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Dedicated to John Milnor on his 80th anniversary

We study symmetric random walks on finitely generated groups of
orientation-preserving homeomorphisms of the real line. We establish an
oscillation property for the induced Markov chain on the line that implies
a weak form of recurrence. Except for a few special cases, which can be
treated separately, we prove a property of “global stability at a finite dis-
tance”: roughly speaking, there exists a compact interval such that any two
trajectories get closer and closer whenever one of them returns to the com-
pact interval. The probabilistic techniques employed here lead to interesting
results for the study of group actions on the line. For instance, we show that
under a suitable change of the coordinates, the drift of every point becomes
zero provided that the action is minimal. As a byproduct, we recover the fact
that every finitely generated group of homeomorphisms of the real line is
topologically conjugate to a group of (globally) Lipschitz homeomorphisms.
Moreover, we show that such a conjugacy may be chosen in such a way that
the displacement of each element is uniformly bounded.

1. Introduction. In this article, we study symmetric random walks on finitely
generated groups of (orientation-preserving) homeomorphisms of the real line.
The results presented here fit into the general framework of systems of iterated ran-
dom functions [8]. However, besides the lack of compactness of the phase space,
there is a crucial point that separates our approach from the classical ones—the
complete absence of any hypothesis of contraction. So to carry out our study, we
need to use some extra structure, and this is provided by the natural ordering of the
real line. In this direction, the results herein are also closely related to [14], where
general Markov processes on ordered spaces are examined. However, since we
only consider symmetric measures, there is no zero drift condition required for our
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processes, unlike [14] where this is a crucial assumption. In fact, one of our main
results is that when the action is minimal, an appropriate change of coordinates
on the real line makes the drift of every point equal to zero. This follows from a
reparametrization that utilizes the stationary measure and a straightforward argu-
ment that employs the one-dimensional structure of the phase space in a decisive
manner.

It is quite remarkable that, in presence of the linear order structure, we recover
several phenomena that in more complex phase spaces are very specific to partic-
ular classes of groups. For instance, in [1], Babillot, Bougerol and Elie consider
random walks on the group of affine homeomorphisms of Rn in the difficult case
where the logarithm of the expansion rate vanishes in mean. In this situation, they
show the existence of an infinite Radon measure that is invariant by the transition
operator, and for the case where the Lebesgue measure is not totally invariant, they
establish a property of “global stability at a finite distance”: any two trajectories
get closer and closer whenever one of them returns to a fixed compact set. Using
this property, they obtain the uniqueness of the stationary measure (up to a con-
stant multiple). It turns out that three of our main results here are analogues of these
facts for groups of homeomorphisms of the real line. Furthermore, these results are
also analogous to—though much more elaborate than—the previously established
results for groups of circle homeomorphisms; see, for instance, [5], Section 5.1.
As in the case of [5], the proofs here involve a prior study of the general structure
of the associated dynamics, which is the core of this paper.

The motivation for studying groups of homeomorphisms of the real line comes
from many sources. Algebraically, these groups are characterized by the existence
of a left-invariant total order [6], which fits into well developed and quite formal
theories [13]. More recently, many results about groups acting on the real line
or the circle have focused on the relation with “rigidity theory,” a kind of non-
linear version of representation theory where one seeks to understand the nature
of the obstructions to the existence of (faithful) group actions on specific phase
spaces (see [10] for a survey of these ideas). In this direction, it is conjectured
that some particular groups, like groups with Kazhdan’s property (T) or lattices
in higher-rank simple Lie groups, do not act on the real line (or equivalently, are
not left-orderable). We strongly believe that our probabilistic approach opens new
and promising avenues of study that bear the potential to yield important results in
the investigation of these and many other open questions concerning left-orderable
groups.

2. A description of the results. Given a symmetric probability measure μ,
we consider the group G generated by its support. Although some of our results
apply to the case where this support is countably infinite, we restrict our discussion
to the case where it is finite. Assume throughout that the action of G is irreducible;
that is, there are no global fixed points. Otherwise, one may consider the action the
connected components of the complement of the set of these global fixed points
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(on each of these components, the action is irreducible). We then consider the ran-
dom walk induced by μ as a Markov process on the real line. In Section 4, the
recurrence properties of this process are studied. We first prove that almost ev-
ery trajectory oscillates between −∞ and +∞ (Proposition 4.2). Moreover, there
exists a compact interval K such that these trajectories pass through K infinitely
many times (Theorem 4.3). Using standard arguments a la Chacon–Orstein, this
allows us to show the existence of a stationary Radon measure on the line (Theo-
rem 5.1).

In Section 6, general properties of the stationary measures are examined. If the
atomic part of the stationary measure is nontrivial, then it is supported on the union
of discrete orbits and is totally invariant (Lemmas 6.2 and 6.3). If there are no dis-
crete orbits, there exists a unique minimal nonempty closed invariant set M that is
the support of any stationary measure (Proposition 6.1 and Lemma 6.4 ). Further-
more, the stationary measure is unique up to a constant factor (Theorem 6.5). This
result follows from an argument due to S. Brofferio in [2] and a nondivergence
property for the trajectories of the Markov process established in Lemma 6.6.

In Section 7, we obtain the property of global stability at a finite distance pro-
vided that no invariant Radon measure exists and G is not centralized by any home-
omorphism without fixed points. Roughly speaking, this last condition means that
the action does not appear as the lift of an action on the circle. If this is not the case,
a weak form of the contraction property is established (all of this is summarized in
Theorem 7.2).

In Section 8, we provide a connection to the beautiful work [7], where Derri-
ennic studies Markov processes on the real line satisfying E(Xx

1 ) = x for large
values of |x|. For every finitely generated group of homeomorphisms of the real
line acting minimally, we produce a coordinate change for which the Derriennic
property [E(Xx

1 ) = x] holds for every x ∈ R (Theorem 8.1). This is done by ap-
propriately integrating the associated stationary measure. A careful analysis of the
invariant Radon measure is carried out before establishing this result. In particular,
we prove that the measure is infinite on every unbounded interval (Lemma 4.1).
As a consequence of the existence of these Derriennic coordinates, we recover
a rather surprising fact: every finitely generated group of homeomorphisms of the
real line is topologically conjugate to a group of Lipschitz homeomorphisms (The-
orem 8.5). (This result also follows from the (probabilistic) techniques introduced
in [5].) Moreover, we show that such a conjugacy may be taken so that the dis-
placement function x �→ g(x) − x becomes bounded uniformly in x for all g ∈ G.

3. Notation. Let {gn} be a sequence of i.i.d. Homeo+(R)-valued random vari-
ables, whose distribution is a symmetric measure μ. The left random walk on
Homeo+(R) is defined by the random variables

fn := gn ◦ · · · ◦ g1.
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More precisely, let G be the group generated by the support of μ and consider the
probability space � := (GN,μ⊗N). Then gn is defined to be the nth coordinate of
ω ∈ �. The group G is assumed to be countable, and in fact, G will be finitely
generated in most cases.

