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NONCONVENTIONAL LIMIT THEOREMS IN DISCRETE AND
CONTINUOUS TIME VIA MARTINGALES

BY YURI KIFER1 AND S. R. S. VARADHAN2

Hebrew University and New York University

We obtain functional central limit theorems for both discrete time expres-

sions of the form 1/
√
N

∑[Nt]
n=1(F (X(q1(n)), . . . ,X(q�(n)))− F̄ ) and similar

expressions in the continuous time where the sum is replaced by an integral.
Here X(n),n≥ 0 is a sufficiently fast mixing vector process with some mo-
ment conditions and stationarity properties, F is a continuous function with
polynomial growth and certain regularity properties, F̄ = ∫

F d(μ×· · ·×μ),
μ is the distribution of X(0) and qi(n)= in for i ≤ k ≤ � while for i > k they
are positive functions taking on integer values on integers with some growth
conditions which are satisfied, for instance, when qi ’s are polynomials of
increasing degrees. These results decisively generalize [Probab. Theory Re-
lated Fields 148 (2010) 71–106], whose method was only applicable to the
case k = 2 under substantially more restrictive moment and mixing condi-
tions and which could not be extended to convergence of processes and to the
corresponding continuous time case. As in [Probab. Theory Related Fields
148 (2010) 71–106], our results hold true when Xi(n) = T nfi , where T is
a mixing subshift of finite type, a hyperbolic diffeomorphism or an expand-
ing transformation taken with a Gibbs invariant measure, as well as in the
case when Xi(n)= fi(ϒn), where ϒn is a Markov chain satisfying the Doe-
blin condition considered as a stationary process with respect to its invari-
ant measure. Moreover, our relaxed mixing conditions yield applications to
other types of dynamical systems and Markov processes, for instance, where
a spectral gap can be established. The continuous time version holds true
when, for instance, Xi(t) = fi(ξt ), where ξt is a nondegenerate continuous
time Markov chain with a finite state space or a nondegenerate diffusion on
a compact manifold. A partial motivation for such limit theorems is due to a
series of papers dealing with nonconventional ergodic averages.

1. Introduction. Nonconventional ergodic theorems, known also after [1] as
polynomial ergodic theorems, studied the limits of expressions having the form
(cf. [7]) 1/N

∑N
n=1 T

q1(n)f1 · · ·T q�(n)f�, where T is a weakly mixing measure
preserving transformation, fi ’s are bounded measurable functions and qi ’s are
polynomials taking on integer values on the integers. Originally, these results were
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motivated by applications to multiple recurrence for dynamical systems, the func-
tions fi being indicators of some measurable sets.

After an ergodic theorem (or in the probabilistic language: the law of large
numbers) is established, it is natural to inquire whether a corresponding central
limit theorem holds true as well, though as usual under stronger conditions. In
this paper we prove the functional central limit theorem (invariance principle) for
expressions of the form

1√
N

[Nt]∑
n=1

(
F

(
X

(
q1(n)

)
, . . . ,X

(
q�(n)

)) − F̄
)

(1.1)

and for the corresponding continuous time expressions of the form

1√
N

∫ [Nt]
0

(
F

(
X

(
q1(t)

)
, . . . ,X

(
q�(t)

)) − F̄
)
dt,(1.2)

where {X(n),n≥ 0}, [or {X(t)}, t ≥ 0] is a sufficiently fast mixing vector valued
process with some stationarity properties satisfying certain moment conditions,
F is a continuous function with polynomial growth and certain regularity proper-
ties, F̄ = ∫

F d(μ×· · ·×μ) where μ is the common distribution of X(n), {qj (t)}
are positive functions taking on integer values on integers in the discrete time case
with qj (t) = j t for j ≤ k and for j > k they satisfy certain growth conditions.
For instance, it would be enough if {qj (t)} are polynomials of increasing degrees,
though we actually do not need any polynomial structure of functions qj , j > k

which was crucial in papers dealing with nonconventional ergodic theorems cited
above.

Our methods rely on a martingale approximations approach which has played a
decisive role in most proofs of the central limit theorem during the last 50 years.
In view of strong dependence on the future of summands in (1.1), application of
martingales in our setup does not seem plausible on first sight. It turns out, some-
what surprisingly, that an appropriately modified martingale approach still works
well in our situation if we construct the filtration of σ -algebras so that in some
sense “future becomes present.” Once martingale approximations are constructed,
it remains only to check convergence of covariances which we do in Section 4,
while the whole approach is explained and completed in Section 5.

Unlike the classical situation, our functional central limit theorem yields a pro-
cess which has Gaussian distributions but not necessarily independent increments
and we demonstrate an explicit example of such limiting process with dependent
increments. This interesting effect rarely appears in natural models. We obtain
also a functional central limit theorem in the corresponding continuous time case
which only recently was treated in the sense of nonconventional ergodic theorems
(see [2]). It turns out that the limiting process in the continuous time case has a
somewhat different structure than in the discrete time setup. These results gen-
eralize [13], where the partition into blocks and the direct use of characteristic
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functions showed applicability only to the case k = 2 under more restrictive con-
ditions and neither the functional central limit theorem nor the continuous time
case could be dealt with by the method employed there.

Our results can be applied to large classes of stochastic processes X(n),n≥ 0,
in particular, to functions of Markov chains satisfying Doeblin’s condition or to
those which are constructed from sufficiently fast mixing dynamical systems. The
continuous time version holds true, in particular, when X(t) is a function of an
irreducible continuous time Markov chain or of a nondegenerate diffusion on a
compact manifold or of Ornstein–Uhlenbeck type processes.

2. Preliminaries and main results. Our discrete time setup consists of a
℘-dimensional stochastic process {X(n),n = 0,1, . . .} on a probability space
(�,F ,P ) and of a family of σ -algebras Fkl ⊂ F ,−∞ ≤ k ≤ l ≤ ∞ such that

Fkl ⊂ Fk′l′ if k′ ≤ k and l′ ≥ l. It is often convenient to measure the dependence
between two sub-σ -algebras G,H ⊂ F via the quantities

�q,p(G,H)
(2.1)

= sup
{∥∥E[g|G] −E[g]∥∥p :g is H-measurable and ‖g‖q ≤ 1

}
,

where the supremum is taken over real functions and ‖ · ‖r is the Lr(�,F ,P )-
norm. Then more familiar α,ρ,φ and ψ-mixing (dependence) coefficients can be
expressed via the formulas (see [5], Chapter 4)

α(G,H)= 1
4�∞,1(G,H), ρ(G,H)=�2,2(G,H),

φ(G,H)= 1
2�∞,∞(G,H) and ψ(G,H)=�1,∞(G,H).

We set also

�q,p(n)= sup
k≥0

�q,p(F−∞,k,Fk+n,∞)(2.2)

and, accordingly,

α(n)= 1
4�∞,1(n), ρ(n)=�2,2(n),

φ(n)= 1
2�∞,∞(n), ψ(n)=�1,∞(n).

We will impose mixing rates, that is, rates of decay of �q,p(n) requiring that

C(q,p)= ∑
n≥1

�q,p(n)(2.3)

is finite for some choices of p and q . Our setup includes also conditions on the
approximation rate

β(p, r)= sup
k≥0

∥∥X(k)−E
[
X(k)|Fk−r,k+r

]∥∥
p.(2.4)
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In what follows we can always extend the definitions of Fkl given only for k, l ≥ 0
to negative k by defining Fkl = F0l for k < 0 and l ≥ 0. Furthermore, we do not
require stationarity of the process X(n),n≥ 0, assuming only that the distribution
of X(n) does not depend on n and the joint distribution of {X(n),X(n′)} depends
only on n− n′ which we write for further references by

X(n)
d∼ μ and

(
X(n),X

(
n′)) d∼ μn−n′ for all n,n′,(2.5)

where Y
d∼ μ means that Y has μ for its distribution.

Next, let F = F(x1, . . . , x�), xj ∈ R
℘ be a function on R

℘� such that for some
ι,K > 0, κ ∈ (0,1] and all xi, yi ∈ R

℘, i = 1, . . . , �, we have∣∣F(x1, . . . , x�)− F(y1, . . . , y�)
∣∣

(2.6)

≤K

[
1 +

�∑
j=1

|xj |ι +
�∑

j=1

|yj |ι
]

�∑
j=1

|xj − yj |κ

and

∣∣F(x1, . . . , x�)
∣∣ ≤K

[
1 +

�∑
j=1

|xj |ι
]
.(2.7)

To simplify formulas, we assume a centering condition

F̄ =
∫
F(x1, . . . , x�) dμ(x1) · · ·dμ(x�)= 0,(2.8)

which is not really a restriction since we can always replace F by F − F̄ . Our goal
is to prove a functional central limit theorem for

ξN(t)= 1√
N

[Nt]∑
n=1

F
(
X

(
q1(n)

)
, . . . ,X

(
q�(n)

))
and t ∈ [0, T ],(2.9)

where q1(n) < q2(n) < · · ·< q�(n) are increasing functions taking on integer val-
ues on integers and such that for j ≤ k, qj (n)= jn, whereas the remaining ones
grow faster in n. We assume that for k + 1 ≤ i ≤ �,

lim
n→∞

(
qi(n+ 1)− qi(n)

) = ∞(2.10)

and for i ≥ k and any ε > 0,

lim inf
n→∞

(
qi+1(εn)− qi(n)

)
> 0,(2.11)

which implies because of (2.10) that

lim
n→∞

(
qi+1(εn)− qi(n)

) = ∞.(2.12)
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To shorten some of the arguments, we assumed that qi(n) is increasing in both n
and i but, in fact, (2.10) and (2.11) imply already that this holds true for all n large
enough, which suffices for our purposes. For each θ > 0 set

γ θθ = ‖X‖θθ =E
∣∣X(n)∣∣θ =

∫
|x|θ dμ.(2.13)

Our main result relies on the following.

ASSUMPTION 2.1. With d = (�− 1)℘ there exist ∞>p,q ≥ 1 and δ,m > 0
with δ < κ − d

p
satisfying

∞∑
n=0

�q,p(n)= θ(p, q) <∞,(2.14)

∞∑
r=0

[
β(q, r)

]δ
<∞,(2.15)

γm <∞, γ2qι <∞ with
1

2
≥ 1

p
+ ι+ 2

m
+ δ

q
.(2.16)

REMARK 2.2. The reader willing to reduce technicalities in the first read-
ing can be advised to keep in mind simplified assumptions such as �= k [i.e., to
consider only linear times qj (n)= jn], bounded and Lipschitz continuous F and
�q,p(n),β(q,n) decaying exponentially fast in n. Such simplifications save some
of our estimates but, otherwise, most of our machinery still should be applied.

In order to give a detailed statement of our main result as well as for its proof,
it will be essential to represent the function F = F(x1, x2, . . . , x�) in the form

F = F1(x1)+ · · · + F�(x1, x2, . . . , x�),(2.17)

where for i < �,

Fi(x1, . . . , xi)=
∫
F(x1, x2, . . . , x�) dμ(xi+1) · · ·dμ(x�)

(2.18)
−

∫
F(x1, x2, . . . , x�) dμ(xi) · · ·dμ(x�)

and

F�(x1, x2, . . . , x�)= F(x1, x2, . . . , x�)−
∫
F(x1, x2, . . . , x�) dμ(x�),

which ensures, in particular, that∫
Fi(x1, x2, . . . , xi−1, xi) dμ(xi)≡ 0 ∀x1, x2, . . . , xi−1.(2.19)
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These enable us to write

ξN(t)=
k∑
i=1

ξi,N (it)+
�∑

i=k+1

ξi,N (t),(2.20)

where for 1 ≤ i ≤ k,

ξi,N (t)= 1√
N

[Nt/i]∑
n=1

Fi
(
X(n),X(2n), . . . ,X(in)

)
(2.21)

and for i ≥ k + 1,

ξi,N (t)= 1√
N

[Nt]∑
n=1

Fi
(
X

(
q1(n)

)
, . . . ,X

(
qi(n)

))
.(2.22)

THEOREM 2.3. Suppose that Assumption 2.1 holds true. Then the �-dimen-
sional process {ξi,N (t) : 1 ≤ i ≤ �} converges in distribution as N → ∞ to a Gaus-
sian process {ηi(t) : 1 ≤ i ≤ �} with stationary independent increments. The means
are 0 and the covariances are given byE[ηi(s)ηj (t)] = min(s, t)Di,j . For i, j ≤ k,
Di,j is given by Proposition 4.1. Moreover, Di,j = 0 if i �= j , and either i or j is
at least k + 1, making the processes {ηi(·), i ≥ k + 1} independent of each other
and of {ηj (·) : j ≤ k}. For i ≥ k+ 1, the variance of ηi(t) is given by tDi,i , where

Di,i =
∫ ∣∣Fi(x1, x2, . . . , xi)

∣∣2 dμ(x1) dμ(x2) · · ·dμ(xi).
Finally, the distribution of the process ξN(·) converges to the Gaussian process
ξ(·) which can be represented in the form

ξ(t)=
k∑
i=1

ηi(it)+
�∑

i=k+1

ηi(t).(2.23)

If k ≥ 2, then the process ξ(t) may not have independent increments.

