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BEHAVIORS OF ENTROPY ON FINITELY GENERATED GROUPS

BY JÉRÉMIE BRIEUSSEL1

Kyoto University

A variety of behaviors of entropy functions of random walks on finitely
generated groups is presented, showing that for any 1

2 ≤ α ≤ β ≤ 1, there is
a group � with measure μ equidistributed on a finite generating set such that

lim inf
logH�,μ(n)

logn
= α, lim sup

logH�,μ(n)

logn
= β.

The groups involved are finitely generated subgroups of the group of auto-
morphisms of an extended rooted tree. The return probability and the drift
of a simple random walk Yn on such groups are also evaluated, providing an
example of group with return probability satisfying

lim inf
log|logP(Yn =� 1)|

logn
= 1

3
, lim sup

log|logP(Yn =� 1)|
logn

= 1

and drift satisfying

lim inf
log E‖Yn‖

logn
= 1

2
, lim sup

log E‖Yn‖
logn

= 1.

1. Introduction. The characterization of groups by an asymptotic description
of their Cayley graphs may be dated back to Folner’s criterion of amenability by
quasi-invariant subsets [20]. Shortly after, Kesten showed equivalence with the
probabilistic criterion that a group � is nonamenable if and only if the return prob-
ability P(Yn = 1) of a simple random walk Yn on � decays exponentially fast [28].

This article focuses on three quantities that partially describe the behavior of
the diffusion process of a random walk Yn with step distribution μ on a group �.
Namely the entropy function H�,μ(n) = H(μ∗n) = H(Yn), the return probability
P(Yn = 1) and the drift, also called rate of escape, L�,μ(n) = Eμ∗n‖γ ‖ = E‖Yn‖,
where ‖ · ‖ is a word norm,

H(μ) = − ∑
γ∈�

μ(γ ) logμ(γ )

is the Shannon entropy of the probability measure μ and μ∗n is the n-fold con-
volution of μ, or, in other terms, the distribution of Yn. The return probability for
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a finitely supported symmetric law μ is a group invariant by [31], which is not
known to be the case for entropy and drift. However, sublinearity of the entropy or
of the drift for some measure μ with generating support implies amenability [27].
In the present paper, the measure μ will always be equidistributed on a canonical
finite symmetric generating set of �.

The asymptotic behavior of these functions has been precisely established in a
number of cases that mainly include virtually nilpotent groups, linear groups and
wreath products [14, 15, 18, 32–34, 38] and a variety of less precise estimates exist
for some groups acting on rooted trees [2, 3, 6, 7, 10, 17, 25, 41].

The object of this article is to present examples of groups that provide new
asymptotic behaviors for these probabilistic functions. Entropy, return probability
and drift functions will not be precisely computed, but only mild approximations
in terms of their exponents.

DEFINITION 1.1. The lower and upper entropy exponents of a random walk
Yn of law μ on a group � are, respectively,

h(�,μ) = lim inf
logH�,μ(n)

logn
and h(�,μ) = lim sup

logH�,μ(n)

logn
.

The lower and upper return probability exponents of a random walk Yn of sym-
metric finitely supported law μ on a group � are, respectively:

p(�) = lim inf
log|logP(Yn = 1)|

logn
and p(�) = lim sup

log|logP (Yn = 1)|
logn

.

The lower and upper drift exponents of a random walk Yn of law μ on a group �

are, respectively,

δ(�,μ) = lim inf
logL�,μ(n)

logn
and δ(�,μ) = lim sup

logL�,μ(n)

logn
.

When equality holds, the entropy exponent of the group � with law μ is h(�,μ) =
h(�,μ) = h(�,μ), the return probability exponent of a group � is p(�) = p(�) =
p(�) and the drift exponent of the group � with law μ is δ(�,μ) = δ(�,μ) =
δ(�,μ). Return probability exponents do not depend on the particular choice of
the measure by [31].

Computing the exponents gives moderate information on the function. By [32],
the wreath product Z �Z has return probability P(Yn = 1) ≈ exp(−n1/3(logn)2/3),
and the lamplighter F � Z with finite group F has return probability P(Yn = 1) ≈
exp(−n1/3). Both have return probability exponent 1

3 . Exponent 1 does not imply
linearity of entropy or drift, nor exponential decay of return probability, as seen by
the exemples in [17].

The groups considered here are directed groups of automorphisms of extended
rooted trees. The main construction combines the directed groups of [10] with the
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notion of boundary permutational extension introduced in [5] and used in [11] to
exhibit various behaviors of growth functions on groups. The entropy exponents
can be computed explicitely in terms of the group construction (see Theorem 5.1),
which leads to the following corollary:

THEOREM 1.2. For any 1
2 ≤ α ≤ β ≤ 1, there exists a finitely generated group

� = �(α,β) and a symmetric finitely supported measure μ such that

h(�,μ) = α and h(�,μ) = β.

In particular when α = β , there is a finitely generated group �(β) with measure
μ such that

h(�,μ) = β.

Entropy is related to growth because over a finite set, entropy is maximized for
equidistribution probability, so that

h�,μ(r) = h
(
μ∗n) ≤ log # supp

(
μ∗n) = logb�,S(r).

The groups of Theorem 1.2 have sublinear entropy and often exponential growth.
However, most of the groups �ω of [11] have intermediate growth and are extended
directed groups of a binary rooted tree, so by Theorem 5.1, they all have entropy
exponent h(�,μ) = 1

2 .
The return probability and drift exponents of extended directed groups can be

estimated from above and from below, but the bounds do not match in general.
A specific example provides the following theorem:

THEOREM 1.3. There exists a finitely generated group � and a symmetric
finitely supported measure μ′ such that

p(�) = 1
3 , p(�) = 1 and δ

(
�,μ′) = 1

2 , δ
(
�,μ′) = 1.

These theorems show that the phenomenon of oscillation studied in [11] for
growth function exponents (see also [9] and [26]) also occurs for entropy, return
probability and drift. The existence of a group with such drift exponents was men-
tioned without proof in [19].

The article is structured as follows. The main construction of extended directed
groups of a rooted tree Td̄ is described in Section 2, where is also presented a
side application to the Haagerup property of groups with nonuniform growth. Sec-
tion 3 presents the basic tool to study these groups, which is the rewriting process,
leading to the notions of minimal tree and activity, related to inverted orbits of
permutational extensions defined in [5]. Section 4 relates the expected activity of
a random walk Yn to the exponent sequence, which depends only on the tree Td̄ .
At this stage, one can prove the main Theorem 5.1 on entropy, which implies The-
orem 1.2 for β < 1 and allows us to derive estimates on the drift. The frequency of
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oscillation of entropy exponents is also studied in Section 5. The main estimates
on return probability of extended directed groups are given in Theorem 6.1, with a
specific example related to the lamplighter group. Section 7 is devoted to another
construction adapted from [26] and similar to [17], which allows us to obtain the
case β = 1 in Theorem 1.2 and to prove Theorem 1.3. A generalization of the con-
struction of extended directed groups is presented in Section 8, followed by some
comments and questions in the final Section 9.

2. The groups involved.

2.1. Directed groups. Given a sequence d = (dj )j≥0 of integers dj ≥ 2, the
spherically homogeneous rooted tree Td̄ is the graph with vertices v = (i1i2 · · · ik)
with ij in {1,2, . . . , dj−1}, including the empty sequence ∅ called the root, and
edges {(i1i2 · · · ik), (i1i2 · · · ikik+1)}. The index k is called the depth or level of v,
denoted |v| = k.

The boundary ∂Td̄ of the tree Td̄ is the collection of infinite sequences x =
(i1i2 · · ·) with ij in {1,2, . . . , dj−1}.

The group Aut(Td̄) of automorphisms of the rooted tree is the group of graph
automorphisms that fix the root ∅. The following isomorphism is canonical:

Aut(Td̄) 
 Aut(Tσ d̄ ) � Sd0 .(2.1)

The symbol � represents the permutational wreath product G � Sd = (G × · · · ×
G) � Sd where Sd acts on the direct product of d copies of G by permutation, and
σ represents the shift on sequences, so that σd = (d1, d2, . . .). As the isomorphism
(2.1) is canonical, we identify an element and its image and write

g = (g1, . . . , gd0)σ(2.2)

with g in Aut(Td̄), the gi in Aut(Tσ d̄ ) and σ in Sd0 . The automorphism gt repre-
sents the action of g on the subtree Tt , isomorphic to Tσd̄ , hanging from vertex t ,
and the rooted component σ describes how these subtrees (Tt )t=1···d0 are permuted.

With notation (2.2), for any vertex ty in Td̄ , one has g(ty) = σ(t)gt (y).
If f = (f1, . . . , fd0)τ , then (gf )(ty) = (f ◦ g)(ty) = τ(σ (t))fσ(t)(gt (y)) =
(στ)(t)(gtfσ(t))(y), so that gf = (g1fσ(1), . . . , gd0fσ(d0))σ τ .

An automorphism g is rooted if g = (1, . . . ,1)σ for a permutation σ in Sd0 . The
group of rooted automorphisms of Td̄ is obviously isomorphic to Sd0 and can be
realized canonically as a subgroup or a quotient of Aut(Td̄).

The set Hd̄ of automorphisms directed by the geodesic ray 1∞ = (111 · · ·) in
Td̄ is defined recursively. An element h is in Hd̄ if there exists h′ in Hσd̄ and
σ2, . . . , σd0 rooted in Aut(Tσ d̄ ) such that

h = (
h′, σ2, . . . , σd0

)
.(2.3)
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There is a canonical isomorphism of abstract groups, Hd̄ 
 Sd1 × · · · × Sd1 × Hσd̄

with d0 − 1 factors Sd1 . As a consequence, Hd̄ is the uncountable but locally finite
product

Hd̄ 
 Sd1 × · · · × Sd1 × Sd2 × · · · × Sd2 × · · ·(2.4)

with dl−1 − 1 factors Sdl
, indexed by {2, . . . , dl−1}. Under this isomorphism, de-

note h = (σ1,2, . . . , σ1,d0, σ2,2, . . . , σ2,d1, . . .) with σk,t in Sdk
.

The action of h ∈ Hd̄ on the rooted tree Td̄ and its boundary ∂Td̄ is given by

h
(
1k−1t ik+1ik+2 · · ·) = 1k−1tσk,t (ik+1)ik+2 · · · ,

where each vertex or boundary element is uniquely written 1k−1t ik+1ik+2 · · · with
t in {2, . . . , dk−1} and k ≥ 1 integer. The notation 1k is a shortcut for 11 · · ·1 with
k terms.

DEFINITION 2.1. A group G of automorphisms of Td̄ is called directed when
it admits a generating set of the form S ∪ H where S is included in the group
Sd0 of rooted automorphisms, and H is included in Hd̄ . Denote by G = G(S,H)

such a directed group. Then G(Sd0,Hd̄) is the (uncountable) full directed group
of Td̄ . Say a group G(S,H) is saturated if S = Sd0 is the full group of rooted
automorphism, and H is a group such that the projection of the equidistribution
measure over H onto each factor Sdl

in (2.4) is the equidistribution measure on Sdl
.

The full directed group is obviously saturated.

Assume the sequence d = (di)i is bounded taking finitely many values
e1, . . . , eT , then the direct product H = Se1 × · · · × SeT

embeds diagonally into
Sd1 × · · · × Sd1 × · · · 
 Hd̄ (where the factors Set embeds diagonaly into the sub-
product of factors for which dl = et ). With the obvious identifications, the group
G(Sd0,H) is a finitely generated saturated directed group. Note that this precise
group is minimal among saturated directed groups of Td̄ .

2.2. Extended directed groups. For a fixed x, equip the finite set xTd =
{x, x1, . . . , xd} with a structure of rooted tree with root x and one level {x1, . . . ,

xd}. The extended boundary E∂Td̄ of the rooted tree Td̄ is obtained by replacing
each boundary point x by a short rooted tree xTd :

E∂Td̄ = {xTd |x ∈ ∂Td̄} = {
(x;x1, . . . , xd)|x ∈ ∂Td̄

}
.

Call an extended tree the set ETd̄ = Td̄ � E∂Td̄ . Its group of automorphisms is the
group

Aut(ETd̄) = Sd �∂Td̄
Aut(Td̄) = {ϕ : ∂Td̄ → Sd} � Aut(Td̄),(2.5)

where the action of the group Aut(Td̄) on functions is given by g.ϕ(x) = ϕ(gx) so
that (g1g2).ϕ = g2.(g1.ϕ). The group Aut(ETd̄) of automorphisms of an extended
tree was introduced by Bartholdi and Erschler in [5] as a “permutational wreath
product over the boundary.” The wreath product isomorphism (2.1) extends well:
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PROPOSITION 2.2. There is a canonical isomorphism

Aut(ETd̄) 
 Aut(ETσd̄) �{1,...,d0} Sd0 .

PROOF. Any γ in Aut(ETd̄) is decomposed γ = ϕg, with g ∈ Aut(Td̄) and
ϕ : ∂Td̄ → Sd . The classical isomorphism (2.1) provides a decomposition g =
(g1, . . . , gd)σ . Also the boundary of the tree can be decomposed into d0 compo-
nents ∂Td̄ = ∂T1 � · · · � ∂Td with Tt 
 Tσd̄ the tree descended from the first level
vertex t . Set ϕt = ϕ|∂Tt the restriction of ϕ. With this notation, the application 


realizing the canonical isomorphism is given by


(γ ) = (ϕ1g1, . . . , ϕdgd)σ ∈ Aut(ETσd̄) �{1,...,d0} Sd0 .

In order to prove the proposition, it is sufficient to check that 
(γ γ ′) =

(γ )
(γ ′).

On the one hand, γ γ ′ = ϕgϕ′g′ = ϕ(g.ϕ′)gg′ = ψgg′, with ψ = ϕ(g.ϕ′). As
above set ψt = ψ |∂Tt , and as classicaly gg′ = (g1g

′
σ(1), . . . , gdg′

σ(d))σσ ′, the em-
bedding is



(
γ γ ′) = (

ψ1g1g
′
σ(1), . . . ,ψdgdg′

σ(d)

)
σσ ′.

On the other hand,


(γ )

(
γ ′) = (ϕ1g1, . . . , ϕdgd)σ

(
ϕ′

1g
′
1, . . . , ϕ

′
dg′

d

)
σ ′

= (
ϕ1g1ϕ

′
σ(1)g

′
σ(1), . . . , ϕdgdϕ′

σ(d)g
′
σ(d)

)
σσ ′

= (
ϕ1

(
g1.ϕ

′
σ(1)

)
g1g

′
σ(1), . . . , ϕd

(
gd.ϕ′

σ(d)

)
gdg′

σ(d)

)
σσ ′.

There remains to check ψt = ϕt(gt .ϕ
′
σ(t)), and indeed for any y ∈ ∂Tt 
 ∂Tσ d̄ ,

ψt(y) = ψ(ty) = (
ϕ

(
g.ϕ′))(ty) = ϕ(ty)

((
g.ϕ′)(ty)

) = ϕ(ty)ϕ′(g.ty)

= ϕ(ty)ϕ′(σ(t)(gt .y)
) = ϕt(y)ϕ′

σ(t)(gt .y) = ϕt(y)
(
gt .ϕ

′
σ(t)

)
(y). �

Functions over ∂Td̄ supported on 1∞ = 1111 · · · will play a specific role. For
f ∈ Sd , denote by ϕf : ∂Td̄ → Sd the function ϕf (1∞) = f and ϕf (x) = id if
x �= 1∞. Note that for h in Hd̄ , one has hϕf = ϕf h in Aut(ETd̄) because h fixes
the ray 1∞.

