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VARIANCE OF PARTIAL SUMS OF STATIONARY SEQUENCES

BY GEORGE DELIGIANNIDIS AND SERGEY UTEV

University of Oxford and University of Nottingham

Let X1,X2, . . . be a centred sequence of weakly stationary random vari-
ables with spectral measure F and partial sums Sn = X1 + · · · + Xn. We
show that var(Sn) is regularly varying of index γ at infinity, if and only
if G(x) := ∫ x−x F (dx) is regularly varying of index 2 − γ at the origin
(0 < γ < 2).

1. Introduction. Let X1,X2, . . . be a sequence of centered weakly stationary
random variables with finite second moments and spectral measure F , such that
rk := cov(X0,Xk) = ∫ π

−π eitk dF(t), where to simplify calculations we assume that
F is a symmetric measure about the origin, and let G(x) = ∫ x

−x F (dx). Denote by
Sn the sequence of partial sums Sn = X1 + · · · + Xn.

The main result of the paper is the following.

THEOREM 1.1. For γ ∈ (0,2), define C(γ ) = �(1 + γ ) sin(
γπ
2 )/[π(2 − γ )].

Let L(x) be a positive function, slowly varying at infinity. Then:

(i) G(x) ∼ C(γ )K0x
2−γ L(1/x) as x → 0 if and only if

(ii) var(Sn) ∼ K0n
γ L(n) as n → ∞.

In particular, var(Sn)/n → K0 if and only if G(x)/x → K0/π .

The rate of growth of the variance of the partial sums Sn has received consid-
erable attention in the literature due to its key role in the limit theory of stationary
random sequences; see Bradley [4], Chapter 8, and Samorodnitsky [16], Chapter 5,
for comprehensive reviews.

Asymptotically linear behavior var(Sn) ∼ K0n. To prove asymptotic normality,
a common restriction on the dependence structure is to assume that the growth of
var(Sn) is asymptotically linear (Merlevède, Peligrad and Utev [13]).

For this particular situation, there exist several results which guarantee the con-
vergence of var(Sn)/n under sufficient conditions given in terms of mixing coef-
ficients, linear dependence coefficients or in terms of the covariances where it is
well known that if limn

∑n
k=−n EX0Xk exists, then limn var(Sn)/n also exists in

[0,∞), and the two limits are equal ([4], Chapter 5).
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In terms of the spectral measure F , Ibragimov’s [10] result states that when
F is absolutely continuous, a sufficient condition is the continuity of the spectral
density f at the origin, in which case var(Sn)/n → 2πf (0)—this follows from the
following representation:

var(Sn)

n
= 1

n

∫ π

−π

sin2(nt/2)

sin2(t/2)
f (t)dt

and Fejér’s theorem on the Cesàro summability of the Fourier series of the spectral
density f .

The continuity of the spectral density f at the origin is by no means necessary,
and in fact Hardy and Littlewood [9], Theorem C, in 1924 proved that a necessary
and sufficient condition is the convergence of

1

t

∫ t

−t
f (s)ds → c0 ∈ (0,∞),

which has appeared before in a probabilistic context [5].
General case var(Sn) ∼ K0n

γ L(n). Necessary conditions usually require re-
strictive assumptions on the covariances such as regular variation in the Zygmund
sense. Several sufficient conditions are stated either in terms of the covariances or
of the spectral density, for example, f (x) ∼ |x|−αL(1/|x|), for α ∈ (0,1), implies
that var(Sn) ∼ n1+αL(n); see [16].

Even when γ = 1, the asymptotically nonlinear behavior of the variance has
appeared often in the limit theorems for dependent variables, such as under general
mixing conditions (see, e.g., [10, 12, 13]) or specific models such as random walk
in random scenery; see [3, 11].

The case γ > 1 frequently occurs in long-range dependent time-series when the
covariances are not summable or the spectral density has an appropriate singularity
at the origin which often results in non-Gaussian limiting behavior [8, 15–18]. The
case γ < 1 occurs when the spectral density vanishes at the origin in which case
both non-Gaussian [15], and Gaussian limits [18], have appeared in the literature.