In order to understand our assumptions, observe that�q,p is clearly nonincreas-
ing in q and nondecreasing in p. Hence, for any pair p,q ≥ 1,

�q,p(n)≤ψ(n).

Furthermore, by the real version of the Riesz–Thorin interpolation theorem or the
Riesz convexity theorem (see [8], Section 9.3, and [6], Section VI.10.11), when-
ever θ ∈ [0,1],1 ≤ p0,p1, q0, q1 ≤ ∞ and

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
,

then

�q,p(n)≤ 2
(
�q0,p0(n)

)1−θ (
�q1,p1(n)

)θ
.(2.24)
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In particular, using the obvious bound �q1,p1 ≤ 2 valid for any q1 ≥ p1, we obtain
from (2.24) for pairs (∞,1), (2,2) and (∞,∞) that for all q ≥ p ≥ 1,

�q,p(n)≤ (
2α(n)

)1/p−1/q
,

�q,p(n)≤ 21+1/p−1/q(ρ(n))1−1/p+1/q and(2.25)

�q,p(n)≤ 21+1/p(
φ(n)

)1−1/p
.

We observe also that by the Hölder inequality for q ≥ p ≥ 1 and α ∈ (0,p/q),
β(q, r)≤ 21−α[

β(p, r)
]α
γ 1−α
pq(1−α)/(p−qα)(2.26)

with γθ defined in (2.13). Thus, we can formulate Assumption 2.1 in terms of more
familiar α,ρ,φ, and ψ-mixing coefficients and with various moment conditions.
It follows also from (2.24) that if �q,p(n) → 0 as n → ∞ for some q > p ≥ 1,
then

�q,p(n)→ 0 as n→ ∞ for all q > p ≥ 1,(2.27)

and so (2.27) holds true under Assumption 2.1.
Concerning the function F = F(x1, . . . , x�), we can take it, for instance, to be a

polynomial in x1, . . . , x�, in particular, F(x1, . . . , x�)= x1x2 · · ·x� which leads to
a functional central limit theorem for

N−1/2
∑

1≤n≤[Nt]
X

(
q1(n)

)
X

(
q2(n)

) · · ·X(
q�(n)

)
.

The key point of our proof will be construction of martingale approximations
for the processes ξi,N (t)’s, where we will have to overcome problems imposed by
strong dependencies between terms in the sum (2.9), as well as between arguments
X(qj (n)), j = 1,2, . . . , �, of the function F there. The realignment in the defini-
tion of {ξi,N (t)} for i ≤ k will also be important since it makes the collection a
process with independent increments in the limit. Otherwise, in the limit, incre-
ments of {ξi(t)} will be correlated with the increments of {ξj (t)} at different time
points. It will not matter for i ≥ k + 1, for they will all turn out to be mutually
independent in the limit.

The conditions of Theorem 2.3 hold true for many important models. Let, for
instance, ϒn be a Markov chain on a space M satisfying the Doeblin condition
(see, e.g., [11], pages 367 and 368) and fj , j = 1, . . . , �, be bounded measur-
able functions on the space of sequences x = (xi, i = 0,1,2, . . . , xi ∈ M) such
that |fj (x) − fj (y)| ≤ Ce−cn provided x = (xi), y = (yi) and xi = yi for all
i = 0,1, . . . , n, where c,C > 0 do not depend on n and j . In fact, some poly-
nomial decay in n will suffice here as well. Let X(n)= (X1(n), . . . ,X�(n)) with
Xj(n) = fj (ϒn,ϒn+1,ϒn+2, . . .) and take σ -algebras Fkl, k < l generated by
ϒk,ϒk+1, . . . ,ϒl , then our condition will be satisfied considering {ϒn,n≥ 0} with
its invariant measure as a stationary process. In fact, our conditions hold true for a
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more general class of processes, in particular, for Markov chains whose transition
operator has an L2 spectral gap which leads to an exponentially fast decay of the
ρ-mixing coefficient.

REMARK 2.4. Formally, (2.5) requires some stationarity and, for instance, if
we consider a Markov chain ξn satisfying the Doeblin condition but whose ini-
tial distribution differs from its invariant measure, then (2.5) does not hold true
for X(n) = f (ξn). Still, a slight modification makes our method to work so that
Theorem 2.3 (as well as its continuous time version Theorem 2.5) remain valid. In
order to do this, we consider another probability measure � on the space (�,F)

and require the weak stationarity (2.5) with respect to �, that is, X(n)�= μ and
(X(n),X(n′))�= μn−n′ . In addition, we modify the definition of the dependence
coefficient �q,p in (2.1), taking the conditional expectation of g there with respect
to the probability P while taking the unconditional expectation of g with respect
to �. It is easy to see that under the same assumptions as above but with modified
(2.1) and (2.5) our proof will still go through.

Important classes of processes satisfying our conditions come from dynami-
cal systems. Let T be a C2 Axiom A diffeomorphism (in particular, Anosov)
in a neighborhood of an attractor or let T be an expanding C2 endomorphism
of a Riemannian manifold M (see [4]), fj ’s be either Hölder continuous func-
tions or functions which are constant on elements of a Markov partition and let
X(n)= (X1(n), . . . ,X�(n)) with Xj(n)= fj (T

nx). Here the probability space is
(M,B,μ), where μ is a Gibbs invariant measure corresponding to some Hölder
continuous function and B is the Borel σ -field. Let ζ be a finite Markov partition
for T , then we can take Fkl to be the finite σ -algebra generated by the partition⋂l
i=k T iζ . In fact, we can take here not only Hölder continuous fj ’s but also indi-

cators of sets from Fkl . A related example corresponds to T being a topologically
mixing subshift of finite type, which means that T is the left shift on a subspace
� of the space of one-sided sequences ς = (ςi, i ≥ 0), ςi = 1, . . . , l0, such that
ς ∈� if πςiςi+1 = 1 for all i ≥ 0 where �= (πij ) is an l0 × l0 matrix with 0 and 1
entries and such that �n for some n is a matrix with positive entries. Again, we
have to take in this case fj to be bounded Hölder continuous [with respect to the
metric d((ςi, i ≥ 0), (ς ′

i , i ≥ 0))= exp(−min{j ≥ 0 :ςj �= ς ′
j })] functions on the

sequence space above, μ to be a Gibbs invariant measure corresponding to some
Hölder continuous function and to define Fkl as the finite σ -algebra generated by
cylinder sets with fixed coordinates having numbers from k to l. The exponentially
fast ψ-mixing is well known in the above cases (see [4]). Among other dynami-
cal systems with exponentially fast ψ-mixing we can mention also the Gauss map
T x = {1/x} (where {·} denotes the fractional part) of the unit interval with respect
to the Gauss measure G (see [11] and [10]). The latter enables us to consider the
number Na(x,n), a = (a1, . . . , a�) of m’s between 0 and n such that the qj (m)th



NONCONVENTIONAL LIMIT THEOREMS 657

digit of the continued fraction of x equals certain integer aj , j = 1, . . . , �. Then
Theorem 2.3 implies a central limit theorem for Na(x,n) considered as a ran-
dom variable on the probability space ((0,1],B,G). In fact, our results rely only
on sufficiently fast α or ρ-mixing which holds true for wider classes of dynam-
ical systems, in particular, those whose transfer operator has an L2 spectral gap
(such as many one-dimensional not necessarily uniformly expanding maps) which
ensures an exponentially fast ρ-mixing. Of course, there are many stationary pro-
cesses (including unbounded ones) and dynamical systems with polynomially fast
mixing which still satisfy our conditions, but they are more difficult to describe in
short.

Next, we discuss a continuous time version of our theorem. Our continuous
time setup consists of a ℘-dimensional process X(t), t ≥ 0 on a probability space
(�,F ,P ) and of a family of σ -algebras Fst ⊂ F ,−∞ ≤ s ≤ t ≤ ∞ such that
Fst ⊂ Fs′t ′ if s′ ≤ s and t ′ ≥ t . We assume that the distribution of X(t) is indepen-
dent of t and denote it by μ. The joint distribution of {X(t),X(t + s)} is assumed
to depend only on s and is denoted by μs . For all t ≥ 0 we set

�q,p(t)= sup
s≥0

�q,p(F−∞,s ,Fs+t,∞)(2.28)

and

β(p, t)= sup
s≥0

∥∥X(s)−E
[
X(s)|Fs−t,s+t

]∥∥
p,(2.29)

where �q,p(G,H) is defined by (2.1). We continue to impose Assumption 2.1
on the decay rates of �q,p(t) and β(p, t). Although they only involve integer
values of t , it will suffice since they are nonincreasing functions of t . Let q1(t) <

q2(t) < · · · < q�(t) be increasing positive functions such that qi(t) = it for i =
1, . . . , k while qi(t), i > k grow faster in t . We assume that these functions satisfy
the conditions (2.11) and (2.12) (with t in place of n), while (2.10) is replaced by

lim
t→∞

(
qi(t + γ )− qi(t)

) = ∞ for any γ > 0 and i > k.(2.30)

THEOREM 2.5. Suppose that Assumption 2.1 holds true. Then the distribution
of the process

ξN(t)= 1√
N

∫ Nt

0
F

(
X

(
q1(s)

)
, . . . ,X

(
q�(s)

))
ds(2.31)

on C[0, T ] converges to the distribution of a Gaussian process ξ(t) which has the
representation (2.23), but, unlike in the discrete time case, all processes ηi, i > k

are zero there while {η1(t), . . . , ηk(t)} is a k-dimensional Gaussian process having
stationary independent increments. The means are 0 and variances and covari-
ances are given by E[ηi(s)ηj (t)] = min(s, t)Di,j , i, j = 1, . . . , k. The expressions
for these Di,j are provided in Section 6.
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The conditions of Theorem 2.5 are satisfied when, for instance, X(t) =
(X1(t), . . . ,X℘(t)) with Xj(t) = fj (ϒt), where ϒt is either an irreducible con-
tinuous time finite state Markov chain or a nondegenerate diffusion process on
a compact manifold. Furthermore, Ornstein–Uhlenbeck type processes X(t) pro-
duce a class of unbounded processes still satisfying our assumptions. On the other
hand, these conditions do not usually hold true for important classes of continu-
ous time dynamical systems (flows) having rich probabilistic properties such as
Axiom A (in particular, Anosov) flows where in the proof of conventional central
limit theorems the standard tool of suspension flows is usually applied while this
does not seem to work in our circumstances and a different approach should be
employed here.

REMARK 2.6. Under stronger mixing and moment conditions it is possible to
derive convergence of all moments of ξN(t) to the corresponding moments of the
limiting Gaussian process ξ(t).

3. Approximation estimates. This section contains estimates which are cru-
cial for our proofs and some of them may also have independent interest beyond
this paper. Still, in the first reading the reader can skip this section all together and
only refer to general estimates of Corollary 3.6 when needed in what follows. We
will make repeated use of the following simple variations of Hölder’s inequality.

LEMMA 3.1. (i) For any two random variables Z,D,∥∥ZhDκ
∥∥
a ≤ ‖Z‖ha∗‖D‖κb∗

provided 1
a

≥ h
a∗ + κ

b∗ . If, in addition, |D| ≤ |Z| a.e. (almost everywhere), we can
replace κ by α ≤ κ and change h to h+ κ − α, obtaining∥∥ZhDκ

∥∥
a ≤ ∥∥Zh+κ−αDα

∥∥
a ≤ ‖Z‖h+κ−αa∗ ‖D‖αb∗

provided 1
a

≥ h+κ−α
a∗ + α

b∗ .
(ii) If f (x,ω) is a measurable function of x and ω such that for almost all ω,∣∣f (x,ω)∣∣ ≤ C(ω)

[
1 + |x|h],

then ∥∥f (
X(ω),ω

)∥∥
a ≤ (

1 + γ hm
)∥∥C(ω)∥∥p

provided 1
a

≥ 1
p

+ h
m

where γm is a bound for ‖X‖m.
(iii) If f (x,ω) is a measurable function of x and ω satisfying for almost all ω,∣∣f (x,ω)− f (y,ω)

∣∣ ≤H(ω)
[
1 + |x|h + |y|h]|x − y|δ,

then ∥∥f (
X(ω),ω

) − f
(
Y (ω),ω

)∥∥
a ≤ (

1 + 2γ hm
)∥∥H(ω)∥∥p‖X− Y‖δq(3.1)

provided 1
a

≥ 1
p

+ h
m

+ δ
q

where γm is a bound for ‖X‖m and ‖Y‖m.
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PROOF. For (i), by Hölder’s inequality,∥∥ZhDκ
∥∥
a = [

E
[
ZahDaκ ]]1/a ≤ ‖Z‖ha∗‖D‖κb∗

provided 1
a

≥ h
a∗ + κ

b∗ . If |D| ≤ |Z| and 0 ≤ α ≤ κ ,

∥∥DκZh
∥∥
a ≤ ∥∥DαZh+κ−α

∥∥
a ≤ ‖Z‖(h+κ−α)a∗ ‖D‖αb∗

provided 1
a

≥ h+κ−α
a∗ + α

b∗ .
For (ii), by Hölder’s inequality,

E
[∣∣f (

X(ω),ω
)∣∣a] ≤ E

[[
C(ω)

]a[1 + |X|h]a]
≤ [

E
[[
C(ω)

]p]]a/p[
E

[[
1 + |X|h]p∗/h]]ah/p∗

provided 1
a

≥ 1
p

+ h
p∗ .