DEFINITION 2.3. A group � of automorphisms of the extended tree ETd̄ is
called directed when it admits a generating set of the form S ∪ H ∪ F where S

is rooted, H is included in Hd̄ and elements of F have the form ϕf for f ∈ Sd .
Denote by � = �(S,H,F ) such a directed group. Say a group �(Sd0,H,F ) <

Aut(ETd̄) is saturated if G(Sd0,H) is saturated. Saturation implies that equidis-
tribution on H × F projects to equidistribution on each factor Sdk

of (2.4) and
on the factor F which justifies the notation �(Sd0,H × F) for saturated directed
groups.
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Unless mentioned otherwise, use for the directed group �(S,H,F ) the set S ∪
H × F , where both S and H × F are finite groups themselves (hence symmetric)
in the case of finitely generated saturated directed groups.

Denote by Hl the restriction of H < Hd̄ to levels ≥ l, that is, the projection
of H to Hσld̄ = Sdl+1 × · · · × Sdl+1 × · · · . Also denote by Sl the subgroup of Sdl

generated by the projections of H on the dl−1 − 1 factors Sdl
of (2.4).

PROPOSITION 2.4. Let �(S,H,F ) < Aut(ETd̄) be a directed group. Then
there is a canonical embedding

�(S,H,F ) ↪→ �(S1,H1,F ) � S.

More generally,

�(Sl,Hl,F ) ↪→ �(Sl+1,Hl+1,F ) � Sl.

PROOF. The embedding is clear from Proposition 2.2 because the images
of the generators are given by s = (1, . . . ,1)s, h = (h′, σ2, . . . , σd) and ϕf =
(ϕf ,1, . . . ,1). �

Observe that if �(S,HF) is saturated, then �(Sl,HlF ) is saturated for all l.

2.3. Examples. The class of directed groups of Aut(Td̄) contains many
examples of groups that have been widely studied in relation with torsion [1, 8, 21,
22, 24], intermediate growth [8, 16, 21, 22], subgroup growth [35], nonuniform
exponential growth [10, 39, 40] and amenability [2, 3, 6, 7, 10, 23].

Theorem 3.6 in [10] states that the full directed group G(Sd0,Hd̄) is amenable
if and only if the sequence d is bounded. This result obviously extends to the
setting of automorphisms of extended trees. Indeed, the group �(S,H,F ) is a
subgroup of F �∂Td̄

G(S,H) which is a group extension of a direct sum of finite
groups (copies of F ) by the group G(S,H), hence is amenable when valency d

is bounded. On the other hand, G(S,H) is a quotient of �(S,H,F ), so the latter
inherits nonamenability when d is unbounded.

The notion of automorphisms of extended trees is a reformulation of permuta-
tional wreath product, which was introduced in [5] in order to compute explicit
intermediate growth functions; see also [11]. The boundary extension Td does not
need to be a finite tree; that is, the permutationnal wreath product F �∂Td̄

makes
sense for any group F . This was used in [5] to make a stack of extensions of trees
and compute the growth function of some finitely generated groups of their auto-
morphisms, namely bk(r) ≈ erαk , where αk → 1 with the number k of extensions
in the stack.

2.4. Nonuniform growth and Haagerup property. This paragraph illustrates
the interest of extended trees by an application that will not be used further in the
rest of the article. It can be omitted at first reading.
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A group is said to have the Haagerup property if it admits a proper continuous
affine action on a Hilbert space; see [12]. This is, for instance, the case for free
groups and amenable groups. Groups with the Haagerup property have attracted
interest as they are known to satisfy the Baum–Connes conjecture.

Denote by Ad < Sd the group of alternate permutations, and given a bounded
sequence d of integers d ≤ di ≤ D, define the finite subgroup Ad̄ < Hd̄ < Aut(Td̄)

by the following:

(1) abstractly, Ad̄ 
 Ad × · · · × AD with projection on factor d ′ denoted prd ′ ;
(2) an element b ∈ Ad̄ is realized in Aut(Td̄) according to the recursive rule

b = (b′,prd1
(b),1, . . . ,1) for b′ ∈ Aσd̄ < Aut(Tσ d̄ ).

Take F to be the free product A5 ∗ A5, and consider the group �(Ad0,Ad̄, A5 ∗
A5) < Aut(ETd̄) which is a directed group of automorphisms of an extended tree
(with infinite extension at the boundary so that A5 ∗ A5 < S∞).

PROPOSITION 2.5. If 29 ≤ di ≤ D, the group �(Ad0,Ad̄, A5 ∗ A5) <

Aut(ETd̄) has nonuniform exponential growth, is nonamenable and has Haagerup
property.

Directed groups of the form G(Ad̄ ,Ad̄) < Aut(Td̄) were introduced by Wil-
son as the first examples of groups with nonuniform exponential growth [39, 40].
For bounded valency and Ad̄ finite as above, these groups are amenable [10] and
hence have Haagerup property. For unbounded valency and Ad̄ 
 A5 ∗ A5, these
groups are nonamenable. Zuk asked whether they still have Haagerup property.
The groups �(Ad0,Ad̄, A5 ∗ A5) resemble the groups G(Ad̄ ,Ad̄) for unbounded
sequences d in the sense that the “free product factor” A5 ∗ A5 is “located at
the boundary of the tree.” Thus the proposition above hints that Wilson groups
G(Ad̄ ,Ad̄) of [40] have Haagerup property (but it does not prove it). It provides
the first example of groups of nonuniform growth for which Haagerup property
does not follow from amenability. No example of group having nonuniform growth
but not Haagerup property is known.

PROOF OF PROPOSITION 2.5. Each of the groups Ad0 , Ad̄ and A5 ∗ A5 is
perfect and generated by finitely many involutions (the number of which depends
only on D), so that this is also the case for �(Ad0,Ad̄, A5 ∗ A5). Moreover, there
is an isomorphism

�(Ad0,Ad̄, A5 ∗ A5) 
 �(Ad1,Aσd̄ , A5 ∗ A5) � Ad0 .

(By Proposition 7.2 in [10], � contains any commutator ([b1, b2],1, . . . ,1) for
b1, b2 a pair of elements in one of the generating groups Ad0,Ad̄, A5 ∗ A5. By
perfection, it shows that the embedding of Proposition 2.4 is onto.)

This shows that �(Ad0,Ad̄, A5 ∗ A5) belongs to a class χ (see [40]) and there
exists generating sets with growth exponent tending to 1. Also, the group contains
a nontrivial free product, hence is nonamenable, and has nonuniform exponential
growth.
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The group �(Ad0,Ad̄, A5 ∗ A5) inherits Haagerup property for it is contained
in (A5 ∗ A5) �∂Td̄

G(Ad0,Ad̄) which itself has Haagerup property. Indeed, there is
a short exact sequence

1 → (A5 ∗ A5)
∂Td̄ → (A5 ∗ A5) �∂Td̄

G(Ad0,Ad̄) → G(Ad0,Ad̄) → 1,

where (A5 ∗ A5)
∂Td̄ has the Haagerup property and G(Ad0,Ad̄) is amenable,

which implies the Haagerup property for the middle term (Example 6.1.6 in [12]).
�

In the remaining sections of the present article (as well as in [11]), only finite
groups F are considered, which simplifies some arguments and still allows us to
observe various phenomena.

3. Rewriting process and activity of words.

3.1. Rewriting process. Given a finitely generated saturated (extended) di-
rected group �(Sd0,HF) acting on a tree Td̄ of bounded valency, a canonical
generating set is Sd0 � FH . Note that by saturation and bounded valency, both
Sd0 and HF are finite subgroups of �(Sd0,HF). In the present article, the disjoint
union of these subgroups is taken as a generating set. In particular both 1Sd0

and
1HF are generators, distinct in a “word perspective.”

DEFINITION 3.1. Given the generating set Sd0 � FH of a finitely generated
saturated group �(Sd0,HF), a representative word is alternate if it has the form
w = s1k1s2k2 · · · snknsn+1 for some si in Sd0 and ki in HF .

Note that any word w in this generating set admits a canonical alternate form
obtained by merging packs of successive terms belonging to the same finite group
Sd0 or HF . For example, the canonical alternate form of s1s2k3k

−1
3 1Sd0

k41HF is
(s1s2)1FH1Sd0

k4.
The alternate form w = s1k1 · · · snknsn+1 of a word in the generating set Sd �

FH is equivalent to w = k
σ1
1 · · ·kσn

n σn+1, for σi = s1 · · · si , where kσ = σkσ−1

denotes the conjugate of k by σ . Remember that kj in HF is uniquely decomposed
into kj = (k′

j , bj,2, . . . , bj,d0) with k′
j in H1F and bj,t in Sd1 rooted.

PROPOSITION 3.2 (Rewriting process). With the notation above, the alternate
word w = s1k1 · · · snknsn+1 can be algorithmically rewritten in the wreath product
as

w = (
w1, . . . ,wd0

)
σ∅,

where:

(1) the rooted permutation is σ∅ = s1s2 · · · sn+1 = σn+1;
(2) the word wt = st

1k
t
1 · · · st

mt
kt
mt

st
mt+1 is alternate in the generating system

Sd1 � H1F of the saturated directed group �(Sd1,H1F), of length mt ≤ n+1
2 such

that m1 + · · · + md0 ≤ n;
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(3) the factors st
i depend only on factors bj,t ′ at times j when σj (t) = t ′;

(4) the factors kt
i depend only on factors k′

j at times j when σj (t) = 1.

PROOF. The factor k
σj

j = σjkjσ
−1
j has an image in the wreath product

k
σj

j = (
bj,σj (1), . . . , k

′
j , . . . , bj,σj (d0)

)
with k′

j in position σ−1
j (1). This shows that wt in the wreath product image of w is

a product of terms bj,σj (t) at times j when σj (t) �= 1 and terms k′
j at times j when

σj (t) = 1. The word wt is the canonical alternate form of this product. Each factor
kj furnishes a factor k′

j to exactly one of the coordinates, so the sum of length

is ≤ n. Also by looking at alternate forms, there has to be a factor k
σj

j such that
σj (t) �= 1, giving bj,t ′ on coordinate t , between two factors such that σj (t) = 1,
giving k′

j on coordinate t , so that the length of wt is at most half the length of w.
�

Of course, the rewriting process can be iterated, and at each vertex, v = ut is
associated to the alternate word w, another alternate word wv of length mv in the
generating set Sd|v| � H|v|F of the saturated directed group �(Sd|v|,H|v|) defined
inductively by wv = wut = (wu)t . Note that the word wv has length mv ≤ n

2|v| + 1,
and

∑
|v|=l mv ≤ n.

3.2. Minimal tree and activity.

DEFINITION 3.3. The minimal tree T (w) of the alternate word w in Sd0 �HF

is the minimal regular rooted subtree of Td̄ such that mv ≤ 1 for any leaf v of T (w).
Recall that a subtree T of Td̄ is regular if whenever a vertex v belongs to T , either
all its descendants vt also belong to T , or none of them does.

The minimal tree T (w) is constructed algorithmically. Indeed it contains the
root ∅, and if v is in T (w), either mv ≤ 1 and no descendant of v belongs to T (w),
or mv ≥ 2 and all the sons of v belong to T (w). As mv decays exponentially fast
with generations, the minimal tree T (w) has depth at most log2 n.

The leaves of the minimal tree T (w) satisfy either mv = 0, in which case they
are called inactive, or mv = 1, called active, leaves. The subset A(w) of the bound-
ary (set of leaves) ∂T (w) of the minimal tree T (w) is called the active set of the
word w. Its size is the activity a(w) = #A(w) of the word w. The activity of a
word w = s1 of length 0 (no factor in HF ) is a(s) = 0.

REMARK 3.4. The minimal tree T (w), as well as the set of active leaves
A(w), of a word w = s1k1 · · ·knsn+1 depend only on the word s1h1 · · ·hnsn+1
where kj = ϕfj

hj , that is, on the quotient G(S,H) of �(S,HF).
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The notions of minimal tree and active set allow an interesting description of the
action of a word w on the tree Td̄ . Indeed, the action of the automorphism γ =� w

in Aut(ETd̄) is determined by the following data:

(1) the minimal tree T (w) and its active set A(w);
(2) the permutations σu ∈ Sd|u| attached to vertices u ∈ T (w) \ A(w);
(3) the “short words” wv = sv

1kvsv
2 attached to active vertices v.

The description of the short word wv = sv
1kvsv

2 at an active vertex v can be refined
into a tree action sv

1hvs
v
2 , together with a boundary function given by ϕf v (x) = f v

for x = v(sv
1 (1))1∞ and ϕfv (x) = 1 otherwise.

A point x in ∂Td̄ is called active when it is of the form x = v(sv
1 (1))1∞ for some

active leaf v of T (w). If the element γ =� w in �(S,HF) has the form γ = ϕg in
the permutational wreath product (2.5), then the support of ϕ is included in the set
A∂(w) of active boundary points; see Figure 1.

3.3. Ascendance forest. Given an alternate word w in �(Sd0,HF) and the
collection (wv)v∈T (w) of words obtained by rewriting process, each word wv is
a product of factors wv = sv

1kv
1 · · ·kv

mv
sv
mv+1. Recall that each factor kvt

i in the

word wvt is a product of terms k′v
j , obtained from (kv

j )
σv

j = (bv
j,σ v

j (1)
, . . . , k′v

j , . . . ,

bv
j,σ v

j (d|v|)) with k′v
j in position t , during the rewriting process of the word wv for

the vertex v, into wv = (wv1, . . . ,wvd|v|)σv .
Consider the graph AF(w) with set of vertices the collection (kv

i )v,i of factors
in H|v|F appearing in the rewritten words (wv)v∈T (w), where a pair of factors
(kv

i , kv′
j ) is linked by an edge when v′ = vt and the term k′v

i appears in kvt
j .

FACT 3.5. The graph AF(w) is a forest, that is, a graph with no loop. More
precisely, AF(w) is a union of trees (τv)v∈A(w) indexed by the active set of w.

FIG. 1. Description of the action of a word w via the minimal tree T (w).
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Moreover, if v is an active leaf, then

kv = ∏
kj∈∂τv

k
(|v|)
j

is the product ordered with j , where k
(|v|)
j is the restriction of kj ∈ HF to H|v|F .

In particular,

fv = ∏
kj∈∂τv

fj .

PROOF. Let v = t1 · · · tl be an active leaf with wv = sv
1kvsv

2 . The term kv is a

product of terms k
′t1···tl−1
j in wt1···tl−1 [for those j ’s where σ

t1···tl−1
j (1) = tl], which

are the neighbors of the vertex kv in the graph AF(w). This describes the ball of
center kv and radius 1.

Inductively, each factor k
t1···tl−r

i which represents a vertex in the sphere of center
kv and radius r is a product of terms k

′t1···tl−r−1
j in wt1···tl−r−1 [for those j ’s where

σ
t1···tlr−1
j (1) = tl−r ], which form the link of k

t1···tl−r

i in the sphere of radius r + 1.
Now each factor k

′t1···tλ
j in a word of level λ contributes to exactly one factor

k
t1···tλtλ+1
i , which rules out the possibility of a loop.