We introduce the Markov chain X on the real line, that is, for any x ∈ R and
any nonnegative integer n,

Xx
n := fn(x).

Let Cb(R) and Cc(R) denote the spaces of continuous bounded functions and com-
pactly supported continuous functions, respectively. Let P :Cb(R) → Cb(R) be
the transition operator, defined as usual by

P(ϕ)(x) := E
(
ϕ

(
Xx

1
))

,

where ϕ ∈ Cb(R) and x ∈ R. The operator P acts by duality on the set of finite
measures on the real line, and if μ is finitely supported, P preserves Cc(R) and
hence acts by the duality on the set of Radon measures.

It should come as no surprise that in the investigation of a group action on the
real line, one is led to study the action on the components of R \ Fix(G). On any
such component, no global fixed point exists, and so, we may (and we always will)
assume that the action is irreducible, that is, for every x ∈ R there exists a g ∈ G

such that g(x) �= x. If μ is a symmetric probability measure on Homeo+(R), then
we will say that μ is irreducible if the group generated by its support satisfies this
property.

4. Recurrence. In this section, we establish the recurrence of the Markov
chain X when the measure μ is irreducible, symmetric, and has finite support. We
begin with a lemma that extends [5], Proposition 5.7 (see also [9]) and that will
be crucial in Sections 6.1 and 8. The proof is based on the second proof proposed
in [5]; for a proof based on the first proof therein, see [6].

LEMMA 4.1. Let μ be an irreducible, symmetric probability measure on the
group Homeo+(R). Then any nonvanishing P -invariant Radon measure ν on the
real line is bi-infinite [i.e., ν(x,∞) = ∞ and ν(−∞, x) = ∞, for all x ∈ R].

PROOF. Suppose that there exists an x ∈ R such that ν(x,∞) < ∞. Since the
action is irreducible, for every y ∈ R, there is an element g ∈ G such that g(x) < y.
Select n > 0 such that μ�n(g−1) > 0 and then observe that

ν(y,∞) ≤ ν
(
g(x),∞) ≤ 1

μ�n(g−1)
ν(x,∞) < ∞.

This argument implies that ν(y,∞) < ∞ for all y ∈ R.
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Now let f : R → (0,∞) be the function defined by f (x) := ν(x,∞). Since μ

is symmetric, this function is harmonic on the orbits. Fix a real number A satis-
fying 0 < A < ν(−∞,∞), and then let h := max(0,A − f ). The function h is
subharmonic, that is, h ≤ P(h). Moreover, it vanishes on a neighborhood of −∞
and is bounded on a neighborhood of ∞. This implies that h is ν-integrable, and
since

∫
Phdν = ∫

hdν, the function h must be P -invariant ν-a.e. Now a clas-
sical lemma in [11] asserts that a measurable function which is in L1(R, ν) and
P -invariant must be G-invariant almost everywhere. Thus, h is constant on almost
every orbit. However, this is impossible since every orbit intersects every neighbor-
hood of −∞ (where h vanishes) and of ∞ (where h is positive). This contradiction
establishes the desired result. �

PROPOSITION 4.2 (Oscillation). Let μ be an irreducible, symmetric proba-
bility measure on Homeo+(R). Then for every x ∈ R, almost surely we have

lim sup
n→∞

Xx
n = +∞ and lim inf

n→∞ Xx
n = −∞.

PROOF. Given points A and x on the real line, let

pA(x) := P
{
lim sup
n→∞

Xx
n > A

}
.

Since G acts by orientation-preserving homeomorphisms, for each x ≤ y we have{
(gn)n ∈ GN ∣∣ lim sup

n→∞
Xx

n > A
}

⊂
{
(gn)n ∈ GN ∣∣ lim sup

n→∞
Xy

n > A
}
.

In particular, pA(x) ≤ pA(y), that is, pA is nondecreasing. Moreover, since pA is
the probability of the tail event {

lim sup
n→∞

Xx
n > A

}
,

and X is a Markov chain, pA is harmonic: for every x ∈ R and every integer n ≥ 0,

pA(x) = E
(
pA

(
Xx

n

))
.

We would like to think of pA as the distribution function of a finite measure
on R. Since this is possible only if pA is continuous on the right, we are led to
consider the right-continuous function

p̄A(x) := lim
y→x,y>x

pA(y).

This function is still nondecreasing; hence there exists a finite measure ν on R
such that for all x < y,

ν(x, y] = p̄A(y) − p̄A(x).

Since pA is harmonic and G acts by homeomorphisms, the function p̄A must be
harmonic. Thus ν is also harmonic, and furthermore, the measure ν is P -invariant
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since μ is symmetric. Now recall that Lemma 4.1 implies that any P -invariant
finite measure vanishes identically (see also [5], Proposition 5.7), and therefore,
ν = 0 and p̄A is constant. The 0–1 law can be applied here to conclude that (for
any fixed A) either pA(x) ≡ 0 or pA(x) ≡ 1.

Let us now show that pA equals to 1 for any A. Indeed, fix any x0 > A. Then,
for any g ∈ Homeo+(R), we have either g(x0) ≥ x0, or g−1(x0) ≥ x0, and hence,
due to the symmetry of measure μ, for every n the inequality X

x0
n ≥ x0 holds with

probability at least 1/2. It is easy then to see that

pA = pA(x0) ≥ lim sup
n→∞

P
{
Xx0

n ≥ x0
} ≥ 1/2.

As we have already shown that pA is equal to 0 or to 1, this implies that pA is
identically equal to 1.

The latter means that for every x ∈ R,

lim sup
n→∞

Xx
n = +∞

holds almost surely. Analogously, for every x ∈ R, almost surely we have

lim inf
n→∞ Xx

n = −∞.

This completes the proof of the proposition. �

We are now ready to prove the main result of this section.

THEOREM 4.3 (Recurrence). Let μ be an irreducible, finitely supported, sym-
metric probability measure on Homeo+(R). Then there exists a compact interval
K such that, for every x, almost surely the sequence (Xx

n) intersects K infinitely
often.

PROOF. Consider an interval K = [A,B], where A < B are points in the real
line such that for every element g of the support of μ, we have g(A) < B . By
Proposition 4.2, for every x ∈ R, almost surely the sequence (Xx

n) will pass from
(−∞,A] to [B,+∞) infinitely often. Now the desired conclusion follows from
the observation that the choices of A and B imply that every time this happens,
{Xx

n} must traverse the interval K . �

5. Existence of a stationary measure. An important consequence of the pre-
vious result is the existence of a P -invariant Radon measure on the real line.

THEOREM 5.1 (Existence of a P -invariant measure). Let μ be an irreducible,
finitely supported, symmetric probability measure on Homeo+(R), and let P be
the associated transition operator. Then there exists a P -invariant Radon measure
on the real line.