The assertion (iii) follows similarly from the inequality

E
[|XYZ|] ≤ ‖X‖s1‖Y‖s2‖Z‖s3,

if 1 ≥ 1
s1

+ 1
s2

+ 1
s3

. �

We will need also the following.

LEMMA 3.2. (i) Let F(x1, . . . , x�−1, x�) be any function that satisfies (2.6)
and (2.7). Then the functions Fi(x1, . . . , xi) defined in (2.18) will inherit similar
properties from F .

(ii) Let Z be a random vector in Lι(P ) with ‖Z‖ι ≤ γι and G ⊂ F be a sub
σ -field. If

Gi(x1, . . . , xi−1,ω)=E
[
Fi

(
x1, . . . , xi−1,Z(ω)

)|G
]
,

then ∣∣Gi(x1, . . . , xi−1,ω)
∣∣ ≤ C

(
1 +C(ω)ι + |x|ι)

and ∣∣Gi(x1, . . . , xi−1,ω)−Gi(y1, . . . , yi−1,ω)
∣∣

≤ C
(
1 +C(ω)ι + |x|ι + |y|ι)|x − y|κ,

where C > 0 is a constant, C(ω)= (2E[|Z|ι|G])1/ι and ‖C(ω)‖ιι ≤ 2γ ιι .

PROOF. For (i), if ∣∣F(x1, x2, . . . , xi)
∣∣ ≤ C1

(
C2 + |x|ι),
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then ∣∣∣∣
∫
F(x1, . . . , xi−1, xi) dμ(xi)

∣∣∣∣ ≤
∫ ∣∣F(x1, . . . , xi−1, xi)

∣∣dμ(xi)
≤ C1

(
C2 + |x|ι + γ ιι

)
.

The Hölder property is similar.
Assertion (ii) follows from∣∣Gi(x1, . . . , xi−1,ω)

∣∣ ≤E
[∣∣Fi(x1, . . . , xi−1,Z)

∣∣|G
] ≤ C1E

[(
C2 + |x|ι + |Z|ι)|G

]
and ∣∣Gi(x1, . . . , xi−1,ω)−Gi(y1, . . . , yi−1,ω)

∣∣
≤E

[∣∣Fi(x1, . . . , xi−1,Z)− Fi(y1, . . . , yi−1,Z)
∣∣|G

]
≤CE

[(
1 + |x|ι + |y|ι + 2|Z|ι)|G

]|x − y|κ . �

REMARK 3.3. Here and in what follows it is sometimes more convenient
to use together with (2.6) and (2.7) also slightly different-looking conditions for
growth and Hölder continuity of functions we are dealing with (i.e., considering
|x|ι in place of

∑�
j=1 |xj |ι, x ∈ R

�℘), but, in fact, these sets of conditions are equiv-
alent since for any b1, b2, . . . , bl ≥ 0 and γ > 0,

max
1≤i≤l b

γ
i ≤

l∑
i=1

b
γ
i ≤ l max

1≤i≤l b
γ
i ≤ l

(
l∑

i=1

bi

)γ
≤ l1+γ max

1≤i≤l b
γ
i .(3.2)

We will need the following result which will serve as a base for our estimates
and is, in fact, an extended multidimensional version of the standard Kolmogorov
theorem on the Hölder continuity of sample paths.

THEOREM 3.4. Let f (x,ω) be a collection of random variables continuously
(or separable) dependent on x ∈ R

d for almost all ω and satisfying∥∥f (x,ω)− f (y,ω)
∥∥
p ≤ C1

(
1 + |x|ι + |y|ι)|x − y|κ and

(3.3) ∥∥f (x,ω)∥∥p ≤ C2
(
1 + |x|ι)

with κ > d
p

. Then for any ι′ > ι+ d
p

and θ such that κ > θ > d
p

there is a random
variable G(ω) such that ∣∣f (x,ω)∣∣ ≤G(ω)

(
1 + |x|ι′)

(3.4)
a.e. with

∥∥G(ω)∥∥p ≤ c0[C1 +C2]d/(pθ)C1−d/(pθ)
2 ,

where c0 = c0(d,p, κ, θ, ι, ι
′) > 0 depends only on parameters in brackets. Since

κ ≤ 1 and pκ > d , it follows that p > d and, therefore, we can always take ι′ =
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ι+1. Furthermore, if Z ∈ Lm(P ) is a random variable with values in R
d satisfying

‖Z‖m ≤ γm and if 1
a

≥ 1
p

+ ι+1
m

, then

∥∥f (
Z(ω),ω

)∥∥
a ≤ ∥∥G(ω)(1 + |Z|ι+1)∥∥

a

≤ c0[C1 +C2]d/(pθ)C1−d/(pθ)
2

[
1 + γ ι+1

m

]
(3.5)

= c0c(γm)[C1 +C2]d/(pθ)C1−d/(pθ)
2 .

If p(κ − δ) > d , then we can have an almost sure Hölder estimate∣∣f (x,ω)− f (y,ω)
∣∣ ≤H(ω)

[
1 + |x|ι+2 + |y|ι+2]|x − y|δ

with ∥∥H(ω)∥∥p ≤ c(κ, θ, d,p, δ, ι)(C1 +C2)

and the estimate∥∥f (X1,X2, . . . ,Xi−1,ω)− f (Y1, Y2, . . . , Yi−1,ω)
∥∥
a

≤ ∥∥H(ω)[1 + |X|ι+2 + |Y |ι+2]|X− Y |δ∥∥a(3.6)

≤ ‖H‖p(
1 + γ ι+2

m

) i−1∑
j=1

‖Xj − Yj‖δq

provided 1
a

≥ 1
p

+ ι+2
m

+ δ
q

, where X = (X1, . . . ,Xi−1), Y = (Y1, . . . , Yi−1) ∈ R
d

and Xj,Yj , j = 1, . . . , i − 1, are random vectors with ‖X‖m,‖Y‖m ≤ γm.

REMARK 3.5. There are several types of constants that we need to keep track
of. Constants C,K will be absolute and may change from line to line. Constants
c will depend on other parameters like moments and will be denoted by c(·) to
indicate this dependence.

PROOF OF THEOREM 3.4. For ι′ = ι+ 1> ι+ d
p

set

f̃ (x,ω)= f (x,ω)
(
1 + |x|ι+1)−1

.

Then by (3.3), if |x − y| ≤ ρ0 =
√
d

2 ,∥∥f̃ (x,ω)− f̃ (y,ω)
∥∥
p

≤ ∥∥f (x,ω)− f (y,ω)
∥∥
p

(
1 + |x|ι+1)−1

(3.7)
+ ∥∥f (y,ω)∥∥p∣∣|y|ι+1 − |x|ι+1∣∣η(x)

≤ c1[C1 +C2]|x − y|κη(x)
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and ∥∥f̃ (x,ω)∥∥p ≤ C2η(x),(3.8)

where η(x)= (1 + |x|ι)(1 + |x|ι+1)−1 and c1 = c1(ι, κ, d) <∞ is a constant de-
pending only on the parameters in brackets. Let Bw(ρ) denote an open unit ball of
radius ρ centered at w ∈ R

d . A multivariate generalization of a result of Garsia,
Rodemich and Rumsey (see [15], page 60) states that if a continuous (or separable)
g : Rd → R satisfies∫

Bw(ρ)×Bw(ρ)
�

( |g(x)− g(y)|
σ(|x − y|)

)
dx dy ≤Qw,ρ

for some continuous strictly increasing functions�,σ with σ(0)=�(0)= 0, then
for any x, y ∈ Bw(ρ),

∣∣g(x)− g(y)
∣∣ ≤ 8

∫ 2|x−y|
0

�−1
(

4d+1Qw,ρ

kdu2d

)
dσ(u),(3.9)

where kd = infa∈Bw(ρ),0<u≤2
|Ba(u)∩B0(1)|

ud
. Choose here �(z) = |z|p and σ(u) =

uθ+2d/p with 0< θ < κ − d
p

and set

[
Qw,ρ(ω)

]p =
∫
Bw(ρ)×Bw(ρ)

|f̃ (x,ω)− f̃ (y,ω)|p
|x − y|pθ+2d dx dy.

Then by the result above together with (3.7) we derive that there exists c2 =
c2(ι, ι

′, κ, θ,p, d) > 0 such that for any x, y ∈ Bw(ρ),∣∣f̃ (x,ω)− f̃ (y,ω)
∣∣ ≤ c2Qw,ρ(ω)|x − y|θ(3.10)

and for 0< ρ ≤ ρ0,

‖Qw,ρ‖p ≤ c2vd(C1 +C2)η(w)ρ
(κ−θ),(3.11)

where

v
p
d =

∫
B0(1)×B0(1)

|x − y|κp−pθ−2d dx dy <∞
provided p(κ − θ) > d . Observe that (3.10) and (3.11) are, in fact, the conclu-
sion of a multidimensional version of the Kolmogorov theorem (see, e.g., [14],
Theorem 1.4.1), but our argument relies also on the specific estimate (3.11).

Let Z
d
h be the lattice in R

d with spacing h. The maximum distance of any point

in R
d from Z

d
h is h

√
d

2 = hρ0. Therefore, in the cube of side h centered around
w ∈ Z

d
h we have ∣∣f̃ (x,ω)∣∣ ≤ ∣∣f̃ (w,ω)∣∣ + c2Qw,hρ0(ω)ρ

θ
0h

θ

and so ∣∣f̃ (x,ω)∣∣p ≤ 2p−1[∣∣f̃ (w,ω)∣∣p + c
p
2Q

p
w,hρ0

(ω)ρ
pθ
0 hpθ

]
.
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Therefore,

sup
x∈Rd

∣∣f̃ (x,ω)∣∣p ≤ 2p−1 sup
w∈Z

d
h

[∣∣f̃ (w,ω)∣∣p + c
p
2Q

p
w,hρ0

(ω)ρ
pθ
0 hpθ

]

≤ 2p−1
∑
w∈Z

d
h

[∣∣f̃ (w,ω)∣∣p + c
p
2Q

p
w,hρ0

(ω)ρ
pθ
0 hpθ

]

and, using (3.11) together with the estimate
∑
w∈Z

d
h
[η(w)]p ≤ c

p
4 (d, i,p)h

−d ,

E
[[

sup
Rd

∣∣f̃ (x,ω)∣∣p]]
≤ 2p−1

∑
w∈Z

d
h

∥∥f̃ (w,ω)∥∥pp
+ 2p−1c

p
2 ρ

pθ
0 hpθ

∑
w∈Z

d
h

∥∥Qw,hρ0(ω)
∥∥p
p

≤ c
p
3

[
C
p
2 + (C1 +C2)

phpκ
] ∑
w∈Z

d
h

[
η(w)

]p

≤ c
p
5

[
C
p
2 + (C1 +C2)

phpκ
]
h−d

with a constant c5 = c5(d,p, ι, κ, θ) > 0. Making the choice of h= [ C2
C1+C2

]1/κ ≤
1,

E
[[

sup
Rd

∣∣f̃ (x,ω)∣∣p]]
≤ c

p
6C

p−d/κ
2 [C1 +C2]d/κ .

Now set

�(ω)= sup
x∈Rd

∣∣f̃ (x,ω)∣∣.
Then ∣∣f (x,ω)∣∣ ≤�(ω)

(
1 + |x|ι+1)

and so ∣∣f (
Z(ω),ω

)∣∣ ≤�(ω)
(
1 + ∣∣Z(ω)∣∣ι+1)

.

These yield (3.4) and (3.5) follows by a routine application of the Hölder inequality
(see Lemma 3.1).