So the connected component of kv in the graph AF(w) is a tree τv , it is also the
l-ball of center kv and the leaves of τv form the l-sphere, which is precisely the
set of factors kj of w that lie in τv . By construction of AF(w), kv is the required
ordered product. �

REMARK 3.6. Observe that the ascendance forest AF(w) of a word w =
s1k1 · · ·knsn+1 depends only on the word s1h1 · · ·hnsn+1 for kj = ϕfj

hj . Indeed

given a factor k
t1···tλ
i , its link to factors in level λ + 1 is determined by the factor

σ
t1···tλ
i , which is determined by the factors s

t1···tλ
1 , . . . , s

t1···tλ
i themselves determined

by the sequence (h
t1···tλ−1
j )j . Thus the link of kv

i does not depend on the sequence
(fj )j∈{1,...,n}. A consequence of this observation and the preceding fact is that for
any function ϕ with support included in A∂(w), there exists (fj )j∈{1,...,n} such that
ϕs1h1 · · ·hnsn+1 =� s1ϕf1h1 · · ·ϕfnhnsn+1. Moreover the number of such n-tuples
is independent of the function ϕ. This shows:

FACT 3.7. Given g = s1h1 · · ·hnsn+1, for any ϕ : ∂Td̄ → F with support in
A∂(g), one has

#{f1, . . . , fn ∈ F |ϕg =� s1ϕf1h1 · · ·ϕfnhnsn+1} =
(

1

#F

)#A∂(g)

.

3.4. Counting activity. The inverted orbit of a product w = r1 · · · rk of ele-
ments ri of Aut(Td̄) is the set {1∞, rk1∞, rk−1rk1∞, . . . , r1 · · · rk1∞}, denoted by
O(w); see [5]. The inverted orbit of w−1 coincides with the activity set A∂(w)
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defined in Section 3.2. The notion of activity is classical in the context of automor-
phisms of rooted trees; see [30, 37].

PROPOSITION 3.8. Let �(Sd0,HF) be a finitely generated saturated directed
group acting on a tree of bounded valency d . The activity function a(w), which for
w = s1ϕf1h1 · · ·ϕfnhnsn+1 counts equivalently:

(1) the size of the set A(w) of active leaves in the minimal tree T (w) ⊂ Td̄ ;
(2) the size of the set A∂(w) of active boundary points in ∂Td̄ ;
(3) the number of trees (i.e., connected components) in the ascendance forest

AF(w);
(4) the size of the inverted orbit O(s−1

n+1h
−1
n · · ·h−1

1 s−1
1 ) in the sense of [5],

satisfies under rewriting process w = (w1, . . . ,wd0)σ∅:

a(w) = a
(
w1) + · · · + a

(
wd0

)
.

Moreover, the constraint a(w) ≤ r only allows us to describe at most exponentially
many elements in �(Sd0,HF); that is, there exists a constant C depending only on
D = max{di} and #HF such that

#
{
γ ∈ �(Sd0,HF)|∃w =� γ, a(w) ≤ r

} ≤ Cr.

Note that a(w) is the activity for words in the group �(Sd0,HF), and a(wt) is
the activity function for words in the group �(Sd1,H1F).

PROOF OF PROPOSITION 3.8. Points (1), (2), (3) are clear from the descrip-
tions above. Point (4) is shown by induction on n. Suppose s1k1 · · · kn−1sn = ϕngn

for gn = s1h1 · · ·hn−1sn, then s1k1 · · ·kn−1snϕfnhn = ϕn(gn.ϕfn)gnhn and the
point g−1

n (1∞) which is the support of the function gn.ϕfn is added to the set
of active leaves A∂(w).

The equality on activities under rewriting process is trivial when n ≤ 1, and if
n ≥ 2 then the minimal tree is not restricted to the root, one has T (w) = T (w1) �
· · · � T (wd0) � {∅}, so that A(w) = A(w1) � · · · � A(wd0), and equality holds.

In order to prove the exponential bound, first observe that #∂T (w) ≤ Da(w).
It is obvious if ∂T (w) is the root {∅} or the first level {1, . . . , d0}, and then clear
for arbitrary T (w) by induction on the size #T (w) since ∂T (w) = ∂T (w1) � · · · �
∂T (wd0).

Now if a(w) ≤ r , its minimal tree T (w) has a boundary of size ≤ Dr , so there
are ≤ Kr possibilities for T (w) (for some K depending only on D). To finish
the description of γ =� w, one has to choose permutations σu at vertices u ∈
T (w) \ ∂T (w), for which there are ≤ D!Dr possibilities, and short words sv

1kvs
v
2

at leaves v ∈ ∂T (w), for which there are ≤ (D!2#HF)Dr possibilities. �
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4. Random walks. Given a finitely generated saturated directed group
�(Sd0,HF), consider random alternate words Yn = s1k1s2k2 · · · snknsn+1, where
si in Sd0 and ki in HF are equidistributed, and all factors are independent. Such
a random alternate product Yn is the simple random walk on �(Sd0,HF) for the
symmetric generating set Sd0HFSd0 (for the product of two independent equidis-
tributed variables s′

isi+1 in Sd0 is another equidistributed variable, independent of
other factors).

4.1. Inheritance of random process through wreath product. Given a random
alternate word Yn, the rewriting process of Proposition 3.2 furnishes an image in
the wreath product Yn = (Y 1

n , . . . , Y
d0
n )τn. Each coordinate Y t

n is a random process
on words in Sd1 �H1F by Proposition 2.4, which turns out to be a random alternate
word of random length.

LEMMA 4.1. Denote Yn = (Y 1
n , . . . , Y

d0
n )τn the alternate words obtained by

rewriting process of a random alternate word Yn = s1k1s2k2 · · · snknsn+1 in a
finitely generated saturated directed group �(Sd0,HF). Then:

(1) The rooted random permutation is τn = s1 · · · sn+1 and hence is equidis-
tributed.

(2) The random length mt of the random product Y t
n has the law of the sum of

n independent Bernoulli variables (uj ) on {0,1} with P(uj = 1) = p0 = d0−1
d2

0
.

In particular, by the law of large numbers mt ∼ p0n almost surely, and by the
principle of large deviations, for any θ > 0, there exists cθ < 1 such that

P

(
mt

n
/∈ [p0 − θ,p0 + θ ]

)
≤ cn

θ .

(3) For each coordinate t , the conditioned variable Y t
n|mt has precisely the law

of the random alternate word Y ′
mt

of length mt in Sd1 � H1F , that is,

Y t
n = Y ′

mt
= st

1k
t
1 · · ·kt

mt
st
mt+1,

where the factors st
j and kt

j are equidistributed in Sd1 and H1F , respectively (ex-
cept st

1 and st
mt+1), and all factors (st

j , k
t
j )j are independent.

This lemma is a restating of Lemma 4.6 in [9]. A brief proof is given below.

PROOF OF LEMMA 4.1. As in Proposition 3.2, write Yn = k
σ1
1 · · ·kσn

n σn+1,
where each factor has an image in the wreath product k

σj

j = (bj,σj (1), . . . , k
′
j , . . . ,

bj,σj (d0)) with k′
j ∈ H1F in position σj (t) and bj,s ∈ Sd1 . As (σj )

n
j=1 is a se-

quence of independent terms equidistributed in Sd0 [for σj = s1 · · · sj with (si)
n
i=1

is a sequence of independent terms equidistributed in Sd0 ], the position sequence
(σj (t))

n
j=1 is equidistributed in {1, . . . , d0} for any choice of t .
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Then for a fixed t , Y t
n is a product of n terms which are either bj,σj (t) at

times j when σj (t) �= 1, which happens with probability d0−1
d0

, or k′
j at times j

when σj (t) = 1, which happens with probability 1
d0

. In both cases, the factors are
equidistributed in Sd1 or H1F , respectively, because kj is equidistributed in HF

by saturation. Moreover, all the terms are independent.
Now to obtain an alternate word, the runs of successive terms that belong to

the same finite group (either Sd1 or H1F ) are merged, the factors (st
j , k

t
j )j are still

equidistributed and independent.
There remains to count the number of such runs, given by

2mt + 1 = 1 +
n∑

j=1

1{(σj (t)=1 and σj+1(t) �=1) or (σj (t) �=1 and σj+1(t)=1)}.

Knowing that P(σj (t) = 1) = 1
d0

and P(σj (t) �= 1) = d0−1
d0

independently of pre-
vious terms, two successive terms belong to different finite groups with probability
2d0−1

d0

1
d0

= 2p0.
Note that mt depends only on σ1, . . . , σn, that is, on s1, . . . , sn, whereas the

factors (st
j , k

t
j ) are determined by k1, . . . , kn. In particular, fixing σ1, . . . , σn

(hence mt ), and playing with k1, . . . , kn any alternate word Y t
n of length mt in

Sd1 � H1F appears with the same probability. �

The lemma can be iterated to show that for any vertex v in Td̄ , the random
product Y v

n obtained by rewriting process of the random alternate word Yn is also
an alternate random word in the group �(Sd|v|,H|v|F), of length mv ∼ p0 · · ·p|v|n
almost surely, that is, the conditioned variable Y v

n |mv = Y
(|v|)
mv is a random alternate

word in �(Sd|v|,H|v|F) of length mv .

4.2. Exponent sequence associated to valency sequence. Given a bounded
sequence d = (di)i of integers ≥ 2, define p = (pi)i by pi = di−1

d2
i

. Note d =
min(di), D = max(di), p = max(pi) = d−1

d2 and P = min(pi) = D−1
D2 . Define the

exponent function β(n) associated to the valency sequence d by

k(n) = kd̄(n) = min{k|p0 · · ·pkn ≤ 1} and β(n) = βd̄(n) = log(d0 · · ·dk(n))

logn
.

Moreover, given a small θ �= 0 and an integer N0 depending only on θ , set

kθ (n) = min
{
k|(p0 + θ) · · · (pk + θ)n ≤ N0

}
and βθ(n) = log(d0 · · ·dkθ (n))

logn
.

For N0 = 1, the function kθ (n) is increasing with θ , and βθ(n) −→θ→0 β(n) for a
fixed n.



BEHAVIORS OF ENTROPY 4131

PROPOSITION 4.2. There exists a function ε(θ) −→θ→0 0 such that for all n

large enough (depending on θ ),∣∣β(n) − βθ(n)
∣∣ ≤ ε(θ).

PROOF. Assume θ > 0 (similar proof for θ < 0). For n large enough, kθ (n) ≥
k(n), and the difference is∣∣β(n) − βθ(n)

∣∣ = ∣∣logn(d0 · · ·dk(n)) − logn(d0 · · ·dkθ (n))
∣∣

= logn(dk(n)+1 · · ·dkθ (n))

and hence is bounded by
∣∣β(n) − βθ(n)

∣∣ ≤ ∣∣kθ (n) − k(n)
∣∣ logD

logn
.

By the definition of k(n) and kθ (n), there are inequalities

N0

n
≥ (p0 + θ) · · · (pkθ (n) + θ) >

N0(pkθ (n) + θ)

n
≥ p0 · · ·pk(n)N0(P + θ),

so that

(p + θ)k
θ (n)−k(n) ≥ (pk(n)+1 + θ) · · · (pkθ (n) + θ)

= (p0 + θ) · · · (pkθ (n) + θ)

(p0 + θ) · · · (pk(n) + θ)

≥
(

p0

p0 + θ

)
· · ·

(
pk(n)

pk(n) + θ

)
N0(P + θ)

≥
(

P

P + θ

)k(n)

N0(P + θ),

which shows that for some constant K ,
∣∣kθ (n) − k(n)

∣∣ ≤ k(n)

∣∣∣∣ log(P/(P + θ))

log(p + θ)

∣∣∣∣ + K.

Notice that logn
|logP | ≤ k(n) ≤ logn

|logp| to finally obtain

∣∣βθ(n) − β(n)
∣∣ ≤ logD

|logp|
∣∣∣∣ log(P/(P + θ))

log(p + θ)

∣∣∣∣ + K ′

logn
.

The proposition follows from the limit |log( P
P+θ

)| −→θ→0 0. �

FACT 4.3. There is a bound on β(n) depending only on the bounds d ≤ di ≤
D on the valency of the rooted tree Td̄ . Namely for some constant C depending
only on D,

βd ≤ β(n) ≤ βD + C

logn
,
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where βd = logd
− logp

= logd

log(d2/(d−1))
= 1

1+log(d/(d−1))/logd
= 1

2−log(d−1)/logd
.

Note that β2 = 1
2 and βd −→d→∞ 1.

PROOF OF FACT 4.3. Note that

β(n) = log(d0 · · ·dk(n))

logn
≥ log(d0 · · ·dk(n))

− log(p0 · · ·pk(n))
,

β(n) ≤ log(d0 · · ·dk(n))

− log(p0 · · ·pk(n)) + logpk(n)

≤ log(d0 · · ·dk(n))

− log(p0 · · ·pk(n))
+ C

logn
.

As pi = di−1
d2
i

, simply compute

log(d0 · · ·dk(n))

log(d2
0/(d0 − 1) · · ·d2

k(n)/(dk(n) − 1))

= 1
/(

1 + log(d0/(d0 − 1)) + · · · + log(dk(n)/(dk(n) − 1))

logd0 + · · · + logdk(n)

)

≤ 1

1 + log(D/(D − 1))/logD
,

and similarly for the lower bound, by the inequality on ratio of average

log(D/(D − 1))

logD
≤ log(d0/(d0 − 1)) + · · · + log(dk(n)/(dk(n) − 1))

logd0 + · · · + logdk(n)

≤ log(d/(d − 1))

logd
. �

For a real number x > 0, define hd̄(x) = d0 · · ·dk(x) for the unique integer k(x)

such that 1
p0

· · · 1
pk(x)

≥ x > 1
p0

· · · 1
pk(x)−1

. In particular, nβd̄ (n) = hd̄(n) for any in-
teger n.

FACT 4.4. Given a nondecreasing function g(x) such that

dg(x) ≤ g

(
d2

d − 1
x

)
and g

(
D2

D − 1
x

)
≤ Dg(x),

there exists a sequence d in {d,D}N and a constant C such that

1

C
g(x) ≤ hd̄(x) ≤ Cg(x).

PROOF. Set xk = 1
p0

· · · 1
pk

so that h(xk+1) = d0 · · ·dk+1 = h(xk)dk+1 and

xk+1 = 1
pk+1

xk . Assume by induction that d0, . . . , dk are constructed. Then:
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(1) if h(xk)
g(xk)

≥ 1, set dk+1 = d , and obtain

dh(xk)

Dg(xk)
≤ dh(xk)

g(xk/P )
≤ h(xk+1)

g(xk+1)
= h(xk/p)

g(xk/p)
≤ dh(xk)

dg(xk)
;

(2) if h(xk)
g(xk)

< 1, set dk+1 = D, and obtain

Dh(xk)

Dg(xk)
≤ Dh(xk)

g(xk/P )
= h(xk+1)

g(xk+1)
≤ Dh(xk)

g(xk/p)
≤ Dh(xk)

dg(xk)
.

