with x, and obtain a contradiction from Lemma 3.9
and the protected site re1. This proves the claim. �

Now we shall show that Pr is canonical for all r ≤ r1 − 1. Let r = r1 − 1. If x is
not of the form ±(r − k)e1 + y, where y is a k-canonical vertex, then the fact that
Pr1 is canonical means that x has no protected out-neighbours, which means that
x is not protected. Thus, Pr1−1 is canonical. Iterating this argument shows that for
all r ≤ r1 − 1, Pr is canonical.

We have proved that for all r ≤ r2 − d , Pr is canonical. To show that Pr is
canonical for r = r2 − d + 1, . . . , r2 − 1, we imitate the proof of Theorem 3.4.
Since layers r2 − d + 1, . . . , r2 are all minimal, it follows by induction that
Pr2−d+1, . . . ,Pr2−1 must be canonical and that Pr2 must be semi-canonical. �

4. Proofs of main results. Now that we have all of the necessary combinato-
rial tools, we start building up to the proofs of Theorems 1.3 and 1.7. Let Et(x)

be the event that a site x is uninfected at time t , and let Ft(x) be the indicator
random variable for Et(x). The sequence of random variables that we are in-
terested in is (Ft (n))∞n=1, where Ft(n) = ∑

x∈V (Td
n) Ft (x). The mean of Ft(n) is

EFt(n) := λn := ndρ1, where

ρ1 = Ppn

(
Et(x)

)
.

Most of this section is devoted to proving the following Poisson convergence
result, from which Theorems 1.3 and 1.7 will follow easily. Because we are mainly
interested in uninfected sites, rather than infected sites, we shall often work with
q = 1 − p instead of with p.

THEOREM 4.1. Let t = o(logn/ log logn) and let pn be such that qn = 1 −
pn ≤ Cn−d/mt,d . Then

dTV
(
Ft(n),Po(λn)

) = O
(
tdqn

) = o(1).

Our first task is to estimate ρ1. To do this, we make use of the stability result of
the previous section to bound the number of configurations of mt + k uninfected
sites that protect a given site.

For the variance, we shall need to estimate the probability that both x and y

are uninfected at time t when x and y are close enough for these events to be
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dependent. For this, first we need a lemma which says that mt uninfected sites
are not enough to protect two distinct sites. In other words, if x and y are distinct
protected sites, then |P(Bt(x)) ∪ P(Bt(y))| ≥ mt + 1. We then use this together
with the stability result to bound the quantity

ρ2 = max
{
Ppn

(
Et(x) ∩ Et(y)

)
:‖x − y‖ ≤ 2t

}
.

Once we have these bounds on ρ1 and ρ2, the proof of Theorem 4.1 will be just
a few lines.

Throughout this section, all constants, either explicit or implied by the O(·)
notation, will be quantities that depend only on d .

LEMMA 4.2. Let t = o(logn/ log logn) and let

q = 1 − p ≤ Cn−d/mt,d(4.1)

for some C > 0. Then for any constant c > 0,

tcq ≤ exp
(−�(log logn)

)
.

We shall only ever need the corollary tcq = o(1).

PROOF OF LEMMA 4.2. By (4.1) we have

logq = log(1 − p) ≤ logC − d

mt,d

logn.

It follows that

tcq ≤ exp
(
c log t − d

mt,d

logn + logC

)
.

Let t = logn/ω(n) log logn for some function ω(n) → ∞. By Corollary 3.3,
mt,d ≤ t2d . Putting these into the last inequality, we obtain

tcq ≤ exp
(
c log logn − d

2d
ω(n) log logn + logC

)
,

which is certainly enough to prove the lemma. �

We could have replaced the constant C in the above lemma by a function as
large as logn, but we shall not need that in the applications that follow.

Now we determine up to a factor of 1 + o(1) the probability ρ1 that a site is
uninfected at time t .