We now proceed to obtain a Hölder estimate on f (x,ω). If p(κ − δ) > d , then
by (3.10) and (3.11) in the same way as above for x, y in a cube of side 1,∣∣f̃ (x,ω)− f̃ (y,ω)

∣∣ ≤ Cδ(ω)|x − y|δ
with ‖Cδ(ω)‖p ≤ c(κ, d, δ)(C1 +C2). For such a cube D centered at z, we obtain
that ∣∣f (x,ω)− f (y,ω)

∣∣ ≤ C̃δ(z,ω)|x − y|δ
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with ‖C̃δ(z,ω)‖p ≤ c7(κ, d, δ, ι)(1 + |z|ι+1)(C1 + C2). It follows that whenever
|x − y| ≤ 1,∣∣f (x,ω)− f (y,ω)

∣∣ ≤C∗(ω)
[
1 + |x|ι+1 + |y|ι+1]|x − y|δ,

where ‖C∗‖p ≤ c8(κ, d, δ, ι)(C1 +C2). Then for some H(ω)= c9(δ, ι)C
∗(ω) we

obtain the global estimate∣∣f (x,ω)− f (y,ω)
∣∣ ≤H(ω)

[
1 + |x|ι+2−δ + |y|ι+2−δ]|x − y|δ

for all x, y. In particular, by Lemma 3.1,∥∥f (X1,X2, . . . ,Xi−1,ω)− f (Y1, Y2, . . . , Yi−1,ω)
∥∥
a

≤ ∥∥H(ω)[1 + |X|ι+2 + |Y |ι+2]|X− Y |δ∥∥a
≤K‖H‖p(

1 + γ ι+2
m

) i−1∑
j=1

‖Xj − Yj‖δq

provided 1
a

≥ 1
p

+ ι+2
m

+ δ
q

. �

In our nonconventional setup Theorem 3.4 will be applied in the form of the
following useful result.

COROLLARY 3.6. Let G and H1 ⊂ H2 be σ -subalgebras on a probabil-
ity space (�,F ,P ), X and Y be d-dimensional random vectors and fi =
fi(x,ω), i = 1,2, be collections of random variables that are continuously (or
separable) dependent on x ∈ R

d for almost all ω, measurable with respect to Hi ,
i = 1,2, respectively, and satisfy∥∥fi(x,ω)− fi(y,ω)

∥∥
q ≤ C1

(
1 + |x|ι + |y|ι)|x − y|κ and

(3.12) ∥∥fi(x,ω)∥∥q ≤ C2
(
1 + |x|ι).

Set f̃i(x,ω)=E[fi(x, ·)|G](ω) and gi(x)=E[fi(x,ω)].
(i) Assume that q ≥ p, 1 ≥ κ > θ > d

p
and 1

a
≥ 1

p
+ ι+1

m
. Then for i = 1,2,∥∥f̃i(X(ω),ω) − gi(X)

∥∥
a

(3.13)
≤ c�q,p(G,Hi)(C1 +C2)

d/(pθ)C
1−d/(pθ)
2

(
1 + ‖X‖ι+1

m

)
,

where c= c(ι, κ, θ,p, q, a, δ, d) > 0 depends only on the parameters in brackets.
(ii) Next, assume that 1

a
≥ 1

p
+ ι+2

m
+ δ

q
. Then for i = 1,2,∥∥E[

fi(X, ·)|G
] − gi(X)

∥∥
a

(3.14)
≤R + 2c(C1 +C2)

(
1 + 2‖X‖ι+2

m

)∥∥X−E[X|G]∥∥δq,
where R denotes the right-hand side of (3.13).
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(iii) Furthermore, let x = (v, z) and X = (V ,Z), where V and Z are d1 and
d − d1-dimensional random vectors, respectively, and let fi(x,ω) = fi(v, z,ω)

satisfy (3.12) in x = (v, z). Set g̃i(v)=E[fi(v,Z(ω),ω)]. Then for i = 1,2,∥∥E[
fi(V ,Z, ·)|G

] − g̃i(V )
∥∥
a

≤ c
(
1 + ‖X‖ι+2

m

)
(3.15)

× (
�q,p(G,Hi)(C1 +C2)

d1/(pθ)C
1−d1/(pθ)
2

+ ∥∥V −E[V |G]∥∥δq + ∥∥Z−E[Z|Hi]
∥∥δ
q

)
.

(iv) Finally, for a,p, q, ι,m, δ satisfying conditions of (ii),∥∥f̃1
(
X(ω),ω

) − f̃2
(
Y (ω),ω

) − g1(X)+ g2(Y )
∥∥
a

(3.16)
≤ c�q,p(G,H2)

(
1 + ‖X‖ι+2

m + ‖Y‖ι+2
m

)‖X− Y‖δq,
where c= c(ι, κ, θ,p, q, a, δ, d) > 0 depends only on the parameters in brackets.

PROOF. (i) Set h(x,ω) = f̃i(x,ω)− gi(x), K1 = C1�q,p(G,Hi) and K2 =
C2�q,p(G,Hi). Then by (3.12) and the definition of �q,p for all x, y ∈ R

d and
q,p ≥ 1, ∥∥h(x,ω)− h(y,ω)

∥∥
p

≤�q,p(G,Hi)
∥∥fi(x,ω)− fi(y,ω)− gi(x)+ gi(y)

∥∥
q(3.17)

≤ 2K1
(
1 + |x|ι + |y|ι)|x − y|κ

and ∥∥h(x,ω)∥∥p ≤�q,p(G,Hi)
∥∥fi(x,ω)− gi(x)

∥∥
q ≤ 2K2

(
1 + |x|ι).(3.18)

These inequalities enable us to apply Theorem 3.4 to h(x,ω) [in place of f (x,ω)
there] and (3.13) follows from (3.5).

(ii) Note that since 1 > d
q

it follows that f̃i(x,ω) has an almost surely contin-

uous modification and taking into account that X̃ = E[X|G] is G -measurable, we
obtain that E[fi(X̃, ·)|G] = f̃i(X̃, ·). Therefore,∥∥E[

fi(X, ·)|G
] − gi(X)

∥∥
a

≤ ∥∥E[
fi(X̃, ·)|G

] − gi(X̃)
∥∥
a

(3.19)
+ ∥∥E[

fi(X̃, ·)|G
] −E

[
fi(X, ·)|G

]∥∥
a + ∥∥gi(X̃)− gi(X)

∥∥
a

≤ ∥∥f̃i(X̃, ·)− gi(X̃)
∥∥
a + ∥∥fi(X̃, ·)− fi(X, ·)

∥∥
a + ∥∥gi(X̃)− gi(X)

∥∥
a.

We can estimate the first term in the right-hand side of (3.19) by (3.13), with X̃
replacing X and noting that ‖X̃‖m ≤ ‖X‖m. The second term is estimated by (3.6),∥∥fi(X̃,ω)− fi(X,ω)

∥∥
a ≤ cC1

(
1 + γ ι+2

m

)‖X̃−X‖δq .(3.20)
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The third term is easily estimated taking into account that by (3.12) and Lem-
ma 3.2, ∣∣gi(x)− gi(y)

∣∣ ≤ c
[
1 + |x|ι + |y|ι]|x − y|κ

and since 0< δ < κ ≤ 1, it follows from Hölder’s inequality that∥∥gi(X)− gi(X̃)
∥∥
a ≤ c

(
1 + γ ι+2

m

)‖X̃−X‖δq .
(iii) Set Ṽ = E[V |G], Z̃ = E[Z|H], ˜̃gi(v) = E[fi(v, Z̃, ·)] and g̃i(v) =

E[fi(v,Z, ·)]. Then∥∥E[
fi(V ,Z, ·)|G

] − g̃i(V )
∥∥
a

≤ ∥∥fi(V ,Z, ·)− fi(V , Z̃, ·)
∥∥
a(3.21)

+ ∥∥E[
fi(V , Z̃, ·)|G

] − ˜̃gi(V )
∥∥
a + ∥∥ ˜̃gi(V )− g̃i(V )

∥∥
a.

The first term in the right-hand side of (3.21) is estimated by (3.6) similarly to
(3.20). Observe that fi(v, Z̃, ·) is Hi -measurable, and so we can estimate the sec-
ond term in the right-hand side of (3.21) by (3.14) with V , d1, f̃i(v,ω) and ˜̃gi(v)
in place of X, d , fi(x,ω) and gi(x), respectively. The third term in the right-hand
side of (3.21) is estimated by first using (3.12) to obtain∣∣ ˜̃gi(v)− g̃i(v)

∣∣ ≤ E
[∣∣fi(v, Z̃, ·)− fi(v,Z, ·)

∣∣]
≤ E

[(
1 + |v|ι + |Z|ι + |Z̃|ι)|Z− Z̃|κ ]

and then substituting V in place of v there.
(iv) Set ĥ(x,ω)= f̃1(x,ω)− f̃2(x,ω)− g1(x)+ g2(x), K̂1 = C1�q,p(G,H2)

and K̂2 =C2�q,p(G,H2). Then by (3.12) and the definition of �q,p for all x, y ∈
R
d and q,p ≥ 1,∥∥ĥ(x,ω)− ĥ(y,ω)

∥∥
p

≤�q,p(G,H2)
∥∥f1(x,ω)− f1(y,ω)− g1(x)+ g1(y)

(3.22)
− f2(x,ω)+ f2(y,ω)+ g2(x)− g2(y)

∥∥
q

≤ 2K̂1
(
1 + |x|ι + |y|ι)|x − y|κ

and ∥∥ĥ(x,ω)∥∥p ≤�q,p(G,H2)
∥∥f1(x,ω)− f2(x,ω)− g1(x)+ g2(x)

∥∥
q

(3.23)
≤ 2K̂2

(
1 + |x|ι).

Now (3.22) and (3.23) enable us to apply (3.6), which yields (3.16). �
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REMARK 3.7. We will always work with a,m,p, δ, q that satisfy p(κ − δ) >

d = (�− 1)℘ and

1

a
≥ 1

p
+ ι+ 2

m
+ δ

q
.(3.24)

Note also that m≥ ap(ι+2)
p−a and m≥ aq(ι+2)

q−aδ .

4. Limiting covariances. Here and in what follows we set Yi,qi(n) =
Fi(X(q1(n)), . . . ,X(qi(n))) and Yi,m = 0 ifm �= qi(n) for any n. Let Fi,n,r (x1, x2,

. . . , xi−1,ω) = E[Fi(x1, x2, . . . , xi−1,X(n))|Fn−r,n+r ] and Xr(n) = E[X(n)|
Fn−r,n+r ]. We denote also Yi,qi(n),r = Fi,qi(n),r (Xr(q1(n)), . . . ,Xr(qi−1(n)),ω)

and Yi,m,r = 0 if m �= qi(n) for any n. In view of (2.6), we can and will always
choose continuous in (x1, . . . , xi−1) versions of conditional expectations Fi,n,r
which will enable us to apply Corollary 3.6 when needed.

In this section we will study the asymptotical behavior of covariances

Di,j (N, s, t)=E
[
ξi,N (s)ξj,N (t)

] = 1

N

∑
1≤n≤Ns

∑
1≤l≤Nt

E[Yi,qi (n)Yj,qj (l)]

of the processes {ξi,N (t)} defined by (2.21) and (2.22). We will show that the limits

Di,j (s, t)= lim
N→∞Di,j (N, s, t)

exist and Di,j (s, t)= min(s, t)Di,j , where the matrix {Di,j } is determined by the
results below.

PROPOSITION 4.1. For any i, j = 1,2, . . . , k and s, t > 0 the limit

lim
N→∞E

[
ξi,N (s)ξj,N (t)

]

= lim
N→∞

1

N

∑
0≤in≤Ns
0≤j l≤Nt

E
[
Fi

(
X(n),X(2n), . . . ,X(in)

)

× Fj
(
X(l),X(2l), . . . ,X(j l)

)]
exists and equals Di,j min(s, t), which is calculated as follows. Let υ be the great-
est common divisor of i and j with i = υi′, j = υj ′ and i ′, j ′ being coprime. Set

Ai,j (xi′, x2i′, . . . , xυi′, yj ′, y2j ′, . . . , yυj ′)

=
∫
Fi(x1, . . . , xi−1, xi)

× Fj (y1, . . . , yj−1, yj )
∏

σ /∈{i′,2i′,...,υi′}
dμ(xσ )

∏
σ ′ /∈{j ′,2j ′,...,υj ′}

dμ(yσ ′)
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and

ai,j (n1, n2, . . . , nυ)=
∫
Ai,j (x1, . . . , xυ, y1, . . . , yυ)

υ∏
σ=1

dμnσ (xσ , yσ ).(4.1)

Then

Di,j = υ

ij

∞∑
u=−∞

ai,j (u,2u, . . . , υu),

where

ai,j (0,0, . . . ,0)=
∫
Ai,j (x1, . . . , xυ, x1, . . . , xυ)

υ∏
σ=1

dμ(xσ )

and the series for Di,j converges absolutely.