This shows that d
D

≤ h(xk)
g(xk)

≤ D
d

. As moreover P
p

≤ xk

xk+1
≤ p

P
and g is nondecreas-

ing, this proves the fact. �

4.3. Expected activity. The expectation of activity is ruled by the exponent
sequence.

LEMMA 4.5. For any θ > 0 and n large enough, there exists Cθ > 0 such that

1

Cθ

nβ−θ (n) ≤ Ea(Yn) ≤ Cθn
βθ (n),

where the functions β(n),βθ (n) are defined in Section 4.2. In particular, for any
ε > 0 and n large enough, ∣∣∣∣ log Ea(Yn)

logn
− β(n)

∣∣∣∣ ≤ ε.

For the following proof observe the fact that for any words a(ww′) ≥ a(w) by
Proposition 3.8(4), so that the function Ea(Yn) is nondecreasing with n.

PROOF OF LEMMA 4.5. By Proposition 3.8, the activity of Yn relates to activ-
ity on the inherited process by a0(Yn) = a1(Y

1
n ) + · · · + a1(Y

d0
n ), where ak(w) is

the activity function on the group �(Sdk
,HkF ). Thus

Ea0(Yn) =
d0∑

t=1

Ea1
(
Y t

n

)
.

Now by Lemma 4.1, the conditioned variable Y t
n|mt is a random alternate word

Y ′
mt

of random length mt in the group �(Sd1,H1F). Compute by conditioning and
the large deviation principle.

Ea1
(
Y t

n

) =
n∑

i=0

E
(
a1

(
Y t

n

)|mt = i
)
P(mt = i)

≤ ∑
i≤(p0+θ)n

P (mt = i)Ea1(Yi) + nP
(
mt ≥ (p0 + θ)n

)

≤ Ea1
(
Y ′

(p0+θ)n

) + ncn
θ ,
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where cθ < 1 [use that Ea1(Y
′
n) is nondecreasing to bound the sum]. This shows

that for N0 large enough so that d0N0c
N0
θ ≤ 1 and n ≥ N0,

Ea0(Yn) ≤ d0Ea1
(
Y ′

(p0+θ)n

) + 1.

Note that cθ and hence N0 depends on θ and on d0, but as the valency is
bounded, they can be chosen uniform for all di . This allows us to iterate the above
inequality to get for all k,

Ea0(Yn) ≤ d0 · · ·dkEak+1
(
Y

(k+1)
(p0+θ)···(pk+θ)n

) + d0 · · ·dk−1 + · · · + d0 + 1,

provided n is large enough. Recall that Y
(k)
m is a random alternate word of length

m in �(Sdk
,HkF ). For k(n) = min{k|(p0 + θ) · · · (pk + θ)n ≤ N0}, and this shows

Ea0(Yn) ≤ d0 · · ·dk(n)

(
Eakθ (n)+1

(
Y

(kθ (n)+1)
N0

) + 1
) ≤ nβθ (n)(N0 + 1)

by the trivial estimation ak(YN0) ≤ N0 for any k and the definition of βθ(n).
Similarly for the lower bound,

Ea0(Yn) ≥ d0Ea1
(
Y ′

(p0−θ)n

) − 1

≥ d0 · · ·dkEak+1
(
Y

(k+1)
(p0−θ)···(pk−θ)n

) − (d0 · · ·dk−1 + · · · + 1),

so that for k = k−θ (n) = min{k|(p0 − θ) · · · (pk − θ)n ≤ N0}, one has

Ea0(Yn) ≥ 1
2d0 · · ·dk−θ (n) = 1

2nβ−θ (n)

by the trivial estimate Eak(Y
(k)
N ) ≥ 3

2 for any k and N ≥ 3 [indeed, ak(Y
(k)
N ) ≥

2 as soon as there are two distinct elements among the triplet {σ−1
1 (1), σ−1

2 (1),

σ−1
3 (1)}, which happens with probability ≥ 3

4 for any value of dk]. �

5. Entropy exponents.

5.1. Main theorem. Given a valency sequence d = (di)i and pi = di−1
d2
i

, recall

that the exponent sequence βd̄(n) is defined by

βd̄(n) = β(n) = log(d0 · · ·dk(n))

logn
where k(n) = min{k|p0 · · ·pkn ≤ 1}.

THEOREM 5.1. Let � = �(Sd0,HF) be a finitely generated saturated di-
rected subgroup of Aut(ETd̄), μ the measure equidistributed on Sd0HFSd0 and
β(n) the exponent sequence of d; then for any ε > 0 and n large enough,∣∣∣∣ logH�,μ(n)

logn
− β(n)

∣∣∣∣ ≤ ε.

In particular, h(�,μ) = lim supβ(n) and h(�,μ) = lim infβ(n).
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Fact 4.3 ensures that if d ≤ di ≤ D for all i, then

1
2 ≤ βd ≤ h(�,μ) ≤ h(�,μ) ≤ βD < 1.

PROOF OF THEOREM 5.1. First prove the upper bound, which is a straightfor-
ward generalization of Proposition 4.11 in [6]. Note the similarity with the upper
bound in Lemma 4.5. Indeed, under rewriting process Yn = (Y 1

n , . . . , Y
d0
n )τn one

has

H(Yn) ≤ H
(
Y 1

n

) + · · · + H
(
Yd0

n

) + H(τn),

where τn is equidistributed on Sd0 so H(τn) ≤ C for a constant C depending only
on D.

By Lemma 4.1, the law of Y t
n|mt under the length condition mt is the law of

a random alternate product Y ′
mt

in the group �(Sd1,H1F), and the length mt has
the binomial law of

∑n
i=1 ui for independent ui in {0,1} with P(ui = 1) = p0, of

entropy bounded by C logn for C depending only on D. This ensures (Lemma A.4
in [6])

H
(
Y t

n

) ≤
n∑

m=0

H
(
Y ′

m

)
P(mt = m) + H(mt)

≤ H
(
Y ′

(p0+θ)n

) + nP
(
mt ≥ (p0 + θ)n

) + C logn

by splitting the sum at m = (p0 +θ)n for an arbitrary θ > 0. By the large deviation
principle, there exists cθ < 1 such that P(mt ≥ (p0 + θ)n) ≤ cn

θ . Thus there is N0
depending only on θ and D such that for n ≥ N0, one has [for a slightly larger
constant C since ncn

θ = o(logn)]

H(Yn) ≤ d0H
(
Y ′

(p0+θ)n

) + C logn.

As for expected activity, this allows us to integrate the supremum H(n) =
supk≥0{H(Y

(k)
n )} ≤ Cn, where Y

(k)
n is a random alternate product in the group

�(Sdk
,HkF ), and C is a uniform constant depending only on the sizes of the gen-

erating sets Sdk
� HkF , hence only on D and #HF , into

H(n) ≤ d0 · · ·dkH
(
(p0 + θ) · · · (pk + θ)n

) + (d0 · · ·dk−1 + · · · + 1)C logn

as long as k ≤ kθ (n), that is, when (p0 + θ) · · · (pk−1 + θ)n ≥ N0; see Section 4.2
for the definition of kθ (n) and βθ(n). Thus

H(Yn) ≤ H(n) ≤ d0 · · ·dkθ (n)(CN0 + C logn) = nβθ (n)(CN0 + C logn)

and H(Yn) ≤ nβ(n)+2ε(θ) for n large enough, by Proposition 4.2.
To prove the lower bound, the following fact is useful:
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FACT 5.2. For γ = ϕg in �(Sd0,HF) = F �∂T G(Sd0,H), one has

P(Yn = γ ) ≤
(

1

#F

)# supp(ϕ)

.

PROOF. Denote Yn =� ϕngn, and remark that supp(ϕn) ⊂ A∂(Yn) of size
a(Yn). Also recall Remark 3.6 that A∂(Yn) depends only on gn = s1h1 · · ·hnsn+1,
and Fact 3.7 that given A∂(gn), any function ϕ : ∂T → F with support included in
A∂(gn) appears with probability ( 1

#F
)#A∂(gn). This allows us to compute by condi-

tioning on activity.

P(Yn = γ ) =
n∑

a=1

P
(
Yn = γ |a(Yn) = a

)
P

(
a(Yn) = a

)

≤ ∑
a≥# supp(ϕ)

P
(
ϕn = ϕ|a(Yn) = a

)
P

(
a(Yn) = a

)

≤ ∑
a≥# supp(ϕ)

(
1

#F

)a

P
(
a(Yn) = a

) ≤
(

1

#F

)# supp(ϕ)

.
�

This fact guarantees

H(Yn) = − ∑
γ∈�

P (Yn = γ ) logP(Yn = γ )

≥ C
∑
γ∈�

P (Yn = γ )# supp(ϕ) = CEμ∗n# supp(ϕ) = CE# supp(ϕn),

and the expected value of the size of the support of ϕn relates to activity.
More precisely by Fact 3.7, given A∂(gn), the function ϕn :A∂(gn) → F is ran-

dom, so that

E
[
# supp(ϕn)|A∂(gn)

] = #F − 1

#F
#A∂(gn).

This allows us, once again, to compute by conditioning on activity.

E# supp(ϕn) =
n∑

a=1

E
[
# supp(ϕn)|#A(Yn) = a

]
P

[
#A(Yn) = a

]

=
n∑

a=1

#F − 1

#F
aP

[
#A(Yn) = a

] = #F − 1

#F
Ea(Yn).

By Lemma 4.5, we conclude that

H(Yn) ≥ C
#F − 1

#F
Ea(Yn) ≥ C

#F − 1

#F
nβ(n)−ε. �
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Note that the proof for the upper bound remains valid for the group G(S,H) <

Aut(Td̄), that is, when the group F is trivial, but the lower bound is true only with
a nontrivial finite group F (otherwise Fact 5.2 is obviously empty).

REMARK 5.3. In information theory, the entropy is the “average number of
digits” needed to describe some data. In this heuristic point of view, Theorem 5.1
is a corollary of Lemma 4.5.

Indeed, the activity a(w) of a word w is equivalent to the size of the minimal
tree T (w) defined in Section 3.2; recall a(w) ≤ #∂T (w) ≤ Da(w). Moreover, the
element γ =� w in � is described by Figure 1, with σu for u nonactive vertices,
wv for v active vertices and ϕ(x) at active boundary points x. As each of them
is described by ≤ C digits for some C depending uniquely on the bound D on
valency, the element γ is described with ≤ C#T (w) ≈ a(w) digits. Moreover,
since any function ϕ :A∂(w) → F appears equally likely, one needs at least a(w)

digits to describe γ .
Figure 1 is, in this sense, the “best description” of the element γ in � (position

in the Cayley graph) represented by the word w (path in the Cayley graph). The
loss of information from w to γ is somewhat described by the graph structure of
the ascendance forest AF(w) of Section 3.3.

5.2. Precise entropy exponent and oscillation phenomena. Theorem 5.1 ex-
hibits a large variety of behaviors for entropy of random walk. In particular, it
implies Theorem 1.2 for 1

2 ≤ α ≤ β < 1.

COROLLARY 5.4. For any 1
2 ≤ β < 1, there is a valency sequence d such

that the entropy exponent of the random walk Yn on a finitely generated saturated
directed group �(Sd0,HF) < Aut(ETd̄) is

h(�,μ) = β.

PROOF. Take d ≤ D such that β2 ≤ βd = logd
logp

≤ β ≤ logD
logP

= βD < 1. There

exist λ ∈ [0,1] such that β = log(dλD1−λ)

log(pλP 1−λ)
. Define the sequence d by di ∈ {d,D} for

all i and #{i ≤ n|di = d} = [λn]. Then the exponent sequence βd̄(n) → β and the
corollary follows from Theorem 5.1. �

REMARK 5.5. This corollary shows in particular that any saturated directed
group of a binary tree has entropy exponent h(�,μ) = 1

2 . This is the case of the
groups �ω = F �∂T2 Gω for Gω an Aleshin–Grigorchuk group, for which a great
variety of growth behaviors are known. For instance, �(012)∞ has growth function
b(012)∞(r) ≈ erα0 for an explicit α0 < 1 [5], and for any α ∈ [α0,1] there is a group

Gω(α) with growth such that lim log logbω(α)(r)

log r
= α [11]. Considering the entropy,

all these growth behaviors collapse to a unique entropy exponent.
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COROLLARY 5.6. For any 1
2 ≤ α < β < 1, there is a valency sequence d such

that the lower and upper entropy exponents of the random walk Yn on a finitely
generated saturated directed group �(Sd0,HF) < Aut(ETd̄) are

h(�,μ) = α and h(�,μ) = β.

PROOF. By Theorem 5.1, it is sufficient to construct an appropriate exponent
sequence in order to prove the corollary. Take d ≤ D such that βd ≤ α < β ≤ βD .
Construct a sequence d such that di ∈ {d,D} for all i according to the following
rules.

Recall the definition (see Section 4.2) of β(n) as the exponent satisfying nβ(n) =
d0 · · ·dk(n) where k(n) as the unique integer such that pk(n)

n
< p0 · · ·pk(n) ≤ 1

n
.

In order to ease the reading of the present proof, use the shortcut notation
p0 · · ·pk(n) ≈ 1

n
. There exists a constant C depending uniquely on D such that

the following statements are true if all relations x ≈ y below are replaced by
y
C

≤ x ≤ Cy.
Suppose k(n) is such that p0 · · ·pk(n) ≈ 1

n
and d0 · · ·dk(n) ≈ nα for some n

[hence |β(n) − α| ≤ C
logn

], and then set dk(n)+1 = · · · = dk(n)+l = D for l such
that for some minimal integer m,

P l

n
≈ p0 · · ·pk(n)P

l = p0 · · ·pk(n)+l ≈ 1

m
,

nαDl ≈ d0 · · ·dk(n)D
l = d0 · · ·dk(n)+l ≈ mβ.

This forces nαDl ≈ ( n
P l )

β , hence l = β−α

log(P βD)
logn + o(logn).

Suppose l(m) is such that p0 · · ·pl(m) ≈ 1
m

and d0 · · ·dl(m) ≈ mβ for some m

[hence |β(m) − β| ≤ C
logm

], then set dl(m)+1 = · · · = dl(m)+k = d for k such that
for some minimal integer n,

pk

m
≈ p0 · · ·pl(m)p

k = p0 · · ·pl(m)+k ≈ 1

n
,

mβdk ≈ d0 · · ·dl(m)d
k = d0 · · ·dl(m)+k ≈ nα.

This forces mβdk ≈ ( m
pk )

α , hence k = α−β
log(pαd)

logm + o(logm).

This process produces a sequence d such that α − C
logn

≤ β(n) ≤ β + C
logn

for

all n. Moreover, d0 · · ·dk(n) ≈ nα for infinitely many n and d0 · · ·dl(m) ≈ mβ for
infinitely many m. Hence h(�,μ) = α, and h(�,μ) = β . �

REMARK 5.7. The above two corollaries are obtained by taking particular
instances of exponent functions β(n). Theorem 5.1 provides a variety of behaviors
for entropy functions. For instance, similarly to Theorem 7.2 on growth functions
in [21] and [11], there exists uncountable antichains of entropy functions with
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h(�,μ) = α < β = h(�,μ) for any given 1
2 ≤ α < β < 1, as is easily proved by

playing with exponent functions.

