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DISTANCE COVARIANCE IN METRIC SPACES1

BY RUSSELL LYONS

Indiana University

We extend the theory of distance (Brownian) covariance from Euclidean
spaces, where it was introduced by Székely, Rizzo and Bakirov, to general
metric spaces. We show that for testing independence, it is necessary and
sufficient that the metric space be of strong negative type. In particular, we
show that this holds for separable Hilbert spaces, which answers a question of
Kosorok. Instead of the manipulations of Fourier transforms used in the orig-
inal work, we use elementary inequalities for metric spaces and embeddings
in Hilbert spaces.

1. Introduction. Székely, Rizzo and Bakirov (2007) introduced a new statis-
tical test for the following problem: given IID samples of a pair of random vari-
ables (X,Y ), where X and Y have finite first moments, are X and Y independent?
Among the virtues of their test is that it is extremely simple to compute, based
merely on a quadratic polynomial of the distances between points in the sample,
and that it is consistent against all alternatives (with finite first moments). The test
statistic is based on a new notion called “distance covariance” or “distance corre-
lation.” The paper by Székely and Rizzo (2009) introduced another new notion,
“Brownian covariance,” and showed it to be the same as distance covariance. That
paper also gave more examples of its use. This latter paper elicited such interest
that it was accompanied by a 3-page editorial introduction and 42 pages of com-
ments.

Although the theory presented in those papers is very beautiful, it also gives
the impression of being rather technical, relying on various manipulations with
Fourier transforms and arcane integrals. Answering a question from Székely (per-
sonal communication, 2010), we show that almost the entire theory can be devel-
oped for general metric spaces, where it necessarily becomes much more elemen-
tary and transparent. A crucial point of the theory is that the distance covariance
of (X,Y ) is 0 iff X and Y are independent. This does not hold for general met-
ric spaces, but we characterize those for which it does hold. Namely, they are the
metric spaces that have what we term “strong negative type.”

In fact, negative type (defined in the next paragraph) had arisen already in the
work of Székely, Rizzo and Bakirov (2007), hereinafter referred to as SRB. It was
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especially prominent in its predecessors, Székely and Rizzo (2005a, 2005b). The
notion of strict negative type is standard, but we need a strengthening of it that we
term “strong negative type.” [These notions were conflated in SRB and Székely
and Rizzo (2005a, 2005b).] The notion of strong negative type was also defined by
Klebanov (2005).

The concept of negative type is old, but has enjoyed a resurgence of interest re-
cently due to its uses in theoretical computer science, where embeddings of metric
spaces, such as graphs, play a useful role in algorithms; see, for example, Naor
(2010) and Deza and Laurent (1997). The fact that Euclidean space has negative
type is behind the following charming and venerable puzzle: given n red points
xi and n blue points x′

i in R
p , show that the sum 2

∑
i,j ‖xi − x′

j‖ of the dis-

tances between the 2n2 ordered pairs of points of opposite color is at least the sum∑
i,j (‖xi − xj‖ + ‖x′

i − x′
j‖) of the distances between the 2n2 ordered pairs of

points of the same color. The reason the solution is not obvious is that it requires
a special property of Euclidean space. In fact, a metric space is defined to have
negative type precisely when the preceding inequality holds (points are allowed to
be repeated in the lists of n red and n blue points, and n is allowed to be arbitrary).
The connection to embeddings is that, as Schoenberg (1937, 1938) showed, neg-
ative type is equivalent to a certain property of embeddability into Hilbert space.
Indeed, if distance in the puzzle were replaced by squared distance, it would be
easy.

If we replace the sums of distances in the puzzle by averages, and then replace
the two finite sets of points by two probability distributions (with finite first mo-
ments), we arrive at an equivalent condition for a metric space to have negative
type. The condition that equality holds only when the two distributions are equal
is called “strong negative type.” It means that a simple computation involving av-
erage distances allows one to distinguish any two probability distributions. Many
statistical tests are aimed at distinguishing two probability distributions, or distin-
guishing two families of distributions. This is what lies directly behind the tests in
Székely and Rizzo (2005a, 2005b). It is also what lies behind the papers Bakirov,
Rizzo and Székely (2006), SRB, and Székely and Rizzo (2009), but there it is
somewhat hidden. We bring this out more clearly in showing how distance covari-
ance allows a test for independence precisely when the two marginal distributions
lie in metric spaces of strong negative type. See Székely and Rizzo (2013) for an
invited review paper on statistics that are functions of distances between observa-
tions.

In Section 2 we define distance covariance and prove its basic properties for
general metric spaces. This includes a statistical test for independence, but the
test statistic cannot distinguish between independence and the alternative in all
metric spaces. In Section 3 we specialize to metric spaces of negative type and
show that the test statistic distinguishes between independence and the alterna-
tive precisely in the case of spaces of strong negative type. In Section 3 we also
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sketch short proofs of Schoenberg’s theorem and short solutions of the above puz-
zle (none being original). It turns out that various embeddings into Hilbert space,
though necessarily equivalent at the abstract level, are useful for different specific
purposes. In both sections, we separate needed results from other interesting re-
sults by putting the latter in explicit remarks. We show that the full theory extends
to separable-Hilbert-space-valued random variables, which resolves a question of
Kosorok (2009). We remark at the end of the paper that if (X , d) is a metric
space of negative type, then (X , dr) has strong negative type for all r ∈ (0,1);
this means that if in a given application one has negative type but not strong neg-
ative type (e.g., in an L1 metric space), then a simple modification of the metric
allows the full theory to apply.

2. General metric spaces. Let (X , d) be a metric space. Let M(X ) de-
note the finite signed Borel measures on X and M1(X ) be the subset of
probability measures. We say that μ ∈ M(X ) has a finite first moment if∫
X d(o, x) d|μ|(x) < ∞ for some o ∈ X . The choice of o ∈ X does not mat-

ter by virtue of the triangle inequality. If μ,μ′ ∈ M(X ) both have finite first mo-
ments, then

∫
d(x, x′) d(|μ|×|μ′|)(x, x′) < ∞ since d(x, x′) ≤ d(o, x)+d(o, x ′).

Therefore,
∫

d(x, x′) dμ(x) dμ′(x′) is defined and finite. In particular, we may de-
fine

aμ(x) :=
∫

d
(
x, x′)dμ

(
x′)

and

D(μ) :=
∫

d
(
x, x′)dμ2(

x, x′)
as finite numbers when μ ∈ M(X ) has a finite first moment. Also, write

dμ

(
x, x′) := d

(
x, x′) − aμ(x) − aμ

(
x′) + D(μ).

The function dμ is better behaved than d in the following sense:

LEMMA 2.1. Let X be any metric space. If μ ∈ M1(X ) has a finite first
moment, that is, d(x, x′) ∈ L1(μ × μ), then dμ(x, x′) ∈ L2(μ × μ).