2072 DEROIN, KLEPTSYN, NAVAS AND PARWANI

PROOF. Fix a continuous, compactly-supported function ξ : R → [0,1] such
that ξ ≡ 1 on K . For any initial point x, let us stop the process Xx

n at a random
stopping time T = T (w) chosen in a Markovian way so that, for all n ∈ N,

P(T = n + 1 | T ≥ n) = ξ
(
Xx

n+1
)
.

In other words, after each iteration of the initial random walk, when we arrive
at some point y = Xx

n+1 we stop with the probability ξ(y), and we continue the
iterations with probability 1 − ξ(y).

Denote by Yx the random stopping point Xx
T , and consider its distribution px

(notice that T is almost surely finite since the process Xx
n almost surely visits

K and ξ ≡ 1 on K). Due to the continuity of ξ , the measure px on R depends
continuously (in the weak topology) on x. Therefore, the corresponding diffusion
operator Pξ defined by

Pξ (ϕ)(x) = E
(
ϕ

(
Yx)) =

∫
R

ϕ(y)dpx(y)

acts on the space of continuous bounded functions on R, and hence it acts by
duality on the space of probability measures on R. Notice that for any such prob-
ability measure, its image under Pξ is supported on K̃ := supp(ξ). Thus, applying
the Krylov–Bogolubov procedure of time averaging (and extracting a convergent
subsequence), we see that there exists a Pξ -invariant probability measure ν0.

To construct a Radon measure that is stationary for the initial process, we pro-
ceed as follows. For each point x ∈ R, let us take the sum of the Dirac measures
supported in its random trajectory before the stopping moment T . In other words,

we consider the “random measure” mx(ω) := ∑T (w)−1
j=0 δXx

j
. We then consider its

expectation

mx = E

(
T (w)−1∑

j=0

δXx
j

)

as a measure on R. Finally, we integrate mx with respect to the measure ν0 on x,
thus yielding a Radon measure ν := ∫

mx dν0(x) on R. Formally speaking, for any
compactly supported function f , we have∫

R
f dν =

∫
R

E

(
T (w)−1∑

j=0

f
(
Xx

j

))
dν0(x).(1)

Notice that the right-hand side expression of (1) is well defined and finite. Indeed,
there exist N ∈ N and p0 > 0 such that with probability at least p0 a trajectory
starting at any point of supp(f ) hits K in at most N steps. Thus, the distribution of
the measure mx(w) on supp(f ) [the number of steps that are spent in supp(f ) until
the stopping moment] has an exponentially decreasing tail. Thus, its expectation is
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finite and bounded uniformly on x ∈ supp(f ), which implies the finiteness of the
integral.

Now, let us check that the measure ν is P -invariant. Let us first rewrite the
measure ν. To do this, notice that using the full probability formula, one can check
that the measure mx equals

∑
n≥0

∑
g1,...,gn∈G

n∏
j=1

μ(gj ) ·
n∏

j=1

[
1 − ξ

(
gj ◦ · · · ◦ g1(x)

)] · δgn◦···◦g1(x).

Thus

P(mx) = ∑
g∈G

μ(g) · g�mx

= ∑
g∈G

μ(g) · g�

(∑
n≥0

∑
g1,...,gn∈G

n∏
j=1

μ(gj ) ·
n∏

j=1

[
1 − ξ

(
gj ◦ · · · ◦ g1(x)

)]

× δgn◦···◦g1(x)

)

= ∑
n≥0

∑
g1,...,gn,g∈G

(
μ(g) ·

n∏
j=1

μ(gj )

)
·

n∏
j=1

[
1 − ξ

(
gj ◦ · · · ◦ g1(x)

)]
× g�δgn◦···◦g1(x)

= ∑
n≥0

∑
g1,...,gn,gn+1∈G

(
n+1∏
j=1

μ(gj )

)
·
(n+1)−1∏

j=1

[
1 − ξ

(
gj ◦ · · · ◦ g1(x)

)]
× δgn+1◦gn◦···◦g1(x).

In the same way as before, one can check that the last expression equals the expec-
tation of the random measure

∑T (ω)
j=1 δXx

j
. In this sum, we are counting the stopping

time, but not the initial one, and therefore

Pmx = mx − δx + E(δY x ).

Integration with respect to ν0 yields

Pν = P

(∫
R

mx dν0(x)

)
=

∫
R

P(mx)dν0(x)

=
∫

R
mx dν0(x) −

∫
R

δx dν0(x) +
∫

R
E(δY x ) dν0(x) = ν − ν0 + Pξν0.

Since ν0 is Pξ -invariant, we finally obtain Pν = ν, as we wanted to show. �
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6. Properties of P -invariant measures. This section is devoted to the study
of the properties of the P -invariant Radon measures constructed in Section 4. The
following topological fact is well known; we recall its proof for completeness.

PROPOSITION 6.1. Let G be a finitely generated, irreducible group of home-
omorphisms of the real line. Then either G carries a discrete orbit or there is a
unique minimal nonempty closed G-invariant set M. In the latter case, the clo-
sure of every orbit contains M.

PROOF. Let K be a compact interval that intersects every orbit; the existence
of such an interval follows from the proof of Theorem 4.3. Let E be the family of
nonempty compact subsets K of K such that K = (GK) ∩ K . If {Kλ, λ ∈ 
} is
a chain (with respect to inclusion) in E , then K
 := ⋂

λ Kλ also belongs to E . By
Zorn’s lemma, E has a maximal element K0. Notice that M := GK0 is a nonempty
minimal G-invariant closed subset of the real line. When M is not a discrete set,
every point of M is an accumulation point, and M is locally compact. Hence,
there are only two possibilities when G has no discrete orbits—either M = R or
M is locally homeomorphic to a Cantor set. In the first case, the proposition is
proved. In the second case, the orbit of every point of M is dense in M. We will
now prove that the closure of orbits of points in R \ M contains M; this will
establish the uniqueness of the set M. Let C be an arbitrary connected component
of R \ M. Then C is bounded and its right endpoint r belongs to M. Therefore,
there is a sequence of elements gn ∈ G such that gn(r) tends to r as n tends to
infinity and gn(r) �= r for every n (otherwise, the set of accumulation points of
the orbit of r would be a closed G-invariant set strictly contained in M). Now
gn(C) tends uniformly to r as n tends to infinity. Since the closure of the orbit of
r equals M, this shows that the closure of the orbit of any point in C contains M.

�

If there is a discrete orbit, then the counting measure on it is a Radon mea-
sure that is G-invariant, and in particular, it is also P -invariant for any probability
measure μ on G. The next two lemmas provide converses to this fact.

LEMMA 6.2. Let μ be a symmetric probability measure on Homeo+(R)

whose support is finite and generates an irreducible group G. Let ν be a P -
invariant Radon measure on the real line. If there is a discrete orbit, then ν is
supported on the union of discrete orbits and is totally invariant.