Technique. It is not clear whether the approach of Hardy and Littlewood [9]
(and Zygmund [19]), can handle the slowly varying function and the case γ �= 1.
We suggest an alternative technique, which is based on weak convergence and
Fourier analysis of tempered distributions, which allows us to work directly with
spectral measures, without assuming absolute continuity.

Subsequences. Subsequences var(S2n)/2n have often been applied through the
use of dyadic induction and stationarity, in the context of mixing conditions, mar-
tingale approximations, central limit theorems and invariance principles; see [13].
The question whether convergence along a subsequence is enough to guarantee
convergence of the full sequence has been around for some time now, and it was
presented to us as a conjecture by M. Peligrad. Although the answer is positive un-
der extra conditions such as ρ-mixing, the necessary and sufficient condition stated
in Theorem 1.1 allows us to construct a counterexample proving that convergence
along dyadic subsequences does not imply convergence over the full sequence.
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PROPOSITION 1.2. There exists a stationary process such that var(S2r )/2r

converges, but the full sequence var(Sn)/n does not.

The proofs of Theorem 1.1 and Proposition 1.2 are given in the next section
along with several auxiliary results which are of independent interest.

2. Proofs. We start by proving three auxiliary lemmas. By C we denote a
generic positive constant.

Auxiliary results. Our starting point is the following inequality.

LEMMA 2.1. For any A > 0,

4

π2 n2G(1/n) ≤ var(Sn) ≤ G(π) + π2

4
n2G(A/n) + π2

∫ π

A/n

G(y)

y3 dy.

PROOF. Define the positive Fejér kernel In(y) = sin2(ny/2)/ sin2(y/2). To
prove the lower bound, notice that In(y) ≥ 4n2/π2 for 0 < y < 1/n, and hence

var(Sn) =
∫ π

0
In(y)G(dy) ≥

∫ 1/n

0

4

π2 n2G(dy) ≥ 4

π2 n2G(1/n).

To prove the upper bound, let A ≤ n and apply the bounds In(y) ≤ n2π2/4 for
y ≤ A/n and In(y) ≤ π2/y2 for y ≥ A/n and integration by parts, to derive

var(Sn) =
∫ A/n

0
In(y)G(dy) +

∫ π

A/n
In(y)G(dy)

≤
∫ A/n

0

n2π2

4
G(dy) +

∫ π

A/n

π2

y2 G(dy)

≤ π2

4
n2G(A/n) + G(π) + π2

∫ π

A/n

G(y)

y3 dy. �

The next result establishes that upper bounds of var(Sn)/g(n), where g(n) =
nγ L(n) for γ ∈ (0,2), are equivalent to upper bounds for the spectral measure G.

LEMMA 2.2. Suppose {nk}k≥0 is a positive nondecreasing integer sequence
such that nk → ∞, and supnk+1/nk = κ < ∞. Then the following are equivalent:

(1) ∃C > 0 and such that var(Snk
) ≤ Cg(nk);

(2) ∃C > 0 such that G(x) ≤ Cx2−γ L(1/x);
(3) ∃C > 0 such that var(Sn) ≤ Cg(n).

PROOF. (1)⇒(2). From Lemma 2.1 and our assumptions, we have that for
some positive constant C > 0, G(1/nk) ≤ π2Cn

γ−2
k L(nk)/4. Thus, by mono-

tonicity of G and properties of slowly varying functions [2], for 1/nk+1 < x ≤
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1/nk ,

G(x) ≤ G(1/nk) ≤ π2C

4
κ2−γ x2−γ L(1/x) sup

1/κ≤λ≤1

L(λ/x)

L(1/x)
≤ C′x2−γ L(1/x).

(2) ⇒ (3). We apply Lemma 2.1 with A = 1 to get

var(Sn) ≤ G(π) + π2

4
n2G(1/n) + π2

∫ π

1/n

G(y)

y3 dy

≤ C

(
1 + g(n) +

∫ π

1/n
y−γ−1L(1/y)dy

)
.