PROOF. For simplicity, write a(x) := aμ(x) and a := D(μ). Let X,X′ ∼ μ be
independent. By the triangle inequality, we have∣∣d(

x, x′) − a(x)
∣∣ ≤ a

(
x′),(2.1)

whence∫
dμ

(
x, x′)dμ2(

x, x′) = E
[(

d
(
X,X′) − a(X) − a

(
X′) + a

)2] ≤ E[X1X2],
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where X1 := max{|a − 2a(X′)|, a} and X2 := max{|a − 2a(X)|, a}. Since X1 and
X2 are integrable and independent, X1X2 is also integrable, with E[X1X2] ≤ 4a2.

�

The proof of Lemma 2.1 shows that ‖dμ‖2 ≤ 2D(μ) = 2‖d‖1, but the factor of
2 will be removed in Proposition 2.3.

We call μ ∈ M(X ) degenerate if its support consists of only a single point.

REMARK 2.2. Let μ ∈ M1(X ) have finite first moment and be nondegener-
ate. Although dμ(x, x′) < d(x, x′) for all x, x′ ∈ X , it is not true that |dμ(x, x′)| ≤
d(x, x′) for all x, x′ in the support of μ. To see these, we prove first that

aμ(x) > D(μ)/2(2.2)

for all x ∈ X . Indeed,

D(μ) =
∫

d
(
x′, x′′)dμ2(

x′, x′′) ≤
∫ [

d
(
x′, x

) + d
(
x, x′′)]dμ2(

x′, x′′) = 2aμ(x).

Furthermore, if equality holds, then d(x′, x′′) = d(x′, x) + d(x, x′′) for all x′, x′′
in the support of μ. Put x′ = x′′ to get that x = x′, contradicting that μ is not
degenerate. This proves (2.2). Using (2.2) twice in the definition of dμ gives dμ <

d . On the other hand, (2.2) also shows that dμ(x, x) < 0 = −d(x, x) for all x.

Now let (Y , d) be another metric space. Let θ ∈ M1(X × Y ) have finite first
moments for each of its marginals μ on X and ν on Y . Define

δθ

(
(x, y),

(
x′, y′)) := dμ

(
x, x′)dν

(
y, y′).

By Lemma 2.1 and the Cauchy–Schwarz inequality, we may define

dcov(θ) :=
∫

δθ

(
(x, y),

(
x′, y′))dθ2(

(x, y),
(
x′, y′)).

It is immediate from the definition that if θ is a product measure, then dcov(θ) = 0;
the converse statement is not always true and is the key topic of the theory. Metric
spaces that satisfy this are characterized in Section 3 as those of strong negative
type. Similarly, spaces for which dcov ≥ 0 are characterized in Section 3 as those
of negative type. SRB call the square root of dcov(θ) the distance covariance
of θ , but they work only in the context of Euclidean spaces, where dcov ≥ 0. They
denote that square root by dCov(θ).

When (X,Y ) are random variables with distribution θ ∈ M1(X × Y ), we also
write dcov(X,Y ) := dcov(θ). If (X,Y ) and (X′, Y ′) are independent, both with
distribution θ having marginals μ and ν, then

dcov(θ) = E
[(

d
(
X,X′) − aμ(X) − aμ

(
X′) + D(μ)

)
× (

d
(
Y,Y ′) − aν(Y ) − aν

(
Y ′) + D(ν)

)]
.

The following generalizes (2.5) of SRB.
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PROPOSITION 2.3. Let X and Y be any metric spaces. Let θ ∈ M1(X ×
Y ) have finite first moments for each of its marginals μ on X and ν on Y . Let
(X,Y ) ∼ θ . Then ∣∣dcov(X,Y )

∣∣ ≤ √
dcov(X,X)dcov(Y,Y )(2.3)

≤ D(μ)D(ν).

Furthermore, dcov(X,X) = D(μ)2 iff μ is concentrated on at most two points.

PROOF. The Cauchy–Schwarz inequality shows (2.3). It remains to show that

dcov(X,X) ≤ D(μ)2(2.4)

and to analyze the case of equality. As before, write a(x) := aμ(x) and a := D(μ).
By (2.1), we have

E
[∣∣d(

X,X′) − a(X)
∣∣a(X)

] ≤ E
[
a
(
X′)a(X)

] = a2 < ∞,

whence E[[d(X,X′) − a(X)]a(X)] = 0 by Fubini’s theorem (i.e., condition
on X). Similarly, E[[d(X,X′) − a(X′)]a(X′)] = 0. Thus, expanding the square in
dcov(X,X) = E[(d(X,X′) − a(X) − a(X′) + a)2] and replacing d(X,X′)2 there
by the larger quantity d(X,X′)[a(X) + a(X′)] yields [d(X,X′) − a(X)]a(X) +
[d(X,X′) − a(X′)]a(X′) plus other terms that are individually integrable with in-
tegrals summing to a2. This shows the inequality (2.4). Furthermore, it shows
that equality holds iff for all points x, x′ in the support of μ, if d(x, x′) 	= 0,
then d(x, x′) = a(x) + a(x′). Since the right-hand side equals

∫ [d(x, o) +
d(o, x′)]dμ(o), it follows that d(x, x′) = d(x, o) + d(o, x′) for all o in the sup-
port of μ. If there is an o 	= x, x′ in the support of μ, then we similarly have
that d(x, o) = d(x, x ′) + d(x′, o). Adding these equations together shows that
d(o, x′) = 0, a contradiction. That is, if dcov(X,X) = D(μ)2, then the support of
μ has size 1 or 2. The converse is clear. �

The next proposition generalizes Theorem 4(i) of SRB.

PROPOSITION 2.4. If dcov(X,X) = 0, then X is degenerate.

PROOF. As before, write a(x) := aμ(x) and a := D(μ), where X ∼ μ. The
hypothesis implies that d(X,X′) − a(X) − a(X′) + a = 0 a.s. Since all functions
here are continuous, we have d(x, x′) − a(x) − a(x′) + a = 0 for all x, x′ in the
support of μ. Put x = x′ to deduce that for all x in the support of μ, we have
a(x) = a/2. Therefore, d(X,X′) = 0 a.s. �

Assume that μ and ν are nondegenerate. Then the right-hand side of (2.3) is
not 0; the quotient dcov(θ)/[D(μ)D(ν)] is the square of what is called the distance
correlation of θ in SRB. In SRB, this quotient is always nonnegative.

This next proposition extends Theorem 3(iii) of SRB.
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PROPOSITION 2.5. If μ and ν are nondegenerate and equality holds in (2.3),
then for some c > 0, there is a continuous map f :X → Y such that for all x, x′
in the support of μ, we have d(x, x′) = cd(f (x), f (x′)) and y = f (x) for θ -a.e.
(x, y).