PROOF. If there is a discrete orbit O , it can be parametrized by Z and then
the action of G on O is by integer translations. In this situation, the normal sub-
group G1 formed by the elements acting trivially on O is recurrent by Polya’s
theorem [18]. Let μ1 be the (symmetric) measure on G1 obtained by balayage of
μ to G1. Observe that the restriction of ν to each component C of R \ O is a finite
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measure that is invariant for the Markov chain induced by μ1 on C. It now follows
from Lemma 4.1 (or from [5], Proposition 5.7) that this measure is supported on
Fix(G1) ∩ C̄, the set of global fixed points for the group G1 contained in the clo-
sure of C. As a consequence, G acts by “integer translations” on the support of ν,
which consists of discrete orbits. To see that ν is invariant, notice that for each
atom x ∈ R, the function g �→ ν(g(x)) viewed as a function defined on G/G1 ∼ Z
is harmonic and positive and hence constant. �

LEMMA 6.3. Let μ be a symmetric probability measure on Homeo+(R)

whose support is finite and generates an irreducible group G. Let ν be a P -
invariant Radon measure on the real line. If the atomic part νa of ν is nontrivial,
then it is supported on a union of discrete orbits.

PROOF. Let x ∈ R be a point such that ν(x) > 0. Let O = G(x) be the orbit
of x endowed with the discrete topology, and let ν̄ be the measure on O defined
by ν̄(y) := ν(y). Then ν̄ is an invariant measure for the Markov process induced
by μ on O .

Let L be an arbitrary compact interval containing the compact interval K con-
structed in the proof of Theorem 4.3 and let R := L ∩ O . We want to show that R

is finite. To do this, first observe that R is a recurrent subset of O , by Theorem 4.3.
Let Y be the Markov chain on R defined by the first return of X to R. This Markov
chain is symmetric because X is symmetric. Moreover, the restriction of ν̄ to R

is invariant. Now since
∑

y∈R ν̄(y) < ∞, there must be an atom y ∈ R such that
ν̄(y) is maximal. The PY -invariance of ν̄|R and the symmetry of the transition
probabilities pY (·, ·) yield∑

z∈R

pY (y, z)ν̄(z) = ∑
z∈R

pY (z, y)ν̄(z) = ν̄(y).

The maximum principle now implies that ν̄(z) = ν̄(y) for all z ∈ O . Thus, all the
atoms of ν̄ contained in R have the same mass and hence there is only a finite
number of them. In particular, this argument shows that O is discrete. �

Next we consider the case where G has no discrete orbits. As in Proposition 6.1,
let M be the unique nonempty minimal G-invariant closed subset of the real line.

LEMMA 6.4. Let μ be an irreducible, symmetric measure on Homeo+(R)

whose support is finite and generates a group G without discrete orbits on the real
line. Then any P -invariant Radon measure is supported on M.

PROOF. Let ν be a P -invariant Radon measure on the real line. The measure
ν is quasi-invariant by G, because for all h in the support of μ we have

h�ν ≤ 1

μ(h)

∑
g∈G

μ(g)g�ν = 1

μ(h)
ν.
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So the support of ν is a closed G-invariant subset of the real line, and hence, it
contains M. Therefore, it suffices to verify that ν does not charge any component
of Mc. If Mc is nonempty, we may collapse each connected component of Mc to
a point, thus obtaining a topological real line carrying a G-action for which every
orbit is dense. The P -invariant measure ν can be pushed to a P -invariant Radon
measure ν̄ for this new action. If a component of Mc has a positive charge, then
ν̄ has atoms. By Lemma 6.3, this implies that the G-action cannot be minimal
after the collapsing, which is a contradiction. We thus conclude that the original
P -invariant measure ν does not charge the components of Mc, and so, ν must be
supported on M. �

6.1. Uniqueness of the P -invariant Radon measure. When the action of G

possesses discrete orbits, we know that every stationary Radon measure must be
G-invariant; however, two such measures may be supported on different orbits.
We now establish the uniqueness (up to a scalar factor) of the stationary measure
in the case where G is a finitely generated, irreducible subgroup of Homeo+(R)

without discrete orbits. Recall that, in this case, there exists a unique minimal
closed G-invariant set M, and the orbit of every point in M is dense in M; see
Proposition 6.1.

THEOREM 6.5. Let μ be a symmetric measure on Homeo+(R) whose support
is finite and generates an irreducible group G without discrete orbits. Then the P -
invariant Radon measure ν is unique up to a scalar factor, and its support is M.
Moreover, for all continuous functions ϕ,ψ with compact support, with ϕ ≥ 0 and∫

ϕ dν > 0, and for every x ∈ R, we have a.s. the convergence

ψ(Xx
1 ) + · · · + ψ(Xx

N)

ϕ(Xx
1 ) + · · · + ϕ(Xx

N)
−→

∫
ψ dν∫
ϕ dν

(2)

as N tends to infinity.

For the proof of this theorem, we first consider the case when every G-orbit is
dense. Let ν be a P -invariant measure. We know that ν is fully supported and has
no atoms. By Lemma 4.1, we may consider the distance d on the real line defined
by

d(x, y) := ν[x, y], x ≤ y.

LEMMA 6.6. For any fixed number 0 < p < 1 and all x, y, with probability
at least p we have

lim
n→∞d

(
Xx

n,Xy
n

) ≤ d(x, y)

1 − p
.
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PROOF. Since ν is P -invariant, the sequence of random variables ω �→
d(Xx

n,X
y
n) is a martingale. In particular, for every integer n ≥ 1 we have

E
(
d
(
Xx

n,Xy
n

)) = d(x, y).

By the martingale convergence theorem, the sequence d(Xx
n,X

y
n) converges a.s. to

a nonnegative random variable v(x, y). By Fatou’s inequality, for every x < y we
have

E
(
v(x, y)

) ≤ lim
n→∞ E

(
d
(
Xx

n,Xy
n

)) = d(x, y).

The lemma then follows from Chebyshev’s inequality. �

We will combine the preceding lemma with an argument from [2]. For this,
recall that a P -stationary measure ν is said to be ergodic if every G-invariant
measurable subset either has measure 0 or its complement has measure 0.

LEMMA 6.7. Assume that the hypotheses of Theorem 6.5 are satisfied and
that every G-orbit is dense. If ν is an ergodic P -invariant Radon measure, then
the convergence (2) holds a.s. for every x ∈ R.