THEOREM 4.3. Let t = o(logn/ log logn) and let p satisfy (4.1). Then

ρ1 = (
1 + o(1)

)
d32d−1qmt,d .(4.2)
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PROOF. We define gt (k) to be the number of arrangements of mt + k unin-
fected sites in Bt such that the origin is protected. Summing over k we obtain

ρ1 =
|Bt |−mt∑

k=0

gt (k)p|Bt |−mt−kqmt+k.(4.3)

We need to bound gt (k). The stability theorem, Theorem 3.6, says that if there
are 3d + 1 consecutive minimal layers, then the uninfected sites in these layers are
part of a semi-canonical set. However, if there are at most 3d consecutive minimal
layers, then Lemma 3.7, and hence Theorem 3.6, does not hold, and the results of
Section 3 do not tell us anything about the structure of the uninfected sites in these
layers.

There are at most k nonminimal layers. In the worst case, there are exactly
k nonminimal layers, and they are all far apart. In this case, we place uninfected
vertices in each of these layers arbitrarily, as well as in the 3d layers following each
nonminimal layer. This means that we have placed uninfected sites arbitrarily in at
most (3d + 1)k layers. There are at most 2d(3d + 1)k + k total uninfected sites in
these layers. Each layer has at most |St | ≤ c1t

d−1 vertices, so the number of ways
of placing the uninfected sites is at most(

c1t
d−1

2d(3d + 1)k + k

)
≤ (

c1t
d−1)2d (3d+1)k+k = tO(k).

It is important here that the exponent on the right-hand side does not depend on t .
All of the layers whose uninfected vertices we have not yet placed are minimal

and are contained in bands of at least 3d + 1 consecutive minimal layers. Consider
the outer-most band; say this is the range r1 ≤ r ≤ r2. By Theorem 3.6, P(Br2)

must be semi-canonical. In particular, if r < r2 is such that Sr is minimal, then
P(Sr) is canonical with fixed alignment and orientations. Hence, by Corollary 3.5,
there are at most d32d−1 ways to place the rest of the uninfected sites. In fact, all
that we shall use is that this quantity is O(1). We have thus shown that

gt (k) = O
(
tO(k)).(4.4)

Putting this together with (4.3) gives

ρ1 = gt (0)p|Bt |−mt qmt

(
1 +

|Bt |−mt∑
k=1

gt (k)

gt (0)
p−kqk

)

= gt (0)p|Bt |−mt qmt

(
1 + O

(|Bt |−mt∑
k=1

tO(k)qk

))
,

where here we have used p > 1/2 and absorbed the 2k term into tO(k). Hence by
Lemma 4.2,

ρ1 = gt (0)p|Bt |−mt qmt
(
1 + o(1)

)
.
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It remains to show that p|Bt |−mt = 1 − o(1). This also follows from Lemma 4.2
because |Bt | − mt ≥ tc for some c, so the problem is equivalent to showing that
tc logp = tc log(1 − q) = o(1). Hence

ρ1 = (
1 + o(1)

)
d32d−1qmt,d . �

The next two lemmas give a bound on ρ2, which we defined as

ρ2 = max
{
Ppn

(
Et(x) ∩ Et(y)

)
:‖x − y‖ ≤ 2t

}
.

LEMMA 4.4. Suppose that x, y ∈ T
d
n are both protected. Then Bt(x) ∪ Bt(y)

contains at least mt + 1 uninfected sites.

PROOF. By translation invariance we may assume that x = 0. The result is
trivial unless ‖y‖ ≤ t , so we suppose that this is the case and that Bt(0) and Bt(y)

are minimal. By Corollary 3.3 it suffices to show that P(Bt(0)) �= P(Bt(y)), or
equivalently that a semi-canonical set cannot protect two distinct vertices. Assume
that P(Bt) is 1-oriented and that ε2 = · · · = εd = 1, and suppose that P(Bt) pro-
tects a site z. If either extreme point of P(Bt) is te1 or −te1, then we are forced to
take z = 0. Otherwise, we have a site in P(Bt) of the form (t − 1)e1 − e2, say, and
(t − 2)e1 − e2 not in P(Bt). This again forces z = 0. �

LEMMA 4.5. Let t = o(logn/ log logn), and let p satisfy (4.1). Then

ρ2 = O(ρ1q).