5.3. Frequency of oscillations. Corollary 5.6 shows that the entropy exponent
of a random walk can take different values at different scales. In order to study
the difference between such scales, given 1

2 ≤ α ≤ β ≤ 1 and a function H(n),
introduce the following quantities, called, respectively, upper and lower pseudo
period exponents of the function H(n) for α and β:

uH (α,β) = inf
{
ν|∃N0,∀n ≥ N0, if H(n) ≤ nα,

then ∃n ≤ m ≤ nν,H(m) ≥ mβ}
,

lH (α,β) = inf
{
λ|∃N0,∀m ≥ N0, if H(m) ≥ mβ,

then ∃m ≤ n ≤ mλ,H(n) ≤ nα}
.

For H = H�,μ entropy of a finitely supported measure μ on a group �, write
uH (α,β) = u�,μ(α,β) and lH (α,β) = l�,μ(α,β).

Note that by playing with the sequence d in the proof of Corollary 5.6, one
can easily produce examples of random walks with arbitrarily large pseudo period
exponents, that is, low frequency. To study how high the frequency may be, that is,
how small the pseudo periods, introduce the functions

u(α,β) = inf
{
u�,μ(α,β)|μ is a finitely supported symmetric

measure on a group �
}
,

l(α,β) = inf
{
l�,μ(α,β)|μ is a finitely supported symmetric

measure on a group �
}
.

The finitely generated saturated directed groups of Theorem 5.1 will provide
the upper bounds in the following.

THEOREM 5.8. For 1
2 < α ≤ β < 1,

u(α,β) = α − 1

β − 1
and

β

α
≤ l(α,β) ≤ β − 1/2

α − 1/2
.

PROOF. The lower bounds follow from elementary properties of entropy. For
a submultiplicative function H(n) ≤ nα implies H(kn) ≤ knα , so that if H(kn) ≥
(kn)β , then (kn)β ≤ knα , so kn ≥ n(1−α)/(1−β) and uH (α,β) ≥ 1−α

1−β
. For an in-

creasing function H(m) ≥ mβ and H(n) ≤ nα imply n ≥ mβ/α , so lH (α,β) ≥ β
α

.
Concerning the upper pseudo period exponents, the proof of Corollary 5.6

shows that given n, one can take m ≤ C n
P l for l ≤ (

β−α

log(P βD)
+ ε) logn, where

C depends only on D and ε > 0 is arbitrary, that is, m ≤ nν for

ν = 1 − (β − α) logP

log(P βD)
− ε logP = 1 − β − α

β + logD/log((D − 1)/D2)
+ ε|logP |.
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As D tends to infinity,

logD

log((D − 1)/D2)
= logD

log(D − 1) − 2 logD
= 1

log(D − 1)/logD − 2
−→ −1,

which proves

u(α,β) ≤ 1 − β − α

β − 1
= α − 1

β − 1
.

Similarly for the lower pseudo period exponent, the proof of Corollary 5.6
shows that given m, one can take n ≤ C m

pk for k = (
α−β

log(pαd)
+ ε) logm, that is,

n ≤ mλ for

λ = 1 − (α − β) logp

log(pαd)
− ε logp = 1 − α − β

α + logd/log((d − 1)/d2)
+ ε|logp|.

Taking d = 2, this proves

l(α,β) ≤ 1 + β − α

α − 1/2
= β − 1/2

α − 1/2
. �

REMARK 5.9. The value u(α,β) = α−1
β−1 is tightly related to subadditivity

of entropy, which implies in particular that h(�,μ) ≤ 1 for any group � with
finitely supported measure μ. Also Theorem 5.1 shows that the upper bound
l(α,β) ≤ β−1/2

α−1/2 is optimal among saturated directed groups with the measure μ

equidistributed on Sd0HFSd0 . It is unclear whether this bound is optimal in gen-
eral. It could be related to question 9.3 on lower bound h(�,μ) ≥ 1

2 .

5.4. Drift of the random walk. Theorem 5.1 provides estimates on the drift
L�,μ(n) = E‖Yn‖ of the random walk Yn of step distribution μ equidistributed on
Sd0HFSd0 , where ‖ · ‖ is the word norm for some (arbitrary) generating set.

COROLLARY 5.10. For any ε > 0 and n large enough,

β(n) − ε ≤ logL�,μ(n)

logn
≤ 1 + β(n)

2
+ ε.

PROOF. Lemmas 6 and 7 in [14] show that there are c1, c2, c3 > 0 with

c1H�,μ(n) − c2 ≤ L�,μ(n) ≤ c3

√
n
(
H�,μ(n) + logn

)
.

Combine with Theorem 5.1. �

6. Return probability.

6.1. General estimates. Given a valency sequence d = (di)i , set

l(n) = ld̄ (n) = max
{
l
∣∣∣ d3

0

d0 − 1
· · · d3

l

dl − 1
= d0

p0
· · · dl

pl

≤ n

}
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and define the auxiliary exponent sequence

β ′(n) = β ′̄
d
(n) = log(d0 · · ·dl(n))

logn
.

In particular, p0 · · ·pl(n)n ≈ d0 · · ·dl(n) = nβ ′(n).

THEOREM 6.1. For any ε > 0 the return probability of the simple ran-
dom walk Yn with generating set Sd0HFSd0 on the saturated directed group
�(Sd0,HF) < Aut(ETd̄) satisfies for n large enough,

β ′(n) − ε ≤ log(− logP(Yn = id))

logn
≤ β(n) + ε.

In particular, p(�) ≥ lim infβ ′(n) and p(�) ≤ lim supβ(n).

For instance in the case of constant valency d , one has

β ′
d = 1

3 − log(d − 1)/logd
≤ log(− logP(Yn = id))

logn

≤ 1

2 − log(d − 1)/logd
= βd.

Note that β ′
2 = 1

3 and β ′
d −→d→∞ 1

2 for lower bounds, compared with β2 = 1
2 and

βd −→d→∞ 1 for upper bounds.

PROOF OF THEOREM 6.1. Proposition 4.5 implies that for n large enough,

P
(
a(Yn) ≥ nβ(n)+ε) ≤ Ea(Yn)

nβ(n)+ε
≤ nβ(n)+ε/2

nβ(n)+ε
= n−ε/2 −→ 0.

Using the fact that for fixed n, the function P(Yn = γ ) is maximal at γ = id by
symmetry of the random walk, and the inequality of Proposition 3.8, deduce

P
(
a(Yn) ≤ nβ(n)+ε) = ∑

{γ |∃w=�γ,a(w)≤nβ(n)+ε}
P(Yn = γ )

≤ P(Yn = id)Cnβ(n)+ε

.

As the left-hand term tends to 1, this proves the upper bound.
Recall that given a word Yn of length n, the rewriting process provides for each

vertex v ∈ Td̄ a word Y v
n of random length mv (Proposition 3.2). Given θ > 0

small enough so that for any n large enough l(n) ≤ k−θ (n) [defined in Section 4.2
by (p0 − θ) · · · (pk−θ (n) − θ)n ≈ N0 for an arbitrary N0 ≥ 1, so that the inequality

holds for large n as soon as di−1
d2
i

− θ > di−1
d3
i

for all i], observe the following:
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FACT 6.2. For a word Yn with a(Yn) < nβ ′(n), there exists a vertex v in Td̄

such that:

(1) |v| ≤ l(n);
(2) there is t such that mvt < (p|v| − θ)mv ;
(3) mv ≥ (p0 − θ) · · · (p|v|−1 − θ)n.

PROOF. By contradiction assume that for all |v| ≤ l(n) and t , one has mvt ≥
(p|v| − θ)mv . Then by induction on |v|, for all v in level l(n),

mv ≥ (p0 − θ) · · · (pl(n)−1 − θ)n ≥ N0

C(pl(n) − θ) · · · (pk−θ (n) − θ)
≥ 1,

so that a(Y v
n ) ≥ 1. Then a(Yn) ≥ ∑

|v|=l(n) a(Y v
n ) ≥ d0 · · ·dl(n) = nβ ′(n), which is a

contradiction. This shows the existence of a vertex v satisfying (1) and (2). Such a
vertex that is closest to the root also satisfies (3). �

Fact 6.2 guarantees that P(a(Yn) ≤ nβ ′(n)) is bounded above by∑
|v|≤l(n)

P
[∃t,mvt ≤ (p|v| − θ)mv and mv ≥ (p0 − θ) · · · (p|v|−1 − θ)n

]
.

Now P [mvt ≤ (p|v| − θ)mv and mv] = P [mvt ≤ (p|v| − θ)mv|mv]P(mv), and
by Proposition 4.1 there is cθ < 1 with P [mvt ≤ (p|v| − θ)mv|mv] ≤ c

mv
θ . Then

P(a(Yn) ≤ nβ ′(n)) is bounded above by∑
|v|≤l(n)

c
(p0−θ)···(pl(n)−1−θ)n

θ = nβ ′(n)c
(p0−θ)···(pl(n)−1−θ)n

θ ,(6.1)

because there are d0 · · ·dl(n) = nβ ′(n) vertices such that |v| ≤ l(n). Compute by
conditioning on activity, recalling that Fact 3.7 ensures P [ϕn = id|a(Yn) = a] =
( 1

#F
)a .

P(Yn = id) ≤ P(ϕn = id) =
n∑

a=0

P
[
ϕn = id|a(Yn) = a

]
P

(
a(Yn) = a

)
,

=
n∑

a=0

(
1

#F

)a

P
(
a(Yn) = a

)
.

The decay of ( 1
#F

)a with a allows us to split the sum between a < nβ ′(n) and

a ≥ nβ ′(n). Obtain

P(Yn = id) ≤ P
(
a(Yn) < nβ ′(n)) +

(
1

#F

)nβ′(n)

P
(
a(Yn) ≥ nβ ′(n)),

≤ nβ ′(n)c
(p0−θ)···(pl(n)−1−θ)n

θ +
(

1

#F

)nβ′(n)
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by inequality (6.1). Now there is a function ε(θ) −→θ 0 such that (p0 −
θ) · · · (pl(n)−1 − θ)n ≥ nβ ′(n)−ε(θ) (cf. Proposition 4.2), so

P(Yn = id) ≤ exp
(−cnβ ′(n)−ε(θ)),

which proves the lower bound. �

As for Theorem 5.1, the upper bound is valid for G(S,H), that is, for F = {1},
but the lower bound is valid only with a nontrivial finite group F .

REMARK 6.3. Fact 6.2 shows that if the activity is small, then there is at
least one edge along which the word length is contracted more than expected,
with mvt ≤ (p|v| − θ)mv instead of mvt = p|v|mv . In fact, in order to have
a(Yn) < nβ ′(n), such a strong contraction must occur at many edges, so that in-
equality (6.1) does not seem optimal. The example below shows that the lower
bound of Theorem 6.1 is tight, and thus inequality (6.1) is essentially optimal in
general. It might, however, be improved for particular instances of saturated di-
rected groups.

6.2. A specific example. Consider the particular case of a binary tree and spe-
cific generators s = (1,1)σ with σ the nontrivial permutation in S2 and h = (h, s).
The group 〈s, h〉 < Aut(T2) is a well-known automata group isomorphic to the
infinite dihedral group D∞ = 〈s, h|s2 = h2 = 1〉.

PROPOSITION 6.4. A random walk Zn on the extended directed group
�(S,HF) = F �∂T2 D∞ < Aut(ET2) with F Abelian finite with step distribution
equidistributed on SHFHS satisfies

lim
log|logP (Zn = id)|

logn
= 1

3
and lim

log E‖Zn‖
logn

= 1

2
.

In this particular case, the lower bounds of Theorem 6.1 and Corollary 5.10
are tight. Note that this specific group played a crucial role in the construction
of antichains of growth functions in [21] and in the construction of groups with
oscillating growth in [9] (Chapter 2).

PROOF OF PROPOSITION 6.4. Theorem 6.1 and Corollary 5.10 ensure

lim inf
log|logP(Zn = id)|

logn
≥ 1

3
and lim

log E‖Zn‖
logn

≥ 1

2
.

To get an upper bound, compare with the usual wreath product F �D∞ D∞, for

which the return probability satisfies P(X̃n = id) ≈ e−n1/3
(Theorem 3.5 in [32],
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noting that Z and D∞ with their usual generating sets have the same Cayley graph)
and the drift LF �D∞D∞(n) ≈ n1/2 (by Lemma 3 in [15]).

Precisely, consider the usual wreath product (lamplighter)

F �D∞ D∞ = {

 :D∞ → F |supp(
) is finite

}
� D∞

with the action d.
(x) = 
(xd). Denote S = 〈s〉 
 S2 and H = 〈h〉 
 S2, so
that D∞ 
 G(S,H) < Aut(T2), and denote F the subgroup {
 :D∞ → F |∀x �=
1D∞,
(x) = 1F } in F �D∞ D∞. Let X̃n be the random walk with alternate suc-
cessive increments equidistributed in the finite symmetric sets HSH and F (this
is, up to negligible first and last factors, the random walk with step distribution μ

equidistributed on the finite symmetric set SHFHS)

X̃n = h1s1h
′
1f1h2s2h

′
2f2 · · ·hnsnh

′
nfn.

It induces in particular a random walk Xn on the base group D∞ given by

Xn = h1s1h
′
1h2s2h

′
2 · · ·hnsnh

′
n = r1r2 · · · rn

with ri = hisih
′
i . The value of X̃n in F �D∞ D∞ is given by the value of

Xn in D∞ together with a function 
n :D∞ → F the support of which is in-
cluded in {r−1

1 , (r1r2)
−1, . . . , (r1r2 · · · rn)−1}, since at time i the lamp in position

(r1r2 · · · ri)−1 is modified.
With obvious identification of S,H,F , denote Zn the similar random walk on

F �∂T2 G(S,H),

Zn = h1s1h
′
1f1h2s2h

′
2f2 · · ·hnsnh

′
nfn.

The value of Zn is given by the value of Xn in G(S,H) 
 D∞ and a func-
tion ϕn : ∂T2 → F with support included in the active boundary set {1∞r−1

1 ,

1∞(r1r2)
−1, . . . ,1∞(r1r2 · · · rn)−1} by Proposition 3.8.

Now the Schreier graph 1∞G(S,H) can easily be described as a semi-line. If
w is a reduced representative word in D∞ = 〈s, h|s2 = h2 = 1〉, then 1∞hw =
1∞w and 1∞w �= 1∞w′ if w �= w′ and both w and w′ start with s, so there is a
canonical 2-covering application c : Cay(D∞, {s, h}) � 1∞G(S,H) with c(w) =
c(hw). This implies

ϕn(x) = ∑
y∈c−1(x)


n(y),

because F is Abelian, so that the order of increments does not influence the sum.
This shows that if X̃n = 1 in F �D∞ D∞ then Zn = 1 in F �∂T2 G(S,H), hence
P(Zn = 1) ≥ P(X̃n = 1) and the group F �∂T2 G(S,H) is a quotient of F �D∞ D∞
with identification of the generators, so ‖X̃n‖ ≤ ‖Zn‖. �
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7. Higher order oscillations. This section aims at proving Theorem 1.3 and
treating the case β = 1 in Theorem 1.2. The following construction is designed
to obtain groups �(S′,H ′F ′) that resemble �(S,HF) at some scales and nona-
menable groups at other scales. They are still directed groups of a rooted tree but
of unbounded valency d (in the cases of interest here) and not saturated.