PROOF. The diffusion operator acting on L1(R, ν) is a positive contraction.
Moreover, because of the recurrence of the Markov process, this operator is con-
servative. We may hence apply the Chacon–Ornstein theorem [3], which together
with the ergodicity of ν shows that for ν-almost every point x ∈ R and all func-
tions ϕ,ψ in Cc(R) such that ϕ ≥ 0 and ϕ = 1 on the interval of recurrence K

constructed in the proof of Theorem 4.3, we have almost surely

lim
n→∞

Snψ(x,ω)

Snϕ(x,ω)
=

∫
ψ dν∫
ϕ dν

,(3)

where Snψ(x,ω) := ψ(Xx
1 ) + · · · + ψ(Xx

n) [and similarly for Snϕ(x,ω)]. Let y ∈
R and the functions ϕ, ψ be fixed. We claim that, for any k ≥ 1, with probability
at least 1 − 1/k we have

lim sup
n→∞

∣∣∣∣Snψ(y,ω)

Snϕ(y,ω)
−

∫
ψ dν∫
ϕ dν

∣∣∣∣ ≤ 1

k
.(4)

This obviously implies that (3) holds almost surely.
Since ν has total support, one can find a point x generic in the sense of (4) and

sufficiently close to y so that d(x, y) ≤ ε. From Lemma 6.6, with probability at
least 1/2 we have for all n sufficiently large, say n ≥ n0(ω),

d
(
Xy

n,Xx
n

) ≤ (k + 1)ε.(5)

Now, as we already know that (with probability 1)

lim
n→∞

Snψ(x,ω)

Snϕ(x,ω)
=

∫
ψ dν∫
ϕ dν

,
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instead of estimating the difference in (4), it suffices to obtain estimates of the
“relative errors”

lim sup
n→∞

∣∣∣∣Snψ(y,ω) − Snψ(x,ω)

Snϕ(x,ω)

∣∣∣∣ ≤ δ1(ε)(6)

and

lim sup
n→∞

∣∣∣∣Snϕ(y,ω) − Snϕ(x,ω)

Snϕ(x,ω)

∣∣∣∣ ≤ δ2(ε)(7)

in such a way that δ1(ε) → 0 and δ2(ε) → 0 as ε → 0.
Since the estimate (7) for ϕ is a particular case of the estimate (6), we will only

check (6). Now, (5) implies that∣∣Snψ(y,ω) − Snψ(x,ω)
∣∣

≤ mod
(
(k + 1)ε,ψ

)
card

{
n0(ω) ≤ j ≤ n | either Xx

j or X
y
j is in suppψ

}
+ 2n0(ω)max|ψ |

≤ mod
(
(k + 1)ε,ψ

)
card

{
j ≤ n | Xx

j ∈ U(k+1)ε(suppψ)
} + const(ω).

Here, mod(·,ψ) stands for the modulus of continuity of ψ with respect to the
distance d on the variable, and U(k+1)ε(suppψ) denotes the (k+1)ε-neighborhood
of the support of ψ , again with respect to d .

Let χ be a continuous function satisfying 0 ≤ χ ≤ 1 and that is equal to 1 on
U(k+1)ε(suppψ) and to 0 outside U(k+2)ε(suppψ). We have

card
{
j ≤ n | Xx

j ∈ U(k+1)ε(suppψ)
} ≤ Snχ(x,ω).

Thus ∣∣∣∣Snψ(y,ω) − Snψ(x,ω)

Snϕ(x,ω)

∣∣∣∣
≤ const(ω) + mod((k + 1)ε,ψ) · Snχ(x,ω)

Snϕ(x,ω)

−−−→
n→∞ mod

(
(k + 1)ε,ψ

) ·
∫

χ dν∫
ϕ dν

=: δ1(ε).

[Notice here that we have applied the fact that, by our choice of x, the equality (3)
holds for the functions χ and ϕ.] Since mod((k + 1)ε,ψ) tends to 0 as ε → 0 and
the quotient ∫

χ dν∫
ϕ dν

≤ ν(U(k+2)ε(suppϕ))∫
ϕ dν

remains bounded, this yields δ1(ε) → 0 as ε → 0. �

It is now easy to finish the proof of Theorem 6.5 in the case where all the G-
orbits are dense. Indeed, given any two ergodic P -invariant Radon measures ν1, ν2,
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for all x ∈ R and all compactly supported, real-valued function ψ , we have almost
surely

SNψ(x,ω)

SNϕ(x,ω)
−→

∫
ψ dνi∫
ϕ dνi

,

where i = 1,2. Thus,
∫

ψ dν1 = λ
∫

ψ dν2, with λ := ∫
ϕ dν1/

∫
ϕ dν2. This proves

that ν1 = λν2. The case of nonnecessarily ergodic ν1, ν2 follows from standard
ergodic decomposition type arguments.

The proof of Theorem 6.5 in the nonminimal case is more technical, because
the argument of collapsing the connected components of the complement of the
unique minimal invariant closed set M is delicate. Indeed, although this procedure
induces a minimal action from which the uniqueness of the stationary measure (up
to a scalar factor) may be easily deduced, establishing (2) is much more compli-
cated, mainly due to the fact that, after collapsing, the functions ψ,ϕ are no longer
continuous. Below we propose two different solutions to this problem.

FIRST PROOF OF THEOREM 6.5 IN THE NONMINIMAL CASE. As before, the
main point consists in obtaining a good estimate of the form (6). To do this, we
fix ε0 > 0, and we consider all the connected components of the complement of
M over which the oscillation of ψ is at least ε0. Since ψ has compact support,
there are only finitely many such components, say C1, . . . ,Ck . Given ε1 > 0, let
us consider a continuous function χ1 satisfying 0 ≤ χ1 ≤ 1 and that is equal to 1
on each Uε1(Ci) and to 0 outside

⋃
i U2ε1(Ci). Now, take ε2 > 0 such that, if

d(x, y) ≤ 3ε2, then either |ψ(x) − ψ(y)| ≤ 2ε0 or x belongs to
⋃

i Uε1(Ci). (The
existence of such an ε2 is easy to establish.) Finally, let χ be a continuous function
satisfying 0 ≤ χ ≤ 1 and that is equal to 1 on the set

S1 := {
x | there is y ∈ suppψ such that d(x, y) ≤ 3ε2

}
and to 0 outside {x | d(x, y) ≥ 4ε2 for all y ∈ suppψ}.

Notice that, although d is not a metric on the line, we still have that, if
d(x, y) ≤ ε, then with probability at least 1 − 1/k there is n0(ω) such that, for
all n ≥ n0(ω),

d
(
Xx

n,Xy
n

) ≤ (k + 1)ε.

Fix ε ≤ 3ε2/(k + 1). Given y ∈ R, take a point x that is generic in the sense of (3)
and such that d(x, y) ≤ ε. With probability at least 1 − 1/k we have∣∣Snψ(x,ω) − Snψ(y,ω)

∣∣ ≤
n∑

j=1

∣∣ψ(
Xx

j

) − ψ
(
X

y
j

)∣∣
≤ const(ω) + 2 max |ψ | card

{
j ≤ n

∣∣∣ Xx
j ∈ ⋃

i

Uε1(Ci)

}
+ 2ε0 card

{
j ≤ n | Xx

j ∈ S1
}

≤ const(ω) + 2 max |ψ |Snχ1(x,ω) + 2ε0Snχ(x,ω).
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Dividing by Snϕ(x,ω) and passing to the limit we obtain

lim sup
n→∞

|Snψ(x,ω) − Snψ(y,ω)|
Snϕ(x,ω)

≤ 2 max |ψ |
∫

χ1 dν∫
ϕ dν

+ 2ε0

∫
χ dν∫
ϕ dν

≤ 2 max |ψ |∫
ϕ dν

∑
i

ν
(
U2ε1(Ci)

) + 2ε0

∫
χ dν∫
ϕ dν

.