In the applications all that we shall use is that ρ2 = o(ρ1).

PROOF OF LEMMA 4.5. Let x and y be sites in T
d such that ‖x − y‖ ≤ 2t . If

Et(x) ∩ Et(y) occurs, then Lemma 4.4 says that Bt(x) ∪ Bt(y) contains at least
mt +1 uninfected sites. Let ht (k) denote the number of configurations of mt +1+
k uninfected sites in Bt(x) ∪ Bt(y) such that both x and y are protected. Thus

ρ2 ≤
2|Bt |∑
k=0

ht (k)qmt+1+k,(4.5)

using the bound p ≤ 1.
We count the number of valid configurations such that Bt(x) \ Bt(y) contains

exactly i uninfected sites, Bt(y) \ Bt(x) contains exactly j uninfected sites, and
Bt(y) ∩ Bt(x) contains exactly � uninfected sites, where

i + j + � = mt + 1 + k.

For each such choice of i, j , and �, we bound the number of valid configurations
from above by placing i + � uninfected sites in Bt(x) and j + � uninfected sites in
Bt(y) independently. Thus,

ht (k) ≤ ∑
(i,j,�)

gt (i + � − mt)gt (j + � − mt),



PERCOLATION TIME WITH DENSE SETS 1367

where the sum is over valid triples (i, j, �). Very crudely, there are at most

(mt + 1 + k)3 = tO(1)

triples, using mt ≤ t2d from Corollary 3.3. Using the bound on gt (k) from (4.4),
it follows that

ht (k) = O
(
tO(i+�−mt+j+�−mt)

)
.

We have the trivial bound � ≤ mt + 1 + k, so we can simplify this expression to

ht (k) = O
(
tO(k)).

Combining this with (4.5) gives the following bound on ρ2:

ρ2 = O(1)

2|Bt |∑
k=0

tO(k)qmt+1+k.

Now we proceed as we did in Theorem 4.3 to estimate ρ1. By Lemma 4.2, we can
say that the first term in this last equation dominates the sum, so we have

ρ2 = O
(
qmt+1) = O(ρ1q),

using the estimate of ρ1 from (4.2) for the last equality. �

Finally, we are ready to use the Stein–Chen method to prove Theorem 1.3. For
each x ∈ T

d
n , let Nx = B2t+1(x) be the dependency neighbourhood of x. Observe

that with this choice of Nx , Ft(x) is independent of {Ft(y) :y /∈ Nx}, as required.

PROOF OF THEOREM 4.1. Using the Stein–Chen method (Theorem 2.1), we
just have to show that

min
{
1, λ−1

n

}( ∑
x∈Td

n

∑
y∈Nx

ρ2
1 + ∑

x∈Td
n

∑
y∈Nx\{x}

ρ2

)
→ 0

or, equivalently, that

min
{
1, λ−1

n

}
ndtd

(
ρ2

1 + ρ2
) → 0.

Since λn = ndρ1, the left-hand side is at most

td
(
ρ1 + ρ2

ρ1

)
.

Using Lemma 4.5, which was the bound on ρ2, this is

tdρ1 + tdO(qn).

By the bound on ρ1 from Theorem 4.3, we have ρ1 = o(qn). This and Lemma 4.2
mean that we may write the above expression as

tdρ1 + tdO(qn) = O
(
tdqn

) = o(1),
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which completes the proof. �

PROOF OF THEOREM 1.3. By a standard coupling argument, the probability
of percolating in time at most t is increasing in p. Therefore, if

lim inf
n→∞ (1 − pn)n

d/mt,d = lim inf
n→∞ qnn

d/mt,d = ∞,

then the result follows from the result for larger values of p. Hence, we may as-
sume that p satisfies the usual bound, (4.1), and that Theorem 4.1 applies. This
tells us that Ft(n) converges in distribution to Po(λn), so that

Ppn

(
Ft(n) = 0

) = (
1 + o(1)

)
e−λn.