PROOF. Write a(x) := aμ(x), a := D(μ), b(y) := aν(y) and b := D(ν).
Equality holds in (2.3) iff there is some constant c such that

d
(
x, x′) − a(x) − a

(
x′) + a = c

(
d
(
y, y′) − b(y) − b

(
y′) + b

)
for θ2-a.e. (x, y), (x′, y′), that is,

d
(
x, x′) − cd

(
y, y′) = a(x) − cb(y) + a

(
x′) − cb

(
y′) + cb − a.

Since all functions here are continuous, the same holds for all (x, y), (x′, y′) in the
support of θ . Put (x, y) = (x′, y′) to deduce that for all (x, y) in the support of θ ,
we have a(x) − cb(y) = (a − cb)/2. This means that d(x, x′) = cd(y, y′) θ2-a.s.
The conclusion follows. �

We now extend Theorem 2 of SRB.

PROPOSITION 2.6. Let X and Y be metric spaces. Let θ ∈ M1(X × Y )

have marginals with finite first moment. Let θn be the (random) empirical mea-
sure of the first n samples from an infinite sequence of IID samples of θ . Then
dcov(θn) → dcov(θ) a.s.

PROOF. Let (Xi, Y i) ∼ θ be independent for 1 ≤ i ≤ 6. Write

f (z1, z2, z3, z4) := d(z1, z2) − d(z1, z3) − d(z2, z4) + d(z3, z4).

Here, zi ∈ X or zi ∈ Y . The triangle inequality gives that∣∣f (z1, z2, z3, z4)
∣∣ ≤ g(z1, z3, z4) := 2 max

{
d(z3, z4), d(z1, z3)

}
and ∣∣f (z1, z2, z3, z4)

∣∣ ≤ g(z2, z4, z3) = 2 max
{
d(z3, z4), d(z2, z4)

}
.

Since g(X1,X3,X4) and g(Y 2, Y 6, Y 5) are integrable and independent, it follows
that

h
((

X1, Y 1)
, . . . ,

(
X6, Y 6)) := f

(
X1,X2,X3,X4)

f
(
Y 1, Y 2, Y 5, Y 6)

is integrable. Fubini’s theorem thus shows that its expectation equals dcov(θ). Sim-
ilarly, dcov(θn) are the V -statistics for the kernel h of degree 6. Hence, the result
follows. �

The proof of Proposition 2.6 for general metric spaces is more straightforward
if second moments are finite, as in Remark 3 of SRB.

We next extend Theorem 5 of SRB.
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THEOREM 2.7. Let X , Y be metric spaces. Let θ ∈ M1(X × Y ) have
marginals μ, ν with finite first moment. Let θn be the empirical measure of the
first n samples from an infinite sequence of IID samples of θ . Let λi be the eigen-
values (with multiplicity) of the map that sends F ∈ L2(θ) to the function

(x, y) �→
∫

δθ

(
(x, y),

(
x′, y′))F (

x′, y′)dθ
(
x′, y′).

If θ = μ × ν, then ndcov(θn) ⇒ ∑
i λiZ

2
i , where Zi are IID standard normal

random variables and
∑

i λi = D(μ)D(ν).

PROOF. We use the same notation as in the proof of Proposition 2.6. That
proof shows that h is integrable when μ and ν have finite first moments; the case
Xi = Y i shows then that f (X1,X2,X3,X4) has finite second moment. Therefore,
when θ = μ × ν, h((X1, Y 1), . . . , (X6, Y 6)) has finite second moment.

Assume now that θ = μ × ν. Then kernel h is degenerate of order 1. Let h̄ be
the symmetrized version of h. That is, for zi ∈ X × Y , we let h̄(z1, . . . , z6) be
the average of h(zσ(1), . . . , zσ(6)) over all permutations σ of {1, . . . ,6}. Then since
θ = μ × ν,

h̄2
(
(x, y),

(
x′, y′)) := E

[
h̄
(
(x, y),

(
x′, y′), (

X3, Y 3)
, . . . ,

(
X6, Y 6))]

= δθ

(
(x, y),

(
x′, y′))/15.

Hence, the result follows from the theory of degenerate V -statistics [compare
Theorem 5.5.2 in Serfling (1980) or Example 12.11 in van der Vaart (1998) for
the case of U -statistics]. Finally, we have

∑
λi = ∫

δθ ((x, y), (x, y)) dθ(x, y) =
D(μ)D(ν) since θ = μ × ν. �

COROLLARY 2.8. Let X , Y be metric spaces. Let θ ∈ M1(X × Y ) have
nondegenerate marginals μ, ν with finite first moment. Let θn be the empirical
measure of the first n samples from an infinite sequence of IID samples of θ . Let
μn, νn be the marginals of θn. If θ = μ × ν, then

ndcov(θn)

D(μn)D(νn)
⇒

∑
i λiZ

2
i

D(μ)D(ν)
,(2.5)

where λi and Zi are as in Theorem 2.7 and the right-hand side has expectation 1.
If dcov(θ) 	= 0, then the left-hand side of (2.5) tends to ±∞ a.s.

PROOF. Since D(μn) and D(νn) are V -statistics, we have D(μn) → D(μ)

and D(νn) → D(ν) a.s. Thus, the first case follows from Theorem 2.7. The second
case follows from Proposition 2.6. �

REMARK 2.9. Since θ = μ× ν, the map in Theorem 2.7 is the tensor product
of the maps

L2(μ)  F �→
(
x �→

∫
dμ

(
x, x′)F (

x′)dμ
(
x′))
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and

L2(ν)  F �→
(
y �→

∫
dν

(
y, y′)F (

y′)dν
(
y′)).

Therefore, the eigenvalues λi are the products of the eigenvalues of these two
maps.

3. Spaces of negative type. Corollary 2.8 is incomplete in that it does not
specify what happens when dcov(θ) = 0 and θ is not a product measure. In order
for the statistics dcov(θn) to give a test for independence that is consistent against
all alternatives, it suffices to rule out this missing case. In this section, we show
that this case never arises for metric spaces of strong negative type, but otherwise
it does. This will require the development of several other theorems of indepen-
dent interest. We intersperse these theorems with their specializations to Euclidean
space.

The puzzle we recalled in the Introduction can be stated the following way for
a metric space (X , d): let n ≥ 1 and x1, . . . , x2n ∈ X . Write αi for the indicator
that xi is red minus the indicator that xi is blue. Then

∑2n
i=1 αi = 0 and∑

i,j≤2n

αiαjd(xi, xj ) ≤ 0.