To conclude, notice that the first term can be made arbitrarily small by taking ε1
very small, since the ν-measure of the set

⋃
i Ci is zero. �

SECOND PROOF OF THEOREM 6.5 IN THE NONMINIMAL CASE. To obtain
an estimate of the form (6), we collapse the connected components of Mc, thus
obtaining a topological real line carring a minimal G-action. However, after col-
lapsing, the functions ψ and ϕ are no longer continuous. To solve this problem,
we consider a nonnegative function ϕ1 ∈ Cc(R) that is positive on the recurrence
interval K and is contant on each connected component of Mc. If we are able to
estimate (6) but for ϕ1 instead of ϕ and for any function ψ , then we will have

Snψ(y,ω)

Snϕ(y,ω)
= Snψ(y,ω)/Snϕ1(y,ω)

Snϕ(y,ω)/Snϕ1(y,ω)
−→

∫
ψ dν/

∫
ϕ1 dν∫

ϕ dν/
∫

ϕ1 dν
=

∫
ψ dν∫
ϕ dν

as we want to show.
Fix ε > 0. We leave to the reader the task of showing the existence of ψ1, χ1 in

Cc(R) that are constant on each connected component of Mc and satisfy:

(i) |ψ − ψ1| ≤ χ1;
(ii)

∫
χ1 dν ≤ ε.

Then using

Snψ(y,ω)

Snϕ1(y,ω)
= Snψ1(y,ω)

Snϕ1(y,ω)
+ Sn(ψ − ψ1)(y,ω)

Snϕ1(y,ω)

we obtain∣∣∣∣ Snψ(y,ω)

Snϕ1(y,ω)
−

∫
ψ dν∫
ϕ1 dν

∣∣∣∣
≤

∣∣∣∣Snψ1(y,ω)

Snϕ1(y,ω)
−

∫
ψ1 dν∫
ϕ1 dν

∣∣∣∣ + ∣∣∣∣Sn(ψ − ψ1)(y,ω)

Snϕ1(y,ω)

∣∣∣∣ + ∣∣∣∣
∫
(ψ1 − ψ)dν∫

ϕ1 dν

∣∣∣∣
≤

∣∣∣∣Snψ1(y,ω)

Snϕ1(y,ω)
−

∫
ψ1 dν∫
ϕ1 dν

∣∣∣∣ + ∣∣∣∣Snχ1(y,ω)

Snϕ1(y,ω)
−

∫
χ1 dν∫
ϕ1 dν

∣∣∣∣ + 2
∣∣∣∣
∫

χ1 dν∫
ϕ1 dν

∣∣∣∣.
As in the minimal case, we have∣∣∣∣Snψ1(y,ω)

Snϕ1(y,ω)
−

∫
ψ1 dν∫
ϕ1 dν

∣∣∣∣ −→ 0,

∣∣∣∣Snχ1(y,ω)

Snϕ1(y,ω)
−

∫
χ1 dν∫
ϕ1 dν

∣∣∣∣ −→ 0.
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Since ∣∣∣∣
∫

χ1 dν∫
ϕ1 dν

∣∣∣∣ ≤ ε∫
ϕ1 dν

,

this shows the desired convergence

Snψ(y,ω)

Snϕ1(y,ω)
−→

∫
ψ dν∫
ϕ1 dν

,

thus finishing the proof. �

7. Global stability at a finite distance. We say that an irreducible subgroup
G of Homeo+(R) has the strong contraction property if there exists a compact
interval L such that, for every compact interval I , there is a sequence of elements
hn of G such that hn(I ) ⊂ L for all n, and the diameter of hn(I ) tends to zero as
n tends to infinity. The group G has the weak contraction property if the property
above holds for all compact intervals I of length less than 1.

For example, every non-Abelian subgroup of the affine group has the strong

contraction property. In the opposite direction, the group H̃omeo+(S1) of home-
omorphisms of the real line commuting with the translation x �→ x + 1 does not
have the strong contraction property, since no interval of length greater than 1 can
be contracted to an interval of length less than 1. However, this group has the weak
contraction property.

Recall that the action of a subgroup G ⊂ Homeo+(R) is semi-conjugate to that
of an homomorphic image Ḡ ⊂ Homeo+(R) if there exists a surjective, nonde-
creasing, continuous map D : R → R such that D(g(x)) = ḡ(D(x)) for all x ∈ R
and all g ∈ G, where ḡ denotes the image of g under the homomorphism. (We have
already met this situation in the proof of Lemma 6.4.) The following result was ob-
tained by Malyutin [15], although an analogous statement due to McCleary (see,
e.g., [13], Theorem 7.E) was already known in the context of orderable groups. We
include a proof for completeness.

THEOREM 7.1. Let G be a finitely generated, irreducible subgroup of
Homeo+(R). Then one of the following possibilities occur:

• G has a discrete orbit;
• G is semi-conjugate to a minimal group of translations;
• G is semi-conjugate to a subgroup of H̃omeo+(S1) having the weak contraction

property;
• G has the strong contraction property.

PROOF. Assume that there are no discrete orbits. By Proposition 6.1, there
is a unique minimal nonempty closed G-invariant subset M. Now collapse each
connected component of Mc to a point to semi-conjugate G to a group Ḡ whose
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action is minimal. If G preserves a Radon measure, then after semi-conjugacy this
measure becomes a Ḡ-invariant Radon measure of total support and no atoms.
Therefore, Ḡ (resp., G) is conjugate (resp., semi-conjugate) to a group of transla-
tions.

Now suppose that G has no invariant Radon measure. We claim that the ac-
tion of Ḡ cannot be free. If the action was free, Ḡ would be conjugate to a
group of translations by Hölder’s theorem; see either [12] or [17]. Pulling back
the Lebesgue measure by the semi-conjugacy would provide a G-invariant Radon
measure, which is contrary to our assumption. So the action of Ḡ is not free.

Let ḡ ∈ Ḡ be a nontrivial element having fixed points, and let x̄0 be a point in
the boundary of Fix(ḡ). Then there is a left or right neighborhood I of x̄0 that is
contracted to x̄0 under iterates of either ḡ or its inverse. By minimality, every x̄

has a neighborhood that can be contracted to a point by elements in Ḡ. Coming
back to the original action, we conclude that every x ∈ R has a neighborhood that
can be contracted to a point by elements in G. Since G is finitely generated, such
a point can be chosen to belong to a compact interval L that intersects every orbit
(compare with Theorem 4.3).