The mean λn is equal to ndρ1, and the estimate of ρ1 from Theorem 4.3 gives

ρ1 = 	(1)q
mt,d
n .

Therefore,

Ppn

(
Ft(n) = 0

) →
⎧⎨
⎩

1, if lim
n→∞qnn

d/mt,d = 0,

0, if lim
n→∞qnn

d/mt,d = ∞,

as we wanted.
Finally, for α ∈ (0,1), to determine pα(t), simply observe that α ∼ e−λn ∼

exp(−d32d−1ndq
mt
n ) and solve for pn. This completes the proof of Theorem 1.3.

�

Theorem 1.7 now follows easily.

PROOF OF THEOREM 1.7. Suppose that for all n, qn satisfies (1.5). Then, by
Theorem 1.3, Ppn(T ≤ t − 1) = o(1) and Ppn(T ≥ t + 1) = o(1), which proves
part (i).

Suppose instead that for all n, qn satisfies (1.6). Then qn ≥ (n−dω(n))1/mt−1 , so,
by Theorem 1.3, we have Ppn(T ≤ t −1) = o(1). Similarly, Ppn(T ≥ t +2) = o(1),
so, with high probability, T ∈ {t, t + 1}. Now suppose that limn→∞ q

mt
n nd = c.

Then

Ppn(T = t) ∼ Ppn(T ≤ t) ∼ e−λn ∼ exp
(−d32d−1ndqmt

n

) ∼ exp
(−d32d−1c

)
.

By a similar argument, we have Ppn(T = t + 1) ∼ 1 − exp(−d32d−1c), which
proves part (ii). �
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5. The modified d-neighbour model. As noted in Section 1, the proof of
Theorem 1.4 is very similar to that of Theorem 1.3, so we shall only sketch the
argument.

SKETCH OF PROOF OF THEOREM 1.4. We shall show that if the origin is
protected under the modified d-neighbour model, then |P(Bd

t )| ≥ 2t + 1. We shall
also show that the only minimal configurations are columns centred at the origin.

First, we observe that if the origin is protected and there exists r ≥ 1 such that
Sr contains only one protected site, then some hemisphere (without loss of gener-
ality, the set {x ∈ Bd

t :x1 ≥ 0}) contains no protected sites, and the origin becomes
infected by time r ≤ t , a contradiction. By the same reasoning, if a layer contains
exactly two protected sites, then they must be antipodal points; that is, they must be
of the form ±tei for some i ∈ [d]. Second, we observe that if a vertex is protected,
then it must have an opposing pair of protected neighbours. Combining these two
observations shows that if the origin is protected and |P(Bd

t )| = 2t + 1, then the
protected sites must form a column centred at the origin. Clearly, there are d such
columns.

In this case, the analogue of the stability result (Theorem 3.6) is trivial. Much as
in the case of the standard d-neighbour model, we say that a sphere Sr is minimal
if |P(Sr)| = 2 and that a ball Br is minimal if |P(Br)| = 2r + 1.

LEMMA 5.1. Suppose that the origin is protected and that for some 1 ≤ r ≤ t ,
the sphere Sr is minimal. Then P(Br) is a column of height 2r + 1 centred at the
origin.

PROOF. Let Sr be a minimal layer. As shown above, the protected sites in
Sr must be of the form ±rei for some i ∈ [d]. If x ∈ Sr−1 is any site besides
±(r − 1)ei , then x has no protected out-neighbours, which means that x is not
protected. Thus the only protected sites in Sr−1 are (r − 1)ei and −(r − 1)ei .
Iterating this argument shows that P(Br) is a column centred at the origin. �

Let gt (k) denote the number of arrangements of 2t + 1 + k uninfected sites in
Bt such that the origin is protected. We bound gt (k) from above as follows. There
are at most k nonminimal layers in Bt , which means that there are a total of at
most 3k uninfected sites in these layers. We place uninfected vertices in each of
these layers arbitrarily. Each such layer contains O(td−1) vertices, so the number
of ways of placing the uninfected sites in these layers is at most(

c1t
d−1

3k

)
= tO(k).