This is essentially a straightforward but long computation carried out in a few
steps, each one formulated as a lemma. We will first derive some uniform bounds
on Di,i(N, t, t). A key step is to get for any pair i, j an estimate on

bi,j (n, l)=E[Yi,qi (n)Yj,qj (l)].
If |n− l| � 1, then either qi(n) or qj (l) will be much bigger than all other qi(m)
and qj (m), which together with the mean 0 condition on Fi,Fj and estimates of
Section 3 will make then this expectation small, as shown in the following result
which will also be used later on.

LEMMA 4.2. There exists a nonincreasing function h(m) ≥ 0, with∑∞
m=1 h(m) <∞, such that for any i, j = 1,2, . . . , �,

sup
n,l : si,j (n,l)≥m

∣∣bi,j (n, l)∣∣ ≤ h(m),(4.2)

where si,j (n, l)= max(ŝi,j (n, l), ŝj,i(l, n)) and ŝi,j (n, l)= min(qi(n)− qj (l), n).
Furthermore, there exists a constant C > 0 such that for all t ≥ s ≥ 0 and i =
1, . . . , �,

sup
N≥1

E
∣∣ξi,N (t)− ξi,N (s)

∣∣2 ≤ C(t − s).(4.3)

PROOF. First, observe that for i = 1, . . . , k,

qi(n)− qi−1(n)= n and si,i(n, l)= min
(
i|n− l|,max(n, l)

) ≥ |n− l|,(4.4)

where in the first equality we set q0(n)= 0. On the other hand, if i ≥ k + 1, then
it follows from (2.10)–(2.12) that for any ε > 0 there exists nε such that for all
n≥ nε and n > l ≥ 0,

qi(n)− qi−1(n)≥ n+ ε−1, qi(n)− qi(l)≥ n− l + ε−1(4.5)



NONCONVENTIONAL LIMIT THEOREMS 669

and so

si,i(n, l)≥ min
(
n− l + ε−1, n

) ≥ n− l.(4.6)

Now, assume that qi(n)− qj (l)≥ 0 and n≥ n1 so that we will use here (4.4)–
(4.6) with ε = 1, while only in Proposition 4.5 these estimates will be needed for
all positive ε. Set r = 1

3si,j (n, l)= 1
3 ŝi,j (n, l). If we replace Yi,qi(n) and Yj,qj (l) by

Yi,qi (n),r and Yj,qj (l),r defined at the beginning of this section, then the difference
between bi,j (n, l) and

b
(r)
i,j (n, l)=E[Yi,qi (n),rYj,qj (l),r ]

can be estimated easily using Corollary 3.6(iv) with H2 = F , which gives∣∣b(r)i,j (n, l)− bi,j (n, l)
∣∣ ≤ c(γm, γ2p(ι+1)/(2−pα))

[
β(q, r)

]δ
.

On the other hand, by (4.4) and (4.5) we see that in our circumstances min(qi(n)−
qj (l), qi(n)− qi−1(n))≥ ŝi,j (n, l), and so by Corollary 3.6(i),∣∣b(r)i,j (n, l)∣∣ = |EYi,qi(n),rYj,qj (l),r |

= ∣∣E[
E[Yi,qi (n),r |F0,qi (n)−r ]Yj,qj (l),r

]∣∣
≤ ∥∥Fj (Xr(q1(l)

)
, . . . ,Xr

(
qj (l)

))∥∥
L2(P )

× ∥∥E[Yi,qi (n),r |F0,qi (n)−r ]
∥∥
L2(P )

≤ C�q,p

(1
3si,j (n, l)

)
.

We can always estimate |bi,j (n, l)| by |b(r)i,j (n, l)− bi,j (n, l)| + |b(r)i,j (n, l)|, so that∣∣bi,j (n, l)∣∣ ≤ C
(
�q,p

(1
3si,j (n, l)

) + [
β

(
q, 1

3si,j (n, l)
))δ)

.

Now, observe that if n < n1 and qi(n)− qj (l)≥ 0, then

si,j (n, l)≤L1 = max
n<n1,i≤�

qi(n) and l ≤ n1 +L1.

Hence, in order to satisfy (4.2), we can take

h(m)= max
0≤n,l≤n1+L1,1≤i,j≤�

∣∣bi,j (n, l)∣∣
for m≤ L1, while for m>L1 we define

h(m)= C
(
�q,p

([1
3m

]) + (
β

(
q,

[1
3m

]))δ)
.

Finally, by (4.4) and (4.6) for t ≥ s ≥ 0,

E
[∣∣ξi,N (t)− ξi,N (s)

∣∣2] ≤ 1

N

( ∑
Ns≤l≤Nt

bi,i(l, l)+ 2
∑

Ns≤l≤Nt
n≥l+1

∣∣bi,i(n, l)∣∣
)

≤ 1

N

∑
Ns≤l≤Nt

(
EY 2

i,l + 2
∑
n≥l+1

h(n− l)

)
≤ Ct
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provided N(t − s)≥ 1, and the result follows. �

Next, we will need a result which will be formulated in a somewhat more
general situation. Let H(x1, x2, . . . , xd) be a function on (Rν)d that is contin-
uous and satisfies the growth condition |H(x1, x2, . . . , xd)| ≤ 1 + ∑

i ‖xi‖ι for
some ι ≥ 1. Suppose that {Y(n) :n ≥ 1} is a stochastic process with values in
Rν and there exists an integer m ≥ 1 such that for any l ≤ m the distribution of
{Y(n1), Y (n2), . . . , Y (nl)} depends only on the spacings {ni − ni−1}, l = 2, . . . , l
between them. For l ≥ 2, we denote this distribution by μS , where S is a set of
l − 1 positive integers prescribing the spacings between the l integers. We assume
that all {Y (n), n≥ 1} have a common distribution μ and that the integrability con-
dition

∫ ‖x‖ι dμ < ∞ holds true. For some p,q ≥ 1 and a nested family of sub
σ -fields Fm,n as above assume the mixing condition

�q,p(l)= sup
m−n≥l

�q,p(F−∞,m,Fn,∞)→ 0 as l → ∞

and the localization condition

lim
r→∞ sup

n

∥∥Y(n)−E
[
Y(n)|Fn−r,n+r

]∥∥
L1(P )

= 0.

Let n1 < n2 < · · · < nd be a sequence of integers that tend to ∞ with some of
the gaps {ni+1 − ni} tending to infinity while others are kept fixed. This splits the
set of integers 1,2, . . . , d into a partition P consisting of blocks Bj of different
sizes. The pairwise distances between integers in each block Bj remain fixed (so
it can be viewed as rigid), while the distances between different blocks tend to ∞.
We assume that each block Bj consists of at most m integers. Let mj denote the
number of integers in a block Bj and Sj denote the set of spacings in Bj , that is,
the sequence of mj − 1 positive integers representing pairwise distances between
successive integers in Sj . Let the distribution μP on (Rl)d be the product measure

μP =�jμSj

over successive blocks.

LEMMA 4.3. Assume that {nj } goes to infinity with rigid blocks determined
by P . Then

lim
n1,...,nd→∞E

[
H

(
X(n1), . . . ,X(nd)

)] =
∫
H(x1, . . . , xd) dμP ,

where the limit is taken so that the sets Sj of spacings in each block Bj remain
fixed while the gaps between different blocks tend to infinity.

PROOF. First we note that because of the growth and integrability conditions
we can replace H by Hφ, where φ is a continuous cutoff function with compact
support. The error is uniformly controlled on either side. We can then approximate
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H uniformly by a smooth function. In other words, we can assume without loss
of generality that H is a bounded continuous function supported on some ball of
radius L with a bounded gradient. We prove the lemma by reducing the number
of blocks by one at each step. The last gap that tends to ∞ cuts off a block B =
{nd ′+1, . . . , nd} at the end with a rigid spacing S between integers in the block. We
will show that

lim
n1,...,nd→∞

P fixed

E
[
Ĥ

(
X(n1), . . . ,X(nd)

)] = 0,(4.7)

where

Ĥ (x1, x2, . . . , xd)=H(x1, x2, . . . , xd)

−
∫
H(x1, x2, . . . , xd ′, xd ′+1, . . . , xd) dμS(xd ′+1, . . . , xd).

This will reduce the number of blocks by one, replacing H by

H1(x1, x2, . . . , xd ′)=
∫
H(x1, x2, . . . , xd ′, xd ′+1, . . . , xd) dμS(xd ′+1, . . . , xd).

The step by step reduction will end when only the first block B1 with spacings
S1 remains and since it is rigid, we can integrate it out with μS1 and end up with∫
H(x1, . . . , xd) dμP , which will complete the proof of the lemma.
The function Ĥ is also bounded with a bounded gradient. Therefore,∥∥Ĥ (

X(n1), . . . ,X(nd)
) − Ĥ

(
Xr(n1), . . . ,Xr(nd)

)∥∥
≤ C sup

n

∥∥Xr(n)−X(n)
∥∥
L1(P )

→ 0

uniformly over all n1, . . . , nd as r → ∞. To establish (4.7), it is therefore sufficient
to prove that

lim
r→∞ lim sup

n1,...,nd→∞
E

[
Ĥ

(
Xr(n1), . . . ,Xr(nd)

)] = 0.(4.8)

Observe that

E
[
Ĥ

(
Xr(n1), . . . ,Xr(nd)

)] = E
[
E

[
Ĥ

(
Xr(n1), . . . ,Xr(nd)

)|F−∞,nd′+r
]]

= E
[
Gr

(
Xr(n1), . . . ,Xr(nd ′),ω

)]
,

where

Gr(x1, . . . , xd ′,ω)=E
[
Ĥ

(
x1, . . . , xd ′,Xr(nd ′+1), . . . ,Xr(nd)

)|F−∞,nd′+r
]
.

To prove (4.8), it is clearly sufficient to show that

lim
r→∞E

[
sup

x1,...,xd′

∣∣Gr(x1, . . . , xd ′,ω)
∣∣] = 0.
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Since ‖∇xGr‖∞ ≤ ‖∇xĤ‖∞ ≤ ‖∇xH‖∞, there is a uniform bound on ‖∇Gr‖.
We can therefore estimate

sup
x1,...,xd′

∣∣Gr(x1, . . . , xd ′,ω)
∣∣ ≤ C

∫ ∣∣Gr(x1, . . . , xd ′,ω)
∣∣dx1 · · ·dxd ′ .

Taking expectations and observing that Gr vanishes outside a ball of radius L,

E sup
x1,...,xd′

∣∣Gr(x1, . . . , xd ′,ω)
∣∣ ≤ CLd

′
sup

x1,...,xd′
E

∣∣Gr(x1, . . . , xd ′,ω)
∣∣.

If nd ′+1 − nd ′ > 2r , then by the definition (2.1) of the dependence coefficients � ,

sup
x1,...,xd′

∥∥Gr(x1, . . . , xd ′,ω)− Ĥr(x1, . . . , xd ′)
∥∥

1

≤ 2�∞,1(nd ′+1 − nd ′ − 2r)‖H‖∞,
where

Ĥr(x1, . . . , xd ′)=E
[
Ĥ

(
x1, . . . , xd ′,Xr(nd ′+1), . . . ,Xr(nd)

)]
,

while

Ĥ (x1, . . . , xd ′)=E
[
Ĥ

(
x1, . . . , xd ′,X(nd ′+1), . . . ,X(nd)

)] ≡ 0.

Since Ĥ has a bounded gradient,∣∣E[
Ĥ

(
x1, . . . , xd ′,X(nd ′+1), . . . ,X(nd)

)]
−E

[
Ĥ

(
x1, . . . , xd ′,Xr(nd ′+1), . . . ,Xr(nd)

)]∣∣
≤ C sup

n
E

∣∣X(n)−Xr(n)
∣∣ = ε(r)→ 0 as r → ∞.

Taking into account that �∞,1(l) ≤ �p,q(l) → 0, the lemma follows from the
above estimates. �

LEMMA 4.4. For any i, j ≤ k and s, t > 0 and integer u, the limit

lim
N→∞

1

N

∑
0≤in≤Ns
0≤j l≤Nt
in−j l=u

bi,j (n, l)= υmin(s, t)

ij
ci,j (u)(4.9)

exists where υ is the greatest common divisor of i and j . For any multiple of υ ,

ci,j (υu)= ai,j (u,2u, . . . , υu)(4.10)

with ai,j defined by (4.1). If u is not a multiple of υ , then ci,j (u)= 0. Furthermore,

lim
N→∞

1

N

∑
0≤in≤Ns
0≤j l≤Nt

bi,j (n, l)= υmin(s, t)

ij

∑
−∞<u<∞

ci,j (u)(4.11)

and the series in the right-hand side converges absolutely.
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PROOF. It is clear that if u is not a multiple of υ , there are no solutions of
the equation in′ − j l′ = u, so we can replace u by υu. Combining the indices
n,2n, . . . , in and l,2l, . . . , j l and ordering them into a single sequence, we obtain
by employing Lemma 4.3 that

lim
n,l→∞
in−j l=υu

bi,j (n, l)

= lim
n,l→∞
in−j l=υu

E
[
Fi

(
X(n),X(2n), . . . ,X(in)

)
Fj

(
X(l),X(2l), . . . ,X(j l)

)]

= ai,j (u,2u, . . . , υu).