For each x ∈ R define T (x) ∈ R∪{+∞} as the supremum of the y > x such that
the interval (x, y) can be contracted to a point in L by elements of G. Then either
T ≡ +∞, in which case the group G has the strong contraction property, or T (x) is
finite for every x ∈ R. In the last case, T induces a nondecreasing map T̄ : R → R
commuting with all the elements in Ḡ. Since the union of the intervals on which T̄

is constant is invariant by Ḡ, the minimality of the action implies that there is no
such interval, that is, T̄ is strictly increasing. Moreover, the interior of R \ T̄ (R)

is also invariant, hence empty because the action is minimal. In other words, T̄

is continuous. All of this shows that T̄ induces a homeomorphism of R into its
image. Since the image of T̄ is Ḡ-invariant, it must be the whole line. Therefore,
T̄ is a homeomorphism from the real line to itself. Observe that T̄ (x) > x for any
point x, which implies that T̄ is conjugate to the translation x �→ x + 1. After this

conjugacy, Ḡ becomes a subgroup of H̃omeo+(S1). This completes the proof. �

We now establish a probabilistic version of Theorem 7.1. Notice that in the first
two cases given by this theorem, the Markov chain X induces a random walk on a
(finitely generated) subgroup of the group of translations. In the other two cases,
we establish the global stability at a finite distance. More precisely, we obtain the
following result.

THEOREM 7.2. Let μ be an irreducible, finitely supported, symmetric prob-
ability measure on Homeo+(R) such that the group G generated by the support
of μ acts minimally on R. If G has the strong contraction property, then for any
x < y and any compact interval J , almost surely we have

1J

(
Xx

n

)∣∣Xy
n − Xx

n

∣∣ −→ 0 as n → ∞.(8)
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If G satisfies only the weak contraction property, then viewed (after conjugacy)
as a subgroup of H̃omeo+(S1), convergence (8) holds with positive probability for
any x < y < x + 1.

We will assume below that G has the strong contraction property, since the
case of the weak contraction property is analogous and may be left to the reader.
Moreover, the result in the latter context is not new. Indeed, by conjugacy into a

subgroup of H̃omeo+(S1), the P -invariant Radon measures become invariant by
the translation x �→ x + 1. Therefore, these mesures are proportional to the “pull-
back” of the unique P -stationary probability measure of the associated action of
G on the circle R/Z. Furthermore, for this associated action, a natural property of
strong contraction for random compositions holds. See [5], Section 5.1, for more
details.

The main technical ingredient of the proof of Theorem 7.2 is the next lemma,
which has an obvious extension to more general Markov processes.

LEMMA 7.3. In the context of Theorem 7.2, assume that G has the strong
contraction property, and let K be any compact interval of recurrence. Fix k ∈ N

and h1, . . . , hk in the support of μ. Then almost surely the following happens for
infinitely many n ≥ 0: the point Xx

n belongs to K and gn+1, . . . , gn+k coincide with
h1, . . . , hk , respectively.

PROOF. Due to the Markov property, it suffices to show that this situation
almost surely happens at least once. Let ξ : R → [0,1] be the function defined
by letting ξ(z) be the probability that there exists n ≥ 0 such that Xz

n ∈ K and
gn+i = hi for i = 1, . . . , k. We need to show that ξ(x) = 1, and we will actually
show that ξ(z) = 1 holds for all z ∈ R. To do this, let p := μ(h1) · · ·μ(hk) > 0. For
each ω ∈ � and z ∈ R, let n(z) ≥ 0 be the first-entry time of z into K . A moment
reflexion shows that

ξ(z) = p + (1 − p)E
(
ξ
(
Xz

n(z)+k

)|(gn(z)+1, . . . , gn(z)+k) �= (h1, . . . , hk)
)
.

Letting � := infz∈R ξ(z), this yields

� ≥ p + (1 − p)�.

This easily implies that � = 1, as we wanted to show. �

The proof of Theorem 7.2 when G has the strong contraction property is now
easy. Indeed, let L be the interval of contraction, and let K := [a, b] be a com-
pact interval of recurrence containing J and x, y. As in Lemma 6.6, the value of
ν(fn(K)) converges to a limit l(ω) almost surely. Given ω ∈ � for which it con-
verges, we fix M > 0 such that ν(fn(K)) ≤ M holds for all n. Choose an interval
I := [ā, b̄] containing K so that ν[ā, a] > M and ν[b, b̄] > M . Given ε > 0, let
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h ∈ � be such that h(I) ⊂ J and |h(I)| ≤ ε. Write h in the form hk · · ·h1, where
each hi is in the support of μ. Lemma 7.3 shows that if ω is generic there exist
infinitely many n ∈ N such that:

• fn(x) belongs to K ;
• ν(fn(K)) ≤ M ;
• (gn+1, . . . , gn+k) = (h1, . . . , hk).

Since fn(K) intersects K and its ν-measure is bounded from above by M , it must
be contained in I . Therefore,

fn+k(K) = gn+k · · ·gn+1fn(K) = hk · · ·h1fn(K) ⊂ hk · · ·h1(I ) = h(I) ⊂ L,

hence ∣∣fn+k(K)
∣∣ ≤ ∣∣h(I)

∣∣ < ε.

Since n can be taken as large as required and ν has no atoms, we must necessarily
have l(ω) ≤ ε. Since this is true for all ε > 0, we conclude that l(ω) = 0. This
implies the desired result.

It should be emphasized that the distance d induced by ν and the usual distance
on R may be very different in neighborhoods of ±∞. As an example, consider the
case of a non-Abelian subgroup G of the affine group generated by an expansion
and a translation. Writing g(x) = agx + bg for each g ∈ G, the homomorphism
g �→ log(ag) induces a (symmetric) random walk on Z, which is therefore recur-
rent. As a consequence, the length of the interval [Xx

n,X
y
n] oscillates between 0

and ∞ even though its ν-measure converges to zero.

8. Derriennic’s property and Lipschitz actions. Let μ be a symmetric prob-
ability measure on Homeo+(R) with finite support generating an irreducible
group G. We will say that the pair (G,μ) has the Derriennic property if, for every
x ∈ R,

x =
∫
G

g(x) dμ(g).

This terminology is inspired by [7], where Derriennic studies Markov processes
on the real line satisfying E(Xx

1 ) = x for large values of |x|. As we demonstrate
below, under very general conditions, this property is always guaranteed after a
suitable semi-conjugacy.

PROPOSITION 8.1. Let μ be a finitely supported, symmetric measure on
Homeo+(R) whose support generates an irreducible group G without discrete
orbits. Then G is semi-conjugate to a group Ḡ so that the pair (Ḡ,μ) has the
Derriennic property.
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PROOF. Since G has no discrete orbits, there is a unique nonempty G-
invariant closed subset M in which every orbit is dense. By Lemma 6.4, the sup-
port of the P -invariant measure ν coincides with M. Moreover, Lemma 6.3 shows
that no P -invariant measure ν has atoms. Now fix a point x0 in the real line and
consider the map

x ∈ R �→ D(x) :=
{

ν[x0, x], if x ≥ x0,
−ν[x, x0], if x ≤ x0.