By considering repetitions of xi and taking limits, we arrive at a superficially
more general property: for all n ≥ 1, x1, . . . , xn ∈ X , and α1, . . . , αn ∈ R with∑n

i=1 αi = 0, we have ∑
i,j≤n

αiαjd(xi, xj ) ≤ 0.(3.1)

We say that (X , d) has negative type if this property holds. A list of metric spaces
of negative type appears as Theorem 3.6 of Meckes (2013); in particular, this in-
cludes all Lp spaces for 1 ≤ p ≤ 2. On the other hand, R

n with the �p-metric
is not of negative type whenever 3 ≤ n ≤ ∞ and 2 < p ≤ ∞, as proved by Dor
(1976) combined with Theorem 2 of Bretagnolle, Dacunha-Castelle and Krivine
(1965/1966); see Koldobsky and Lonke (1999) for an extension to spaces that in-
clude some Orlicz spaces, among others.

If we define the n × n distance matrix K whose (i, j) entry is d(xi, xj ), then
(3.1) says, by definition, that K is conditionally negative semidefinite. This ex-
plains the name “negative type.” We can construct another matrix K̄ from K that
is negative semidefinite as follows: let P be the orthogonal projection of R

n onto
the orthocomplement of the constant vectors. Then as operators, K̄ := PKP . Let
μn be the empirical measure of x1, . . . , xn. The (i, j) entry of K̄ is easily verified
to be dμn(xi, xj ), which begins to explain the appearance of dμ in Section 2. We
write K̄ ≤ 0 to mean that K̄ is negative semidefinite.
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If X and Y are both metric spaces of negative type and (xi, yi) ∈ X × Y ,
then let K and L be the distance matrices for xi and yi , respectively. Let θn be
the empirical measure of the sequence 〈(xi, yi);1 ≤ i ≤ n〉. We have K̄ ≤ 0 and
L̄ ≤ 0, whence tr(K̄L̄) = tr(

√
−K̄

√
−L̄

√
−L̄

√
−K̄) ≥ 0, that is,

0 ≤ tr(K̄L̄) = n2 dcov(θn).

This begins to explain the origin of dcov. To go further, we use embeddings into
Hilbert space.

Now X is of negative type iff there is a Hilbert space H and a map φ :X → H

such that ∀x, x ′ ∈ X d(x, x′) = ‖φ(x)−φ(x′)‖2, as shown by Schoenberg (1937,
1938). We sketch two proofs of Schoenberg’s theorem: given such a φ, (3.1) is
easy to verify; see (3.4) below. For the converse, consider x1, . . . , xn ∈ X . Since
K̄ ≤ 0, there are vectors vi ∈ R

n such that 〈vi, vj 〉 is the (i, j)-entry of −K̄ for

all i, j (the matrix
√

−K̄ has vi for its ith column). Computing ‖vi − vj‖2 then
yields ‖vi/

√
2−vj/

√
2‖2 = d(xi, xj ). This provides a map φ defined on the points

x1, . . . , xn. When we increase the domain of such a φ, the distances of the images
already defined are preserved, whence we may embed all these images in a fixed
Hilbert space. If X is separable, we may thus define φ on a countable dense subset
by induction, and then extend by continuity. In general and alternatively, define

do

(
x, x′) := [

d(x, o) + d
(
o, x′) − d

(
x, x′)]/2

for some fixed o ∈ X . Let V be the finitely supported functions on X . The fact
that X is of negative type implies that 〈f,g〉 := ∑

x,x′∈X f (x)g(x ′) do(x, x′) is
a semi-inner product on V . The Cauchy–Schwarz inequality implies that V0 :=
{f ∈ V ; 〈f,f 〉 = 0} is a subspace of V . Let H be the completion of V/V0. Then
the map φ :x �→ 1{x} +V0 has the property desired. Note that H is separable when
X is.

Of course, any two isometric embeddings φ1, φ2 : (X , d1/2) → H are equiva-
lent in the sense that there exists an isometry g :H1 → H2 such that φ2 = g ◦ φ1,
where Hi is the closed affine span of the image of φi . To see this, define
g(φ1(x)) := φ2(x) for x ∈ X , extend by affine linearity (which is well defined
by a property of Euclidean space), and then extend by continuity. We shall call an
isometric embedding φ : (X , d1/2) → H simply an embedding.

A direct proof that R
n is of negative type is the following. When n = 1, define

φ(x) to be the function 1[0,∞) − 1[x,∞) in L2(R, λ), where λ is the Lebesgue
measure. This is easily seen to have the desired property. When n ≥ 2, define
fx(s) := ‖x − s‖−(n−1)/2 and gx := fx − f0 for x ∈ R

n. Then gx ∈ L2(Rn, λn), as
calculus shows [for large s, we have gx(s) = O(‖s‖−(n+1)/2)]. Furthermore, there
is a constant c such that ‖gx‖2 = c‖x‖1/2 by homogeneity, whence translation
invariance gives ‖gx −gx′‖2 = ‖gx−x′‖2 = c‖x − x′‖1/2, so that φ(x) := gx/c has
the desired property. Call this embedding the Riesz embedding since fx(s) is a
Riesz kernel.
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Another embedding φ for R
n is as follows: φ(x) is the function s �→ c(1 −

e−is·x) in L2(Fλn) for some constant c, where F(s) := ‖s‖−(n+1). See Lemma 1
of Székely and Rizzo (2005a) for a proof. This is the Fourier transform of the
Riesz embedding, in other words, the composition of the Riesz embedding with
the Fourier isometry. We shall refer to this embedding as the Fourier embedding.

Other important embeddings use Brownian motion. When n = 1, let Bx be
Brownian motion defined for x ∈ R with B0 = 0. We may then define φ(x) := Bx ,
thought of as a function in L2(P) for some probability measure P. Likewise, the
case n ≥ 2 can be accomplished by using Lévy’s multiparameter Brownian motion.
We shall refer to these embeddings as the Brownian embeddings. Sample-path con-
tinuity of these Brownian motions plays no role for us; only their Gaussian struc-
ture matters. In fact, their existence depends only on the fact that R

n has negative
type.

An embedding that does not rely on calculation goes as follows: let σ be the
(infinite) Borel measure on half-spaces S ⊂ R

n that is invariant under translations
and rotations, normalized so that

σ
({0 ∈ S, x /∈ S}) = ‖x‖/2(3.2)

for ‖x‖ = 1. If we parametrize half-spaces as S = {x ∈ R
n; z ·x ≤ s} with z ∈ S

n−1

and s ∈ R, then σ = cn
n × λ for some constant cn, where 
n is volume measure
on S

n−1. Scaling shows that (3.2) holds for all x. Now let φ(x) be the function
S �→ 1S(0) − 1S(x) in L2(σ ). We call this the Crofton embedding, as Crofton
(1868) was the first to give a formula for the distance of points in the plane in
terms of lines intersecting the segment joining them.