If υ is the greatest common divisor of i and j , then i = υα and j = υβ with
α and β being coprime. Since all the gaps in either sequence above go to ∞,
we can have blocks of size more than one only by pairing two members from
different sequences and, therefore, the rigid blocks of Lemma 4.3 can be of size
one and two only. If we start with (n, l) such that αn − βl = u, their multiples
(αmn,βml), m = 1, . . . , υ , with αmn− βml = mu will give υ blocks of size 2.
There cannot be any other. Indeed, if (a, b) is a pair of integers which is not an
integer multiple of (α,β), then taking into account that α and β are coprimes, we
conclude that |an − bl| → ∞ when n → ∞, preserving αn − βl = u fixed. To
complete the proof of the lemma, we need to count the number of integer solutions
of in−j l = υu or αn−βl = uwith αυn≤Nt and βυl ≤Ns. The set of solutions
for any u is obtained by shifting the set of solutions of the homogeneous equation
αn−βl = 0 by a fixed solution of the above nonhomogeneous one. Therefore, with
our constraints their numbers can differ at most by a constant. In the homogeneous
case the solutions are precisely those m= in= j l that are multiples of υαβ . Their
number is an integral value of N min{t,s}

υαβ
= Nυmin{s,t}

ij
. This proves (4.9), while

Lemma 4.2 and (4.9) imply (4.11). �

Finally, we turn to ξi,N (t) with k + 1 ≤ i ≤ �. We will see in the next section
that, in fact, their limits in distribution {ηi(·); i ≥ k+ 1} are mutually independent
processes which are also independent of the processes {ηi(·);1 ≤ i ≤ k}, but here
we deal only with their variances and covariances.

PROPOSITION 4.5. For i ≥ k+ 1,

lim
N→∞E

(
ξi,N (s)ξi,N (t)

)
(4.12)

= min(s, t)
∫ (
Fi(x1, x2, . . . , xi)

)2
dμ(x1) dμ(x2) · · ·dμ(xi).

Moreover, for any t, s and j < i, i > k,

lim
N→∞E

(
ξi,N (t)ξj,N (s)

) = 0.(4.13)
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PROOF. It follows from (4.6) that

si,i(n, l)≥ min
(|n− l| + ε−1,max(n, l)

)
if max(n, l)≥ nε and n �= l

and so, by (4.2),

bi,i(n, l)→ 0 as max(n, l)→ ∞ so that |n− l| ≥ 1.

Therefore, for any fixed L≥ n1,

lim sup
N→∞

1

N

∑
1≤n,l≤TN,n�=l

∣∣bi,i(n, l)∣∣

≤ 2T
∑
m≥L

h(m)+ lim sup
N→∞

1

N

∑
1≤|n−l|≤L
n,l≤TN

∣∣bi,i(n, l)∣∣

= 2T
∑
m≥L

h(m).

We now let L → ∞ and since
∑
m h(m) < ∞, it follows that lim sup in the

left-hand side above equals zero, that is, the off-diagonal terms do not con-
tribute in (4.12). It remains to deal with the diagonal terms bi,i(n, n). Since
qj (n)− qj−1(n)→ ∞ for j = 2,3, . . . , � as n→ ∞, it follows from Lemma 4.3
that

lim
n→∞bi,i(n, n)=

∫ (
Fi(x1, . . . , xi)

)2
dμ(x1) · · ·dμ(xi),(4.14)

proving (4.12).
Next, we deal with (4.13). Relying on Lemma 4.2, we can estimate for any

ε > 0, ∣∣Eξi,N(t)ξj,N (s)∣∣
≤ ∣∣Eξi,N (εT )ξj,N(s)∣∣ + ∣∣E(

ξi,N (t)− ξi,N (εT )
)
ξj,N(s)

∣∣
(4.15)

≤ (
Eξ2

i,N (εT )
)1/2(

Eξ2
j,N (s)

)1/2 + 1

N

∑
εNT≤n≤NT,1≤l≤NT

∣∣bi,j (n, l)∣∣

≤ CT
√
ε+ 1

N

∑
εNT≤n≤NT,1≤l≤NT

h
(
si,j (n, l)

)
.

Since i > j and i > k, then, by (2.12), we can choose N(ε) > ε−1T −1nε such that
qi(n) − qj (l) > ε−1 whenever N ≥ N(ε), n ≥ εNT , l ≤ NT and, moreover, by
(4.5),

si,j (n, l)= min
(
qi(n)− qj (l), n

)
≥ min

(
qi(n)− qi(εNT )+ ε−1, n

) ≥ min
(
n− εNT + ε−1, n

)
.
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Hence,

1

N

∑
εNT≤n≤NT,1≤l≤NT

h
(
si,j (n, l)

) ≤ T
∑

m≥min(ε−1,εNT )

h(m)

and letting, first, N → ∞ and then ε→ 0, we derive (4.13) from (4.15). �

5. Proof of the main theorem. The proof of Theorem 2.3 relies on martingale
approximations and martingale limit theorems, but we will need several modifica-
tions in our situation. We begin with the following result which can be found in
various forms in the literature (see, e.g., Section 2 in Chapter VIII of [12] and
close versions in Theorem 18.2 in [3] and Theorem 4.1 in [9]). For each N let

GN,n, n= 1,2, . . . , be a filtration of σ -algebras and let {UN,n :n≥ 1} be a triangu-
lar array of random variables satisfying the following conditions:

B1. For every N , {UN,n} is adapted to some (�N,GN,n,PN), n= 1,2, . . . ;
B2. {UN,n} are uniformly square integrable;
B3. ‖E[UN,m|GN,n]‖2 ≤ c(m−n) for all N , n≤m and for some sequence c(k)

satisfying
∑∞
k=0 c(k)= C <∞;

B4. For some increasing function A(t),

lim
N→∞

∥∥∥∥ 1

N

∑
1≤n≤Nt

W 2
N,n −A(t)

∥∥∥∥
L1(P )

= 0,

where

WN,n =UN,n + ∑
m≥n+1

E[UN,m|GN,n] − ∑
m≥n

E[UN,m|GN,n−1].

Observe that WN,n, n≥ 1 is a martingale differences sequence provided B1–B3
hold true.

THEOREM 5.1. Under assumptions B1–B4,

ξN(t)= 1√
N

∑
1≤n≤Nt

UN,n

converges in distribution on D[[0, T ];R] to a Gaussian process ξ(t) with inde-
pendent increments such that ξ(t)− ξ(s) has mean 0 and variance A(t)−A(s).

We need, however, to strengthen the theorem a little bit in our context. First we
note that the condition B4 can be replaced by the weaker condition

lim
N→∞

1

N

∑
1≤n≤Nt

E
[
W 2
N,n

] =A(t)(5.1)

as can be seen from the following result.
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LEMMA 5.2. If for a fixed l the random variables

VN,r =
( ∑
r(l−1)+1≤n≤rl

UN,n

)2

satisfy a uniform law of large numbers in the sense that

lim
r→∞ sup

N

sup
n
E

[∣∣∣∣∣1

r

r∑
j=1

[
VN,n+j −E[VN,n+j ]]

∣∣∣∣∣
]

= 0,

then (5.1) implies B4.

PROOF. We begin with the observation that if ηn,n ≥ 1 are martingale dif-
ferences adapted to any filtration Gn and they are uniformly integrable, then
1
N

∑N
n=1 ηn → 0 in L1(P ). To see this, we approximate ηn in L1(P ) by η̃n that

are uniformly bounded. The latter may not be a martingale difference, but it can
be written as η̃n = η̂n + η̄n with ‖η̄n‖L1(P ) ≤ ‖ηn − η̃n‖L1(P ) and η̂n being a mar-
tingale difference with a uniformly bounded second moment.

We will now compare

AN(t,ω)= 1

N

∑
n≤[Nt]

(ηn)
2

with block sums over Br = {n : rl + 1 ≤ n≤ (r + 1)l},

AlN(t,ω)= 1

N

∑
r : Br⊂[0,Nt]

( ∑
n∈Br

ηn

)2

.

The difference involves the cross terms

AlN(t,ω)−AN(t,ω)= 2

N

∑
r:Br⊂[0,Nt]

∑
n>m

n,m∈Br

ηnηm.

It is easy to see that the sum ∑
n>m

n,m∈Br

ηnηm

is a martingale difference (in r) adapted to Grl and, therefore, for fixed l,

lim
N→∞

∥∥AlN(t,ω)−AN(t,ω)
∥∥
L1(P )

= 0.

Since EP [AN(t,ω)] =EP [AlN(t,ω)], it follows immediately that

lim sup
N→∞

∥∥AN(t,ω)−EP
[
AN(t,ω)

]∥∥
L1(P )

≤ lim sup
N→∞

∥∥AlN(t,ω)−EP
[
AN(t,ω)

]∥∥
L1(P )

.
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On the other hand, WN,n =UN,n −RN,n−1 +RN,n, where

RN,n = ∑
m≥n+1

E[UN,m|GN,n]

and ∑
n∈Br

WN,n = ∑
n∈Br

UN,n −RN,jl +RN,(j+1)l .

By our assumption, the squares of the block sums VN,r = (
∑
n∈Br UN,n)

2 satisfy
a uniform law of large numbers in L1(P ). The differences between the two block
sums come from the correction term and their second moments are uniformly con-
trolled. Therefore, their contribution is at most C

l
. Hence,

lim sup
l→∞

lim sup
N→∞

∥∥AlN(t,ω)−EP
[
AN(t,ω)

]∥∥
L1(P )

= 0

and the lemma follows. �

REMARK 5.3. Let the filtration Fm,n satisfy any mixing condition, that is,
�p,q(k) → 0 as k → ∞. Then any collection of uniformly integrable random
variables {fn(ω)}, with fn being Fn+k,n−k measurable for some fixed k, are eas-
ily seen to satisfy the (centered) law of large numbers. It is obvious for uniformly
bounded {fn} and we can always approximate our {fn} uniformly in L1 by uni-
formly bounded ones.

COROLLARY 5.4. If we have a family of triangular arrays and the conditions
of Theorem 5.1 are valid uniformly over the family, then the limit theorem is also
valid uniformly over the family.

PROOF. The proof is a routine argument by contradiction. If the family is
indexed by α and the limit theorem is not valid uniformly, then for some choice
αN that depends on N the limit theorem fails to hold. But this is just another
triangular array and, by the uniform validity of the assumptions, the limit theorem
has to hold. �

REMARK 5.5. For each N let GN,n, n= 1,2, . . . , be a filtration of σ -algebras
and let kN ≥ 1,N = 1,2, . . . , be an integer sequence with kN → ∞ as N → ∞.
One way to generate new triangular arrays for N = 1,2, . . . , is to take a sequence
of sub σ -fields, GN,kN , a sequence of sets BN ∈ GN,kN with PN(BN) ≥ δ > 0
and to consider (�N, G̃N,n, ŨN,n,PN,BN ), n = 1,2, . . . , where G̃N,n = GN,kN+n,
ŨN,n =UN,kN+n and the measure PN,BN is defined by

PN,BN ( )= PN( ∩BN)
PN(BN)

.
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It is easy to see that Ũn are again martingale differences, for each fixed δ > 0
uniform integrability under PN,BN is inherited from the same property under PN
and the condition B3 of Theorem 5.1 holds uniformly over this family as well,
provided kN ≤ CN for some C. Otherwise, it has to be checked again. The limit
A(t) will of course vary depending on the behavior of kN

N
. If kN

N
→ t0, then A(t)

gets replaced by A(t + t0)−A(t0).

This observation leads to the following theorem.

THEOREM 5.6. Let X be a complete separable metric space and for each
N ≥ 1 let FN(ω) be a X -valued and GN,kN -measurable random variable. Suppose
that the distribution λN of FN under PN converges weakly as N → ∞ to λ on X
and kN

N
→ t0. Let the conditions of Theorem 5.1 hold true and set

ξN,kN (t)= 1√
N

∑
kN+1≤n≤kN+Nt

UN,n.