This map is continuous and nondecreasing. Furthermore, Lemma 4.1 implies that
this map is also surjective. Consequently, since the support of ν is G-invariant,
D induces a semi-conjugacy from G to a group Ḡ whose action is minimal. We
claim that the pair (Ḡ,μ) has the Derriennic’s property. Let P̄μ be the transition
operator associated to the Markov process. Notice that D maps the measure ν to
the Lebesgue measure, which is then P̄μ-invariant. Now, for any x < y, we have

y − x =
∫
Ḡ

(
ḡ(y) − ḡ(x)

)
dμ(ḡ),

which implies that the value of the drift,

Dr(Ḡ,μ) :=
∫
Ḡ

(
ḡ(x) − x

)
dμ(ḡ)

is independent of x. To complete the proof, we need to show that the drift vanishes.
To do this, we closely follow the argument of the first proof of [5], Proposition 5.7.

Fix any a < b, and let us integrate (9) over [a, b], then doubling the integral in
order to couple g and g−1,

2
∫ b

a
Dr(Ḡ,μ)dx =

∫ b

a

(∫
G

(
ḡ(x) − x

)
dμ(ḡ) +

∫
G

(
ḡ−1(x) − x

)
dμ(ḡ)

)
dx

=
∫
G

(∫ b

a

[(
ḡ(x) − x

) + (
ḡ−1(x) − x

)]
dx

)
dμ(ḡ).

Now, we will transform the value under the integral by means of the following
notion.

DEFINITION 8.2. For any c ∈ R and ḡ ∈ Homeo+(R), let

�ḡ(c) = �ḡ−1(c)

= mes
{
(x, y) | either x < c < y < ḡ(x) or x < c < y < ḡ−1(x)

}
,

where mes is the two-dimensional Lebesgue measure; see Figure 1. Equivalently,

�ḡ(c) = �ḡ−1(c) =

⎧⎪⎪⎨⎪⎪⎩
∫ x

ḡ−1(x)

[
ḡ(s) − s

]
ds, if ḡ(x) ≥ x,∫ x

ḡ(x)

[
ḡ−1(s) − s

]
ds, if ḡ(x) ≤ x.
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FIG. 1. Definition of �ḡ and illustration for the proof of Lemma 8.3.

A geometric argument based on symmetry yields the following lemma.

LEMMA 8.3. For any ḡ ∈ Homeo+(R) and for any interval [a, b] we have∫ b

a

[(
ḡ(x) − x

) + (
ḡ−1(x) − x

)]
dx = �ḡ(b) − �ḡ(a).(9)

PROOF. Notice that
∫ b
a (ḡ(x) − x)dx equals

mes
{
(x, y) | a < x < b,x < y < ḡ(x)

} − mes
{
(x, y) | a < x < b, ḡ(x) < y < x

}
,

which may be rewritten as

mes
{
(x, y) | a < x < b,b < y < ḡ(x)

}
+ mes

{
(x, y) | a < x < b,a < y < b,x < y < ḡ(x)

}
(10)

− mes
{
(x, y) | a < x < b, ḡ(x) < y < a

}
− mes

{
(x, y) | a < x < b,a < y < b, ḡ(x) < y < x

}
.

A similar equality holds when changing ḡ by ḡ−1. Now, when taking the sum of∫ b
a (ḡ(x) − x)dx and

∫ b
a (ḡ−1(x) − x)dx, we see that the corresponding second

and fourth terms from (10) cancel each other. Indeed, these terms correspond to
the couples (x, y) ∈ [a, b]2, and we have x < y < ḡ(x) if and only if ḡ−1(y) <

x < y. The symmetry argument then shows that the second term for ḡ is exactly
the negative of the fourth term for ḡ−1, and vice versa.

Therefore, the value of∫ b

a

[(
ḡ(x) − x

) + (
ḡ−1(x) − x

)]
dx
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equals [
mes

{
(x, y) | a < x < b,b < y < ḡ(x)

}
+ mes

{
(x, y) | a < x < b,b < y < ḡ−1(x)

}]
− [

mes
{
(x, y) | a < x < b, ḡ(x) < y < a

}
+ mes

{
(x, y) | a < x < b, ḡ−1(x) < y < a

}]
,

and one can easily see that the expressions inside the brackets are equal to �ḡ(b)

and �ḡ(a), respectively; see Figure 1. This proves the desired equality. �

Now, we can complete the proof of Proposition 8.1: by integrating (9) over G

we obtain, for any a < b,

2(b − a)Dr(Ḡ,μ) =
∫
G

(
�ḡ(b) − �ḡ(a)

)
dμ(ḡ).

Denoting now �μ(c) := ∫
G �ḡ(c) dμ(ḡ), this yields

2(b − a)Dr(Ḡ,μ) = �μ(b) − �μ(a).

The last equality shows that �μ is an affine function. On the other hand, �μ is an
average of nonnegative functions, and thus it is nonnegative. Therefore, �μ must
be constant, which implies that Dr(Ḡ,μ) = 0. �

The next proposition demonstrates the relevance of the Derriennic property in
the study of the smoothness of a group action.

PROPOSITION 8.4. If a pair (G,μ) has the Derriennic property, then every
element of G is a Lipschitz map. Moreover, the displacement function x �→ g(x)−
x is uniformly bounded in x for every g ∈ G.

PROOF. It suffices to prove the lemma for the elements of the support of μ.
To check the Lipschitz property, notice that for any g0 ∈ suppμ and any x < y

we have

μ(g0) · (
g0(y) − g0(x)

) ≤
∫
G

μ(g) · (
g(y) − g(x)

)
dμ(g) = y − x

and thus

g0(y) − g0(x) ≤ 1

μ(g0)
· (y − x).

To obtain the bounded displacement property, notice that for any g ∈ suppμ

and for any x ∈ R, the domain that we have used to define �g(x) contains [as g

is 1/μ(g)-Lipschitz] a rectangular triangle with sides |x − g(x)| and μ(g0) · |x −
g(x)|; see Figure 2.
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FIG. 2. Triangles.

Hence, �g(x) ≥ μ(g)
2 |x − g(x)|2, which implies that �μ ≥ μ(g)2

2 |x − g(x)|2.
Since �μ does not depend on x, we obtain the desired uniform upper bound for
the displacement |g(x) − x|. �

As a consequence, we have the following result.

THEOREM 8.5. If G is an irreducible, finitely generated subgroup of
Homeo+(R), then there exists a homeomorphism D : R → R such that, for every
g ∈ G, the map D ◦g ◦D−1 is Lipschitz and has uniformly bounded displacement.

PROOF. Without loss of generality, assume that the G-action is minimal—
otherwise, consider the subgroup of Homeo+(R) generated by G and two ratio-
nally independent translations. By Theorem 8.1, G is semi-conjugate to a group
satisfying the Derriennic property. Since the orbits of G are dense, the semiconju-
gacy is in fact a conjugacy. Now the desired conclusion follows as an application
of Proposition 8.4. �

It should be pointed out that the result above also follows from [5], Theorem D
(see also [4]) by means of rather tricky—and less conceptual—arguments. The
reader is referred to [6] for a detailed discussion on this. Finally, a conjugacy into
a group of C1 diffeomorphisms of the line is not always possible; see [16] and
references therein.
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