Note that, as in the case of the standard d-neighbour model, the exponent on the
right-hand side does not depend on t . Now we turn to the uninfected sites in the
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minimal layers. By Lemma 5.1, if any layer Sr is minimal, then P(Br) is a column
of height 2r + 1 centred at the origin. There are d choices for this column. Hence

gt (k) = O
(
tO(k)).

Next, it is easy to see that if x and y are distinct protected vertices, then Bt(x)∪
Bt(y) contains at least 2t + 2 uninfected vertices, because if Bt(x) is minimal,
then the column that protects x cannot also protect y.

Finally, because 2t + 1 is linear in t , the same argument as in the proof of
Lemma 4.2 shows that if q = 1 − p ≤ Cn−d/(2t+1) for some C > 0, then for all
c > 0, we have tcq = o(1) as n → ∞. The rest of the proof of Poisson convergence
then follows as in Section 4. Indeed, letting Ft(n) denote the number of sites that
are uninfected at time t and setting μn = EFt(n), it follows that

μn = (
1 + o(1)

)
dndq2t+1

n

and that if qn = 1 − pn ≤ Cn−d/(2t+1) for some C > 0, then

dTV
(
Ft(n),Po(μn)

) = O
(
tdqn

) = o(1)

as we wanted. �

6. Possible generalizations and conjectures. Other thresholds. It is possible
to generalize the results of this paper to r-neighbour bootstrap percolation in d ≥ 2
dimensions for all 2 ≤ r ≤ d . Call a subset X of Bd

t (d, r)-canonical if there exist
j1, . . . , jr−1 ∈ [d] and for each i ∈ {j1, . . . , jr−1} an orientation εi ∈ {−1,1} such
that

X = {
(x1, . . . , xd) ∈ Bd

t :xi ∈ {0, εi} for all i ∈ {j1, . . . , jr−1}}.
A (d, d)-canonical set is canonical and in general a (d, r)-canonical set is a union
of 2r−1 (d − r + 1)-dimensional affine subspaces intersected with Bd

t .
Let mt(d, r) be the size of a (d, r)-canonical set in Z

d of radius t . [So
mt(d, d) = mt,d .] As usual, we let P(X) denote the set of protected sites in X

and let gt (k) denote the number of configurations of mt(d, r) + k sites in Bd
t such

that the origin is protected under r-neighbour bootstrap percolation. The following
claims are proved in [17].

CLAIM 6.1. Let t ≥ 0 and d ≥ r ≥ 2. Suppose that the origin is protected
under r-neighbour bootstrap percolation. Then∣∣P (

Bd
t

)∣∣ ≥ mt(d, r).

Moreover, the number of configurations of protected sites which attain this bound
does not depend on t ; and gt (k) = O(tO(k)), where the implicit constants depend
only on d and r .
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CLAIM 6.2. Let d ≥ r ≥ 2, let t = t (n) = o((logn/ log logn)1/(d−r+1)), let
(pn)

∞
n=1 be a sequence of probabilities, let ω(n) → ∞, and let T = T (Td

n;A).
Under the r-neighbour model:

(i) if qn ≤ (n−d/ω(n))1/mt (d,r), then Ppn(T ≤ t) → 1 as n → ∞;
(ii) if qn ≥ (n−dω(n))1/mt (d,r), then Ppn(T ≤ t) → 0 as n → ∞.

Range of t . Theorem 1.3 gives the critical probability for percolation by time t

for values of t up to o(logn/ log logn), or in the dual form, it gives a concentration
result for the percolation time T for sequences of probabilities close to pn = 1 −
n−d/mt,d for some t = o(logn/ log logn). Were the results to hold for t as large as
o(logn), then this would give the percolation time for all probabilities in the range
1 − o(1). We conjecture that this should be the case.

CONJECTURE 6.3. Theorem 1.3 holds for all t in the range t = o(logn).

Other ranges of p. We have only looked at the percolation time for p very close
to 1. It is interesting to ask what one can say about the time for other values of p.
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