Then the joint distribution of the pair (FN, ξN,kN (·)) converges on X ×D[0, T ]
to the product of λ and the distribution γ of a Gaussian process with independent
increments having mean 0 and variance A(t + t0)−A(t0). In particular, any limit
in distribution of

ξN(t)= 1√
N

∑
1≤n≤Nt

UN,n

is always a process with independent increments. We can drop the assumption that
kN
N

→ t0 provided we can verify that for some A(t),

lim
N→∞

∥∥∥∥ 1

N

∑
kN+1≤n≤kN+Nt

W 2
N,n −A(t)

∥∥∥∥
L1(PN)

= 0.

PROOF. Since the conditions of Theorem 5.1 are satisfied here, ξN,kN con-
verges in distribution as N → ∞ to a Gaussian process with independent incre-
ments whose distribution we denote by γ . Now, if μN denotes the joint distribu-
tion of FN and ξN,kN (·), the convergence of the marginals implies the tightness
of μN . Taking a subsequence if necessary, we can assume that μN has a limit
μ with marginals λ and γ . We need to prove that μ = λ × γ . It is enough to
prove that if E ⊂ X and F ⊂ D[0, T ] are continuity sets of λ and γ , respec-
tively, then μ(E × F) = λ(E) × γ (F ). We can assume without loss of gener-
ality that λ(E) > 0. Set BN = {ω :FN(ω) ∈ E}, then PN(BN) → λ(E), and so
PN(BN) ≥ 1

2λ(E) > 0 for N large enough. In view of Remark 5.5, ξN,kN (·) con-
verges in distribution under PN,BN as N → ∞ to a Gaussian process with inde-
pendent increments and since, clearly, under PN,BN we have convergence in B4 to
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the same Ã(t)=A(t + t0)−A(t0) as under PN , it follows that the distribution of
ξN,kN (·) under PN,BN converges to γ . In particular, since F is a continuity set,

PN,BN
{
ω : ξN,kN (·) ∈ F } = μN(E × F)

PN(BN)
→ γ (F ).

Since E × F is a continuity set of μ, this proves that μ(E×F)
λ(E)

= γ (F ). �

COROLLARY 5.7. Assume that we have a triangular array consisting of GN,n-
measurable random vectors UN,n :� → Rd and that each linear combination
〈λ,UN,n〉 satisfies the assumptions B1–B4. In particular,

lim
N→∞

∥∥∥∥
[

1

N

∑
1≤n≤Nt

〈λ,WN,n〉2
]

− 〈
λ,A(t)λ

〉∥∥∥∥
L1(P )

= 0.

Then

ξN(t)= 1√
N

∑
kN+1≤n≤kN+Nt

UN,n

converges in distribution on the Skorokhod space D[[0, T ];Rd ] to the Gaussian
process η(t) with independent increments taking values in Rd , having mean 0 and
covariance

E
[〈
λ
(
η(t)− η(s)

)〉2] = 〈
λ,

(
A(t)−A(s)

)
λ
〉
.

PROOF. By the results for the scalar case, the distribution of 〈u, ξN(t)〉 con-
verges to a Gaussian process with independent increments. This implies compact-
ness of the distributions of the vector process ξN(·). Let Q be a limit point of
distributions of ξN and let η be the corresponding limiting vector process. By the
above for each constant vector u, the distribution of the increments 〈u,η(t)−η(s)〉
must be Gaussian and, therefore, by the Cramér–Wold argument, η(t)− η(s) has
under Q the d-dimensional Gaussian distribution with mean 0 and a covariance
matrix {Ai,j (t)−Ai,j (s)}. Moreover, by Theorem 5.6, under Q the random vari-
able 〈u,η(t)− η(s)〉 is independent of {η(τ) : τ ≤ s} for every t > s and u ∈ Rd .
This is sufficient to determineQ as the distribution of a Gaussian process η(t)with
independent increments taking values in Rd having mean 0 and covariance

E
[(
ηi(t)− ηi(s)

)(
ηj (t)− ηj (s)

)] =Ai,j (t)−Ai,j (s)

and to establish that the distribution of

ξN(t)= 1√
N

∑
kN+1≤n≤kN+Nt

UN,n

converges to Q on the Skorokhod space D[[0, T ];Rd ]. �
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Next, we break the proof of Theorem 2.3 into several steps and use the following
representations:

Yi,qi (n) = Yi,qi(n),1 +
∞∑
r=1

[Yi,qi(n),2r − Yi,qi (n),2r−1],

ζi,N,0(t)= 1√
N

∑
1≤n≤Mi(Nt)

Yi,qi (n),1,

(5.2)

ζi,N,r (t)= 1√
N

∑
1≤n≤Mi(Nt)

[Yi,qi(n),2r − Yi,qi (n),2r−1], r ≥ 1, and

ξi,N (t)=
∞∑
r=1

ζi,N,r (t),

where Mi(u)= u if i ≥ k+ 1 and Mi(u)= u/i for i = 1, . . . , i. First, we establish
the following.

PROPOSITION 5.8. For each fixed u, as N goes to ∞, the partial sums

ξui,N (t)=
u∑
r=1

ζi,N,r (t)= ∑
1≤n≤Mi(Nt)

Yi,qi (n),2u

form a tight family of processes on the Skorokhod space D[[0, t];Rk]. All the limit
points are Gaussian processes with independent increments. The second moments
are uniformly integrable so that the covariance of the limiting Gaussian process
can be identified as the limit of the covariances of the corresponding approximat-
ing processes along the subsequence.

PROOF. We note that Yi,qi(n),r is F−∞,qi (n)+r measurable. In order to ap-
ply Theorem 5.1 with GN,n = F−∞,qi (n)+r , we need to verify the conditions
B1–B4. With such choice of GN,n, B1 is clearly fulfilled. To verify the uniform
square integrability of {Yi,qi(n),r}, we observe that the uniform square integra-
bility of any family {Zα} implies the uniform integrability of {E[Zα|G]} as α
and G vary. The distribution of {X(n)} is the same for all n and, therefore, by
our moment condition, |X(n)|2ι are uniformly integrable. Using the bound |F | ≤
C(1 + ∑ |xi |ι), it is easily seen that {Yi,qi(n),r} are uniformly square integrable. To
control ‖E[Yi,qi (n),r |F−∞,l]‖2, we use Corollary 3.6(ii) for qi−1(n)+ r ≤ l, which
yields the estimate∥∥E[Yi,qi (n),r |F−∞,l]

∥∥
2 ≤ c(d,p, κ, ι)c(γm, γqι)�q,p

(
qi(n)− r − l

)
provided qi(n)≥ l + r . On the other hand, if qi−1(n)+ r ≥ l, we can write∥∥E[Yi,qi (n),r |F−∞,l]

∥∥
2 ≤ ∥∥E[Yi,qi (n),r |F−∞,qi−1(n)+r ]

∥∥
2

≤ c(d,p, κ, ι)c(γm, γqι)�q,p

(
qi(n)− qi−1(n)− 2r

)
≤ c(d,p, κ, ι)c(γm, γqι)�q,p(n− 2r),
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whenever n ≥ 2r and n ≥ n∗ = n∗(i) = min{m :qi(l)− qi−1(l) ≥ l ∀l ≥ m}, ob-
serving that n∗ <∞ by (2.12). Assuming that q ≥ p, we can always bound �p,q

by 1. Therefore, choosing c(n)= 1 for small values of n (there are at most n∗ + 2r
of them) and estimating c(n) by either c(d,p, κ, ι)c(γm, γqι)�q,p(qi(n)− r − l)

or by c(d,p, κ, ι)c(γm, γqι)�q,p(n− 2r), we arrive at B3 with the estimate

∞∑
n=0

c(k)≤
[
n∗ + 2r + 2

∞∑
n=1

�p,q(n)

]
c(d,p, κ, ι)c(γm, γqι).

If we set

Ri,m,r = ∑
n≥m−r

E[Yi,n,r |F−∞,m],

then it follows from the above estimates that

sup
i,l

‖Ri,l,r‖2 ≤ 2
(
n∗ + r + θ(p, q)

)
c(d,p, κ, ι)c(γm, γqι),(5.3)

where θ(p, q) is given by (2.14). It is now clear that Wi,n,r = Yi,n−r,r +Ri,n+1,r −
Ri,n,r is a martingale difference and is uniformly square integrable. While B4 may
not hold, the limit will exist along suitable subsequences. The uniform bound on
‖Wi,n,r‖2 ensures that limits A(t) will be Lipschitz continuous functions of t and
the convergence is uniform in t . �

In order to obtain convergence of processes ξi,N and not only their approxima-
tions ξi,N,r , we will need uniform bounds in the representations (5.2).

PROPOSITION 5.9. The differences {ζi,N,r (t)} satisfy∑
r

sup
N≥1

max
1≤i≤�

∥∥∥ sup
0≤t≤T

∣∣ζi,N,r (t)∣∣∥∥∥
2
≤ C <∞.(5.4)

PROOF. Set Ỹi,n,r = Yi,n,2r − Yi,n,2r−1, r ≥ 1 and

R̃i,n,r = ∑
m≥n+1

E(Ỹi,m,r |F−∞,n+2r ).

Estimating conditional expectations here by Corollary 3.6(iv) when m− n≥ 2r+1

and by the contraction argument when n+ 1 ≤m≤ n+ 2r+1, and applying Corol-
lary 3.6(iv) after that again, we obtain

‖R̃i,n,r‖2 ≤ 2r+1 sup
n

‖Ỹi,n,r‖2 + C̃
((
β

(
q,2r

))δ + (
β

(
q,2r−1))δ)

(5.5)
≤ Ĉ2r

((
β

(
q,2r

))δ + (
β

(
q,2r−1))δ)

,
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where C̃, Ĉ > 0 do not depend on i, n, r . Now observe that

ζi,N,r = 1√
N

∑
1≤m≤Mi(NT )

Zi,qi(m),r − 1√
N
(R̃i,qi([Mi(NT )]),r − R̃i,0,r ),(5.6)

whereZi,n,r = Ỹi,n,r+R̃i,n,r−R̃i,n−1,r , n≥ 1 is a martingale differences sequence
with respect to the filtration {Gn, n ≥ 1} with Gn = F−∞,n+2r . By the Doob in-
equality for martingales,

1

N
E sup

0≤t≤T

∣∣∣∣ ∑
1≤l≤Nt

Zi,qi(l),r

∣∣∣∣
2

≤ 4

N

∑
1≤l≤NT

EZ2
i,qi (l),r

≤ 4T max
1≤l≤NT EZ

2
i,qi (l),r

(5.7)

≤ 12T
(
sup
n

‖Ỹi,n,r‖2 + 2 sup
n

‖R̃i,n,r‖2

)
.

We can estimate also

1

N
E max

0≤l≤NT |R̃i,qi (l),r − R̃i,0,r |2 ≤ 4

N

∑
1≤l≤NT

ER̃2
i,qi (l),r

(5.8)
≤ 4 max

0≤l≤NT RR̃
2
i,qi (l),r

.

Now collecting (5.5)–(5.8) and applying Corollary 3.6(iv) again to (5.7) and (5.8),
we obtain that

sup
N≥1

∥∥∥ sup
0≤t≤T

∣∣ζi,N,r (t)∣∣∥∥∥
2
≤ ˜̃
C2r

((
β

(
q,2r

))δ + (
β

(
q,2r−1))δ)

,(5.9)

where ˜̃
C > 0 does not depend on r . Since

∑
r≥1(β(q, r))

δ converges by our as-
sumption (2.15), then

∑
r≥1 2r (β(q,2r ))δ converges as well, and so the right-hand

side of (5.9) is summable, implying (5.4). �

Next, we deal specifically with the terms Yi,qi(n), k + 1 ≤ i ≤ � which satisfy
(2.10), (2.11) and (2.12). By Propositions 5.8 and 5.9, any possible limit ηi(t) in
distribution of

ξi,N (t)= 1√
N

∑
n≤Nt

Yi,qi (n)

for 1 ≤ i ≤ � will be a Gaussian process with independent increments. The pro-
cesses {ηi(·), k + 1 ≤ i ≤ �} will be mutually independent as well as totally in-
dependent of {ηi(·),1 ≤ i ≤ k}, which is proved by successive application of
Theorem 5.6. We note that it is enough to show that for any T < ∞ we can ig-
nore

∑
n≤kN (i) Yi,qi (n) in the definition of ξi,N (t), where kN(i) = max{n :qi(n) ≤
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qi−1(NT )} so that Theorem 5.6 will be applicable then to the approximations

ξi,N,r (t)= 1√
N

∑
kN (i)+1≤n≤Nt

Yi,qi(n),r

with Yi,qi(n),r defined at the beginning of Section 4. At the end, relying on Propo-
sition 5.9, we can let r → ∞ and complete the proof. From (2.12), for any ε > 0,
qi(Nε) ≥ qi−1(NT ) for large N , which implies that the initial terms are at most
Nε in number. Since ε is arbitrary, we see that N−1kN(i) → 0 as N → ∞. By
(4.3) of Lemma 4.2, we obtain that the contribution of initial kN(i) terms in the
sum for ξi,N is negligible. Similarly, we conclude that it does not matter whether
we take the sum for ξi,N,r (t) above until Nt or until Nt + kN(i) as in Theo-
rem 5.6. By Proposition 4.5, we have also that the limiting variance Ai,i(t) of each
ξi,N (t), i > k, exists and is given by (4.12).