Using the change of variables x = 1/y and since γ − 1 > −1,
∫ π

1/n
y−γ−1L(1/y)dy =

∫ n

1/π
xγ−1L(x)dx ∼ nγ L(n)

γ

as n → ∞, by the Tauberian theorem ([2], Proposition 1.5.8). Therefore there is a
constant C such that var(Sn) ≤ Cg(n) which completes the proof since (3) ⇒ (1)
is obvious. �

The situation is similar when one considers lower bounds for var(Sn) and G(x).

LEMMA 2.3. Suppose that there exist positive constants C1 and C2 such that
G(x) ≤ C1x

2−γ L(1/x) and var(Sn) ≥ C2g(n). Then there exists a positive con-
stant C3 such that G(x) > C3x

2−γ L(1/x).

PROOF. We proceed by contradiction and assume that there is a sequence
0 < yk → 0 such that G(yk)/y

2−γ
k L(1/yk) → 0, as k → ∞. Then we can

construct a further sequence 1 ≤ Ak → ∞ slowly enough so that Akyk → 0,
G(Akyk)/y

2−γ
k L(1/yk) → 0, and L(1/Akyk)/L(1/yk) → 1.

Then for nk = [1/yk]+ 1 → ∞, we have by Lemma 2.1, the Tauberian theorem
and the monotonicity of G, for generic positive constants C,C′ > 0, as k → ∞,

var(Snk
)

g(nk)
≤ C

(
1

g(nk)
+ n2

kG(Ak/nk)

n
γ
k L(nk)

+ 1

n
γ
k L(nk)

∫ π

Ak/nk

yk
−3G(y)dy

)

≤ C′
(

1

g(nk)
+ G(Akyk)

yk
2−γ L(1/yk)

+ L(1/ykAk)

A
γ
k L(1/yk)

)
→ 0,

which contradicts the assumptions of the lemma. �

REMARK 2.4. From Lemma 2.1 it follows that the converse of Lemma 2.3 is
also true.
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REMARK 2.5. For the boundary case γ = 0, Theorem 1.1 does not hold in
general. For example, for G(x) = x2 the direct calculations show that var(Sn) =
4 ln(n) + O(1) which is not bounded. Actually, Robinson [14] proved that

sup
n

var(Sn) < ∞ iff
∫ π

0
x−2 dG(x) < ∞.

When cov(X0,Xn) → 0, the Leonov dichotomy holds; either var(Sn) → ∞ or
supn var(Sn) < ∞; see Bradley [4], Chapter 8. However, the dichotomy is not true
in general even for ergodic sequences as it follows, for example, from the Aaronson
and Weiss [1] construction on Chacon’s ergodic transformations.

A nonergodic counterexample for Gaussian measures easily follows by taking
G({2π2−k}) = 4−k k ≥ 2, and following the calculations similarly to Samorodnit-
sky; see [16], Chapter 5. More exactly, then

sup
k

var(S2k ) < ∞ and sup
n

var(Sn) = ∞.

REMARK 2.6. For the boundary case γ = 2, the following dichotomy easily
follows from Lemma 2.1.

COROLLARY 2.7. Either lim infn→∞ var(Sn)/n2 > 0 or var(Sn)/n2 → 0.

This fact also follows from the von Neumann L2 ergodic theorem which states
that E(S2

n)/n2 vanishes if and only if the spectral measure has no atom at the
origin; see [6].

Also from Lemma 2.1, the following corollary easily follows.

COROLLARY 2.8. Let γ ∈ (0,2], and {nk}k∈Z a nonnegative increasing inte-
ger sequence such that supk nk+1/nk < ∞. Then the following are equivalent:

(1) var(Snk
)/n

γ
k → 0;

(2) x2−γ G(x) → 0 as 0 < x → 0; and
(3) var(Sn)/nγ → 0.

Unlike the case γ = 2, for γ �= 2, the equivalence does not hold in general with-
out the assumption supk nk+1/nk < ∞ as it follows from Theorem 1.1 by using a
slowly varying function L such that lim infn→∞ L(n) = 0 and lim supn→∞ L(n) =
∞.

Proof of the main results. We are now ready to prove the main results. Let L be
a positive function slowly varying at infinity, 2 − γ ∈ (0,2) and g(n) = nγ L(n).
The sufficiency part in Theorem 1.1 will be stated as an independent lemma.