The construction generalizes [26], where a group �(S′,H ′
ω) is constructed

given an Aleshin–Grigorchuk group �(S,Hω) and additional data. Theorem 6.1
and Corollary 5.10 allow us to show that some of the groups � = �(S′,H ′

ω) or
almost equivalently some of the piecewise automatic groups of [17] satisfy

p(�) ≤ 1
2 , p(�) = 1 and δ(�) ≤ 3

4 , δ(�) = 1.

The description of the construction in [26] is more algebraic, whereas the point
of view adopted here is in terms of automorphisms of an ambiant tree Tē.

7.1. Definition of �(S′,H ′F ′). Given a bounded sequence d and a saturated
directed finitely generated group � = �(S,HF) < Aut(ETd̄), construct a modi-
fication � of this group, acting on an extended spherically homogeneous rooted
tree ETē for another sequence e = (el)l∈N, with el = dl + d ′

l for some d ′
l ≥ 0, pos-

sibly d ′
l = ∞. Note that there is a canonical inclusion ETd̄ ⊂ ETē, and hence a

canonical embedding,

Aut(ETd̄) ↪→ Aut(ETē).

Corresponding to the group �(S,HF), determined by the finite groups S,H,F

and the portraits of their elements, that is, their realization in Aut(ETd̄), construct
a new group �(S′,H ′F ′) < Aut(ETē), where S 
 S′, H 
 H ′ and F 
 F ′ as ab-
stract groups. Define the generators via the wreath product isomorphism of Propo-
sition 2.2.

(1) The element s′ in S′ corresponding to s ∈ S 
 S′ has the form

s′ = (1, . . . ,1)s′,

where s′ is a permutation of {1, . . . , d0, d0 + 1, . . . , d0 +d ′
0} respecting the decom-

position {1, . . . , d0} � {d0 + 1, . . . , d0 + d ′
0}, so that s ′|{1,...,d0} = s ∈ S = Sd0 < Se0

(canonical inclusion) and moreover s′′ = s′s−1 = s′|{d0+1,...,d0+d ′
0} is chosen so

that s �→ s′′ is a morphism of groups from S 
 S′ into the permutation group
S{d0+1,...,d0+d ′

0} 
 Sd ′
0
. Denote by S′′ its image.

(2) The element h′ in H ′ corresponding to h = (h1, σ2, . . . , σd0) ∈ H 
 H ′ has
the form

h′ = (
h′

1, σ
′
2, . . . , σ

′
d0

,1, . . . ,1
)
h′′,

where σ ′
2, . . . , σ

′
d0

∈ S′
1 are defined as above, corresponding, respectively, to

σ2, . . . , σd0 ∈ S1, h′
1 ∈ H ′

1 corresponds to h1 ∈ H1, and h′′ is a permutation in
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Sd0+d ′
0

with support included in {d0 + 1, . . . , d0 + d ′
0} so that h �→ h′′ is a mor-

phism of groups with image H ′′ < Sd ′
0
.

Elements of H ′ do not act at the boundary ∂Tē.
(3) The element f ′ in F ′ corresponding to ϕf ∈ F 
 F ′ has the form

f ′ = (
f ′

1,1, . . . ,1
)
f ′′,

where f ′
1 ∈ F ′ corresponds to ϕf ∈ �(S1,H1F), and f ′′ is a permutation in Sd0+d ′

0

with support included in {d0 + 1, . . . , d0 + d ′
0} so that f �→ f ′′ is a morphism of

groups with image F ′′ < Sd ′
0
.

The element f ′ acts at the boundary ∂Tē by ϕ(x) = 1F if x �= 1∞ and
ϕ(1∞) = f .

(4) Any two elements f ′′ and h′′ in S{d0+1,...,d0+d ′
0} commute.

Note that similarly to the definition of h ∈ Aut(Td̄) in Section 2.1, the defi-
nitions of h′ and f ′ are recursive for they involve the generators h′

1 and f ′
1 of

the group �(S′
1,H

′
1F

′
1) < Aut(ETσ ē) associated to the saturated directed group

�(S1,H1F) < Aut(ETē).
Condition (4) implies by recursion that at any level l the elements h′′

l and f ′′
l in

S{dl+1,...,dl+d ′
l } commute, so the subgroup 〈{s′′

l }, {h′′
l }, {f ′′

l }〉 < Sd ′
l

is a quotient of
the free product of finite groups S′

l ∗ (H ′
l ×F ′

l ) 
 Sl ∗ (Hl ×F), possibly an infinite
quotient in the case d ′

l = ∞. Denote S′′
l = {s′′

l },H ′′
l = {h′′

l },F ′′
l = {f ′′

l }. They are
subgroups of S{dl+1,...,dl+d ′

l }.
By recursion, the action of the generators s′, h′, f ′ is well defined on the whole

tree Tē. Moreover, only generators f ′ act nontrivially at the boundary ∂Tē; thus
the action of s′, h′, f ′ on ETē is well defined.

To summarize, the group �(S′,H ′F ′) is defined by �(S,HF) and a collection
of groups 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

that are quotients of the free products of finite groups
Sl ∗ HlF by identification of generators; see Figure 2.

FIG. 2. The tree Tē , for d0 = d1 = 2 and e0 = e1 = 4, with the subtree Td̄ in plain edges, dashed
edges where 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

act, and dotted edges where the action of � is trivial.
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7.2. Elementary properties of �(S′,H ′F ′). Note that �(S′,H ′F ′) is directed
but not saturated. As a shortcut, write �l = �(Sl,HlF ) < Aut(ETσ l d̄ ) and �l =
�(S′

l ,H
′
l F

′
l ) < Aut(ETσ l ē).

PROPERTIES 7.1. (1) The canonical isomorphism of Proposition 2.2 induces
a canonical embedding

�
(
S′,H ′,F ′) ↪→ �

(
S′

1,H
′
1,F

′
1
) � 〈

S′,H ′′,F ′′〉.
More generally, �l ↪→ �l+1 � 〈S′

l ,H
′′
l , F ′′

l 〉 for any l.
(2) Any two elements h′ ∈ H ′ and f ′ ∈ F ′ commute.
(3) The group �(S,H,F ) < Aut(ETd̄) is a quotient of �(S′,H ′,F ′) <

Aut(ETē).

Property (2) shows that 〈H ′,F ′〉 
 H ′ × F ′. Thus as canonical generating set
of �(S′,H ′F ′), use S′ � H ′F ′.

PROOF OF PROPERTIES 7.1. (1) is obvious by construction. For (2), compute
(recall the support of f ′′ and h′′ is in {d0 + 1, . . . , d0 + d ′

0})[
h′, f ′] = ([

h′
1, f

′
1
]
,
[
σ ′

2,1
]
, . . . ,

[
σ ′

d0
,1

]
,1, . . . ,1

)[
h′′, f ′′] = ([

h′
1, f

′
1
]
,1, . . . ,1

)
.

By recursion, this shows that [h′, f ′] has a trivial action on Tē. Moreover, the
support of the corresponding function ∂Tē → F is contained in 1∞ where the
value is [1, f ] = 1F . This shows [h′, f ′] =� 1.

For (3), observe that all the permutations involved in the description of
S′,H ′,F ′ respect the decomposition {1, . . . , dl}�{dl +1, . . . , dl +d ′

l } for all l ∈ N,
so that the subset ETd̄ ⊂ ETē is stable under the action of �(S′,H ′,F ′). The quo-
tient action is precisely given by �(S,HF). �

Observe that if dl = 0 for all l ≥ 1, then �(S′,H ′F ′) 
 �(S,HF) × 〈S′′,
H ′′F ′′〉. In particular, if d ′

l = 0 for all l ∈ N, then �(S′,H ′F ′) = �(S,HF).
A word w(S,HF) is an ordered product of generators s in S, h in H and ϕf in

F of the group �. By replacing s by s′, h by h′ and ϕf by f ′, one naturally ob-
tains a word w(S′,H ′F ′) in the generators of �. The rewriting process of Propo-
sition 3.2 applies to the groups �(S′,H ′F ′). More precisely:

PROPOSITION 7.2 [Rewriting process for groups �(S′,H ′F ′)]. If the rewrit-
ing process in the group � ↪→ �1 � Sd0 provides

w(S,HF) = (
w1(S1,H1F), . . . ,wd0(S1,H1F)

)
σ∅,

then the rewriting process in the group � ↪→ �1 � S′ provides

w
(
S′,H ′F ′) = (

w1(
S′

1,H
′
1F

′
1
)
, . . . ,wd0

(
S′

1,H
′
1F

′
1
)
,1, . . . ,1

)
w

(
S′,H ′′F ′′),

where w(S′,H ′′F ′′) = σ∅w(S′′,H ′′F ′′) with σ∅ ∈ S{1,...,d0}, and w(S′′,H ′′F ′′)
takes values in S{d0+1,...,d0+d ′

0}.
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PROOF. Denote w(S,HF) = s1h1ϕf1s2 · · ·hnϕfnsn+1. Then

w
(
S′,H ′F ′) = s′

1h
′
1f

′
1s

′
2, . . . , h

′
nf

′
ns

′
n+1,

where s �→ s ′, h �→ h′ and ϕf �→ f ′ are given in the definition of generators of �.
These forms are equivalent to

w(S,HF) = (h1ϕf1)
σ1 · · · (hnϕfn)

σnσn+1 for σi = s1 · · · si,
w

(
S′,H ′F ′) = (

h′
1f

′
1
)σ ′

1 · · · (hnf
′
n

)σ ′
nσ ′

n+1 for σ ′
i = s′

1 · · · s′
i .

For hϕf = (h1ϕf , b2, . . . , bd0), one has

(hϕf )σ = (bσ−1(1), . . . , h1ϕf , . . . , bσ−1(d0)
)

with h1ϕf in position σ(1).
Correspondingly, for h′f ′ = (h′

1f
′
1, b

′
2, . . . , b

′
d0

,1, . . . ,1)h′′f ′′, one has

(
h′f ′)σ ′ = (

b′
σ−1(1)

, . . . , h′
1f

′
1, . . . , b

′
σ−1(d0)

,1, . . . ,1
)(

h′′f ′′)σ ′′

with h′
1f

′
1 in position σ−1(1) = σ ′−1(1), because σ ′ = σσ ′′ with σ ∈ S{1,...,d0} and

σ ′′ ∈ S{d0+1,...,d0+d ′
0}.

As (h′′f ′′)σ ′′
acts trivially on {1, . . . , d0}, one can compute products (i.e.,

words) componentwise, which proves the proposition. �

REMARK 7.3. Proposition 7.2 shows in particular that the minimal tree de-
scription of Section 3.2 and Figure 1 for a word w(S,HF) in �(S,HF) re-
mains valid for the word w(S′,H ′F ′) in �(S′,H ′F ′) with the same tree T (w) <

Td̄ < Tē, but for a vertex u in level l, the permutation σu now takes values in
Sl × 〈S′′

l ,H ′′
l F ′′

l 〉 < Sel
.

7.3. Localization. In the Cayley graph of �(S′,H ′F ′), a ball of given radius
depends only on the description of the action on a neighborhood of the root of the
tree.

PROPOSITION 7.4. The ball B�(R) in the Cayley graph of �(S′,H ′F ′) with
respect to the generating set, S′ � H ′F ′ depends only on the L = 1 + log2 R first
levels in the recursive description of the generators of �(S′,H ′F ′) and the 2R+1-
balls in the groups 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

for l ≤ L.

PROOF. The ball B�(R) can be drawn if one can test (algorithmically) the
oracle w =� 1 for any given word w in S′ � H ′F ′ of length ≤ r = 2R + 1. To test
such an oracle, use the following algorithm.

First test the value of the permutation induced by w at the root, given by

(w(s′, h′f ′)) = w(s′, h′′f ′′), where 
 : Aut(ETē) → Se0 is the root evaluation.
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This test depends only on the zero level in �(S′,H ′F ′) and the |w|-ball in
〈S′′

0 ,H ′′
0 F ′′

0 〉 < Sd ′
0
.

If 
(w) �=Se0
1, then w �=� 1. If 
(w) =Se0

1, then w fixes all vertices in the
first level of Tē. By Propositions 3.2 and 7.2 of the rewriting process, one has
w = (w1, . . . ,wd0,1, . . . ,1) in the wreath product with |wt | ≤ |w|+1

2 ≤ r+1
2 .

Test for each t in {1, . . . , e0}, the permutation induced by wt at the root

(wt(s′

1, h
′
1f

′
1)) = wt(s′

1, h
′′
1f

′′
1 ), which depends only on the zero level in

�(S′
1,H

′
1F

′
1) hence on the first level in �(S′,H ′F ′) and the |wt |-ball in 〈S′′

1 ,

H ′′
1 F ′′

1 〉 < Sd ′
1
.

If 
(wt) �=Se1
1, then w �=� 1. If 
(wt) =Se0

1 for all t , then w fixes all vertices
in the two first levels of Tē. By Propositions 3.2 and 7.2 of the rewriting process,
wt = (wt1, . . . ,wte0,1, . . . ,1) in the wreath product with |wts | ≤ |wt |+1

2 < r
4 + 1.

Continue the process and test the value at the root of the words wt1···tl while
their length is ≥ 1. This test depends only on the l first levels in �(S′,H ′F ′) and
the |wt1···tl |-ball in 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l
. If 
(wt1···tl ) �=Sel

1 for some t1 · · · tl , then
w �=� 1.

For L = log2 r , one has |wt1···tL | < r
2L + 1 = 2, so wt1···tL is a generator in

�L(S′
L,H ′

LF ′
L). This implies that if 
(wt1···tl ) =Sel

1 for all t1 · · · tl , l ≤ L− 1 and
wt1···tL =�L

1, then w =� 1.
The algorithm allows us to test the oracle w =� 1 using only the data in the L =

log2 R first levels of �(S′,H ′F ′) and the r
2l -ball in the group 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

for l ≤ log2 r . �

7.4. Asymptotic properties. The asymptotic description of �(S′,H ′F ′) is
well understood in two extreme cases.

PROPOSITION 7.5 (Low asymptotic). If d ′
l = 0 for l ≥ L + 1 and d ′

l finite for
l ≤ L, the quotient homomorphism (of restriction of the action to ETd̄ ⊂ ETē)

f :�
(
S′,H ′F ′) → �(S,HF),

s′ �→ s,

h′ �→ h,

f ′ �→ ϕf

has finite kernel.
In particular, for the random walks Yn in �(S,HF) of law μ equidistributed

on SHFS and the associated random walk Y ′
n in �(S′,H ′F ′) of law μ′ equidis-

tributed on S′H ′F ′S′, there exists C,K > 0 such that for all n:

(1) P(Y ′
n =� 1) ≤ P(Yn =� 1) ≤ CP(Y ′

n =� 1);
(2) L�,μ(n) ≤ L�,μ′(n) ≤ L�,μ(n) + K ;
(3) H�,μ(n) ≤ H�,μ′(n) ≤ H�,μ(n) + logC.
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PROOF. An element δ in the kernel kerf = {δ ∈ �|δ|ETd̄
= 1} is de-

scribed by its action on ETē \ ETd̄ . By the rewriting process, one can write
δ = (δ1, . . . , δd0,1, . . . ,1)δ′′ with δ′′ ∈ Sd0+1,...,d0+d ′

0
< Se0 , for which there are

≤#〈S′′,H ′′F ′′〉 choices. In order to describe δ, t we describe δ1, . . . , δd0 that be-
long to the kernel ker(f1 :�1 → �1).