We observe that independency of processes ηi, i > k, of each other and of
ηi, i ≤ k, can be proved in an alternative way without using Theorem 5.6. Namely,
we can rely on Theorem 5.1 showing that linear combinations of processes ξi,N,r
converge to Gaussian processes, deriving similarly to the above via uniform es-
timates of Proposition 5.9 that linear combination of processes ηi are Gaussian
and concluding the proof via the vanishing covariances assertion (4.13) of Propo-
sition 4.5.

Now, we are able to complete the proof of Theorem 2.3. First, we conclude from
Propositions 5.8 and 5.9 together with Corollary 5.7 that the k-dimensional pro-
cess {ξi,N (t) : 1 ≤ i ≤ k} converges in distribution as N → ∞ to a Gaussian pro-
cess {ηi(t) : 1 ≤ i ≤ k} with stationary independent increments whose covariances
are given by Proposition 4.1. As explained above, when i ≥ k + 1, the process
ξi,N (t) converges in distribution to a Gaussian process ηi(t) with stationary inde-
pendent increments and ηk+1(t), . . . , η�(t) are both mutually independent and in-
dependent of processes η1(t), . . . , ηk(t). It follows that the �-dimensional process
{ξi,N (t) : 1 ≤ i ≤ �} converges in distribution as N → ∞ to the Gaussian process
{ηi(t) : 1 ≤ i ≤ �} with stationary independent increments whose covariances are
given by Propositions 4.1 and 4.5 taking into account independency of processes
ηi(t) with i ≥ k+ 1 of other processes ηj (t) with j �= i.

It remains to show that the process ξN(t) given by (2.20) converges in distri-
bution as N → ∞ to a Gaussian process ξ(t) given by (2.23). The convergence
itself is clear since each ξi,N converges to the corresponding ηi . In order to show
that ξ is a Gaussian process, it suffices to prove the same for ζ(t) = ∑k

i=1 ηi(it)

since ζ̃ (t) = ∑�
i=k+1 ηi(t) is a Gaussian process (as a sum of independent Gaus-

sian processes) independent of ζ , and so ζ(t)+ ζ̃ (t) is a Gaussian process if ζ(t)
is. Since (η1(t), . . . , ηk(t)) is a k-dimensional Gaussian process with independent
increments, then the vector increments (ηj (it)− ηj ((i − 1)t), j = 1,2, . . . , k) for
i = 1,2, . . . , k are mutually independent k-dimensional Gaussian processes, and
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so

ζλ(t)=
k∑
i=1

k∑
j=1

λij
(
ηj (it)− ηj

(
(i − 1)t

)) =
k∑

j=1

k∑
i=1

λij
(
ηj (it)− ηj

(
(i − 1)t

))

is a Gaussian process for any choice of constants λij and we recall that ηj (0) =
ξj,N(0) = 0. Now observe that choosing λij = 1 if i ≤ j and λij = 0 otherwise,
we obtain that ζλ(t)= ζ(t), completing the proof.

As to our claim that increments of ξ(t) may not be independent if k ≥ 2, con-
sider, for instance, the case k = �= 2 and

ξ(t)−ξ(t/2)= η1(t)+η2(2t)−η1(t/2)−η2(t) and ξ(t/2)= η1(t/2)+η2(t).

Then by Proposition 4.1,

E
(
ξ(t/2)

(
ξ(t)− ξ(t/2)

)) =D2,1t/2,

where

D2,1 = 1

2

∞∑
u=−∞

a2,1(u)

and

a2,1(u)=
∫
F2(x, y)F1(z) dμ(x) dμu(y, z).

Assume, for instance, that X(0),X(1),X(2), . . . is a sequence of independent
identically distributed random variables, then μu = μ × μ if u �= 0, and so
a2,1(u)= 0 if u �= 0, while

a2,1(0)=
∫
F2(x, y)F1(y) dμ(x) dμ(y).

Now suppose that EX(0)= 0, EX2(0)= 1 and choose F(x, y)= x2y2 − 1. Then∫
F(x, y) dμ(x)dμ(y)= 0, F2(x, y)= x2(y2 − 1), F1(x)= x2 − 1, and so

D2,1 = 1

2
a2,1(0)=

∫ (
y2 − 1

)2
dμ(y) �= 0

unless X2(0)= 1 with probability one.

6. Continuous time case. First, we represent again the function F in the form
(2.17) and ξN(t) given by (2.31) in the form (2.20) where now

ξi,N (t)= 1√
N

∫ Si(Nt)

0
Fi

(
X

(
q1(s)

)
, . . . ,X

(
qi(s)

))
ds(6.1)
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with Si(u)= u/i if i ≤ k and Si(u)= u if i ≥ k+ 1. Set

Fi,r,t = Fi,r,t (x1, . . . , xi−1,ω)=E
(
Fi

(
x1, . . . , xi−1,X(t)

)|Ft−r,t+r
)
,

Xr(t)= E
(
X(t)|Ft−r,t+r

)
,

Yi(t)= Fi
(
X

(
q1(s)

)
, . . . ,X

(
qi(s)

))
if t = qi(s)

and

Yi(t)= 0 if t �= qi(s) for any s,

Yi,r (t)= Fi,r,t
(
Xr

(
q1(s)

)
, . . . ,Xr

(
qi(s)

))
if t = qi(s)

and

Yi,r (t)= 0 if t �= qi(s) for any s.

In order to use fully our discrete time technique, it will be convenient to pass
from ξi,N to ξ̃i,N given by

ξ̃i,N (t)= 1√
N

[Si(Nt)]∑
n=0

Ii(n),

where Ii(n)= ∫ n+1
n Yi(qi(s)) ds. The error of such transition is estimated by

sup
0≤t≤T

∣∣ξi,N (t)− ξ̃i,N (t)
∣∣ ≤ 1√

N
max

0≤n≤NT Qi(n),(6.2)

where Qi(n)= ∫ 1
0 |Yi(qi(n+ s))|ds. Now for any δ > 0,

P
{

max
0≤n≤NT Qi(n) > ε

√
N

}
≤NT max

0≤n≤NT P
{
Qi(n) > ε

√
N

}

≤ T

ε2 max
0≤n≤NT

∫
{Qi(n)>ε

√
N}
Q2
i (n) dP

≤ (ε
√
N)−δ

∫
Q2+δ
i (n) dP

≤ (ε
√
N)−δ

∫ 1

0
EY 2+δ

i

(
qi(n+ s)

)
ds

≤ C(ε
√
N)−δ.

Thus, the left-hand side of (6.2) tends to 0 in probability as N → ∞, and so it
suffices to prove our functional central limit theorem for ξ̃i,N in place of ξi,N .

Introduce the approximations ξ̃i,N,r of ξ̃i,N by

ξ̃i,N,r (t)= 1√
N

[Si(Nt)]∑
n=0

Ii,r (n),(6.3)
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where Ii,r (n)= ∫ n+1
n Yi,r (qi(s)) ds. Now set

Ri,r (m)=
∞∑

l=m+1

E
(
Ii,r (l)|F−∞,m+r

)
and Zi,r (m)= Ii,r (m)+Ri,r (m)−Ri,r (m− 1). Then E(Zi,r (m)|F−∞,m−1+r )=
0, and so {Zm,Gm}m≥0 with Zm = Zi,r (m) and Gm = F−∞,m+r turns out to be a
martingale differences sequence. We saw already above that {Q2

i (n)} is uniformly
integrable. Then both {I 2

i (n)} and {I 2
i,r (n)} are uniformly integrable and, like in

the proof of Proposition 5.8, we conclude that both {R2
i,r (n)} and {Z2

i,r (n)} are
uniformly integrable as well. Set

ζi,N,r (t)= 1√
N

[Si(Nt)]∑
n=0

Zi,r (n).

Then, similar to Section 5, we obtain that

sup
0≤t≤T

∣∣ξ̃i,N,r (t)− ζi,N,r (t)
∣∣ → 0 in probability as N → ∞(6.4)

and so in order to obtain a central limit theorem for ξ̃i,r,N (t), it suffices to prove it
for the normalized martingal ζi,r,N (t).

In order to invoke martingale limit theorems,we have to study next the asymp-
totical behavior as N → ∞ of normalized variances E(ζi,r,N (Si(Nt)))2. As in the
discrete time case considered in Section 4, in view of (2.17) and (6.1), it suffices
to study the asymptotical behavior of

Di,j (N, s, t)= E
[
ξi,N (s)ξj,N(t)

]
(6.5)

= 1

N

∫ Sj (Nt)

0

∫ Si(Ns)

0
E

[
Yi

(
qi(u)

)
Yj

(
qj (v)

)]
dudv.

We treat first the case when 1 ≤ i, j ≤ k similarly to Proposition 4.1. Let υ be the
greatest common divisor of i and j , then, similarly to the argument in Lemma 4.4,
we obtain that for any integer w,

lim
u,v→∞,iu−jv=wυ E

[
Yi(iu)Yj (jv)

] = ai,j (w,2w, . . . , υw)(6.6)

with ai,j defined in Proposition 4.1. Now, changing variables, we have

1

N

∫ Nt/j

0

∫ Ns/i

0
E

[
Yi(iu)Yj (jv)

]
dudv

(6.7)

= υ

Ni

∫ Nt/j

0

∫ (Ns−jv)/υ
−jv/υ

E

[
Yi

(
jv+wυ

i

)
Yj (jv)

]
dw dv.

When v is large, then the expectation under the integral equals approximately
ai,j (w,2w, . . . , υw) and taking into account that the latter is absolutely inte-
grable in w from −∞ to ∞, we can approximate the interior integral in w by
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the integral
∫ ∞
−∞. Next we integrate in v within constraints 0 ≤ v ≤ Nt/j and

u= (jv+wυ)/i ≤Ns/i, that is, asymptotically for N large 0 ≤ v ≤ N
j

min(s, t).
It follows that the expression in (6.7) is approximately equal as N → ∞ to

υ

ij
min(s, t)

∫ ∞
−∞

ai,j (w,2w, . . . , υw)dw(6.8)

and we obtain the same covariances as in the discrete time case.
Next, we claim that for each i = k + 1, . . . , � and t > 0,

lim
N→∞Di,i(N, t, t)= 0.(6.9)

Indeed, set again bi,j (u, v)=E(Yi(qi(u))Yj (qj (v)). Then

1

N

∫ Nt

0

∫ Nt

0

∣∣bi,i(u, v)∣∣dudv ≤ 2

N

∫ Nt

0
du

∫ u+γ
u

∣∣bi,i(u, v)∣∣dudv
+ 2

N

∫ Nγ

0
du

∫ Nt

u+γ
∣∣bi,i(u, v)∣∣dudv

(6.10)

+ 2

N

∫ Nt

Nγ
du

∫ Nt

u+γ
∣∣bi,i(u, v)∣∣dudv

≤ C
(
tγ + γ + tβ(i)γ (Nγ )

)
for some C > 0 independent of t,N and γ , where we obtain by (2.30) and esti-
mates similar to Lemma 4.2 and Proposition 4.5 that for any i > k and γ > 0,

β(i)γ (M)= sup
u≥M

∫ ∞
u+γ

∣∣bi,i(u, v)∣∣dv <∞ and lim
M→∞β(i)γ (M)= 0.(6.11)

So, letting first N → ∞ and then γ → 0, we obtain (6.9).

REMARK 6.1. In fact, in the continuous time case we can take qi(t) = αit

for arbitrary 0 < α1 < α2 < · · · < αk in place of 1 < 2 < · · · < k while leaving
qi(t), i = k + 1, . . . , � as before. In this situation (6.6) becomes

lim
u,v→∞,αiu−αj v=z

E
[
Yi(αiu)Yj (αjv)

] = ai,j (ρ1z,ρ2z, . . . , ρnij z, z),

where ρ1 < ρ2 < · · · < ρnij < 1 and αiρl, αjρl ∈ {α1, . . . , αk} for l = 1, . . . , nij .
Then the covariances (6.8) will have the form

1

αiαj
min(s, t)

∫ ∞
−∞

ai,j (ρ1w,ρ2w, . . . , ρnij w,w)dw.
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