LEMMA 2.9. Let G(x) ∼ x2−γ L(1/x) as x → 0. Then, var(Sn)/g(n) →
1/C(γ ).
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PROOF. Start with the representation

var(Sn) =
∫ M

0

sin2(y)

n2 sin2(y/n)
n2G(2 dy/n) +

∫ nπ/2

M

sin2(y)

n2 sin2(y/n)
n2G(2 dy/n)

=: In,M + Jn,M

for fixed M ≤ n.
The inequalities n2 sin2(y/n) ≥ 4y2/π2, G(x) ≤ Cx2−γ L(1/x) and integration

by parts give

Jn,M ≤ π2

4

∫ nπ/2

M
y−2n2G(2 dy/n) ≤ π2

4

[
4
G(π)

π2 +C23−γ
∫ ∞
M

nγ L(n/2y)

y1+γ
dy

]
.

Bounding the integral term by using the change of variables x = n/2y and the
Tauberian theorem, we then derive

Jn,M ≤ π2

4

[
4
G(π)

π2 + C23−γ 2γ

γ

(
n

2M

)γ

L

(
n

2M

)]
= O(1) + O

(
g(n/2M)

)
.

By regular variation g(n/2M)/g(n) → (2M)−γ and therefore

var(Sn)

g(n)
= In,M

g(n)
+ O

(
1/g(n)

) + O
(
M−γ )

.(1)

Notice that for y ≤ M ≤ n, sin2(y)/n2 sin2(y/n) = sin2(y)/y2 + O(M2/n2), and
thus

In,M

g(n)
=

∫ M

0

sin2(y)

y2

n2−γ G(2 dy/n)

L(n)
+ O

(
M2/nγ )

.

By regular variation of G, it follows that for y ≤ M ,

μn

([0, y)
) := n2−γ G(2y/n)

L(n)(2M)2−γ
→

(
y

M

)2−γ

,

which defines a probability measure on [0,M], and hence, by weak convergence,
since sin2(y)/y2 is continuous and bounded, there exists a sequence EM(n) → 0,
as n → ∞ for all M , such that

In,M

g(n)
= 22−γ (2 − γ )

∫ M

0

sin2(y)

y1+γ
dy + EM(n) + O

(
M−γ )

= 22−γ (2 − γ )

∫ ∞
0

sin2(y)

y1+γ
dy + EM(n) + O

(
M−γ )

= (
1/C(γ )

) + EM(n) + O
(
M−γ );

see [7] for the integral. This together with (1) implies the lemma. �
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PROOF OF THEOREM 1.1. Implication (2) ⇒ (1) immediately follows from
Lemma 2.9.

For (1) ⇒ (2), let tj → ∞ be a positive increasing integer sequence. Similar to
Lemma 2.9, we derive

var(Stj )

g(tj )
=

∫ M

0

sin2(y)

y2

t
2−γ
j G(2 dy/tj )

L(tj )
+ O

(
M2/t

γ
j

) + O
(
M−γ )

.

For y ≤ M we have

t
2−γ
j G(2M/tj )

L(tj )
≤ CM2−γ L(tj /2M)

L(tj )
≤ CM2−γ .

Helly’s principle and a diagonal argument imply that there exists a monotone in-
creasing function h, defined on [0,∞), and a subsequence j ′ such that

Ftj ′ (y) := t
2−γ

j ′ G(2y/tj ′)

L(tj ′)
→ h(y)(2)

as j ′ → ∞ for all continuity points y of h. Since h(y) ≤ CM2−γ for y ≤ M , and
sin2(y)/y2 is continuous and bounded on [0,M], by weak convergence we have
that

∫ M

0

sin2(y)

y2 Ftj ′ (dy) →
∫ M

0

sin2(y)

y2 h(dy).

Therefore, writing an identity for arbitrary M > 0 and then letting M → ∞

K0 = lim
j ′→∞

var(Stj ′ )

g(tj ′)
=

∫ M

0

sin2(y)

y2 h(dy) + O
(
M−γ ) =

∫ ∞
0

sin2(y)

y2 h(dy).