For each t ∈ {1, . . . , d0}, the element δt can be written in the form δt =
(δt1, . . . , δtd1,1, . . . ,1)δ′′

t with δ′′
t ∈ Sd1+1,...,d1+d ′

1
< Se1 , for which there are

≤#〈S′′
1 ,H ′′

1 F ′′
1 〉 choices.

By induction, the element δ ∈ kerf is described by{
δ′′
t1···tl |ti ∈ {1, . . . , di}, l ≤ L

}
,

for which the number of possible choices is

C ≤ #
〈
S′′,H ′′F ′′〉(#〈

S′′
1 ,H ′′

1 F ′′
1
〉)d0 · · · (#〈

S′′
L,H ′′

LF ′′
L

〉)d0···dL−1 .

Denote f −1(1�) = {δ1, . . . , δC}, then f −1(γ ) = {δδ1, . . . , δδC} if f (γ ) = δ and

μ∗n(γ ) = P(Yn =� γ ) =
C∑

i=1

P
(
Y ′

n =� δδi

) = ∑
δ′∈f −1(γ )

μ′∗n(
δ′).

For γ = 1, this guarantees (1)

P
(
Y ′

n =� 1
) ≤ P(Yn =� 1) ≤ CP

(
Y ′

n =� 1
)
,

because P(Yn =� δ) is maximal for δ = 1�.
One also has ‖δ‖ ≤ ‖f (δ)‖ + K for K = max{‖δ1‖, . . . ,‖δC‖}. Indeed, if

w(S,HF) = γ = f (δ), then w(S′,H ′F ′) = δδi for some i, and when δi =
wi(S

′,H ′F ′) of length ≤ K , one has ww−1
i (S′,H ′F ′) = δ. This shows (2)

Eμ∗n‖γ ‖ ≤ Eμ′∗n‖δ‖ ≤ Eμ∗n‖γ ‖ + K.

Now fix n, and define for any γ in � the measure with support in f −1(γ ) ⊂ �

νγ (δ) =
⎧⎪⎨
⎪⎩

μ′∗n(δ)∑
δ′∈f −1(γ ) μ

′∗n(δ′)
, if f (δ) = γ ,

0, if f (δ) �= γ .

Then the measure μ′∗n decomposes as

μ′∗n = ∑
γ∈�

μ∗n(γ )νγ

and by Lemma A.4 in [6] on conditionnal entropy,

H
(
μ′∗n) ≤ ∑

γ∈�

μ∗n(γ )H(νγ ) + H
(
μ∗n)

.

The support of νγ has size ≤ C so H(νγ ) ≤ logC, which shows (3)

H
(
μ∗n) ≤ H

(
μ′∗n) ≤ logC + H

(
μ∗n)

. �
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PROPOSITION 7.6 (High asymptotic). If there exists l such that d ′
l = ∞ and

S∞ >
〈
S′′

l ,H ′′
l F ′′

l

〉 
 Sl ∗ (Hl × Fl)

is nonamenable, then �(S′,H ′F ′) < Aut(ETē) is nonamenable.
In particular, for the random walk Yn of law μ equidistributed on the finite

generating set S′H ′F ′S′, there exists c > 0 such that for n large enough:

(1) P(Yn =� 1) ≤ e−cn;
(2) L�,μ′(n) ≥ cn;
(3) H�,μ′(n) ≥ cn.

The proof will use the following:

FACT 7.7. Given γ1 ∈ �1, there exists γ in � and some γ2, . . . , γe0 in �1
such that γ = (γ1, γ2, . . . , γe0)idS′ .

Note that this fact implies that � is infinite, for it contains γ s for all s in S′ and
then #� ≥ #S′#�1 ≥ #S′#S′

1#�2 ≥ · · · . This is in particular an elementary proof
that directed saturated groups are infinite.

PROOF OF FACT 7.7. Let γ1 = x1 · · ·xr be a representative word in S′
1 �H ′

1F
′.

By saturation of H , there exists for each xi , an element h′
i in H ′ such that

h′
i = (∗, . . . , xi, . . . ,∗) (where ∗ marks some unknown value) with xi in position 1

if xi ∈ H ′
1F

′ and xi in some position between 2 and d0 if xi ∈ S′
1. Now by satura-

tion of �, S = Sd0 so S′ acts transitively on {1, . . . , d0}, and there exists si ∈ S′ such
that yi = sihis

−1
i = (xi,∗, . . . ,∗). Then γ = y1 · · ·yr = (x1 · · ·xr,∗, . . . ,∗) =

(γ1, γ2, . . . , γe0). (Note that in fact γd0+1 = · · · = γe0 = 1.) �

PROOF OF PROPOSITION 7.6. The fact shows that the composition

St1(�) ↪→ �1 × · · · × �1
pr1−→ �1

is surjective, so that if �1 is nonamenable, so is St1(�) which is a subgroup of �,
and thus � is nonamenable. Iterating the process shows that if �l is nonamenable,
so is �. Consequence (1) follows by Kesten’s theorem [28], (2) and (3) by the
Kaimanovich–Vershik theorem [27]. �

7.5. High order oscillations. The following theorems are similar to Theo-
rem 7.1 in [11] on oscillation of growth functions; see also Chapter 2 in [9]
and [26]. The entropy function of the groups � involved is not precisely evalu-
ated, but only some (rare) values of the function. The idea is to use alternatingly
localization and asymptotic evaluation to obtain a group with low entropy at some
scales and high entropy at other scales.
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THEOREM 7.8. Let �(S,HF) < Aut(ETd̄) be a saturated directed group
with measure μ equidistributed on SHFS. Let h1(n), h2(n) be functions such that

h1(n)
H�,μ(n)

→ ∞ and h2(n)
n

→ 0. Then there exists a group �(S′,H ′F ′) < Aut(ETē)

such that the entropy sequence for the measure μ′ equidistributed on S′H ′F ′S′
satisfies:

(1) H�,μ(n) ≤ H�,μ′(n) ≤ Cn for all n and a constant C;
(2) H�,μ′(ni) ≤ h1(ni) for an infinite sequence (ni);
(3) H�,μ′(mi) ≥ h2(mi) for an infinite sequence (mi).

COROLLARY 7.9. For any 1
2 ≤ α ≤ 1, there exists a finitely generated group

� and a finitely supported symmetric measure μ′ such that

h
(
�,μ′) = α and h

(
�,μ′) = 1.

Corollaries 5.4, 5.6 and 7.9 imply Theorem 1.2.

PROOF OF COROLLARY 7.9. If α = 1, take � any nonamenable group. If
α < 1, apply Theorem 7.8 with h(�,μ) = α (exists by Corollary 5.4), h1(n) =
H�,μ(n) logn and h2(n) = n

logn
. �

PROOF OF THEOREM 7.8. The first condition is trivially satisfied since
�(S,HF) is a quotient of �(S′,H ′F ′).

The strategy is to construct the group �(S′,H ′F ′) < Aut(ETē) with a sequence
(li)i rapidly increasing such that d ′

l = 0 when l /∈ {li}i , and (d ′
li
)i is rapidly in-

creasing such that the group 〈S′′
li
,H ′′

li
F ′′

li
〉 < Sd ′

li
is a big finite quotient of the free

product S′′
li

∗ H ′′
li
F ′′

li
.

Roughly, as (li) is rapidly increasing, there are scales at which an observer
has the impression that �(S′,H ′F ′) resembles the group �(S,HF) and has low
asymptotic. As d ′

li
is big, there are scales at which an observer has the impression

that �(S′,H ′F ′) contains a free group and has high asymptotic.
More precisely, assume by induction that parameters lj , d

′
lj

and integers mj−1 ≤
nj ≤ mj are constructed for j < i together with an integer ki−1 = 1 + log2 ri−1 ≥
li−1 such that {H(m)|m ≤ mi−1} depends only on B(ri−1). By localization (Propo-
sition 7.4), this ball, and hence the values of the mi−1 first values of the entropy
function, depend uniquely on l, d ′

l and the groups 〈S′′
l ,H ′′

l F ′′
l 〉 < Sd ′

l
for l ≤ ki−1.

Now construct li , d
′
li
, ni,mi, ki by describing the sequence of finite groups

〈S′′
l ,H ′′

l F ′′
l 〉 < Sd ′

l
for ki−1 < l ≤ ki .

The group �i(�
′,H ′F ′) where d ′

l = 0 for all l ≥ ki has low asymptotic by
Proposition 7.5, so

H�i,μ
′(n) ≤ H�,μ(n) + logC(7.1)
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for some C, and in particular, there exists ni such that

H�i,μ
′(ni) ≤ h1(ni).

By localization (Proposition 7.4) this value of entropy depends only on a ball of
radius Ri in the Cayley graph of �i(�

′,H ′F ′) which depends only on the Li =
1 + log2 Ri first levels.

Now fix li = Li + 1 and let �i(S
′,H ′F ′) be the group with d ′

l and 〈S′′
l ,

H ′′
l F ′′

l 〉 < Sd ′
l

as above for l ≤ li − 1 and fix (momentarily) d ′
li

= ∞, with
〈
S′′

li
,H ′′

li
F ′′

li

〉 
 S′′
li

∗ H ′′
li
F ′′

li

 Sl ∗ HlF < S∞

and d ′
l = 0 for l > li . The group �i(S

′,H ′F ′) is nonamenable by Proposition 7.6
of high asymptotic, so

H�i,μ
′(m) ≥ cm(7.2)

for some c > 0, and in particular, there exists mi such that

H�i,μ
′(mi) ≥ h2(mi).

Now by localization (Proposition 7.4), the mi first values of the entropy function
depend only on a ball of radius ri in the Cayley graph of �i(S

′,H ′F ′), which
depends only on the ki = 1 + log2 ri first levels, and the balls of radius 2ri + 1 in
〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

for l ≤ ki .
In particular, the values {H(m)|m ≤ mi} are the same if 〈S′′

li
,H ′′

li
F ′′

li
〉 is any

group coinciding with the free product S′′
li

∗ H ′′
li
F ′′

li

 Sl ∗ HlF in a ball of radius

2ri + 1. As a free product of finite groups is residually finite, there exists such a
group which is finite of size d ′

li
.

The parameters li , d
′
li
, ki ≥ li , the finite groups 〈S′′

l ,H ′′
l F ′′

l 〉 < Sd ′
l

for l ≤ ki and
the integers ni,mi are now constructed for all i by induction.

The sequence (d ′
li
)i of positive integers and the finite groups 〈S′′

li
,H ′′

li
F ′′

li
〉 < Sd ′

li

allow us to define a group � with entropy satisfying H�,μ′(ni) ≤ h1(ni) and
H�,μ′(mi) ≥ h2(mi) for all i, because the balls of radius ri in � and in �i co-
incide. �

In the point of view of information theory of Remark 5.3, the minimal tree
description remains valid. However, the number of digits needed to describe σu

is not anymore bounded independently of the level l, for now dli → ∞, which
explains the higher values taken by the entropy.

THEOREM 7.10. Let �(S,HF) < Aut(ETd̄) be a saturated directed group
with random walk Yn of law μ equidistributed on SHFS. Let p1(n),p2(n) be func-
tions such that p1(n)

P (Yn=�1)
→ 0 and that for any c > 0 and n large, p2(n) ≥ e−cn.

Then there exists a group �(S′,H ′F ′) < Aut(ETē) such that the return probability
for the random walk Y ′

n with law μ′ equidistributed on S′H ′F ′S′ satisfies:
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(1) P(Yn =� 1) ≥ P(Y ′
n =� 1) ≥ e−Cn for all n and a constant C;

(2) P(Y ′
ni

=� 1) ≥ p1(ni) for an infinite sequence (ni);
(3) P(Y ′

ni
=� 1) ≤ p2(mi) for an infinite sequence (mi).

THEOREM 7.11. Let �(S,HF) < Aut(ETd̄) be a saturated directed group
with measure μ equidistributed on SHFS. Let L1(n),L2(n) be functions such that
L1(n)

L�,μ(n)
→ ∞ and L2(n)

n
→ 0. Then there exists a group �(S′,H ′F ′) < Aut(ETē)

such that the drift for the measure μ′ equidistributed on S′H ′F ′S′ satisfies:

(1) L�,μ(n) ≤ L�,μ′(n) ≤ Cn for all n and a constant C;
(2) L�,μ′(ni) ≤ L1(ni) for an infinite sequence (ni);
(3) L�,μ′(mi) ≥ L2(mi) for an infinite sequence (mi).

PROOF. The proof of Theorem 7.8 applies to Theorems 7.10 and 7.11, with
(a priori) different choices of parameters li , d

′
li

and integers ni,mi , obtained by
replacing inequality (7.1) by (Proposition 7.5 of low asymptotic)

P(Yn =� 1) ≥ 1

C
P(Yn =� 1) ≥ p1(n),(7.3)

L�,μ′(n) ≤ L�,μ(n) + K ≤ L1(n)(7.4)

for n large enough, which allows us to find ni , and replacing inequality (7.2) by
(Proposition 7.6 of high asymptotic)

P(Ym =� 1) ≤ e−cm ≤ p2(m),(7.5)

L�,μ′(m) ≥ cm ≥ L2(m)(7.6)

for m large enough, which allows us to find mi . �

COROLLARY 7.12 (Theorem 1.3). There exists a finitely generated group �

and a finite symmetric measure μ′ such that the return probability of the random
walk Y ′

n of law μ′ satisfies

p(�) = 1
3 , p(�) = 1 and δ

(
�,μ′) = 1

2 , δ
(
�,μ′) = 1.

PROOF. Take �(S,HF) = F �∂T2 D∞ < Aut(ET2) to be the directed satu-

rated group of Proposition 6.4, for which e−n1/3−ε ≥ P(Yn =� 1) ≥ e−n1/3
and

L�,μ(n) ≈ n1/2. Take p1(n) = e−n1/3 logn, p2(n) = e−n/logn, L1(n) = n1/2 logn

and L2(n) = n
logn

. Apply Theorems 7.10 and 7.11. �

8. Generalization. The definition of a saturated directed group acting on an
extended tree ETd̄ for a bounded sequence d can be slightly generalized, with
adaptation of Theorems 5.1 and 6.1.
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By Sd denote a finite group acting faithfully and transitively on {1, . . . , d} (not
necessarily the full group of permutation). Replace definition (2.3) in Section 2.1
by

h = (h1, σ2, . . . , σd0)σh

with σh in FixSd0
(1), a permutation of {1, . . . , d0} that fixes 1. By recursion,

σhl
(1) = 1 for all l, and hence h fixes the infinite ray 1∞, and thus commutes

with ϕf . The group Hd̄ directed by the ray 1∞ is the uncountable locally finite
group Hd̄ = AT0 × AT1 × · · · , where

ATl = Sdl+1 � Sdl−1 = (Sdl+1 × · · · × Sdl+1︸ ︷︷ ︸
dl−1 factors

) � Sdl−1.

Given another sequence c = (cl)l of integers such that 1 ≤ cl ≤ dl − 1, define the
subgroup PTl by

PTl = Sdl+1 × · · · × Sdl+1︸ ︷︷ ︸
cl factors

×{1} × · · · × {1} < Sdl+1 � Sdl−1 = ATl

with cl factors Sdl+1 when cl < dl −1, and PTl = ATl if cl = dl −1. The hypothesis
of saturation of a group G(S,H) can be relaxed as relative saturation with respect
to c by requiring that S = Sd0 acts transitively on {1, . . . , d0}, and the subgroup
H < Hd̄ is included in

H < PT0 × PT1 × · · ·
with the equidistribution measure on H projecting to equidistribution measure on
each factor PTl .