We return now to general metric spaces of negative type. Suppose that μ1,μ2 ∈
M1(X ) have finite first moments. By approximating μi by probability measures
of finite support (e.g., IID samples give V -statistics), we see that when X has
negative type,

D(μ1 − μ2) ≤ 0.(3.3)

We say that (X , d) has strong negative type if it has negative type and equality
holds in (3.3) only when μ1 = μ2. When μi are restricted to measures of finite
support, then this is the condition that (X , d) be of strict negative type. A simple
example of a metric space of nonstrict negative type is �1 on a 2-point space, that
is, R

2 with the �1-metric. See Remark 3.3 below for an example of a metric space
of strict but not strong negative type.

Consider an embedding φ as above. Define the (linear) barycenter map β =
βφ :μ �→ ∫

φ(x) dμ(x) on the set of measures μ ∈ M(X ) with finite first moment.
[Although it suffices that

∫
d(o, x)1/2 d|μ|(x) < ∞ to define β(μ), this will not

suffice for our purposes.] Note that∫ ∫
d(x1, x2) dμ1(x1) dμ2(x2) = −2

〈
β(μ1), β(μ2)

〉
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when μi ∈ M(X ) satisfy μi(X ) = 0. In particular,

D(μ) = −2
∥∥β(μ)

∥∥2(3.4)

when μ ∈ M(X ) satisfies μ(X ) = 0. Thus, we have the following:

PROPOSITION 3.1. Let X have negative type as witnessed by the embed-
ding φ. Then X is of strong negative type iff the barycenter map βφ is injective on
the set of probability measures on X with finite first moment.

For example, Euclidean spaces have strong negative type; this is most directly
seen via the Fourier embedding, since then β(μ) is the function s �→ c(1 − μ̂(s)),
where μ̂ is the Fourier transform of μ ∈ M1(R

n). The fact that μ is determined by
its Fourier transform then implies that Euclidean space has strong negative type.
Alternatively, one can see that Euclidean spaces have strong negative type via the
Crofton embedding and the Cramér–Wold device, but the only decent proof of
that device uses Fourier transforms. (Of course, in one dimension, the Crofton
embedding is simple and easily shows that R has strong negative type without
the use of Fourier transforms.) The barycenter of μ for the Riesz embedding is
essentially the Riesz potential of μ; more precisely, if μ and μ′ are probability
measures with finite first moment, then up to a constant factor, β(μ − μ′) is the
Riesz potential of μ − μ′ for the exponent (n − 1)/2. However, Riesz potentials
will not concern us here.

REMARK 3.2. Another way of saying Proposition 3.1 is that a metric space
(X , d) has strong negative type iff the map (μ1,μ2) �→ √−D(μ1 − μ2)/2 is a
metric on the set of probability measures on X with finite first moment, in which
case it extends the metric on (X , d1/2) when we identify x ∈ X with the point
mass at x. This metric is referred to by Klebanov (2005) as an “N-distance.”

REMARK 3.3. Here we give an example of a metric space of strict negative
type that is not of strong negative type. In fact, it fails the condition for probability
measures with countable support. The question amounts to whether, given a sub-
set of a Hilbert space in which no 3 points form an obtuse triangle and such that
the barycenter of every finitely supported probability measure determines the mea-
sure uniquely, the barycenter of every probability measure determines the measure
uniquely. The answer is no. For example, let 〈ei〉 be an orthonormal basis of a
Hilbert space. The desired subset consists of the vectors

e1,

e1 + e2/2,

e2 + e3,

e3 + e4/2,
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e4 + e5,

e5 + e6/2,

etc. It is obvious that finite convex combinations are unique and that there are no
obtuse angles. But if vn denotes the nth vector, then

v1/2 + v3/4 + v5/8 + · · · = v2/2 + v4/4 + v6/8 + · · · .
REMARK 3.4. If X is a metric space of negative type, then α :μ �→ aμ is

injective on μ ∈ M1(X ) with finite first moment iff X has strong negative type.
Part of this statement is contained in Theorem 4.1 of Klebanov (2005); this same
part occurs later in Theorem 3.6 of Nickolas and Wolf (2009). To prove the equiv-
alence, let φ be an embedding of X such that 0 lies in the image of φ, which we
may achieve by translation. Then

aμ(x) = ∥∥φ(x)
∥∥2 − 2

〈
φ(x),β(μ)

〉 + ∫ ∥∥φ(
x′)∥∥2

dμ
(
x′),

whence aμ = aμ′ iff 〈φ(x),β(μ)〉 = 〈φ(x),β(μ′)〉 for all x [first use x so that
φ(x) = 0] iff 〈z,β(μ)〉 = 〈z,β(μ′)〉 for all z in the closed linear span of the image
of φ iff β(μ) = β(μ′). Now apply Proposition 3.1. On the other hand, there are
metric spaces not of negative type for which α is injective on the probability mea-
sures; for example, take a finite metric space in which the distances to a fixed point
are linearly independent. The map α is injective also for all separable Lp spaces
(1 < p < ∞); see Linde (1986b) or Gorin and Koldobskiı̆ (1987).

Given an H -valued random variable Z with finite first moment, we define its
variance to be Var(Z) := E[‖Z − E[Z]‖2].

PROPOSITION 3.5. If X has negative type as witnessed by the embedding φ

and μ ∈ M1(X ) has finite first moment, then for all x, x′ ∈ X ,

aμ(x) = ∥∥φ(x) − βφ(μ)
∥∥2 + D(μ)/2,

D(μ) = 2 Var(φ(X)) if X ∼ μ, and

dμ

(
x, x′) = −2

〈
φ(x) − βφ(μ),φ

(
x′) − βφ(μ)

〉
.

PROOF. Let X ∼ μ. We have

aμ(x) = E
[
d(x,X)

] = E
[∥∥φ(x) − φ(X)

∥∥2]
= E

[∥∥(
φ(x) − β(μ)

) − (
φ(X) − β(μ)

)∥∥2]
= ∥∥φ(x) − βφ(μ)

∥∥2 + Var
(
φ(X)

)
.

Integrating over x gives the first two identities. Substituting the first identity into
the definition of dμ gives the last identity. �
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For simplicity, we may, without loss of generality, work only with real Hilbert
spaces. Let X and Y be metric spaces of negative type, witnessed by the embed-
dings φ and ψ , respectively. Consider the tensor embedding (x, y) �→ φ(x)⊗ψ(y)

of X ×Y → H ⊗H . This will be the key to analyzing when dcov(θ) = 0. Recall
that the inner product on H ⊗ H satisfies 〈h1 ⊗ h′

1, h2 ⊗ h′
2〉 := 〈h1, h2〉〈h′

1, h
′
2〉.