Let [x] denote the integer part of x, and notice that from (2) and regular variation
of G, we also have

F
([rtj ′ ]) = [rtj ′ ]2−γ G(2y/[rtj ′ ])

L([rtj ′ ]) → r2−γ h(y/r)

as j ′ → ∞ for arbitrary r > 0 and all continuity points y/r of h. Since
var(Sn)/g(n) converges on the full sequence, it follows that

K0 = lim
j ′→∞

var(S[rtj ′ ])
g([rtj ′ ]) =

∫ ∞
0

sin2(y)

y2 r2−γ h(dy/r)

for any r > 0, implying that
∫ ∞

0

sin2(rx)

x2 h(dx) = rγ K0.(3)
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For y > 0, let ψ(y) := limN→∞
∫ N
y x−2h(dx), which is well defined since by in-

tegration by parts we have
∫ ∞
y

x−2h(dx) = lim
N→∞

[
2

∫ N

y

h(x) − h(y)

x3 dx

]
= 2

∫ ∞
y

h(x) − h(y)

x3 dx < ∞.

The idea is to identify ψ from its Fourier transform using the convolution-type
equation (3); along these lines we continue by calculating the sine-transform of ψ

by interchanging the integrals, which is allowed since the positive function ψ is
bounded away from 0 and |ψ(y)| ≤ Cy−γ ,

∫ a

0
sin(ry)ψ(y)dy =

∫ a

0

(∫ ∞
x=y

sin(ry)
h(dx)

x2

)
dy

= 2

r

∫ a

0

sin2(rx/2)

x2 h(dx) + 2

r

∫ ∞
a

sin2(ax/2)

x2 h(dx)

→
(

r

2

)γ−1

K0 = lim
a→∞

∫ a

0
sin(ry)ψ(y)dy

as a → ∞ for all r > 0.
For y < 0, we define ψ(y) = −ψ(−y) so that for any r ∈ R, we have

lim
a→∞

∫ a

−a
sin(ry)ψ(y)dy = 22−γ sgn(r)|r|γ−1K0.(4)

To identify the function ψ and therefore h, we apply Fourier analysis and treat ψ

as a distribution acting on the Schwartz space of test functions S = S(R) such that
supx |xαφ

(β)
n (x)| < ∞ for all nonnegative integers α, β . More exactly, we define a

linear functional on S by

�[φ] =
∫ ∞

0
ψ(y)

(
φ(y) − φ(−y)

)
dy,

which is continuous since

∣∣�[φ]∣∣ ≤ 4 sup
y

∣∣φ′(y)
∣∣(∫ 1

0
ψ(y)y dy

)
+ 4 sup

y

∣∣yφ(y)
∣∣(∫ ∞

1

(
ψ(y)/y

)
dy

)

≤ Cψ

(
sup
y

∣∣φ′(y)
∣∣ + sup

y

∣∣yφ(y)
∣∣).

The next step is to calculate the Fourier transform of the tempered distribution �

through the formula �̂[φ] = �[φ̂]. Then given φ ∈ S we have

�[φ̂] =
∫ ∞
y=0

ψ(y)

(∫ ∞
t=−∞

(
eity − e−ity)

φ(t)dt

)
dy

= i
∫ ∞
y=−∞

ψ(y)

(∫ ∞
t=−∞

sin(yt)φ(t)dt

)
dy.
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Observe that | sin(yt)| ≤ |yt |, |ψ(y)| ≤ C|y|−γ , and 1−γ > −1 and so for fixed a,
∫ a

−a

∫ ∞
−∞

∣∣ψ(y)
∣∣∣∣sin(yt)

∣∣∣∣φ(t)
∣∣ dt dy ≤

∫ a

−a

∫ ∞
−∞

|y|1−γ
∣∣tφ(t)

∣∣ dt dy < ∞.

Therefore by Fubini’s theorem,

�[φ̂] = i lim
a→∞

∫ a

−a
ψ(y)

∫ ∞
t=−∞

sin(yt)φ(t)dt dy

= i lim
a→∞

∫ ∞
−∞

φ(t)

∫ a

y=−a
ψ(y) sin(yt)dy dt.