Given the sequences d = (dl)l and c = (cl)l of integers with 1 ≤ cl ≤ dl − 1,
define a new sequence p′ = (p′

l)l by p′
l = cl

(cl+1)dl
, and set

βd̄,c̄(n) = log(d0 · · ·dk(n))

logn
where k(n) = kd̄,c̄(n) = min

{
k|p′

0 · · ·p′
kn ≤ 1

}
,

β ′̄
d,c̄

(n) = log(d0 · · ·dl(n))

logn
where l(n) = ld̄,c̄(n) = max

{
l
∣∣∣ d0

p′
0

· · · dl

p′
l

≤ n

}
.

With this notation, Theorems 5.1 and 6.1 generalize to:

THEOREM 8.1. Given bounded sequences d and c, a relatively saturated di-
rected group �(S,HF) and the measure μ of equidistribution on SHFS, one has
for arbitrary ε > 0 and n large:

(1) | logH�,μ(n)

logn
− βd̄,c̄(n)| ≤ ε;

(2) βd̄,c̄(n) − ε ≤ logL�,μ(n)

logn
≤ 1+βd̄,c̄(n)

2 + ε;

(3) β ′̄
d,c̄

(n) − ε ≤ log logP(Yn=�1)
logn

≤ βd̄,c̄(n) + ε.
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For constant sequences dl = d and cl = c ≤ d − 1, the sequences βd̄,c̄(n) and
β ′̄

d,c̄
(n) have limits, respectively,

βd,c = logd

log(d(c + 1)/c)

= 1

1 + log((c + 1)/c)/logd
so βd,1 = 1

1 + log 2/logd
,

β ′
d,c = logd

log(d2(c + 1)/c)

= 1

2 + log((c + 1)/c)/logd
so β ′

d,1 = 1

2 + log 2/logd
.

EXAMPLES 8.2. (1) When the valency sequence is constant of value d , for
H = AT (d) = Sd � Sd−1 diagonally embedded into AT0 × AT1 × · · · , obtain
the mother group G(Sd,AT (d)) of polynomial automata of degree 0; see [2, 6].
With an extension F at the tree boundary, one has for �(d) = �(Sd,AT (d)F ) <

Aut(ETd) the estimates

h
(
�(d),μ

) = βd and β ′
d ≤ p

(
�(d),μ

) ≤ p
(
�(d),μ

) ≤ βd.

(2) For the spinal groups Gω(q) of the article [8] acting on a tree of constant
valency q = d . With an extension F at the tree boundary, one has for �ω(q) =
F �∂T Gω(q) the estimates

h
(
�ω(q),μ

) = βq,1 and β ′
q,1 ≤ p

(
�ω(q),μ

) ≤ p
(
�ω(q),μ

) ≤ βq,1.

PROOF OF THEOREM 8.1. Notation of Proposition 3.2 and Lemma 4.1 be-
comes

kj = (
k′
j , bj,2, . . . , bj,c0+1,1, . . . ,1

)
σhj

and one should consider k
σj

j for σj = s1σh1s2 · · · sj−1σhj−1sj . The sequence (σj )j
consists of independent terms equidistributed in Sd0 . As its action is transitive on
{1, . . . , d0}, for any fixed t , the sequence (σj (t))j is a sequence of independent
equidistributed elements of {1, . . . , d0}.

This ensures that Y t
n is a product of n terms that are:

(1) either bj,σj (t) equidistributed in Sd1 at times j when σj (t) ∈ {2, . . . , c0 +1},
(2) or k′

j equidistributed in H1F at times j when σj (t) = 1,
(3) or trivial factors 1 at times j when σj (t) ∈ {c0 + 2, . . . , d0}.
The number of nontrivial terms is nt ∼ c0+1

d0
n almost surely. Now merging packs

of terms in the same finite group Sd1 (with probability c0
c0+1 among nontrivial
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terms) or H1F (with probability 1
c0+1 among nontrivial terms), the length of Y t

n

is almost surely

mt ∼ c0

(c0 + 1)2 nt ∼ c0

(c0 + 1)d0
n.

This shows that Lemma 4.1 is true with p′
0 = c0

(c0+1)d0
instead of p0 = d0−1

d2
0

.

Then Lemma 4.5 generalizes as∣∣∣∣ log Ea(Yn)

logn
− βd̄,c̄(n)

∣∣∣∣ ≤ ε

for ε > 0 and n large. Theorems 5.1 and 6.1 and Corollary 5.10 follow straightfor-

ward. Note that the condition on θ in Fact 6.2 becomes p′
i − θ >

p′
i

di
. �

9. Comments and questions.

9.1. Analogies between growth and entropy for directed groups. Analogies
between growth and entropy for directed groups are two fold.

First, there is an analogy between the computation of growth exponents [as
lim infα(�), lim supα(�) or limit α(�) of log logb�(r)

log r
] in [11] and the computation

of entropy exponents in Theorem 5.1. For entropy, the computation is based on the
contraction by a factor p0 of the word length under rewriting process of random al-
ternate words in �(S,HF). For growth in the extended Aleshin–Grigorchuk group
�(012)∞ = F � G(012)∞ , the computation is based on the contraction by a factor η

2
in the wreath product for reduced representative words; see [5], and Lemma 5.4
in [11].

The contraction factor for entropy should only hold for random alternate
words, whereas the contraction factor for growth has to hold for any alter-
nate (pre-reduced) word, which heuristically explains why 1

2 = h(�(012)∞,μ) <

α(�(012)∞) ≈ 0.76. This inequality is a well-known property of Shannon entropy
that H(μ) ≤ log # supp(μ) with equality for an equidistributed measure [36].

There is a second analogy at the level of parameter space. For a fixed bound D

on the valency d , the space of saturated directed groups is (partially) parametrized
by the Cantor set {2, . . . ,D}N. The entropy exponent βd̄(n) is computed in
Theorem 5.1 in terms of the sequence d and the contraction factors (pi)i as
nβd̄(n) = d0 · · ·dk(n) where p0 · · ·pk(n) ≈ 1

n
. By Fact 4.4, any function g(n) such

that dg(n) ≤ g( d2

d−1n) and g( D2

D−1n) ≤ Dg(n) is the entropy of some finitely gen-
erated group (with the approximation of Theorem 5.1).

The space of extended Aleshin–Grigorchuk groups �ω is also parametrized by
a Cantor set {0,1,2}N. Though the growth function for a given sequence ω is not
known, Bartholdi and Erschler have shown recently in [4] that any function eg(n)

with g(2n) ≤ 2g(n) ≤ g(η+n) for η+ ≈ 2.46 explicit is the growth function of
some group (also compare Corollary 4.2 in [4] with definition of exponent se-
quence at Section 4.2).
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9.2. Comparison between growth, entropy, return probability and drift. Among
finitely generated groups with symmetric finitely supported measure, it is a natural
question to classify the pairs (α(�),α(�)), (h(�,μ),h(�,μ)), (p(�),p(�)) and
(δ(�,μ), δ(�,μ)) in the triangle 0 ≤ α ≤ β ≤ 1. Comparing Theorem 1.3 with
Theorem 1.2, and the main result in [11] raises the following two questions.

QUESTION 9.1. Given a point (α,β) in the triangle 1
3 ≤ α ≤ β ≤ 1, does there

exist a finitely generated group � the return probability exponents of which satisfy(
p(�),p(�)

) = (α,β)?

QUESTION 9.2. Given a point (α,β) in the triangle 1
2 ≤ α ≤ β ≤ 1, does there

exist a finitely generated group � together with a (symmetric finitely supported)
measure μ, the drift exponents of which satisfy(

δ(�,μ), δ(�,μ)
) = (α,β)?

One approach would be to improve Theorem 6.1 by understanding how a partic-
ular choice of H affects the return probability. Another approach is by the technics
developped in [26] that could lead to strengthening of Theorems 7.8 and 7.10.

Another natural question is to know if there are such pairs outside the above
mentioned triangles besides the pair (0,0), obtained by virtually nilpotent groups
for growth, entropy and return probability, by finite groups for drift. By [29], the
number 1

2 is a lower bound on the drift exponent of infinite groups. It raises the:

QUESTION 9.3. Does there exist a group � and a measure μ such that

0 < h(�,μ) < 1
2

or

0 < p(�) < 1
3

or

0 < α(�) < α(�(012)∞) ≈ 0.76?

By [13], groups of exponential growth have return probability exponents ≥ 1
3 .

By Theorem 6.1, this is also a lower bound for many groups with intermediate
growth. A conjecture of Grigorchuk asserts that a finitely generated group � is
virtually nilpotent when its growth function satisfies b�(r) ≤ er1/2−ε

. If this were
the case, then p(�) < 1

5 would imply virtual nilpotency by [13]. The bound 1
2 for

entropy corresponds to some simple random walk on the lamplighter group or on
an extended directed Aleshin–Grigorchuk group; see Remark 5.5.
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Finally, one may wonder how these asymptotic quantities relate with each other.
For instance entropy is bounded by logarithm of growth so h(�,μ) ≤ α(�). Also
Corollary 7.4 in [13] implies that

α(�)

2 + α(�)
≤ p(�) and p(�) ≤ α(�)

2 − α(�)
.

Naively, one expects groups with low growth to have low return probability expo-
nents and vice-versa. However, taking � the lamplighter on Z and �′ = F � Gω(q)

an extension of a spinal group Gω(q) of the article [8], one has (note that Theo-
rem 6.1 in [8] still applies with boundary extension F , and see Example 8.2(2))

α
(
�′) < α(�) = 1 but

1

3
= p(�) <

1

2 + log 2/logq
≤ p

(
�′).

This raises the following question:

QUESTION 9.4. For � finitely generated group with finitely supported sym-
metric measure μ, what are the possible values of the 8-tuple(

α(�),α(�),p(�),p(�),h(�,μ),h(�,μ), δ(�,μ), δ(�,μ)
)
?
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[27] KAĬMANOVICH, V. A. and VERSHIK, A. M. (1983). Random walks on discrete groups:
Boundary and entropy. Ann. Probab. 11 457–490. MR0704539

[28] KESTEN, H. (1959). Full Banach mean values on countable groups. Math. Scand. 7 146–156.
MR0112053

[29] LEE, J. and PERES, Y. (2009). Harmonic maps on amenable groups and a diffusive lower
bound for random walks. Available at arXiv:0911.0274.

[30] NEKRASHEVYCH, V. (2005). Self-Similar Groups. Mathematical Surveys and Monographs
117. Amer. Math. Soc., Providence, RI. MR2162164

[31] PITTET, C. and SALOFF-COSTE, L. (2000). On the stability of the behavior of random walks
on groups. J. Geom. Anal. 10 713–737. MR1817783

[32] PITTET, C. and SALOFF-COSTE, L. (2002). On random walks on wreath products. Ann.
Probab. 30 948–977. MR1905862

[33] PITTET, C. and SALOFF-COSTE, L. (2003). Random walks on finite rank solvable groups.
J. Eur. Math. Soc. (JEMS) 5 313–342. MR2017850

http://www.ams.org/mathscinet-getitem?mr=2534118
http://arxiv.org/abs/1107.1632v1
http://www.ams.org/mathscinet-getitem?mr=1852148
http://www.ams.org/mathscinet-getitem?mr=1871289
http://www.ams.org/mathscinet-getitem?mr=1988468
http://www.ams.org/mathscinet-getitem?mr=2197519
http://www.ams.org/mathscinet-getitem?mr=2254627
http://www.ams.org/mathscinet-getitem?mr=2257136
http://www.ams.org/mathscinet-getitem?mr=2827814
http://www.ams.org/mathscinet-getitem?mr=0079220
http://www.ams.org/mathscinet-getitem?mr=1902367
http://www.ams.org/mathscinet-getitem?mr=0696534
http://www.ams.org/mathscinet-getitem?mr=2197814
http://arxiv.org/abs/1108.0262v1
http://www.ams.org/mathscinet-getitem?mr=0704539
http://www.ams.org/mathscinet-getitem?mr=0112053
http://arxiv.org/abs/0911.0274
http://www.ams.org/mathscinet-getitem?mr=2162164
http://www.ams.org/mathscinet-getitem?mr=1817783
http://www.ams.org/mathscinet-getitem?mr=1905862
http://www.ams.org/mathscinet-getitem?mr=2017850


BEHAVIORS OF ENTROPY 4161

[34] REVELLE, D. (2003). Rate of escape of random walks on wreath products and related groups.
Ann. Probab. 31 1917–1934. MR2016605

[35] SEGAL, D. (2001). The finite images of finitely generated groups. Proc. Lond. Math. Soc. (3)
82 597–613. MR1816690

[36] SHANNON, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27
379–423, 623–656. MR0026286

[37] SIDKI, S. (2004). Finite automata of polynomial growth do not generate a free group. Geom.
Dedicata 108 193–204. MR2112674

[38] VAROPOULOS, N. T. (1985). Théorie du potentiel sur les groupes nilpotents. C. R. Acad. Sci.
Paris Sér. I Math. 301 143–144. MR0801947

[39] WILSON, J. S. (2004). On exponential growth and uniformly exponential growth for groups.
Invent. Math. 155 287–303. MR2031429

[40] WILSON, J. S. (2004). Further groups that do not have uniformly exponential growth. J. Alge-
bra 279 292–301. MR2078400

[41] ZUK, A. (2008). Groupes engendrés par les automates. Séminaire N. Bourbaki. Astérisque 311
141–174.

DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY

KITASHIRAKAWA OIWAKE-CHO

SAKYO-KU KYOTO-SHI

606-8502 KYOTO

JAPAN

E-MAIL: jeremie.brieussel@gmail.com
URL: https://www.math.kyoto-u.ac.jp/~brieussel/

http://www.ams.org/mathscinet-getitem?mr=2016605
http://www.ams.org/mathscinet-getitem?mr=1816690
http://www.ams.org/mathscinet-getitem?mr=0026286
http://www.ams.org/mathscinet-getitem?mr=2112674
http://www.ams.org/mathscinet-getitem?mr=0801947
http://www.ams.org/mathscinet-getitem?mr=2031429
http://www.ams.org/mathscinet-getitem?mr=2078400
mailto:jeremie.brieussel@gmail.com
https://www.math.kyoto-u.ac.jp/~brieussel/

	Introduction
	The groups involved
	Directed groups
	Extended directed groups
	Examples
	Nonuniform growth and Haagerup property

	Rewriting process and activity of words
	Rewriting process
	Minimal tree and activity
	Ascendance forest
	Counting activity

	Random walks
	Inheritance of random process through wreath product
	Exponent sequence associated to valency sequence
	Expected activity

	Entropy exponents
	Main theorem
	Precise entropy exponent and oscillation phenomena
	Frequency of oscillations
	Drift of the random walk

	Return probability
	General estimates
	A specific example

	Higher order oscillations
	Definition of Delta(S',H'F')
	Elementary properties of Delta(S',H'F')
	Localization
	Asymptotic properties
	High order oscillations

	Generalization
	Comments and questions
	Analogies between growth and entropy for directed groups
	Comparison between growth, entropy, return probability and drift

	Acknowledgments
	References
	Author's Addresses