REMARK 3.6. Although we shall not need it, we may give X × Y the asso-
ciated “metric”

dφ⊗ψ

(
(x, y),

(
x′, y′)) := ∥∥φ(x) ⊗ ψ(y) − φ

(
x′) ⊗ ψ

(
y′)∥∥2

,

so necessarily it is of negative type. Actually, one can check that this need not sat-
isfy the triangle inequality, but, following a suggestion of ours, Leonard Schulman
(personal communication, 2010) showed that it is indeed a metric when the images
of φ and ψ both contain the origin. Since we may translate φ and ψ so that this
holds, we may take this to be a metric if we wish. In this case, one can also express
dφ⊗ψ in terms of the original metrics on X and Y . However, we shall not use
dφ⊗ψ anywhere other than in Remarks 3.10 and 3.14.

PROPOSITION 3.7. Let X , Y have negative type as witnessed by the embed-
dings φ, ψ . Let θ ∈ M1(X × Y ) have marginals μ ∈ M1(X ) and ν ∈ M1(Y ),
both with finite first moment. Then θ ◦ (φ ⊗ ψ)−1 has finite first moment, so that
βφ⊗ψ(θ) is defined, and we have that

dcov(θ) = 4
∥∥βφ⊗ψ(θ − μ × ν)

∥∥2
.

PROOF. Write φ̂ := φ − βφ(μ) and ψ̂ := ψ − βψ(ν). By Proposition 3.5, we
have

dcov(θ) = 4
∫ 〈

φ̂(x), φ̂
(
x′)〉〈ψ̂(y), ψ̂

(
y′)〉dθ2(

(x, y),
(
x′, y′))

= 4
∫ 〈

φ̂(x) ⊗ ψ̂(y), φ̂
(
x′) ⊗ ψ̂

(
y′)〉dθ2(

(x, y),
(
x′, y′))

= 4
∥∥βφ̂⊗ψ̂ (θ)

∥∥2
.

In addition, since ‖φ(x)‖ ∈ L2(μ) and ‖ψ(y)‖ ∈ L2(ν), we have ‖φ(x)⊗ψ(y)‖ ∈
L1(θ) by the Cauchy–Schwarz inequality, whence βφ⊗ψ(θ) is defined and

βφ̂⊗ψ̂ (θ) =
∫

φ̂(x) ⊗ ψ̂(y) dθ(x, y)

=
∫ (

φ(x) − βφ(μ)
) ⊗ (

ψ(y) − βψ(ν)
)
dθ(x, y)

=
∫

φ(x) ⊗ ψ(y)dθ(x, y) − βφ(μ) ⊗ βψ(ν)

= βφ⊗ψ(θ − μ × ν). �
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In the special case where X and Y are Euclidean spaces and the embeddings
φ,ψ are the Fourier embeddings, Proposition 3.7 shows that dcov coincides with
(the square of) the original definition of distance covariance in SRB [see (2.6)
there], while if the embeddings are the Brownian embeddings, then Proposition 3.7
shows that distance covariance is the same as Brownian covariance [Theorem 8 of
Székely and Rizzo (2009); the condition there that X and Y have finite second
moments is thus seen to be superfluous]. The Crofton embedding gives

βφ⊗ψ(θ − μ × ν) : (z, s,w, t)

�→ cpcq

[
θ(z · x ≤ s,w · y ≤ t) − μ(z · x ≤ s)ν(w · y ≤ t)

]
for θ ∈ M1(R

p × R
q) with marginals μ,ν having finite first moments, whence for

(X,Y ) ∈ R
p × R

q , Proposition 3.7 shows that

dcov(X,Y )

= 4cpcq

∫ ∫ ∣∣P[z · X ≤ s,w · Y ≤ t]

− P[z · X ≤ s]P[w · Y ≤ t]∣∣2 d(
p × 
q)(z,w)dλ2(s, t).

When p = q = 1, this formula was shown to us by Gábor Székely (personal com-
munication, 2010).

Write M1(X ) for the subset of μ ∈ M(X ) such that |μ| has a finite first mo-
ment. Write M1,1(X × Y ) for the subset of θ ∈ M(X × Y ) such that both
marginals of |θ | have finite first moment.

LEMMA 3.8. Let X , Y have negative type as witnessed by the embeddings
φ, ψ . If φ and ψ have the property that βφ and βψ are injective on both M1(X )

and M1(Y ) (not merely on the probability measures), then βφ⊗ψ is injective on
M1,1(X × Y ).

PROOF. Let θ ∈ M1,1(X × Y ) satisfy βφ⊗ψ(θ) = 0. For k ∈ H , define the
bounded linear map Tk :H ⊗ H → H by linearity, continuity and

Tk(u ⊗ v) := 〈u, k〉v.

More precisely, one uses the above definition on ei ⊗ ej for an orthonormal basis
{ei} of H and then extends. Also, define

νk(B) :=
∫ 〈

φ(x), k
〉
1B(y) dθ(x, y) (B ⊆ Y Borel),

so that

βψ(νk) =
∫ 〈

φ(x), k
〉
ψ(y)dθ(x, y) =

∫
Tk

(
φ(x) ⊗ ψ(y)

)
dθ(x, y)

= Tk

(
βφ⊗ψ(θ)

) = 0.
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This implies that νk = 0 by injectivity of βψ . As this is valid for each k ∈ H , we
obtain that for every Borel B ⊆ Y ,∫

φ(x)1B(y) dθ(x, y) = 0.

Defining

μB(A) := θ(A × B) (A ⊆ X Borel),

we have βφ(μB) = ∫
φ(x)1B(y) dθ(x, y) = 0, whence μB = 0 by injectivity

of βφ . In other words, θ(A × B) = 0 for every pair of Borel sets A and B . Since
such product sets generate the product σ -field on X × Y , it follows that θ = 0.

�

LEMMA 3.9. Let X have strong negative type. There exists an embedding φ

so that βφ is injective on M1(X ) (not merely on the probability measures).

PROOF. If φ :X → H is an embedding that induces an injective barycenter
map on M1

1 (X ), then the map x �→ (φ(x),1) ∈ H × R is an embedding that in-
duces an injective barycenter map on M1(X ). �

REMARK 3.10. We may choose the embeddings so that dφ⊗ψ is a metric and
βφ⊗ψ is injective on M1(X × Y ), which yields that dφ⊗ψ is of strong negative
type by Proposition 3.1. Indeed, first translate φ and ψ so that each contains 0
in its image. This makes dφ⊗ψ a metric by Remark 3.6. Then use the embedding
x �→ (φ(x),1) and likewise for ψ . This does not change the metric.

As we observed in Section 2, it is immediate from the definition that if θ is a
product measure, then dcov(θ) = 0. A converse and the key result of the theory
holds for metric spaces of strong negative type:

THEOREM 3.11. Suppose that both X and Y have strong negative type and
θ is a probability measure on X × Y whose marginals have finite first moment.
If dcov(θ) = 0, then θ is a product measure.

This is an immediate corollary of Proposition 3.7 and Lemmas 3.8 and 3.9.
Therefore, Corollary 2.8 gives a test for independence that is consistent against all
alternatives when X and Y both have strong negative type. See Theorem 6 of
SRB for the significance levels of the test.