We next bound the integrand in order to use dominated convergence. Let τ =
[ta/π], and write

I :=
∫ a

y=0
ψ(y) sin(yt)dy = 1

t

∫ ta

x=0
sin(x)ψ(x/t)dx

= 1

t

τ−1∑
j=0

∫ (j+1)π

jπ
sin(x)ψ(x/t)dx + 1

t

∫ ta

τπ
sin(x)ψ(x/t)dx.

Since τπ is the largest multiple of π less than ta, for x ∈ [τπ, ta] sin(x) does not
change sign and therefore

∣∣∣∣1

t

∫ ta

τπ
sin(x)ψ(x/t)dx

∣∣∣∣ ≤ |t |γ−1
∫ ta

τπ

| sin(x)|
|x|γ dx ≤ C|t |γ−1.

The other term can be written as an alternating sum

Q := 1

t

τ−1∑
j=0

(−1)j
∫ (j+1)π

jπ

∣∣sin(x)
∣∣ψ(x/t)dx.

From the fact that ψ is decreasing, we can then show that

cj :=
∫ (j+1)π

jπ

∣∣sin(x)
∣∣ψ(x/t)dx ≥

∫ (j+1)π

jπ

∣∣sin(x)
∣∣ψ(

(j + 1)π/t
)

dx

=
∫ (j+2)π

(j+1)π

∣∣sin(x)
∣∣ψ(

(j + 1)π/t
)

dx ≥
∫ (j+2)π

(j+1)π

∣∣sin(x)
∣∣ψ(x/t)dx = cj+1,

and thus the sum Q is conditionally convergent and in absolute value less than its
first term,

|Q| ≤ 1

t

∣∣∣∣
∫ π

0
sin(x)ψ(x/t)dx

∣∣∣∣ = 1

t

∫ π

0
sin(x)ψ(x/t)dx

≤ C

t

∫ π

0
sin(x)

tγ

xγ
dx = Ctγ−1.
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Overall the above calculations imply that for all a > 0,
∣∣∣∣φ(t)

∫ a

y=−a
sin(yt)ψ(y)dy

∣∣∣∣ ≤ C
∣∣φ(t)

∣∣tγ−1,

where C does not depend on a. Furthermore since γ − 1 > −1, the function
|φ(t)|tγ−1 has at most an integrable singularity at the origin and is integrable.
Therefore by dominated convergence and (4),

�̂[φ] = i
∫ ∞
−∞

φ(t)

(
lim

a→∞

∫ a

y=−a
ψ(y) sin(yt)dy

)
dt

=
∫ ∞
−∞

φ(t)
(
i22−γ K0 sgn(t)|t |γ−1)

dt.

Then inverting the Fourier transform of the distribution � (see [7], e.g.) we identify
the function ψ(y), and by standard calculations h(x), for x, y > 0, γ ∈ (0,2)

ψ(y) = K0D(γ )y−γ , h(x) = (
γ /(2 − γ )

)
K0D(γ )x2−γ ,

where D(γ ) = �(γ )22−γ sin(γ π/2)/π . We have shown that for every integer se-
quence tj → 0, there exists a subsequence tj ′ → ∞ such that for x, r > 0 and
γ ∈ (0,2)

[rtj ′ ]2G(x/[rtj ′ ])
g([rtj ′ ]) → r2−γ h(x/2r) = (

γ /(2 − γ )
)
K0D(γ )(x/2)2−γ .

From this, by standard limiting arguments, we now deduce that

lim
x→0

G(x)

x2−γ L(1/x)
= (

γ /(2 − γ )
)
K0D(γ )(1/2)2−γ = C(γ )K0,

which proves the theorem. �

PROOF OF PROPOSITION 1.2. The proof is through a counterexample. Let
G(x) = 2−k , for x ∈ (2−(k+1),2−k], for k ≥ 1. Then obviously limx→0 G(x)/x

does not exist, as different subsequences give different limits. Therefore by Theo-
rem 1.1 the limit of the full sequence var(Sn)/n cannot exist.

On the other hand, by direct calculation on the subsequence 2r ,

var(S2r )

2r
=

∞∑
k=1

sin2(
2r−k−1)

2k+1−r →
∞∑

k=0

sin2(2k)

2k
+

∞∑
k=1

2k sin2(
2−k) ∈ (0,∞),

completing the proof of the proposition. �
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