For the Fourier embedding of Euclidean space, Theorem 3.11 amounts to the
fact that θ = μ × ν if the Fourier transform of θ is the (tensor) product of the
Fourier transforms of μ and ν. This was the motivation presented in SRB for dCov.
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REMARK 3.12. In the case of categorical data, we may embed each data space
as a simplex with edges of unit length. Let the corresponding Hilbert-space vectors
be ex/

√
2 and fy/

√
2, where ex are orthonormal and fy are orthonormal. The

product space then embeds as a simplex on the orthogonal vectors ex ⊗ fy/2 and
the barycenter of θ is

∑
x,y θ(x, y)ex ⊗ fy/2. Let θn, μn and νn be the empirical

measures as in Corollary 2.8. Proposition 3.7 yields

dcov(θn) = ∑
x,y

[
θn(x, y) − μn(x)νn(y)

]2
.

The test statistic in (2.5) is thus

n
∑

x,y[θn(x, y) − μn(x)νn(y)]2∑
x μn(x)[1 − μn(x)]∑

y νn(y)[1 − νn(y)] .

For comparison, Pearson’s χ2-statistic is

n
∑
x,y

[θn(x, y) − μn(x)νn(y)]2

μn(x)νn(y)
.

REMARK 3.13. As Gábor Székely has remarked (personal communication,
2010), there is a two-dimensional random variable (X,Y ) such that X and Y are
not independent, yet if (X′, Y ′) is an independent copy of (X,Y ), then |X − X′|
and |Y − Y ′| are uncorrelated. Indeed, consider the density function p(x, y) :=
(1/4 − q(x)q(y))1[−1,1]2(x, y) with q(x) := −(c/2)1[−1,0] + (1/2)1(0,c), where

c := √
2 − 1. Then it is not hard to check that this gives such an example.

REMARK 3.14. According to Proposition 3.7, dcov(θ) = −2D(θ − μ × ν)

for the metric space (X × Y , dφ⊗ψ). Since this metric space has strong negative
type when X and Y do, we can view the fact that dcov(θ) = 0 only for product
measures as a special case of the fact that D(θ1 − θ2) = 0 only when θ1 = θ2 for
θi ∈ M1

1 (X × Y ). Similarly, any other metric on X × Y of strong negative type
could be used to give a test of independence via D(θ − μ × ν); indeed, when
X = R

p and Y = R
q , the Euclidean metric on R

p+q was used by Bakirov, Rizzo
and Székely (2006) for precisely such a test.

No such result as Theorem 3.11 holds if either X or Y is not of strong negative
type:

PROPOSITION 3.15. If X is not of negative type, then for every metric
space Y with at least two points, there exists θ ∈ M1(X × Y ) whose marginals
have finite first moments and such that dcov(θ) < 0. If X is not of strong neg-
ative type, then for every metric space Y with at least two points, there ex-
ists θ ∈ M1(X × Y ) whose marginals have finite first moments and such that
dcov(θ) = 0, yet θ is not a product measure.
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PROOF. Choose two distinct points y1, y2 ∈ Y . Let μ1 	= μ2 ∈ M1(X ) have
finite first moments and satisfy D(μ1 −μ2) ≥ 0, where > 0 applies if X does not
have negative type. In this latter case, set θ := (μ1 × δ(y1) + μ2 × δ(y2))/2. Then
a little algebra reveals that

dcov(θ) = −d(y1, y2)D(μ1 − μ2)/8 < 0.

In general, note that if x1 	= x2, then D(δ(x1) − δ(x2)) < 0, whence there is
some γ ∈ (0,1] such that if τi := γμi + (1 − γ )δ(xi), then D(τ1 − τ2) = 0. Set
θ := (τ1 × δ(y1) + τ2 × δ(y2))/2. Then

dcov(θ) = −d(y1, y2)D(τ1 − τ2)/8 = 0,

yet θ is not a product measure. �

There remains the possibility that the kernel h in the proof of Proposition 2.6
is degenerate of order 1 only when θ is a product measure. If that is true, then
Corollary 2.8 gives a consistent test for independence even in metric spaces not of
negative type, since when h is not degenerate and dcov(θ) = 0,

√
ndcov(θn) has

a nontrivial normal limit in distribution, whence ndcov(θn) → ±∞ a.s. We have
not investigated this possibility.

Since every Euclidean space is of strict negative type, so is every Hilbert space.
Separable Hilbert spaces are even of strong negative type, though this is consid-
erably more subtle. Therefore, dcov(θ) = 0 implies that θ ∈ M1(X × Y ) is a
product measure when X and Y are separable Hilbert spaces, which resolves a
question of Kosorok (2009).

THEOREM 3.16. Every separable Hilbert space is of strong negative type.

PROOF. This follows from Remark 3.4 and Theorem 6 of Linde (1986a) or
Theorem 1 of Koldobskiı̆ (1982), who prove more. Likewise, separable Lp spaces
with 1 < p < 2 are of strong negative type. However, we give a direct proof that is
shorter, which keeps our paper self-contained.

Our proof relies on a known Gaussian variant of the Crofton embedding. Let
Zn (n ≥ 1) be IID standard normal random variables with law ρ on R

∞. Given
u = 〈un;n ∈ Z

+〉 ∈ �2(Z+), define the random variable Z(u) := ∑
n≥1 unZn. Then

Z(u) is a centered normal random variable with standard deviation equal to ‖u‖2.
Therefore, E[|Z(u)|] = c‖u‖2 with c := E[|Z1|].

Let λ be the Lebesgue measure on R. For w,u ∈ R
∞, write w(u) :=

lim supN

∑N
n=1 unwn. We choose �2(Z+) as our separable Hilbert space, which

we embed into another Hilbert space, L2(R∞ × R, ρ × λ), by

φ(u) : (w, s) �→ 1[w(u)/c,∞)(s) − 1[0,∞)(s).
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Then ‖φ(u) − φ(u′)‖2
2 = ‖φ(u) − φ(u′)‖1 = ‖u − u′‖2 for all u,u′ ∈ �2(Z+).

Let μ1,μ2 ∈ M1(�
2(Z+)) have finite first moments. Set μ := μ1 − μ2. Because∫

dμ = 0, we have

βφ(μ) : (w, s) �→ μ
{
u;w(u) ≤ cs

}
.

Note that since for every u ∈ �2(Z+), the series w(u) converges ρ-a.s., Fubini’s
theorem tells us that for ρ-a.e. w, w(u) converges for μi-a.e. u. We need to show
that if βφ(μ) = 0 ρ × λ-a.s., then μ = 0. So assume that βφ(μ) = 0 ρ × λ-a.s. It
suffices to show that μ{u; 〈u, v〉 ≤ s} = 0 for every finitely supported v ∈ R

∞ and
every s ∈ R, since that implies that the finite-dimensional marginals of μ are 0 by
the Cramér–Wold device.

Let K ≥ 1. For w ∈ R
∞, write w≤K for the vector (w1, . . . ,wK) ∈ R

K and
w>K for (wK+1,wK+2, . . .) ∈ R

∞. Since the law ρ of w = (w≤K,w>K) is a
product measure, with λK absolutely continuous with respect to the first factor
and with the second factor equal to ρ, Fubini’s theorem gives that for ρ-a.e. w,
for λK -a.e. v ∈ R

K , and for λ-a.e. s ∈ R, we have β(μ)((v,w), s) = 0. Since
(v, s) �→ β(μ)((v,w), s) possesses sufficient continuity properties, we have that
for ρ-a.e. w, for all v ∈ R

K and all s ∈ R, β(μ)((v,w), s) = 0.
Let ε > 0. Choose K so large that c

∫ ‖u>K‖2 dμi(u) < ε2 for i = 1,2, which
is possible by Lebesgue’s dominated convergence theorem and the fact that μi has
finite first moment. Let

A(ε) := {
(u,w) ∈ �2(

Z
+) × R

∞; ∣∣w(u>K)
∣∣ ≥ ε

}
.

Markov’s inequality yields that

(μi × ρ)A(ε) ≤ ε−1∥∥w(u>K)
∥∥
L1(μi×ρ) = ε−1c

∫
‖u>K‖2 dμi(u) < ε,

where the equality arises from Fubini’s theorem. Therefore, there is some w such
that denoting A(w,ε) := {u; |w(u>K)| ≥ ε}, we have β(μ)((v,w), s) = 0 for all
v ∈ R

K , s ∈ R and

μiA(w, ε) < ε.

For such a w, we have for all v, s that

μi

{
u; 〈u≤K,v〉 ≤ s − ε

} − ε < μi

{
u; 〈u≤K,v〉 + w(u>K) ≤ s

}
< μi

{
u; 〈u≤K,v〉 ≤ s + ε

} + ε.

The middle quantity is the same for i = 1 as for i = 2 by choice of w. Therefore,
for all v ∈ R

K and s ∈ R,

μ1
[〈u≤K,v〉 ≤ s − ε

] − ε < μ2
[〈u≤K,v〉 ≤ s + ε

] + ε
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and

μ2
[〈u≤K,v〉 ≤ s − ε

] − ε < μ1
[〈u≤K,v〉 ≤ s + ε

] + ε.

Although K depends on ε, it follows that for all L ≤ K and all v ∈ R
L, s ∈ R,

μ1
[〈u≤L, v〉 ≤ s − ε

] − ε < μ2
[〈u≤L, v〉 ≤ s + ε

] + ε

and

μ2
[〈u≤L, v〉 ≤ s − ε

] − ε < μ1
[〈u≤L, v〉 ≤ s + ε

] + ε.

Thus, if we fix L, the above inequalities hold for all ε, which implies that

μ1
[〈u≤L, v〉 ≤ s

] = μ2
[〈u≤L, v〉 ≤ s

]
.

This is what we needed to show. �

REMARK 3.17. Nonseparable Hilbert spaces H are of strong negative type iff
their dimension is a cardinal of measure zero. [Whether there exist cardinals not of
measure zero is a subtle question that involves foundational issues; see Chapter 23
of Just and Weese (1997).] To see this equivalence, note first that if every Borel
probability measure on H is carried by a separable subset, then H has strong neg-
ative type by the preceding theorem. Now a theorem of Marczewski and Sikorski
(1948) [or see Theorem 2 of Appendix III in Billingsley (1968)] implies that this
separable-carrier condition holds if (and only if) the dimension of H is a cardinal
of measure zero. Conversely, if the dimension of H is not a cardinal of measure
zero, then let I be an orthonormal basis of H . By definition, there exists a proba-
bility measure μ on the subsets of I that vanishes on singletons. Write I = I1 ∪ I2,
where I1 and I2 are disjoint and equinumerous with I . Define μj (j = 1,2) on Ij

by pushing forward μ via a bijection from I to Ij . Extend μj to H in the obvious
way (all subsets of I are Borel in H since they are Gδ-sets). Then μ1 	= μ2, yet
D(μ1 − μ2) = 0.

COROLLARY 3.18. If (X , d) is a separable metric space of negative type,
then (X , d1/2) is a metric space of strong negative type.

PROOF. Let φ : (X , d1/2) → H be an isometric embedding to a separable
Hilbert space. Let ψ : (H,‖ ·‖1/2) → H ′ be an isometric embedding to another
separable Hilbert space such that βψ is injective on M1

1 (H), which exists by The-
orem 3.16. Then ψ ◦ φ : (X , d1/4) → H ′ is an isometric embedding to a Hilbert
space whose barycenter map is injective on M1

1 (X , d1/2). �

This means that we can apply a distance covariance test of independence to any
pair of metric spaces of negative type provided we use square roots of distances in
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place of distances. This even has the small advantage that the probability measures
in question need have only finite half-moments.

REMARK 3.19. We claim that if (X , d) has negative type, then (X , dr) has
strong negative type when 0 < r < 1. When X is finite, and so strong negative
type is the same as strict negative type, this result is due to Li and Weston (2010),
Theorem 5.4. To prove our claim, we use the result of Linde (1986a) that the map
α :μ �→ aμ of Remark 3.4 is injective on M1

1 (H,‖ ·‖r ) for all r ∈ R
+ \ 2N. Let

φ : (X , d1/2) → H be an isometric embedding. By Linde’s result, the map

μ �→
(
x �→

∫
d
(
x, x′)r dμ

(
x′) =

∫ ∥∥φ(x) − φ
(
x′)∥∥2r

dμ
(
x′))

is injective. Since (X , dr) has negative type by a theorem of Schoenberg (1938),
the claim follows from Remark 3.4.

COROLLARY 3.20. If (X , dX ) and (Y , dY ) are metric spaces of negative
type, then (X × Y , (dX + dY )1/2) is a metric space of strong negative type.

PROOF. It is easy to see that (X ×Y , dX +dY ) is of negative type, whence
the result follows from Corollary 3.18. �

Thus, another way to test independence for metric spaces (X , dX ) and
(Y , dY ) of negative type (not necessarily strong) uses not dcov(θ), but D(θ −μ×
ν) with respect to the metric (dX + dY )1/2 on X × Y ; compare Remark 3.14.
By Remark 3.19, the same holds for (X × Y , (dX + dY )r ) with any r ∈ (0,1).

We remark finally that for separable metric spaces of negative type, the proofs
of Proposition 2.6, Theorem 2.7 and Corollary 2.8 are more straightforward, as
they can rely on the strong law of large numbers and the central limit theorem in
Hilbert space.
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